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ABSTRACT

Machine learning models are often used to automate or support decisions in ap-
plications such as lending and hiring. In such settings, consumer protection rules
mandate that we consumers who receive adverse decisions with a list of “principal
reasons.” In practice, lenders and employers identify principal reasons as the
top-scoring features from a feature attribution method. In this work, we study
how such practices align with one of the underlying goals of consumer protection —
recourse — i.e., supporting them to achieve a desired outcome. We show that stan-
dard attribution methods can highlight features that cannot be changed to achieve
recourse — providing them with reasons without recourse. We propose to address
these issues by scoring features on the basis of responsiveness — i.e., the fraction
of interventions that can lead to a desired outcome. We develop efficient methods
to compute responsiveness scores for any model and any dataset under complex
actionability constraints. We present an extensive empirical study on the respon-
siveness of explanations in lending, and demonstrate how responsiveness scores
can be used to construct feature-highlighting explanations that lead to recourse and
to mitigate harm by flagging instances with fixed predictions.

1 INTRODUCTION

Machine learning models are now routinely used to automate or support decisions about people in
domains such as employment [8, 44], consumer finance [26], and public services [17, 24, 59]. In such
applications, explanations are often seen as an essential tool to protect consumers who are adversely
affected by the predictions of a machine learning model [5, 47, 52, 57]. Existing and proposed
laws and regulations include provisions that require lenders or employers to provide explanations to
individuals in such situations [1, 18, 52, 57]. In the United States, for example, the adverse action
notice requirement in the Equal Credit Opportunity Act mandates that lenders provide “principal
reasons” explaining why individuals are denied credit [1]. In the European Union, Article 86 of
the AI Act [18] grants individuals a right to obtain explanations to describe the “main elements”
of decisions in areas such as employment, education, financial systems, government benefits, law
enforcement, and border control.

Our reliance on explanations as a tool for consumer protection reflects widespread beliefs about the
value of transparency in such settings [14] —i.e., that revealing information can protect and empower
consumers [47]. In the United States, for example, the adverse action requirement is motivated by
the fact that presenting consumers with “principal reasons” can: (1) promote anti-discrimination
by revealing that a prediction was based on protected characteristics; (2) streamline rectification,
by revealing that a prediction was based on incorrect feature values; and; (3) support recourse by
educating individuals on how to improve their decision in a future application. Regulators provide
lenders with substantial flexibility in complying with these requirements [51]. In practice, lenders
who use machine learning create adverse action notices by applying methods for feature attribution
such as SHAP or LIME [20]. Given a model, these models can explain its predictions by assigning
scores to each feature. In this way, model deployers identify the top-scoring features for an adverse
prediction and present them to consumers as the “principal reasons” for their decision (see Fig. 1).

In this work, we study how to explain model predictions in a way that can achieve one of the
main goals of consumer protection: recourse. We focus on achieving recourse through the use of
feature attribution — techniques that are widely used in practice. Our work is motivated by the fact
that regulations seek to achieve multiple goals; we claim that it is useful to align the design of an
explanatory method with the goals it seeks to achieve. To this end, we study how well existing
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Figure 1: Feature-highlighting explanations for a person denied credit by a logistic regression model for
a lending task (see givemecredit, Section 4). We show explanations from top-scoring features using
SHAP [38] (left) and responsiveness scores (right). As shown, SHAP highlights 4 features, of which
3 are immutable (Age, HistoryOfLatePayment, HistoryOfDeliquency) and 1 is unresponsive
(CreditLineUtilization). In contrast, explanations built from responsiveness scores (right) only high-
light up to 4 features that an individual could change to attain a desired prediction.

approaches for feature attribution methods support recourse, and develop an approach tailored to
communicating with respect to this goal. Our main contributions include:

1. We present a feature attribution method to measure the responsiveness of predictions from a model.
The responsiveness score measures the fraction of interventions on a specific feature that attain a
desired outcome. Our approach highlights features that can be changed to receive a better model
outcome, and identifies instances where recourse is impossible or requires intervention on multiple
features.

2. We develop model-agnostic methods to compute feature responsiveness scores using reachable
sets. Our methods can evaluate scores for any model, paired with theoretical guarantees that
support our ability to flag harm, and can be readily adapted to achieve other goals.

3. We conduct a comprehensive empirical study on the responsiveness of feature attribution in
consumer finance. Our results demonstrate that common feature attribution methods output
reasons without recourse by highlighting features that do not provide recourse, and underscore the
benefits of our approach.

4. We include a Python library to measure feature responsiveness available at anonymized repository.

Related Work Our work is related to a stream of research on post-hoc explanations [3, 37,
38, 39, 45, 46, 61]. We focus on methods for feature attribution, which are designed to evaluate
the importance of feature for a given prediction. Many methods are built for use cases in model
development [e.g., 38, 45], but are now used to construct “feature-highlighting explanations” to
comply with regulations on explanations in consumer applications [see e.g., 5, 20].

Our work shows how feature attribution methods can inflict harm in such cases by providing con-
sumers with reasons without recourse — i.e., features that explain their adverse prediction but could
not be changed to attain a desired prediction. This is a failure mode that can arise when, for example,
models assign fixed prediction as a result of actionability constraints. In practice, this failure can
affects a broad class of local explainability methods. More broadly, it adds to a growing literature on
the failure modes of explainability, such as their sensitivity to manipulation [e.g., 4, 25, 36, 49, 50],
and their indeterminacy [e.g., due to multiplicity 7, 10, 40, 56]. Our work complements a recent
stream of impossibility results on recourse and feature attribution showing that complete and linear
attribution methods (e.g., SHAP) do not highlight features that guarantee salient model behavior (e.g.,
recourse) [see e.g., 6, 21]. Our work establishes the prevalence of this effect in practice, and develop
a principled approach to detect and mitigate it.

Our approach is related to a stream of work on algorithmic recourse [30, 54]. The vast majority
of work on this topic develops algorithms for recourse provision — i.e., to present consumers with
actions that can change the prediction a specific model [see e.g., 31]. Our goal is to highlight features
that can be reliably changed to achieve recourse. To this end, responsiveness scores measure the
number of actions on a single feature. Our approach builds on a line of work that elicits and enforces
complex actionability constraints [35, 54]. Here, we use this machinery to represent actionability
constraints at an instance level, and to generate a set of all points that a person can reach under a
set of actionability constraints [35]. Our approach outputs feature responsiveness scores that can be
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used with any model, and can be adapted to address practical challenges in providing recourse —e.g.,
robustness [42, 43, 53] and causality [12, 23, 32].

2 PROBLEM STATEMENT

We formalize the problem of explaining the predictions of a machine learning model through feature
attribution. We consider a standard classification task where we wish to predict a label y € Y from a
set of d features © = [x1, T, ...,14] € X C R% We assume that we are given a model h : X —
where each instance, x; € X, represents a person, and each feature, j € [d], represents a semantically
meaningful characteristic for the task at hand (e.g., age or income). 1

We consider a task where we must explain the predictions of a model to individuals who receive
adverse outcomes. We say that an individual receives an adverse outcome when they fail to receive a
target prediction, y'. For example, in a lending task where a model would predict y € {0,1} and
y = 1 indicates that an applicant will repay their loan, we would set the target prediction as y' = 1
and explain the predictions for all applicants for whom h(x;) = 0.

Feature-Highlighting Explanations Our goal is to construct explanations where each feature
is responsive — i.e., can be changed independently to attain the target prediction 3'. The standard
practice of explaining predictions is to use feature-highlighting explanations [see e.g. 5]. These
explanations consist of a list of “most important” features from a specified method that we convert
into a natural language description [e.g., a reason code 20].

Feature Attribution Methods The standard approach in constructing feature-highlighting explana-
tions is to use feature attribution methods [20].

Definition 1. Given a model » : X — Y and its training dataset D = {(x;,y;)}!, a feature
attribution method for point x; is a function ¢(x; | h, D) : X — R%, where the jth element of the
output, ¢;(x; | h, D) is the attribution for feature j € [d].

In what follows, we write ¢(x;) instead of ¢(x; | h, D) when h and D are clear from context. This
function capture the behavior of several methods that are used to explain the prediction of a model in
terms of its features:

* Local Linear Explainers [see e.g., 15, 45, 60, 62]: Given a model & and a point x;, these methods
fit a linear model g : RY — R to approximate the decision boundary surrounding «; such that
g(x’) = {(¢(x;), x’). The resulting attribution for each feature is its weight in g.

» Shapley Value Methods [see e.g., 22,27, 38]: Given a model & and a point x;, these methods cast
features as players in a cooperative game, and estimate ¢;(x;) as the marginal contribution of
feature j to the prediction h(x;) under basic axioms of social choice [48].

Given a model h and its training dataset D, the scores ¢(x;) capture how each feature captures
the prediction of a model at the x; in different ways. In all cases, the scores satisfy the following
properties:

* Relevance: A feature with an attribution score ¢;(x;) = 0 is not relevant to the prediction for
x; —1.e., it can be changed arbitrarily without changing the prediction [see e.g., the “missingness”
axiom in 38].

» Strength: Features with larger attribution scores have larger impact on the prediction — i.e., if
|¢;(x;)| > |¢; ()], then feature j has a stronger contribution to the prediction than feature j'.

These properties allow model developers to comply with consumer protection rules, but can promote
misinterpretation among consumers [33].

Reasons without Recourse One of the key failure modes of machine learning in consumer-facing
applications is that models can assign fixed predictions — predictions that cannot be changed by their

'We assume that the feature values are bounded so that z; € [I;,u;] and ||| < B forall € X and B
sufficiently large. This assumption holds for most semantically meaningful features [see 54]. Some features
have bounds by construction (i.e. binary features). In other cases, we can set loose bounds (e.g., for income).



decision subjects (see e.g., Table 1). In lending, for example, models that assign fixed predictions can
inflict harm through preclusion —i.e., when an applicant is denied a loan based on a fixed prediction,
they are permanently barred from credit access. Models will assign fixed predictions when features
are not actionable (or mutable) or only able to change in specific ways. In principle, we can detect
these instances by explicitly considering and consider actionability constraints. In practice, however,
this is difficult and the instances are often left undetected.

It is impossible to provide feature-highlighting explana-

tions for recourse to someone who is assigned a fixed Features Label Counts  Best Model
prediction; no feasible action will allow them to obtain  _ > " " o h(@)
the target prediction. However, existing feature attribution 0 0 5 0 0
methods can generate an explanation, presenting individ-

. . : 0 1 7 30 1
uals with reasons without recourse. This can lead to harm
by misleading individuals to invest effort into cases that ! 0 2 8 0
cannot be changed. 1 1 gl 17 0

Table 1: Stylized lending task where the

Accounting for Actionability Given these Challenges, best model assigns fixed predictions to

we introduce machinery to capture how features can
change at the instance level. For example, a change in
one feature might necessitate a change in another; this
makes strictly independent changes to certain features in-
feasible.

Definition 2. An action is a vectora = [a1, . ..,a4) € R¢
that a person can perform to change their features from x;
tox; + a = ' € X. Given a point ¢; € X, the action

two points (highlighted in red). We pre-
dict y € {0,1} = repayment from
two binary features (z1,22) = (age > 60,
has_IRA). We fit a classifier data with ng
negative labels and mn; positive labels for
each (z1,x2) € {0,1}*. Individuals with
z1 = 1 can only change their features to
(z1,22) € {(1,0),(1,1)} since age > 60
is immutable and has_ IRA is binary.

set A(x;) contains all possible actions for ;. We assume
that every action set contains the null action @ € A(x;).

Action sets captures how we can change features from a given point as a set of actionability constraints.
As shown in Table 2, we can elicit complex constraints from human experts in natural language, and
convert them into equations that we can embed into an optimization problem. In this way, we can
enforce actionability in — for example — algorithms to find recourse actions [see e.g., 35, 54].

Class Example Features Actionability Constraint
Immutability age cannot change T; = age a; =0
Monotonicity recent_payment can only increase T;j = recent_payment a; >0

Integrality late_payments must be positive integer < 12 2; = late_payments a; €ZT N[0 — 2,12 — z]

. . Zp = housing_status=own .
preserve one-hot encoding of categorical feature K using usTow a; + x; € {0,1} for j € {k,I,m}

Encoding Validity
Djethtmy @+ T =1

. 2] = housing_status=rent
housing_status € {own, rent,other}

Zm = housing_status=other

if has_savings_account = TRUE a; +x; € {0,1}
ay +zy € 0,107

a; +xj < 10'2(zy, + ax)

. L . x; = has_savings_account
Logical Implication  then savings_account_balance >0 ’ )
i T = savings_account_balance
else savings_account_balance =0

if years_of_account_history increases
then age will increase commensurately

L xj = years_of_account_history xj +aj < xp + Ok
Causal Implication .
T = age dr, € [0,100]

Table 2: Examples of actionability constraints on semantically meaningful features for a lending task (see
Appendix A for additional examples). Each constraint can be expressed in natural language and embedded into
an optimization problem using standard techniques in mathematical programming [see, e.g., 58].

To highlight features that are responsive, we must assign a score to features that accounts for
actionability constraints. In practice, the actionability constraints for a given feature will include
constraints that pertain to the feature as well as other features. We refer to the features that may
change as a result of interventions on feature j as downstream features, C;.

Definition 3. Given an action set A(x;) for a point x; € X, the action set for feature j € [d] is:
A](JJ,) = {G, S A(€B7) ‘ a; 7é ONar =0,k € [d} \OJ}

Here, the downstream set C; := {k € [d] \ {j} | a; # 0 = aj # 0 Va € A(x)} is the subset of
all features that must change as a result of interventions on feature j.



Definition 3 captures cases where actions on a feature can induce changes in other features. Such cases
can stem from deterministic causal relationships — e.g., increasing years_of_account_history
should lead to a commensurate change in age. In general, they can capture dependencies that would
not be included in a traditional causal graph — e.g., changing a categorical attribute will require
switching a binary feature “off” while turning another binary feature “on” (sothatz; =1 — 0 —
ri; =0 1.

3 MEASURING FEATURE RESPONSIVENESS

In this section, we introduce our main technical contribution — the responsiveness score. We first
define the responsiveness score, then discuss its interpretation and computation.

3.1 RESPONSIVENESS SCORES

Our goal is to measure the responsiveness of the prediction of a model at a point ; with respect to
the set of feasible actions on specific features. We propose to measure the sensitivity for each feature
through the feature responsiveness score.

Definition 4. Given a model h : X — Y, a point x; with action set A(x;) and feature j € [d], the
responsiveness score for feature j is defined as:

pi(@i | hy Aw;)) :=Pr(h(z) = ' | &' = zi + a,a € Aj(x;))

The responsive score for feature j captures the proportion of single-feature actions on feature j that
change the prediction of a model h at ;. In what follows, we write 1, () instead of p; (x | h, A(x;))
when h and A(x;) are clear from context. Given a feature where ;(x;) = p, we know that 100(p)%
of the single-feature actions on j, @ € A;(x;) will change the prediction of the model. Thus, all
actions to a feature where p;(;) = 0 would not change the prediction while all actions on a feature
where 115 (2;) = 1 would result in a different prediction.

These interpretations are contingent on the actionability constraints used to compute the responsive-
ness score. In the simplest case, actionability constraints encode indisputable constraints on how a
feature can be changed (e.g., feature encoding or physical limits) and so the responsiveness score for
a given feature represent an upper bound on responsiveness: “at most 1004, (x;)% of single-feature
actions on feature j attain a desired prediction.” Such constraints let us flag undeniable instances
of harm. More generally, actionability constraints encode information about how other features are
expected to vary when a single feature is changed. For example, if a model has a feature indicating
the job rank of an individual, we can create actionability constraints that encode the expectation
that if job rank increases, so does income.

Safeguards for Consumer Protection One benefit of responsiveness scores is that we can reli-
ably use them to detect when consumers are assigned fixed predictions, and when feature-based
explanations can provide recourse.

Remark 1. Given amodel h : X — ), let py(x;), . .., pa(x;) denote the responsiveness scores of
x; € X with respect to the action set A(x;).

a) If p;(x;) > 0 for some feature j € [d), then h can provide recourse to x; through a single-feature
action on j.

b) If pj(x;) = 0 for all features j € [d), then either: (i) h assigns a fixed prediction to x;, or (ii) h
can only provide recourse to x; through actions that alter two or more features.

Remark 1a) states that every person (z;) who receives a positive responsiveness score for at least
one feature has recourse. This implies that when we construct feature-highlighting explanations
using the top-k responsiveness scores, we will only provide explanations to individuals who have
recourse. Remark 1b) also illustrates how the responsiveness scores can flag for potential harm
when p;(x;) = 0 and allows us to mitigate harm on a case by case basis. In case (i) — where
a person is assigned fixed predictions — we would refrain from providing explanations to avoid
misleading consumers, and flag the issue so that model development can be potentially revisited. In
case (ii) — where a person is assigned predictions that can change through multiple actions — we could
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Figure 2: Simple example of how to compute responsiveness scores involving three independent features. age
is an immutable feature, n_1loans is a discrete feature taking values from 0 to 3 and has_guarantorisa
binary feature. The original prediction of 0 is shown in the row highlighted in green. Single-feature actions for
n_loans, has_guarantor are highlighted yellow and red respectively. The responsiveness score for age
is O since it is immutable. Although the full reachable set is not required for computation, we include it for
demonstrative purposes.

provide explanations that highlight subsets of responsive features, include explicit warning against
presumptions of feature independence, or proceed in a similar manner to case (i).

3.2 COMPUTING SCORES WITH REACHABLE SETS

We compute responsiveness scores using a reachable set:

Definition 5. Given a point «; and its action set A(x;), we refer to the set of all points that are
attainable through actions in A(x) as the reachable set: R(x;) := {x; + a | a € A(x;)}. We refer
to the subset of points that are reachable through actions on feature j € [d] as the reachable set for
feature j and denote it as: R;(x;) := {x; + a’ | @’ € A;(=x;)}.

Reachable sets represents an alternative way to store and process information about actionability at
the instance level. In particular, a reachable set R(x;) encodes this information as a set of feature
vectors that can be reached through feasible actions. Given reachable sets for each feature R;(x;) for
Jj € [d], we can calculate responsiveness scores for a model by querying its predictions (see Fig. 2).
This has the benefits that: (1) it can work with any model; (2) we only need to compute the reachable
set once; and (3) it can allow us to evaluate other notions of responsiveness.

Enumeration for Discrete Features Algorithm 1

presents a method to generate R;(x;) for a given point - :

a; and feature j € [d] in discrete s. We solve the opti- Require: i € X, j € [d], A;(z:)

mization problem: By 2. A; < Alx) .
1: while Find1DAction(x;, A;) is feasi-

i i AL = i (s ble do

Find1DAction(x;, A;) := argmin ||a|| s.t. a € A;(x;). 2 @+ « FindLDAction(as, 4,)

which is modifies the method in [35]. Our adaptation 3 R; + RjU{zx; +a"}

mitigates some of the computational costs associated Aj « Aj\{a"}

with the method in [35] by exclusively searching for ~ 5: end while

single-feature actions. Output R; = R;(x;)

Algorithm 1 EnumerateReachableSet

Bl

Sampling for Continuous Features The enumeration
technique described above is infeasible when we wish . ‘
to evaluate the responsiveness of a continuous feature, Require: @; € X, j € [d], A;j(z:), N € N
or when a feature has downstream effects on continuous Rj @, Aj « Ax:)

features. In such cases, we apply Algorithm 2 to generatea ~ 1: while [R;| <Ndo

sample of N points from the reachable set, Rj (x;), which 2: a < SAamplelDACt'*on(mi’ 45)
we can use to estimate the score. Given a feature without 3 Ry RjU{z; +a"}
downstream effects — i.e., without downstream features so Ot ¢ e:td g"l_e I (@)

that |C;| = 0 — SamplelDAction samples from the closed P ST

interval [l;, u;]. When features have downstream effects,

we can apply a rejection sampling procedure to reject those that violate actionability constraints.

Algorithm 2 SampleReachableSet




These samples are independent, allowing us to define the estimated responsiveness score. Given a set
of N independent samples from R;(z;), the number of responsive predictions follows a binomial
distribution Binomial(V, 11 (2;)). In turn, we can construct a (1 — «) confidence interval around
true responsiveness score as described in the following result:

Definition 6. Given a point z; € X, let Rj(z;) C R;(x;) denote a sample of N points drawn
uniformly from the reachable set for feature j. Given any model h : X — ), we can estimate the
responsiveness score for feature j as

pile) =5 S 1) =y

x'€R;(x;

Given a level of significance o € (0, 1), the 100(1 — «)% confidence interval for ;(x;) is:

. 1 _
@) & | i@ 1~ i)
Here, S = |{z’ € R;(w;) | h(x') = y'}| denotes the number of responsive points, & := &~ (1 — $)s

() is the Normal CDF, and ji;(z;) := §2 (S + %2) is the corrected estimator.”

Here, the significance level a € (0, 1) represents the probability that this interval does not contain
the true p4, (j). In practice, practitioners can set a value of « to achieve a desired level of precision
level, and apply the result in Definition 6 to determine a minimal sample size to estimate yi,, (j) with
the desired coverage guarantees. This method computes responsiveness scores for all feature types.
For discrete features, sampling reduces computation and storage costs compared to enumeration.
However, it compromises our ability to identify fixed predictions with certainty.

3.3 DISCUSSION AND EXTENSIONS

One of the benefits of working with reachable sets is that they can readily be extended to handle
other desiderata by weighing and filtering reachable points. Here we list a few variants of the
responsiveness score:

Variant Formulation Description and Motivation

Monotonic Pr(h(z + a) = y'la; >0, a € 4;(x;))or Responsiveness of monotonic (increasing or decreasing)
Pr(h(z +a) = y'la; <0, a € Aj(x:)) single-feature actions. Although a feature can change in

both directions, it might be easier to increase the feature.

Providing this information may prove useful for end users.

Robust Pr(h(z + a) = y'la; #0, a € A(z;)) Responsiveness of feature j even as other features
change [see e.g., 42]. If we are listing features for recourse,
we might want them to be robust against changes in other
features. This is because consumers may (inadvertently)
act upon other features.

Weighted > cost(a) - 1[h(z + a) =y Responsiveness weighted by the cost of actions. The dif-
acAj(z;) ficulty of implementing each action may differ. Note that
in practice, eliciting a meaningful cost function may be

challenging.

Table 3: Formulation, description and motivation for example variants of the responsiveness score.

4 EXPERIMENTS

We present an empirical study on the responsiveness of explanations. Our goals are: (1) to evaluate
how our approach can support recourse and flag fixed predictions; and (2) to demonstrate the
limitations of existing feature attribution methods in practice. We include additional results and
details in Appendices A and B, and code to reproduce these results at anonymized repository.

>The correction improve the coverage of the estimator at endpoints such as uji(x;) = 0orl [see9].
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Setup We work with three classification datasets from consumer finance that are publicly available
and used in prior work (see Appendix A for details). Here, each instance represents a consumer
and each label indicates whether they will repay a loan. For each dataset, we define inherent
actionability constraints that capture indisputable requirements and that apply to all individuals —
e.g., no changes for immutable and protected attributes, changes must preserve feature encoding and
adhere to deterministic causal effects (see Appendix A).

We split each dataset into a training sample (80%; to train models and tune hyperparameters) and
a test sample (20%; to evaluate out-of-sample performance). We train classifiers using (1) logistic
regression (LR), (2) XGBoost (XGB), and (3) random forests (RF). For each model, we construct a
feature-based explanation for each individual who is denied credit by listing the top-k highest-scoring
features from the following methods:

* Feature Responsiveness Score (RESP): We compute the score in Definition 4 using the procedure
in Section 3.2, and the actionability constraints in Appendix A.

* Standard Feature Attribution: We consider local feature attribution methods that are model-agnostic
and widely used in the lending industry [20]: Shapley additive explanation (SHAP) [38]; and local
interpretable model-agnostic explanations (LIME) [45].

* Actionable Feature Attribution: We also consider action-aware variants of feature attribution
methods SHAP-AW and LIME-AW, which seek to promote responsiveness by setting the scores for
immutable features to O such that ¢;(x;) <— 0 when feature j is immutable.

Results We summarize the viability of pro-

moting recourse using feature-highlighting ex-  pagaset Metrics LR RF XGB
planations in Table 4, and the responsiveness of eton % Demiod 6.1% 583% 57.0%
explanations from each method in Table 5. We | _: ¢4 L, % Fixed

evaluate explanations built using the top-4 scor- 4 — 43 (da=31) L %I1-DRec 444% 346% 29.8%
ing features from each method, which reflects  Fico [19] L%n-DRec 36.6% 374% 21.2%
the recommended number of reasons to include german % Denicd 229% 175% 22.0%
in an adverse action notice required by the U.S.  ,, _ 1 g0 L, % Fixed

Equal Credit Opportunity Act [see 2, 5]. d=36(ds=9) L%I-DRec 734% 514% 655%

Dua and Graff [13] L %n-DRec 192% 194% 19.1%
givemecredit % Denied 24.6% 24.7% 24.8%

Our results in Table 4 show that models admit
features that allow some individuals to change 190, 965 o Fixed

. . .. n= , o Fixe
ther2n to attain a d(eisired %reéhcuon (29'2% It10 d=23(da=13) L% 1-DRec 724% 932% 76.0%
93. %.across models and atasets). t t.e Kaggle [28] L% n-DRec 120% 6.6% 12.5%
same time, they reveal their potential to mis-

lgad 1gd1V1duals who are assigned fixed predic- pppje 4: Recourse feasibility across datasets and model
tions (i.e., 0.2% to 49.1% across all models and  ¢|agses. d 4 indicate the number of mutable features. %
datasets). For example, given the LR model for  Denied — the fraction of individuals denied credit by
the heloc dataset, we would present an expla- a model; % 1-D — the fraction of denied individuals
nation to 56.1% of individuals who are a de- who can achieve recourse with actions that alter a single
nied loan. Among them, 44.4% can achieve feature; % n-D — the fraction of denied individuals who
recourse through single-feature actions; 35.6% ¢an only achieve recourse with actions that alter 2 or
can only achieve recourse through joint actions; ™°® features; and % Fixed — the fraction of denied
and 19.1% have no path to recourse because they individuals who are assigned a fixed prediction (in red if

. .. 0).
receive a fixed prediction. >0

On Responsiveness Scores Our results in Table 5 show how our approach can support consumers
by presenting responsive features and by flagging instances where explanations may be misleading.
Explanations are only provided to individuals who can achieve recourse through a single-feature
action, and are given to all such individuals (the values for % Presented with Reasons in Table 5
match the values for % I-D Rec in Table 4). When we construct feature-based explanations using
responsiveness scores, we present individuals with explanations that only contain responsive features,
achieving 100% on the % All Reasons Responsive metric across datasets and models. This may
result in explanations that highlight fewer reasons on average—for example, individuals receiving
explanations from the LR model on german receive 1.9 out of 4 reasons on average. This behavior
can mitigate harm as we avoid presenting explanations to individuals with fixed predictions or those
who require joint actions to change their outcomes.



LR XGB

All Features Actionable Features All Features Actionable Features

Dataset Metrics LIME SHAP LIME-AW  SHAP-AW  RESP LIME SHAP LIME-AW  SHAP-AW  RESP
hel % Presented with Explanations ~ 100.0% 100.0%  100.0% 100.0% 44.4% 100.0% 100.0% 100.0% 100.0% 29.8%
e L % All Unresponsive 0.0% 0.0%
Z: -:3 (da = 31) L, % At Least 1 Responsive 18.0% 24.4% 353% 35.3% 100.0% 7.4% 19.3% 22.5% 24.9% 100.0%
FIEO [19]‘4 N L % All Responsive 0.0% 0.0% 0.2% 0.2% 100.0% 0.0% 0.0% 0.0% 0.0% 100.0%
L. Mean # of Features 4.0 4.0 4.0 4.0 2.4 4.0 4.0 4.0 4.0 2.7
% Presented with Explanations  100.0% 100.0%  100.0% 100.0% 73.4% 100.0% 100.0% 100.0% 100.0% 65.5%
icimlar(]mo L, % All Unresponsive 0.0% 0.0%
p B 38 (dy=9) L, % At Least 1 Responsive 0.0% 0.0%  37.1% 33.6% 100.0% 0.0% 16.8%  35.5% 33.2% 100.0%
Dua and Goratt {13 - % All Responsive 00%  00%  0.0% 00%  1000%  00%  00%  0.0% 00%  100.0%
ua e V7L Mean # of Features 4.0 4.0 4.0 4.0 1.9 4.0 4.0 4.0 4.0 2.0
X qit % Presented with Explanations ~ 100.0%  100.0% 100.0% 100.0% 72.4% 100.0% 100.0% 100.0% 100.0% 76.0%
i . % All Unresponsive 0.0% 0.0%
dL : 23 (;1 ~13) L. % At Least 1 Responsive 44.2% 54.5% 49.3% 68.2% 100.0% 59.1% 48.7% 69.1% 59.4% 100.0%
Kz: ole [2;;]7 L, % All Responsive 0.0% 0.0% 5.5% 23.1% 100.0% 0.0% 0.0% 5.4% 3.7% 100.0%
g8 L, Mean # of Features 4.0 4.0 4.0 4.0 2.4 4.0 4.0 4.0 4.0 2.6

Table 5: Responsiveness of feature-based explanations for LR and XGB models across all methods and datasets
(We defer results for RF to Appendix B.2 for clarity). For each model, we generate feature-based explanations for
individuals denied a loan, highlighting up to 4 top-scoring features from a given feature attribution method. For
each method, we report the proportion of individuals receiving an explanation (% Presented with Explanations);
the mean number of features per explanation (Mean # of Features); and the proportion of explanations that
highlight only unresponsive features (% All Unresponsive), include at least one responsive feature (At Least
1 Responsive), or highlight only responsive features (All Responsive, in bold). Methods that return only
unresponsive explanations are marked in

On Feature Attribution Scores Our results show how standard methods for feature attribution can
output explanations that are ineffective and potentially misleading. For example, under the LR model
for the heloc dataset, we find that 82% and 75.6% of explanations from LIME and SHAP include 4/4
unresponsive features respectively. This behavior arises as a result of algorithm design, as the scores
do not account for responsiveness nor actionability. This results in two key problems:

Low Scores for Responsive Features: Methods can assign low scores to responsive features. On the
heloc dataset, for example, 44.4% of denied individuals by the LR model can achieve recourse by
altering a single feature. However, explanations built using LIME and SHAP fail to include them since
their scoring mechanisms do not account for feature responsiveness. For instance, an individual could
achieve recourse by acting on NumRevolvingTrades, but a feature-based explanation produced by
LIME does not include it, as it assigns higher scores to four other features that are unresponsive. We
also observe this phenomenon beyond the top-4 features in Fig. 3.

Reasons without Recourse: Methods provide explanations to individuals with fixed predictions. On
the heloc dataset, the LR model assigns a fixed prediction to 19.1% of denied individuals. In such
cases, LIME and SHAP, and their variants offer explanations, even though it is impossible for them
to achieve recourse. These explanations may mislead individuals by highlighting features that are
salient to the prediction and could be changed, but would not lead to recourse. For example, an
explanation from SHAP for an individual with a fixed prediction includes AvgYearsInFile and
NetFractionRevolvingBurden — both of which are mutable but not actionable.

On Adapting Existing Methods Seeing how responsiveness is inherently tied to actionability, we
study the potential to improve responsiveness through action-aware variants of SHAP and LIME —
SHAP-AW and LIME-AW. We construct explanations using only mutable features, following common
a belief surrounding actionability that we can account for it through post-processing [e.g., 29, 41].

The action-aware variants show some modest improvements. For the LR model in heloc, 35.3% of
explanations contained at least one responsive feature, up from SHAP’s 24.4%, potentially helping
more consumers achieve recourse. Fig. 3 confirms SHAP-AW ranks responsive features higher than
SHAP, showing an upward shift in responsiveness distribution across ranks.

Nevertheless, SHAP-AW and LIME-AW explanations still contain unresponsive reasons. On heloc
with the LR model, only 0.2% of the explanations were fully responsive. This means that 99.8% of
denied applicants received explanations with at least one unresponsive feature. This occurs because
LIME-AW and SHAP-AW still assign scores to unresponsive features when other responsive features



exist or have exhausted the list of such features. Therefore, our results highlight that post-processing
fails to properly account for actionability.

5 CONCLUDING REMARKS

Explanations are often seen as a strategy to protect individuals from harm when machine learning
models are applied in domains like lending and hiring. Our work reveals how this strategy can
backfire by highlighting unresponsive features and overlooking fixed predictions. We find that
common feature attribution methods exhibit both of these failure modes, leading to situations where
consumers are given reasons without recourse. Our work addresses these limitations by developing a
feature attribution method that measures responsiveness—i.e., the probability that a feature can be
changed in a way that leads to recourse. These scores can readily replace the scores currently used to
comply with regulations. In doing so, we can strengthen consumer protection by highlighting features
that enable recourse when possible and flagging instances where recourse is unattainable. Our results
demonstrate the benefits of developing standalone methods to address specific goals—whether for
recourse, rectification, or anti-discrimination. By adopting specialized approaches, we can achieve
more effective consumer protection.

to recourse” does not apply in these domains, the
responsiveness score serves as a valuable diagnostic

Extensions While our work focused on consumer
finance and recourse, the responsiveness score has N —— = p—— I T
broader applications across various domains. In iZ"---i.-- i i i
healthcare, it can evaluate decision models for or- §:m. } ; ;
gan transplant allocation and triage systems, where it I B | | |
is essential to make prompt yet fair decisions. In crim- B i ! 1
inal justice, it can assess risk scoring models used in lé'-...,-""""‘ i i i
pretrial and sentencing decisions. Although “a right Em’_—'— ; ; ;
| | |
| | |
| |
| |
| |
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| |

tool to identify potentially harmful model behaviors. 3 - !
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Limitations The main limitations of our work stem §§

from assumptions about actionability and responsive- -

ness. Our approach relies on the validity of actionabil- a

ity assumptions within an action set. When defining =

this set to encode indisputable constraints, as in Sec- g

tion 4, responsiveness scores can flag individuals with %

fixed predictions. However, presented features may A

not achieve recourse due to individual constraints. To a

mitigate this, we can highlight features achieving a %

o

20 40 60 80
% of Times Responsive

Il SHAP ¥/ SHAP-AW

. .. . 100
threshold responsiveness or elicit constraints from

decision subjects [see e.g., 11, 16, 34]. A broader
limitation is that our machinery only represents a
subset of constraints considered in causal algorith-
mic recourse literature. It can represent cases with
deterministic causal effects but excludes scenarios

RESP

Figure 3: Responsiveness of top-scoring features
for individuals who are denied credit by the LR
model on the heloc dataset for using SHAP,

where interventions induce probabilistic effects on
downstream features [12, 32, 55]. In principle, our
approach can incorporate such assumptions: given an
individual probabilistic graphical model, we can com-
pute a responsiveness score reflecting the expected
recourse rate. The key challenge lies in validating
causal assumptions at an individual level. This re-
flects a practical bottleneck that requires further study
and may require an approach to measure responsive-
ness in a way that is robustness to misspecifcation.

10

SHAP-AW and RESP. For each method, we re-
port the proportion of instances where a feature
assigned the k-th largest score is responsive — i.e.
has at least one single-feature action that leads
to recourse. Higher-ranking SHAP features are
rarely responsive. SHAP-AW performs better by
assigning responsive features to the top more of-
ten, but only marginally. RESPonly assigns ranks
when features are responsive. We only compute
scores for individuals who are denied (i.e., 24%),
and only show bars for features that receive a non-
zero attribution score. We provide analogous plots
for other datasets, model classes and methods in
Appendix C.
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A  DATASETS AND ACTIONABILITY CONSTRAINTS

A.1 DETAILS FOR THE sELoCc DATASET

Description The FICO dataset was created to predict repayment on Home Equity Line of Credit
(HELOC) applications. HELOC credit lines are loans that use people’s homes as collateral. The
dataset is used by lenders to determine how much credit should be granted. The anonymized version
of the HELOC dataset was created by FICO to present an explainable machine learning challenge for
a prize.

Each instance in the dataset is a real credit application for HELOC credit; it’s an application that
a single person submitted and contains information about that person. There are n = 10,459
instances, each consisting of d = 23 features. These features are either binary or discrete. The label,
RiskPerformance, is a binary assessment of the risk of repayment based on the 23 predictors.
A value of 1 means the person hasn’t been more than 90 days overdue on their payments in the last
2 years; a value of 0 means they have at least once. There are some repeated instances; there are
9,871 unique rows. The dataset is self-contained and has been anonymized for public use in the
explainability challenge. It doesn’t use any protected attributes like race and gender.

Actionability Constraints The joint actionability constraints include:

1. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>2 will induce to actions on
[NumRevolvingTrades>2’]. Each unit change in NumRevolvingTradesWBalance>2 leads
to:1.00-unit change in NumRevolvingTrades>2

2. DirectionalLinkage: Actions on NumInstallTradesWBalance>2 will induce to actions on
[NumInstallTrades>2’]. Each unit change in NumInstallTradesWBalance>2 leads
to:1.00-unit change in NumInstallTrades>2

3. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>3 will induce to actions on
[NumRevolvingTrades>3’]. Each unit change in NumRevolvingTradesWBalance>3 leads
to:1.00-unit change in NumRevolvingTrades>3

4. DirectionalLinkage: Actions on NumInstallTradesWBalance>3 will induce to actions on
[NumInstallTrades>3’]. Each unit change in NumInstallTradesWBalance>3 leads
to:1.00-unit change in NumInstallTrades>3

5. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>5 will induce to actions on
[NumRevolvingTrades>5’]. Each unit change in NumRevolvingTradesWBalance>5 leads
t0:1.00-unit change in NumRevolvingTrades>5

6. DirectionalLinkage: Actions on NumInstallTradesWBalance>5 will induce to actions on
[NumInstallTrades>5’]. Each unit change in NumInstallTradesWBalance>5 leads
to:1.00-unit change in NumInstallTrades>5

7. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>7 will induce to actions on
[NumRevolvingTrades>7’]. Each unit change in NumRevolvingTradesWBalance>7 leads
t0:1.00-unit change in NumRevolvingTrades>7

8. DirectionalLinkage: Actions on NumInstallTradesWBalance>7 will induce to actions on
[NumInstallTrades>7’]. Each unit change in NumInstallTradesWBalance>7 leads
t0:1.00-unit change in NumInstallTrades>7

9. DirectionalLinkage: Actions on YearsSinceLastDelqgTrade<1 will induce to actions on
[YearsOfAccountHistory’]. Each unit change in YearsSincelLastDelgTrade<1 leads
to:-1.00-unit change in YearsOfAccountHistory

10. DirectionalLinkage: Actions on YearsSincelLastDelgTrade<3 will induce to actions on
[YearsOfAccountHistory’]. Each unit change in YearsSinceLastDelgTrade<3 leads
t0:-3.00-unit change in YearsOfAccountHistory

11. DirectionalLinkage: Actions on YearsSinceLastDelgTrade<5 will induce to actions on
[YearsOfAccountHistory’]. Each unit change in YearsSinceLastDelqgTrade<5 leads
t0:-5.00-unit change in YearsOfAccountHistory
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Name Type LB UB mutability
ExternalRiskEstimate_geq_40 {0,1} O 1 no
ExternalRiskEstimate_geq_50 {0,1} O 1 no
ExternalRiskEstimate_geq_60 {0,1} O 1 no
ExternalRiskEstimate_geq_70 {0,1} O 1 no
ExternalRiskEstimate_geq_80 {0,1} O 1 no
YearsOfAccountHistory Z 0 50 no
AvgYearsInFile_geq_3 {0,1} O 1 only increases
AvgYearsInFile_geq_5 {0,1} O 1 only increases
AvgYearsInFile_geq_7 {0,1} O 1 only increases
MostRecentTradeWithinLast Year {0,1} O 1 yes
MostRecentTradeWithinLast2 Years {0,1} O 1 yes
AnyDerogatoryComment {0,1} O 1 no
AnyTrade120DaysDelq {0,1} O 1 no
AnyTrade90DaysDelq {0,1} O 1 no
AnyTrade60DaysDelq {0,1} O 1 no
AnyTrade30DaysDelq {0,1} 0O 1 no
NoDelgEver {0,1} 0O 1 no
YearsSinceLastDelqTrade_leq_1 {0,1} 0O 1 only increases
YearsSinceLastDelqTrade_leq_3 {0,1} 0O 1 only increases
YearsSinceLastDelqTrade_leq_5 {0,1} 0O 1 only increases
NumlnstallTrades_geq_2 {0,1} 0O 1 only increases
NumlnstallTradesWBalance_geq_2 {0,1} 0O 1 only increases
NumRevolvingTrades_geq_2 {0,1} 0O 1 only increases
NumRevolvingTradesWBalance_geq_2 {0,1} 0O 1 only increases
NumlInstallTrades_geq_3 {0,1} 0O 1 only increases
NumlnstallTradesWBalance_geq_3 {0,1} 0O 1 only increases
NumRevolvingTrades_geq_3 {0,1} 0O 1 only increases
NumRevolvingTradesWBalance_geq_3 {0,1} 0O 1 only increases
NumlInstallTrades_geq_5 {0,1} 0O 1 only increases
NumlInstallTradesWBalance_geq_5 {0,1} 0O 1 only increases
NumRevolvingTrades_geq_5 {0,1} 0O 1 only increases
NumRevolvingTradesWBalance_geq_5 {0,1} 0O 1 only increases
NumlInstallTrades_geq_7 {0,1} 0O 1 only increases
NumlnstallTradesWBalance_geq_7 {0,1} 0O 1 only increases
NumRevolvingTrades_geq_7 {0,1} 0O 1 only increases
NumRevolvingTradesWBalance_geq_7 {0,1} 0O 1 only increases
NetFractionInstallBurden_geq_10 {0,1} 0O 1 only increases
NetFractionInstallBurden_geq_20 {0,1} 0O 1 only increases
NetFractionInstallBurden_geq_50 {0,1} 0O 1 only increases
NetFractionRevolvingBurden_geq_10 {0,1} 0O 1 only increases
NetFractionRevolvingBurden_geq_20 {0,1} 0O 1 only increases
NetFractionRevolvingBurden_geq_50 {0,1} 0O 1 only increases
NumBank2NatlTradesWHighUtilizationGeq2  {0,1} 0 1 only increases

Table 6: Table of Separable Actionability Constraints for the heloc dataset. Includes bounds and monotonicity
constraints.

12.

13.

14.

ReachabilityConstraint: The values of [MostRecentTradeWithinLastYear,
MostRecentTradeWithinLast2Years] must belong to one of 4 values with custom
reachability conditions.

ThermometerEncoding: Actions on [fearsSincelLastDelqTrade<1,
YearsSinceLastDelgTrade<3, YearsSinceLastDelgTrade<5] must preserve ther-
mometer encoding of YearsSinceLastDelqTradeleq., which can only decrease. Actions can
only turn off higher-level dummies that are on, where YearsSinceLastDelqTrade<1 is the
lowest-level dummy and YearsSinceLastDelgTrade<5 is the highest-level-dummy.

ThermometerEncoding: Actions on [AvgYearsInFile>3, AvgYearsInFile>5,
AvgYearsInFile>7] must preserve thermometer encoding of AvgYearsInFilegeq., which
can only increase. Actions can only turn on higher-level dummies that are off, where
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15.

16.

18.

19.

20.

AvgYearsInFile>3 is the lowest-level dummy and AvgYearsInFile>7 is the highest-level-
dummy.

ThermometerEncoding: Actions on [NetFractionRevolvingBurden>10,
NetFractionRevolvingBurden>20, NetFractionRevolvingBurden>50] must preserve
thermometer encoding of NetFractionRevolvingBurdengeq., which can only decrease. Actions can
only turn off higher-level dummies that are on, where NetFractionRevolvingBurden>10 is
the lowest-level dummy and NetFractionRevolvingBurden>50 is the highest-level-dummy.

ThermometerEncoding: Actions on [NetFractionInstallBurden>10,
NetFractionInstallBurden>20, NetFractionInstallBurden>50] must preserve
thermometer encoding of NetFractionInstallBurdengeq., which can only decrease. Actions can
only turn off higher-level dummies that are on, where NetFractionInstallBurden>10 is the
lowest-level dummy and NetFractionInstallBurden>50 is the highest-level-dummy.

. ThermometerEncoding: Actions on [NumRevolvingTradesWBalance>2,

NumRevolvingTradesWBalance>3, NumRevolvingTradesWBalance>5,
NumRevolvingTradesWBalance>7] must preserve thermometer encoding of NumRe-
volvingTradesWBalancegeq., which can only decrease. Actions can only turn off higher-level
dummies that are on, where NumRevolvingTradesWBalance>2 is the lowest-level dummy
and NumRevolvingTradesWBalance>>7 is the highest-level-dummy.

ThermometerEncoding: Actions on [NumRevolvingTrades>2, NumRevolvingTrades>3,
NumRevolvingTrades>5, NumRevolvingTrades>7] must preserve thermometer encoding
of NumRevolvingTradesgeq., which can only decrease. Actions can only turn off higher-
level dummies that are on, where NumRevolvingTrades>2 is the lowest-level dummy and
NumRevolvingTrades>7 is the highest-level-dummy.

ThermometerEncoding: Actions on [NumInstallTradesWBalance>2,
NumInstallTradesWBalance>3, NumInstallTradesWBalance>5,
NumInstallTradesWBalance>7] must preserve thermometer encoding of Numlnstall-
TradesWBalancegeq., which can only decrease. Actions can only turn off higher-level
dummies that are on, where NumInstallTradesWBalance>2 is the lowest-level dummy and
NumInstallTradesWBalance>7 is the highest-level-dummy.

ThermometerEncoding:  Actions on [NumInstallTrades>2, NumInstallTrades>3,
NumInstallTrades>5, NumInstallTrades>7] must preserve thermometer encoding of Nu-
mlnstallTradesgeq., which can only decrease. Actions can only turn off higher-level dummies that
are on, where NumInstallTrades>2 is the lowest-level dummy and NumInstallTrades>7
is the highest-level-dummy.
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A.2 DETAILS FOR THE GERMAN DATASET

Description The german dataset was created in 1994 and contains information about loan history,
demographics, occupation, payment history, and whether or not somebody is a good customer.

Each instance is credit applicant. There are n = 1, 000 instances, each consisting of d = 20 features.
The features are all either categorical or discrete. The label a binary indicator of whether somebody
is a “good” (y; = 1) or “bad* (y; = 2) applicant. We changed these labels to be 0 and 1.

There are no missing values in the dataset. We renamed some of the features to be indicative of
the values they represent. The dataset is self-contained and anonymous, and it includes features
describing gender, age, and marital status.

Name Type LB UB Actionability Sign
Age Z 19 75 No

Male {0,1} O 1 No

Single {0,1} © 1 No
ForeignWorker {0,1} © 1 No
YearsAtResidence Z 0 7 Yes +
LiablePersons VA 1 2 No
Housing=Renter {0,1} © 1 No
Housing=Owner {0,1} O 1 No
Housing=Free {0,1} O 1 No
Job=Unskilled {0,1} © 1 No
Job=sSkilled {0,1} O 1 No
Job=Management {0,1} O 1 No
YearsEmployed>1 {0,1} © 1 Yes +
CreditAmt>1000K {0,1} O 1 No
CreditAmt>2000K {0,1} o0 1 No
CreditAmt>5000K {0,1} o0 1 No
CreditAmt>10000K {0,1} © 1 No
LoanDuration<6 {0,1} O 1 No
LoanDuration>12 {0,1} O 1 No
LoanDuration>24 {0,1} © 1 No
LoanDuration>36 {0,1} O 1 No

LoanRate Z 1 4 No
HasGuarantor {0,1} © 1 Yes +
LoanRequiredForBusiness {0,1} © 1 No
LoanRequiredForEducation {0,1} O 1 No
LoanRequiredForCar {0,1} O 1 No
LoanRequiredForHome {0,1} © 1 No
NoCreditHistory {0,1} © 1 No
HistoryOfLatePayments {0,1} O 1 No
HistoryOfDelinquency {0,1} © 1 No
HistoryOfBankInstallments {0,1} O 1 Yes +
HistoryOfStoreInstallments {0,1} 0 1 Yes +
CheckingAcct_exists {0,1} © 1 Yes +
CheckingAcct>0 {0,1} © 1 Yes +
SavingsAcct_exists {0,1} O 1 Yes +
SavingsAcct>100 {0,1} O 1 Yes +

Table 7: Table of Separable Actionability Constraints for the german dataset. Includes bounds and monotonicity
constraints.

Actionability Constraints The joint actionability constraints include

1. DirectionalLinkage: Actions on YearsAtResidence will induce to actions on ['Age’]. Each
unit change in YearsAtResidence leads to:1.00-unit change in Age

2. DirectionalLinkage: Actions on YearsEmployed>1 will induce to actions on [’Age’]. Each unit
change in YearsEmployed>1 leads to:1.00-unit change in Age
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3. ThermometerEncoding: Actions on [CheckingAcctexists, CheckingAcct>0] must preserve
thermometer encoding of CheckingAcct., which can only increase. Actions can only turn on
higher-level dummies that are off, where CheckingAcctexists is the lowest-level dummy and
CheckingAcct>0 is the highest-level-dummy.

4. ThermometerEncoding: Actions on [SavingsAcctexists, SavingsAcct>100] must preserve
thermometer encoding of SavingsAcct., which can only increase. Actions can only turn on
higher-level dummies that are off, where SavingsAcctexists is the lowest-level dummy and
SavingsAcct>100 is the highest-level-dummy.
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A.3 DETAILS FOR THE GIVEMECREDIT DATASET

Description The givemecredit dataset is used to determine whether a loan should be given or
denied. The label indicates whether someone was 90 days past due in the two years following data
collection. Delinquency refers to a debt with an overdue payment; this dataset is used to predict if
someone will experience financial distress in the next two years.

It contains information about n = 120, 268 loan recipients, and each instance represents a borrower.
There are d = 10 features before preprocessing. The label is SeriousDlgin2yrs, meaning serious
delinquency in two years. In preprocessing, we change the label to NotSeriousDlgin2yrs so that
y; = 1 is a positive classification and y; = 0 is negative.

The data is self-contained and anonymous, and it contains features describing age, income, and the
number of dependents.

Name Type LB UB mutability
Age_leq 24 {0,1} O 1 no
Age_bt_25_to_30 {0,1} O 1 no
Age_bt_30_to_59 {0,1} O 1 no
Age_geq_60 {0,1} © 1 no
NumberOfDependents_eq_0 {0,1} © 1 no
NumberOfDependents_eq_1 {0,1} O 1 no
NumberOfDependents_geq_2 {0,1} © 1 no
NumberOfDependents_geq_5 {0,1} O 1 no
DebtRatio_geq_1 {0,1} © 1 only increases
MonthlyIncome_geq_3K {0,1} O 1 only increases
MonthlyIncome_geq_5K {0,1} © 1 only increases
MonthlyIncome_geq_10K {0,1} O 1 only increases
CreditLineUtilization_geq_10.0 ~ {0,1} 0 1 yes
CreditLineUtilization_geq_20.0  {0,1} 0 1 yes
CreditLineUtilization_geq_50.0  {0,1} 0 1 yes
CreditLineUtilization_geq_70.0  {0,1} 0 1 yes
CreditLineUtilization_geq_100.0 {0,1} 0 1 yes
AnyRealEstateLoans {0,1} © 1 only increases
MultipleRealEstateLoans {0,1} O 1 only increases
AnyCreditLinesAndLoans {0,1} © 1 only increases
MultipleCreditLinesAndLoans {0,1} © 1 only increases
HistoryOfLatePayment {0,1} © 1 no
HistoryOfDelinquency {0,1} © 1 no

Table 8: Table of Separable Actionability Constraints for the givemecredit dataset. Includes bounds and
monotonicity constraints.

Actionability Constraints The joint actionability constraints include

1. ThermometerEncoding: Actions on [MonthlyIncome>3K, MonthlyIncome>5K,
MonthlyIncome>10K] must preserve thermometer encoding of Monthlylncomegeq.,
which can only increase. Actions can only turn on higher-level dummies that are off,
where MonthlyIncome>3K is the lowest-level dummy and MonthlyIncome>10K is the
highest-level-dummy.

2. ThermometerEncoding: Actions on [CreditLineUtilization>10.0,
CreditLineUtilization>20.0, CreditLineUtilization>50.0,
CreditLineUtilization>70.0, CreditLineUtilization>100.0] must preserve
thermometer encoding of CreditLineUtilizationgeq., which can only decrease. Actions can
only turn off higher-level dummies that are on, where CreditLineUtilization>10.0 is the
lowest-level dummy and CreditLineUtilization>100.0 is the highest-level-dummy.
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3. ThermometerEncoding: Actions on [AnyRealEstatelLoans, MultipleRealEstateLoans]
must preserve thermometer encoding of continuousattribute., which can only decrease. Actions
can only turn off higher-level dummies that are on, where AnyRealEstateLoans is the lowest-
level dummy and MultipleRealEstateLoans is the highest-level-dummy.

4. ThermometerEncoding: Actions on [AnyCreditLinesAndLoans,
MultipleCreditLinesAndLoans] must preserve thermometer encoding of continu-
ousattribute., which can only decrease. Actions can only turn off higher-level dum-
mies that are on, where AnyCreditLinesAndLoans is the lowest-level dummy and
MultipleCreditLinesAndLoans is the highest-level-dummy.
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B SUPPLEMENTARY EXPERIMENT RESULTS
B.1 OVERVIEW OF MODEL PERFORMANCE

LR XGB RF

Dataset Train  Test Train  Test Train  Test

heloc

n = 5,842
d=43(ds = 31)
FICO [19]

0.772  0.788 0.859 0.785 0.780 0.790

german
n = 1,000
d=36(ds=9)
Dua and Graff [13]

0.819 0.760 0971 0.794 0.828 0.766

givemecredit
n = 120, 268
d=23(dg =13)
Kaggle [28]

0.841 0.844 0.875 0.793 0.864 0.835

Table 9: Train and Test AUC for models across all datasets. We optimized the model’s hyperparameters through
randomized search and divided the data into training and testing sets at an 80% and 20% ratio.

B.2 RESPONSIVENESS OF EXPLANATIONS FOR RF MODELS

RF
All Features Actionable Features

Dataset Metrics LIME SHAP LIME SHAP RESP
el % Presented with Explanations  100.0% 100.0% 100.0% 100.0% 34.6%
neiosc 842 L % All Unresponsive 0.0%
d B 4:’)) (4 = 31) L % At Least 1 Responsive 149%  21.8%  259%  25.6% 100.0%
FIEO [19]A B L % All Responsive 0.0% 0.0% 0.0% 0.0% 100.0%
L, Mean # of Features 4.0 4.0 4.0 4.0 2.5
% Presented with Explanations  100.0% 100.0% 100.0% 100.0% 51.4%
zejmlar(l) 00 L % All Unresponsive 0.0%
d : 3’6 (s =9) L % At Least 1 Responsive 0.0% 12.6%  28.6%  40.0% 100.0%
le d ('? ;f [13] L % All Responsive 0.0% 0.0% 0.0% 0.0% 100.0%
ua andora . Mean # of Features 40 40 40 40 2.5
i dit % Presented with Explanations  100.0% 100.0% 100.0% 100.0% 93.2%
zlzelm;ocgzgl L % All Unresponsive 0.0%
d : 93 (;l —13) L % At Least 1 Responsive 40.0% 60.4% 71.3% 82.4% 100.0%
Ki . [2;‘]7 L % All Responsive 0.0% 0.0% 0.8% 127%  100.0%
aggle L, Mean # of Features 40 40 40 40 2.9

Table 10: Responsiveness of feature-based explanations for RF models for all methods and all datasets. Given a
model, we construct an explanation for each individuals who are denied a loan using the top-4 scoring features
from a specific feature attribution method. We report: % Presented with Explanations, the proportion of
individuals who receive an explanation; Mean # of Features, the number of features in each explanation; and %
All Unresponsive | At Least 1 Responsive | All Responsive, the proportion of explanations where all features are
unresponsive/at least 1 feature is responsive/all features are responsive. For each dataset and model class, we
show the approach that provides the most responsive explanations in bold, and highlight instances where all
explanations are unresponsive in

C ADDITIONAL PLOTS
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Dataset: fico, Model: LR, Method: SHAP Dataset: fico, Model: LR, Method: LIME
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Figure 4: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Figure 5: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive —i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Dataset: fico, Model: RF, Method: SHAP Dataset: fico, Model: RF, Method: LIME
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Figure 6: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Figure 7: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive —i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Dataset: german, Model: XGB, Method: SHAP Dataset: german, Model: XGB, Method: LIME
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Figure 8: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Figure 9: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive —i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Dataset: givemecredit, Model: LR, Method: SHAP Dataset: givemecredit, Model: LR, Method: LIME
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Figure 10: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.

Dataset: givemecredit, Model: XGB, Method: SHAP Dataset: givemecredit, Model: XGB, Method: LIME
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Figure 11: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive —i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Dataset: givemecredit, Model: RF, Method: SHAP Dataset: givemecredit, Model: RF, Method: LIME

IR 22 22] ‘ ‘

PI—— |

X X
[ [=
© ©
o o
14
15 15*_
[ — 16
17 17
184 184
19 19
20 20
21 21
22 224
E S — 23]
0 20 40 60 80 100 0 20 40 60 80 100
% of Times Responsive % of Times Responsive
Il SHAP ¥/ SHAP-AW RESP I LIME 7 LIME-AW RESP

Figure 12: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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