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ABSTRACT

Large pre-trained models such as CLIP offer consistent accuracy across a range of
data distributions when performing zero-shot inference (i.e., without fine-tuning
on a specific dataset). Although existing fine-tuning approaches substantially
improve accuracy in-distribution, they also reduce out-of-distribution robustness.
We address this tension by introducing a simple and effective method for improv-
ing robustness: ensembling the weights of the zero-shot and fine-tuned models
(WiSE-FT). Compared to standard fine-tuning, WiSE-FT provides large accuracy
improvements out-of-distribution, while matching or improving in-distribution
accuracy. On ImageNet (in-distribution) and five derived distribution shifts, WiSE-
FT improves out-of-distribution accuracy by 2 to 10 percentage points (pp) while
increasing in-distribution accuracy by nearly 1 pp relative to standard fine-tuning.
WiSE-FT achieves similarly large robustness improvements (2 to 15 pp) on a
diverse set of six further distribution shifts, and in-distribution accuracy gains of
0.8 to 3.3 pp compared to standard fine-tuning on seven commonly used transfer
learning datasets. These improvements come at no additional computational cost
during fine-tuning or inference.

1 INTRODUCTION

A foundational goal of machine learning is to develop models that work reliably across a broad range
of data distributions. Recently, large pre-trained models such as CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) have demonstrated unprecedented robustness to challenging distribution
shifts where prior robustness interventions failed to improve performance (Taori et al., 2020). While
these results point towards pre-training on large, heterogeneous datasets as a promising direction for
increasing robustness, an important caveat is that these robustness improvements occur only in the
zero-shot setting, i.e., when the model performs inference without fine-tuning on a specific target
distribution (Radford et al., 2021).

In a concrete application, a zero-shot model can be fine-tuned on extra application-specific data,
which often yields large performance gains on the target distribution. However, Radford et al. (2021)
have shown that current fine-tuning techniques carry a hidden cost: the out-of-distribution accuracy of
their fine-tuned CLIP models is often lower than that of the original zero-shot model. This leads to a
natural question: Can zero-shot models be fine-tuned without reducing out-of-distribution accuracy?

As pre-trained models are becoming a cornerstone of machine learning, techniques for fine-tuning
them on downstream applications are increasingly important. Indeed, the question of robustly fine-
tuning pre-trained models has recently also been raised as an open problem by several authors
(Andreassen et al., 2021; Bommasani et al., 2021; Radford et al., 2021). Andreassen et al. (2021)
explored several fine-tuning approaches but found that none yielded models with improved robustness
at high accuracy. Furthermore, Taori et al. (2020) demonstrated that no current algorithmic robustness
interventions provide consistent gains across the distribution shifts where zero-shot CLIP excels.

In this paper, we introduce a robust way of fine-tuning zero-shot models that achieves the best
of both worlds: increased performance out-of-distribution while maintaining or even improving
in-distribution accuracy relative to standard fine-tuning. Our method (Figure 1) has two steps: first,
we fine-tune the zero-shot model on application-specific data. Second, we combine the original
zero-shot and fine-tuned models by linearly interpolating between their weights, which we refer to as
weight-space ensembling.

Compared to standard fine-tuning, weight-space ensembles for fine-tuning (WiSE-FT) substantially
improve out-of-distribution accuracy without decreasing in-distribution performance. Concretely,
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Figure 1: Compared to standard fine-tuning, weight-space ensembles for fine-tuning (WiSE-FT)
improve out-of-distribution (OOD) accuracy without decreasing in-distribution (ID) performance.
(Top left) Zero-shot CLIP modelsexhibit high effective robustness and moderate in-distribution
accuracy, while standard fine-tuning—either end-to-end or with a linear classifier (final layer)—
attains higher ID accuracy and less effective robustness. (Top right) Our method linearly interpolates
between the zero-shot and fine-tuned models with a mixing coefficient α ∈ [0, 1]. (Bottom) On five
distribution shifts derived from ImageNet (ImageNetV2, ImageNet-R, ImageNet Sketch, ObjectNet,
and ImageNet-A), WiSE-FT improves average OOD accuracy by 8.7 percentage points (pp) when
fine-tuning end-to-end (+2.1 pp when fine-tuning a linear classifier) while maintaining ID accuracy.

on ImageNet (Deng et al., 2009) and five of the natural distribution shifts studied by Radford et al.
(2021), WiSE-FT applied to standard end-to-end fine-tuning improves out-of-distribution accuracy
by 2 to 15 percentage points (pp) while maintaining the in-distribution accuracy of the fine-tuned
model. Relative to the zero-shot model, WiSE-FT improves out-of-distribution accuracy by 1 to
9 pp. Moreover, WiSE-FT improves over a range of alternative approaches such as regularization
and evaluating at various points throughout fine-tuning. The robustness comes at no additional
computational cost during fine-tuning or inference because the zero-shot and fine-tuned models are
ensembled into a single model of the same size.

To understand the robustness gains of WiSE-FT, we empirically analyze ensembling through the
lens of distributional robustness. First, we study WiSE-FT when fine-tuning a linear classifier (last
layer) as it is amenable to analysis: our procedure is then equivalent to ensembling the outputs of two
models, and experiments point towards the complementarity of model predictions as a key property.
We illustrate via detailed measurements how the predictions of zero-shot and fine-tuned models are
diverse, and that models are more confident on the parts of the test distributions they perform well on.

For end-to-end fine-tuning, we connect our observations to earlier work on the phenomenology of
deep learning. Neyshabur et al. (2020) found that end-to-end fine-tuning the same model twice
yielded two different solutions that were connected via a linear path in weight space along which
error remains low, known as linear mode connectivity (Frankle et al., 2020). The authors therefore
concluded that the two solutions are in the same basin of the loss landscape. Interestingly, linear
interpolation in weight space succeeds despite non-linearity in the activation functions of the neural
networks. Our observations suggest a similar phenomenon along the path generated by WiSE-FT, but
the exact shape of the loss landscape and connection between in- and out-of-distribution error are
still an open problem.

In addition to the aforementioned ImageNet distribution shifts, WiSE-FT consistently improves
robustness on a diverse set of six further distribution shifts including: (i) geographic shifts in satellite
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Figure 2: Samples of the class lemon, from ImageNet (in-distribution) and the derived out-of-
distribution datasets considered in our main experiments.

imagery and wildlife recognition (WILDS-FMoW, WILDS-iWildCam) (Koh et al., 2021; Christie
et al., 2018; Beery et al., 2021), (ii) reproductions of the popular image classification dataset CIFAR-
10 with a distribution shift (CIFAR-10.1 and CIFAR-10.2) (Recht et al., 2019; Lu et al., 2020), and (iii)
datasets with distribution shift induced by temporal perturbations in videos (ImageNet-Vid-Robust
and YTBB-Robust) (Shankar et al., 2019). The performance improvements are of similar magnitude,
ranging from 2 to 15 pp.

Beyond the robustness perspective, WiSE-FT also improves in-distribution performance compared
to standard fine-tuning, reducing the relative error rate by 6 to 62% on a range of seven datasets:
ImageNet, CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), Describable Textures (Cimpoi et al.,
2014), Food-101 (Bossard et al., 2014), SUN397 (Xiao et al., 2016), and Stanford Cars (Krause
et al., 2013). Even when fine-tuning data is scarce—reflecting many application scenario—we find
that WiSE-FT substantially improves in-distribution performance. When five examples per class
are used for fine-tuning, WiSE-FT improves in-distribution performance by 0.3 to 6.1 percentage
points compared to the best of the zero-shot and fine-tuned models on the seven aforementioned
datasets. Overall, we find that WiSE-FT is universally applicable in the problems we studied, and we
encourage its adoption for fine-tuning zero-shot models.

2 BACKGROUND AND EXPERIMENTAL SETUP

Our experiments compare the performance of a zero-shot model, the corresponding fine-tuned model
and models produced by WiSE-FT. Primarily, we contrast model accuracy on data from two related
but different distributions D and D′, where the expectation is that a robust model achieves consistent
performance on both. We assume both distributions have test sets for evaluation, and D has an
associated training set S tr

D which is typically used for training or fine-tuning. We borrow conventional
nomenclature in referring to D as in-distribution (ID) and D′ as out-of-distribution (OOD), even
when evaluating models which have never been trained on ID data (e.g., CLIP zero-shot). Our goal is
both high accuracy and consistent performance on these two distributions. This is a natural target as
humans often achieve similar accuracy across distribution shifts (Shankar et al., 2020).

For a model f we let AccD(f) and AccD′(f) refer to classification accuracy on the ID and OOD test
sets respectively. We consider k-way image classification where xi is an image with corresponding
label yi ∈ {1, ..., k}. The outputs of f are k-dimensional vectors of non-normalized class scores.

Distribution shifts. Distribution shifts can be broadly characterized into a) synthetic, e.g. `∞-
adversarial examples or artificial changes in image contrast, brightness, etc. (Hendrycks & Dietterich,
2019; Biggio et al., 2013; Biggio & Roli, 2018; Geirhos et al., 2018b; Alcorn et al., 2019); and b)
natural, where samples are not perturbed after acquisition and changes in data distributions arise
through naturally occurring variations in lighting, geographic location, crowdsourcing process, image
styles, etc. (Taori et al., 2020; Recht et al., 2019; Hendrycks et al., 2021a;b; Koh et al., 2021). Our
focus is natural distribution shifts, which are more likely to occur in the real world. Specifically, our
key results are shown for five distribution shifts illustrated in Figure 2 where S tr

D is ImageNet.

Concretely, we consider: ImageNet-V2 (IN-V2, Recht et al., 2019), a reproduction of the ImageNet
test set with distribution shift; ImageNet-R (IN-R, Hendrycks et al., 2021a), renditions (e.g. sculptures,
paintings) for 200 ImageNet classes; ImageNet Sketch (IN-Sketch, Wang et al., 2019), which contains
sketches instead of natural images; ObjectNet (Barbu et al., 2019), a test set of objects in various
scenes with 113 classes overlapping with ImageNet; ImageNet-A (IN-A, Hendrycks et al., 2021b), a
test set of natural images misclassified by a ResNet-50 (He et al., 2016) for 200 ImageNet classes.

Effective robustness and scatter plots. Effective robustness scatter plots are central to our analysis,
which illustrate model performance under distribution shift (Recht et al., 2019; Taori et al., 2020).
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These scatter plots display ID accuracy on the x-axis and OOD accuracy on the y-axis—a model
f is shown as a point (AccD(f), AccD′(f)). Figure 1 exemplifies these scatter plots with both
schematics and real data. For a number of distribution shifts, accuracy on the standard test set is
a reliable predictor of accuracy under distribution shift (Taori et al., 2020; Miller et al., 2021). In
other words, there exists a function β : [0, 1] → [0, 1] such that AccD′(f) approximately equals
β(AccD(f)) for models f trained on the in-distribution train set S tr

D. Effective robustness (Taori
et al., 2020) is accuracy beyond this baseline, defined formally as ρ(f) = AccD′(f)− β(AccD(f)).

In the corresponding scatter plots, effective robustness is vertical movement above expected OOD
performance (Figure 1, top), and disentangles the effects of ID accuracy changes in OOD robustness
interventions. When we say that a model is robust to distribution shift, we mean that effective
robustness is positive. Taori et al. (2020) observed that no algorithmic robustness intervention
consistently achieves substantial effective robustness across the distribution shifts in Figure 2—the
first to do so was zero-shot CLIP. Empirically, when applying logit (or probit) axis scaling, models
trained on the ID training data approximately lie on a linear trend (Taori et al., 2020; Miller et al.,
2021, Figure 1). As in Taori et al. (2020), we apply logit axis scaling and show 95% Clopper-Pearson
confidence intervals for the accuracies of select points.

The scatter plots we display also show a wide range of machine learning models from a compre-
hensive testbed of evaluations (Taori et al., 2020; Miller et al., 2021), including: models trained on
S tr
D (standard training); models trained on additional data and fine-tuned using S tr

D (trained with
more data); and models trained using various existing robustness interventions, e.g. special data
augmentation (DeVries & Taylor, 2017; Engstrom et al., 2019; Geirhos et al., 2018a; Hendrycks
et al., 2020) or adversarially robust models (Madry et al., 2017; Cohen et al., 2019; Salman et al.,
2019; Shafahi et al., 2019).

Zero-shot models and CLIP. Zero-shot CLIP models exhibit effective robustness and lie on a qualita-
tively different linear trend (Figure 1, Figure 13 in Radford et al., 2021). These models are pre-trained
using image-caption pairs from the web. Given a set of image-caption pairs {(x1, s1)..., (xB , sB)},
CLIP trains an image-encoder g and text-encoder h such that the similarity 〈g(xi), h(si)〉 is maxi-
mized relative to unaligned pairs. CLIP-like models perform zero-shot k-way classification given
an image x and class names C = {c1, ..., ck} by matching x with potential captions. For instance,
using caption si = “a photo of a {ci}” for each class i, the zero-shot model predicts the class via
arg maxj 〈g(x), h(sj)〉.1 Equivalently, one can construct Wzero-shot ∈ Rd×k with columns h(sj) and
compute outputs f(x) = g(x)>Wzero-shot. Unless explicitly mentioned, our experiments use the CLIP
model ViT-L/14@336px, although all CLIP models are displayed in our scatter plots (additional
details provided in Appendix C.1).

3 WEIGHT-SPACE ENSEMBLING FOR ROBUST FINE-TUNING

This section describes and motivates our proposed method, WiSE-FT, which consists of two steps.
First, we fine-tune the zero-shot model on application-specific data. Second, we combine the original
zero-shot and fine-tuned models by linearly interpolating between their weights, also referred to as
weight-space ensembling.

The zero-shot model excels under distribution shift while standard fine-tuning achieves high ID
accuracy. Our motivation is to combine these two models into one that achieves the best of both worlds.
Weight-space ensembles are a natural choice as they ensemble without extra computational cost.
Moreover, previous work has suggested that interpolation in weight space may improve performance
when models share part of their optimization trajectory (Izmailov et al., 2018; Neyshabur et al., 2020).

Step 1: Standard fine-tuning. As in Section 2, we let S tr
D denote the dataset used for fine-tuning

and g denote the image encoder used by CLIP. We are now explicit in writing g(x,Venc) where x is
an input image and Venc are the parameters of the encoder g.

Standard fine-tuning considers the model f(x, θ) = g (x,Venc)
>Wclassifier where Wclassifier ∈ Rd×k

is the classification head and θ = [Venc,Wclassifier] are the parameters of f . We then solve
arg minθ

{∑
(xi,yi)∈S tr

D
`(f(xi, θ), yi) + λR(θ)

}
where ` is the cross-entropy loss and R is a reg-

1For improved accuracy, the embedding of a few candidate captions are averaged, e.g., s(1)i =

“a photo of a {ci}” and s(2)i = “a picture of a {ci}” (referred to as prompt ensembling (Radford et al., 2021)).
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OOD datasets Avg Avg
IN (ID) IN-V2 IN-R IN-Sketch ObjectNet* IN-A OOD ID,OOD

NS EfficientNet-L2 (Xie et al., 2020) 88.4 80.2 74.7 47.6 68.5 84.9 71.2 79.8
ViT-G/14 (Zhai et al., 2021) 90.4 83.3 - - 70.5 - - -
Zero-shot ALIGN (Jia et al., 2021) 76.4 70.1 92.2 - - 70.1 - -

CLIP-based models
Zero-shot (Radford et al., 2021) 76.2 70.1 88.9 60.2 70.0 77.2 73.3 74.8
Fine-tuned LC (Radford et al., 2021) 85.4 75.9 84.2 57.4 66.2 75.3 71.8 78.6
Zero-shot (PyTorch) 76.6 70.5 89.0 60.9 69.1 77.7 73.4 75.0
Fine-tuned LC (ours) 85.2 75.8 85.3 58.7 67.2 76.1 72.6 78.9
Fine-tuned E2E (ours) 86.2 76.8 79.8 57.9 63.3 65.4 68.6 77.4

WiSE-FT (ours)
LC, α=0.75 85.1 76.8 88.4 61.9 69.7 78.9 75.1 80.1
LC, α=0.4 82.7 75.8 89.7 63.0 70.7 79.6 75.8 79.2
LC, optimal α 85.3 76.9 89.8 63.0 70.7 79.7 76.0 80.7
E2E, α=0.75 87.0 78.8 86.1 62.5 68.1 75.2 74.1 80.5
E2E, α=0.4 86.2 79.2 89.9 65.0 71.9 80.7 77.3 81.8
E2E, optimal α 87.1 79.5 90.3 65.0 72.1 81.0 77.6 82.3

Table 1: ID and OOD performance of various methods. E2E: end-to-end; LC: linear classifier. The
highest overall accuracy for each dataset is in bold, while the highest accuracy among models derived
from CLIP is underlined. Avg OOD displays the mean performance among the five OOD datasets,
while Avg ID,OOD shows the average of ImageNet (ID) and Avg OOD.

ularization term (e.g., weight decay). We consider the two most common variants of fine-tuning:
end-to-end, where all values of θ are modified, and fine-tuning only a linear classifier, where Venc is
fixed at the value learned during pre-training. Additional details provided in Appendices C.2 and C.3.

Step 2: Weight-space ensembling. For a mixing coefficient α ∈ [0, 1], we consider the weight-space
ensemble between the zero-shot model with parameters θ0 and the model obtained via standard
fine-tuning with parameters θ1. The predictions of the weight-space ensemble wse are given by

wse(x, α) = f(x, (1− α) · θ0 + α · θ1) , (1)

i.e., we use the element-wise weighted average of the zero-shot and fined-tuned parameters. When fine-
tuning only the linear classifier, weight-space ensembling is equivalent to the traditional output-space
ensemble (Dietterich, 2000; Breiman, 1996; Freund & Schapire, 1997) (1−α) ·f(x, θ0)+α ·f(x, θ1)

since Equation 1 decomposes as (1− α) · g(x,Venc)
>Wzero-shot + α · g(x,Venc)

>Wclassifier.

As neural networks are non-linear with respect to their parameters, ensembling all layers—as we do
when end-to-end fine-tuning—typically fails, achieving no better accuracy than a randomly initialized
neural network (Frankle et al., 2020). However, as similarly observed by previous work where part
of the optimization trajectory is shared (Izmailov et al., 2018; Frankle et al., 2020; Neyshabur et al.,
2020), we find that the zero-shot and fine-tuned models are connected by a linear path in weight-space
along which accuracy remains high (explored further in Section 5.2).

Remarkably, as we show in Section 4, WiSE-FT boosts OOD accuracy relative to the fine-tuned model
without decreasing ID performance. These improvements come without any additional computational
cost as a single set of weights is used. We provide PyTorch pseudocode for WiSE-FT in Appendix A.

4 RESULTS

This section presents our key experimental findings. First, we show that WiSE-FT boosts accuracy of
a fine-tuned CLIP model on five ImageNet distribution shifts studied by Radford et al. (2021), while
maintaining or improving ImageNet accuracy. Next we present additional experiments, including
more distribution shifts, comparisons to alternative methods, and ID accuracy improvements.

Main results: ImageNet and associated distribution shifts. Tables 1 and 2 present our main
results on ImageNet and five derived distribution shifts. As illustrated in Figure 1, when the mixing
coefficient α varies from 0 to 1, wse(·, α) simultaneously improves both ID and OOD accuracy (a
∗Although this table considers ImageNet class names, ObjectNet provides alternative class names which can

improve the performance of zero-shot CLIP by 2.3 percentage points (Appendix C.4).
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Fine-tuning IN-V2 IN-R IN-Sketch ObjectNet IN-A Avg

OOD improvement relative to
fine-tuned without decreasing ID

Linear classifier 1.1 4.2 2.7 2.6 2.9 2.7

End-to-end 2.6 10.5 7.1 8.8 15.6 8.9

ID improvement relative to
zero-shot without decreasing OOD

Linear classifier 8.8 1.7 8.7 7.2 2.4 5.8

End-to-end 10.6 1.9 10.6 8.8 2.7 6.9

Table 2: Compared to the fine-tuned model, WiSE-FT improves OOD accuracy without reducing ID
accuracy. Compared to the zero-shot model, WiSE-FT improves ID accuracy without reducing OOD
accuracy. All numbers are percentage point improvements. Top and bottom respectively capture
vertical movement above the fine-tuned model (i.e., improved effective robustness) and horizontal
movement to the right of the zero-shot model in the associated scatter plots.

ImageNet CIFAR10 CIFAR100 StanfordCars DTD SUN397 Food101

Accuracy gain (percentage points) 0.9 0.8 1.2 2.0 3.3 2.6 1.8
Relative error reduction (%) 6.6 61.6 15.3 23.6 18.2 13.3 32.6

Table 3: In addition to robustness, WiSE-FT with optimal α is able to improve in-distribution
performance on a number of datasets compared to standard fine-tuning.

breakdown for each dataset is shown in Appendix B.1). Table 1 shows that WiSE-FT improves OOD
performance by 2 to 15 percentage points (pp) compared to standard fine-tuning, without reducing ID
performance (α=0.4, end-to-end). Fixing α=0.4 is close to optimal for all OOD datasets, with only
a 0.3 pp difference on average. Alternatively, when α=0.75, ImageNet performance improves by 0.9
pp while OOD performance increases by 2 to 10 pp compared to standard end-to-end fine-tuning.
Table 2 offers an alternative perspective, showing gains OOD relative to the fine-tuned model without
losing ID accuracy (top) and gains ID relative to zero-shot without losing OOD accuracy (bottom).

Robustness on additional distribution shifts. Beyond the main five ImageNet derived distribution
shifts, WiSE-FT consistently improves robustness on a diverse set of distributions shifts including
geographic shifts in satellite imagery and wildlife recognition (WILDS-FMoW, WILDS-iWildCam),
reproductions of the popular image classification dataset CIFAR-10 with a distribution shift (CIFAR-
10.1 and CIFAR-10.2), and datasets with distribution shift induced by temporal perturbations in videos
(ImageNet-Vid-Robust and YTBB-Robust). Concretely, WiSE-FT improves OOD performance by
3.7, 6.5, 2.2, 3.0, 8.3 and 14.7 percentage points respectively, while maintaining or improving ID
accuracy. In contrast to the ImageNet distribution shifts, the zero-shot model initially achieves low
accuracy on the WILDS distribution shifts, and WiSE-FT provides improvements regardless. More
details are included in Appendix B.2.

Comparison to alternative methods. In search of a fine-tuning method that preserves robustness,
we explore a variety of alternatives. Many exhibit a concave trend in effective robustness plots,
although WiSE-FT offers the best results overall. Figure 3 compares three alternatives for end-to-end
fine-tuning: output-space ensembles combine the outputs assigned by the zero-shot and fine-tuned
models, i.e., (1 − α) · f(x, θ0) + α · f(x, θ1) for α ∈ [0, 1]; eval along trajectory evaluates the
model at various iterations throughout training (at each iteration that is a power of two in the first
epoch and after every subsequent epoch); regularize to zero-shot appends the quadratic regularizer
λ‖θ − θ0‖22 to the fine-tuning objective, where θ are the parameters being learned and θ0 are the
zero-shot parameters. Additional comparisons when fine-tuning a linear classifier are presented in
Appendix B.3, including distillation, additional regularization, and CoOp (Zhou et al., 2021).

In-distribution gains. In addition to robustness to distribution shift, Table 3 demonstrates that
WiSE-FT is able to improve ID performance on a number of datasets. When fine-tuning end-to-end
on ImageNet, CIFAR-10, CIFAR-100, Describable Textures, Food-101, SUN397, Stanford Cars,
relative error is reduced by 6 to 62%. This is surprising as standard fine-tuning optimizes for low ID
error. More details, including explorations in low-data regime is provided in Appendix B.4.

5 DISCUSSION

This section further analyzes the empirical phenomena we observed so far. We begin with the case
where only the final linear layer is fine-tuned and predictions from the weight-space ensemble can be
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Figure 3: When fine-tuning end-to-end, WiSE-FT outperforms output-space ensembles, intermediate
checkpoints, and quadratic regularization (results shown for ViT-B/16 CLIP).
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Figure 4: (Left) Zero-shot and fine-tuned models exhibit diversity in their predictions. (Middle) On
most OOD datasets, the zero-shot model overrides the linear classifier more than it is overridden.
The reverse is true for ImageNet (in-distribution). (Right) Similarly, zero-shot models are more
confident on OOD datasets, while the reverse is true in-distribution. The margin δf measures the
average difference between the largest and second largest unormalized output for classifier f .

factored into the outputs of the zero-shot and fine-tuned model. Next, we connect our observations
regarding end-to-end fine-tuning with earlier work on the phenomenology of deep learning.

5.1 ZERO-SHOT AND FINE-TUNED MODELS ARE COMPLEMENTARY

In this section, we find that the zero-shot and fine-tuned models have diverse predictions, both ID and
OOD. Moreover, while the fine-tuned model is more confident ID, the reverse is true OOD.

Zero-shot and fine-tuned models are diverse. In certain cases, ensemble accuracy is correlated
with diversity among the constituents (Kuncheva & Whitaker, 2003). If two models make coincident
mistakes, so will their ensemble, and no benefit will be gained from combining them. Here, we
explore two measures of diversity: Prediction Diversity, which measures the fraction of examples for
which two classifiers disagree but one is correct; and Centered Kernel Alignment Complement, the
complement of CKA (Kornblith et al., 2019a). Additional diversity measures and more details are
provided in Appendix D. In Figure 4 (left), we show that the zero-shot and fine-tuned models are
diverse both ID and OOD, despite sharing the same backbone. As a point of comparison, we include
average diversity measures between two linear classifiers fine-tuned with random splits on half of
ImageNet,2 denoted in orange in Figure 4.

Models are more confident where they excel. In order for the ensemble model to be effective,
it should leverage each model’s expertise based on which distribution the data is from. Here, we
empirically show that this occurs on a number of datasets we consider. First, we examine the cases
where the models being ensembled disagree. We say the zero-shot model overrides the fine-tuned
model if their predictions disagree and the zero-shot prediction matches that of the weight-space
ensemble. Similarly, if models disagree and the linear classifier prediction matches the ensemble,
we say the zero-shot is overridden. Figure 4 (middle) shows the fraction of samples where the
zero-shot model overrides and is overridden by the fine-tuned linear classifier for α=0.5. Other than
ImageNetV2, which was collected to closely reproduce ImageNet, the zero-shot model overrides the
linear classifier more than it is overridden on the OOD datasets. Additionally, we are interested in
measuring model confidence. Recall that we are ensembling quantities before a softmax is applied, so

2Two linear classifiers fine-tuned on the same data converge to similar solutions, resulting in negligible
diversity. As a stronger baseline, we fine-tune classifiers on different subsets of ImageNet, with half of the data.
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Figure 5: The zero-shot and fine-tuned models exhibit linear mode connectivity (Frankle et al., 2020)
on ImageNet and the main distribution shifts we consider (Observation 1). Moreover, there exists an
α for which WiSE-FT outperforms both the zero-shot and fine-tuned models (Observation 2).

we avoid criteria that use probability vectors, e.g., Guo et al. (2017). Instead, we consider the margin
δ between the largest and second largest output of each classifier. Figure 4 (right) shows that the
zero-shot model is more confident in its predictions for OOD datasets, while the reverse is true ID.

5.2 AN ERROR LANDSCAPE PERSPECTIVE

Our discussion now focuses on the empirical phenomenon we observe when weight-space ensembling
all layers in the network. Specifically, this section formalizes our observations and details related phe-
nomena. Recall that the weight-space ensemble of θ0 and θ1 is given by f(x, (1− α) · θ0 + α · θ1)
(Equation 1). We begin with a natural generalization of linear mode connectivity (Frankle et al., 2020)
to the setting where accuracy of the endpoints may differ substantially. For distribution D and model
f , let AccD,f (θ) denote the expected accuracy of f evaluated with parameters θ on distribution D.

Definition 1: Parameters θ0 and θ1 exhibit linear mode connectivity with respect to f and D if, for
all α ∈ [0, 1], AccD,f ((1− α) · θ0 + α · θ1) ≥ (1− α) · AccD,f (θ0) + α · AccD,f (θ1). Note that
when AccD,f (θ0) = AccD,f (θ1), this is equivalent to the original definition of Frankle et al. (2020).3

Observation 1: As illustrated in Figure 5, we observe linear mode connectivity on ImageNet and the
five associated distribution shifts we consider (Section 2).

To assist in contextualizing Observation 1, we review related phenomena. Neural networks are
nonlinear, and hence weight-space ensembles only achieve good performance in exceptional cases—
ensembling two randomly initialized networks in weight-space achieves no better accuracy than a
random classifier (Frankle et al., 2020). Linear mode connectivity has been observed by Frankle et al.
(2020); Izmailov et al. (2018) when part of the training trajectory is shared, and by Neyshabur et al.
(2020) when two models are fine-tuned with a shared initialization. In particular, the observations
of Neyshabur et al. (2020) may elucidate why weight-space ensembles attain high accuracy in the
setting we consider, as they suggest that fine-tuning remains in a region where solutions are connected
by a linear path along which error remains low. Instead of considering the weight-space ensemble
of two fine-tuned models, we consider the weight-space ensemble of the pre-trained and fine-tuned
models. This is only possible for a pre-trained model capable of zero-shot inference, such as CLIP.

Observation 2: As illustrated by Figure 5, on ImageNet and the five associated distribu-
tion shifts we consider, weight-space ensembling (end-to-end) may outperform both the zero-
shot and fine-tuned models, i.e., there exists an α for which AccD,f ((1− α) · θ0 + α · θ1) ≥
max {AccD,f (θ0) , AccD,f (θ1)}.
We are not the first to observe that when interpolating between models with linear mode connectivity,
the accuracy of models along the path may exceed that of either endpoint (Izmailov et al., 2018;
Neyshabur et al., 2020; Wortsman et al., 2021). Neyshabur et al. (2020) conjecture that interpolation
could produce solutions closer to the true center of a basin. This intuition applied in our setting
is schematized in Appendix F (Figure 30). In contrast to Neyshabur et al. (2020), we interpolate
between models which observe different data.

6 RELATED WORK

Robustness. Understanding how models perform under distribution shift remains an important goal,
as real world models may encounter data from new environments (Quiñonero-Candela et al., 2009;
Torralba & Efros, 2011). Previous work has studied model behavior under synthetic (Hendrycks &

3The original definition used ' 1
2
(AccD,f (θ0) + AccD,f (θ1)) and so Definition 1 is not a strict generaliza-

tion. This original definition is less applicable when endpoint accuracy differs substantially.
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Dietterich, 2019; Tramèr et al., 2017; Madry et al., 2017; Geirhos et al., 2018b; Eykholt et al., 2018;
Alcorn et al., 2019) and natural distribution shift (Hendrycks et al., 2021a; Koh et al., 2021; Wang
et al., 2019; Barbu et al., 2019; Hendrycks et al., 2021b). Interventions used for synthetic shifts do
not typically provide robustness to many natural distribution shifts (Taori et al., 2020). In contrast,
accuracy on the standard test set is a reliable predictor for accuracy under distribution shift (Yadav &
Bottou, 2019; Miller et al., 2020; Taori et al., 2020; Sun et al., 2020; Miller et al., 2021).

Pre-training and transfer learning. Pre-training on large amounts of data is a powerful technique
for building high-performing machine learning systems (Sharif Razavian et al., 2014; Dosovitskiy
et al., 2021; Kolesnikov et al., 2020; Yalniz et al., 2019; Radford et al., 2019; Brown et al., 2020). One
increasingly popular class of vision models are those pre-trained with auxiliary language supervision,
which can be used for zero-shot inference (Desai & Johnson, 2021; Sariyildiz et al., 2020; Zhang
et al., 2020; Radford et al., 2021; Jia et al., 2021). When pre-trained models are adapted to a
specific distribution through standard fine-tuning, effective robustness deteriorates at convergence
(Andreassen et al., 2021). In natural language processing, previous work proposed stable fine-tuning
methods that incur computational overhead (Jiang et al., 2019; Zhu et al., 2020), alleviating problems
such as representational collapse (Aghajanyan et al., 2021). More generally, a variety of methods
have attempted to mitigate catastrophic forgetting in neural networks (McCloskey & Cohen, 1989).
Kirkpatrick et al. (2017); Zenke et al. (2017) explored weighted quadratic regularization for sequential
learning. Xuhong et al. (2018) showed that for fine-tuning the simple quadratic regularization explored
in Section 4 performs best, while Lubana et al. (2021) explored the connection between quadratic
regularization and interpolation. Andreassen et al. (2021) found that many approaches from continual
learning do not provide robustness to multiple natural distribution shifts.

Traditional (output-space) ensembles. Traditional ensemble methods, which we refer to as output-
space ensembles, combine the predictions (outputs) of many classifiers (Dietterich, 2000; Bauer
& Kohavi, 1999; Breiman, 1996; Friedman et al., 2001; Lakshminarayanan et al., 2017; Freund &
Schapire, 1997). Typically, output-space ensembles outperform individual classifiers and provide un-
certainty estimates under distribution shift that are more callibrated than baselines (Lakshminarayanan
et al., 2017; Ovadia et al., 2019; Stickland & Murray, 2020). In contrast to these works, we consider
the ensemble of two models which have observed different data. Output-space ensembles require
more computational resources as they require a separate pass through each model. Compared to an
ensemble of 15 models trained on the same dataset, Mustafa et al. (2020) find an OOD improvement
of 0.8–1.6 pp (on ImageNetV2, ImageNet-R, ObjectNet, and ImageNet-A) by ensembling a similar
number of models pre-trained on different datasets. In contrast, we see an improvement of 2–15
pp from ensembling two models. Moreover, as we ensemble in weight-space, no extra compute is
required compared to a single model.

Weight-space ensembles. Weight-space ensembles linearly interpolate between the weights of
different models (Frankle et al., 2020; Lucas et al., 2021; Goodfellow et al., 2014). Izmailov et al.
(2018) average checkpoints saved throughout training for improved performance. Indeed, averaging
the weights along the training trajectory is a central method in optimization (Ruppert, 1988; Polyak
& Juditsky, 1992; Nichol et al., 2018). For instance, Zhang et al. (2019) propose optimizing with a
set of fast and slow weights, where every k steps, these two sets of weights are averaged and a new
trajectory begins. Here, we revisit these techniques from a distributional robustness perspective and
consider the weight-space ensemble of models which have observed different data.

7 CONCLUSION

Zero-shot models pre-trained on large, heterogeneous datasets offer a promising avenue for building
robust machine learning models (Radford et al., 2021; Jia et al., 2021). On applications where
additional data is available, the performance of zero-shot models can be improved by fine-tuning.
However, these improvements come at the expense of OOD robustness. We have presented WiSE-
FT, a simple method for fine-tuning zero-shot models that mitigates the compromise between high
accuracy and robustness. Across a number of datasets, WiSE-FT matches or improves ID accuracy
compared to standard fine-tuning, while substantially improving OOD performance. Although our
investigation is centered around CLIP, we expect that our findings are more broadly applicable to
other models and modalities (Radford et al., 2019; Brown et al., 2020). We view WiSE-FT as a first
step towards more sophisticated fine-tuning schemes and anticipate that future work will continue to
leverage the robustness of zero-shot models for building more reliable neural networks.
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8 ETHICS STATEMENT

The broader impact of zero-shot models is extensively analyzed by (Radford et al., 2021; Brown
et al., 2020), identifying potential causes of harm including model biases—for instance with respect
to race, gender and age—and potential malicious uses such as surveillance systems. WiSE-FT is a
fine-tuning method that builds on such models, and thus may perpetuate their negative impact. In
particular, in comparison with standard fine-tuning, WiSE-FT may retain more of the qualities of
zero-shot models, both positive and negative.

9 REPRODUCIBILITY STATEMENT

We provide experimental details in Appendix C. In addition, we provide code in the supplemental
material which includes commands to reproduce and plot our experimental findings for ImageNet
and the five associated distribution shifts for the ViT-B/16 CLIP model.
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A PSEUDOCODE FOR WISE-FT

Algorithm 1 Pytorch pseudocode for WiSE-FT

def wse(model, zeroshot_checkpoint, finetuned_checkpoint, alpha):
# load state dicts from checkpoints
theta_0 = torch.load(zeroshot_checkpoint)["state_dict"]
theta_1 = torch.load(finetuned_checkpoint)["state_dict"]

# make sure checkpoints are compatible
assert set(theta_0.keys()) == set(theta_1.keys())

# interpolate between all weights in the checkpoints
theta = {

key: (1-alpha) * theta_0[key] + alpha * theta_1[key]
for key in theta_0.keys()

}

# update the model (in-place) according to the new weights
model.load_state_dict(theta)

def wise_ft(model, dataset, zeroshot_checkpoint, alpha, hparams):
# load the zero-shot weights
theta_0 = torch.load(zeroshot_checkpoint)["state_dict"]
model.load_state_dict(theta_0)

# standard fine-tuning
finetuned_checkpoint = finetune(model, dataset, hparams)

# perform weight-space ensembling (in-place)
wse(model, zeroshot_checkpoint, finetuned_checkpoint, alpha)
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Figure 6: A per-dataset breakdown of the key experimental results (Figure 1). WiSE-FT improves
ID and OOD accuracy on ImageNet and five derived distribution shifts. Standard ImageNet models,
models trained with more data, and existing robustness interventions are from Taori et al. (2020).

B ADDITIONAL EXPERIMENTS

This section supplements the results of Section 4. First, in Section B.1 we provide a breakdown of
Figure 1 for each distribution shift. Next, in Section B.2 we provide effective robustness scatter plots
for six additional distribution shifts, finding WiSE-FT to provide consistent improvements OOD
without any loss ID. Section B.3 compares WiSE-FT when fine-tuning only a linear classifier with
additional baselines including distillation and CoOp. Beyond robustness, Section B.4 demonstrates
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Figure 7: A zoomed-out version of Figure 6. WiSE-FT improves ID and OOD accuracy on ImageNet
and five derived distribution shifts. Standard ImageNet models, models trained with more data, and
existing robustness interventions are from Taori et al. (2020).

that WiSE-FT provides accuracy improvements on ID data, with a focus on the low-data regime.
Section B.5 showcases that the OOD improvements are not isolated to large models, finding similar
trends across scales of pre-training computes. Finally, Section B.6 ensembles zero-shot CLIP with an
independently trained classifier.

B.1 BREAKDOWN OF EXPERIMENTAL FINDINGS ON IMAGENET AND FIVE DERIVED
DISTRIBUTION SHIFTS

In contrast to Figure 1, where our key experimental results for ImageNet and five derived distribution
shifts are averaged, we now display the results separately for each distribution shift. Results are
provided in Figures 6 and 7, where the latter is zoomed out. WiSE-FT improves OOD accuracy while
improving or maintaining ID accuracy for each individual distribution shift.

B.2 ROBUSTNESS ON ADDITIONAL DISTRIBUTION SHIFTS

Figure 8 displays the effective robustness scatter plots for the six additional distribution shifts dis-
cussed in Section 4. On each, WiSE-FT improves OOD accuracy without any loss in ID performance.

Concretely, we consider: (i) ImageNet-Vid-Robust and YTBB-Robust, datasets with distribution shift
induced by temporal perturbations in videos (Shankar et al., 2019); (ii) CIFAR-10.1 (Recht et al.,
2019) and CIFAR-10.2 (Lu et al., 2020), reproductions of the popular image classification dataset
CIFAR-10 (Krizhevsky et al., 2009) with a distribution shift; (iii) WILDS-FMoW, a satellite image
recognition task where the test set has a geographic and temporal distribution shift (Koh et al., 2021;
Christie et al., 2018); (iv) WILDS-iWildCam, a wildlife recognition task where the test set has a
geographic distribution shift (Koh et al., 2021; Beery et al., 2021).

B.3 COMPARISON WITH ALTERNATIVE METHODS

We now extend Section 4 and compare WiSE-FT to additional methods of fine-tuning. Unlike
Section 4, our comparisons now focus on fine-tuning only a linear classifier, allowing comprehensive
experimentation. Many exhibit a concave trend in effective robustness plots, although WiSE-FT
offers the best results overall (Figure 9).

Random interpolation. This method uses either the zero-shot or fine-tuned linear classifier
depending on a (biased) coin flip. For hyperparameter α ∈ [0, 1] outputs are computed as
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Figure 8: WiSE-FT improves OOD accuracy while maintaining or improving ID accuracy on
ImageNet-Vid-Robust, YTBB-Robust (Shankar et al., 2019), CIFAR-10.1 (Recht et al., 2019),
CIFAR-10.2 (Lu et al., 2020), WILDS-FMoW (Koh et al., 2021; Christie et al., 2018), and WILDS-
iWildCam (Koh et al., 2021; Beery et al., 2021). Numbers reported are percentage point improvements
OOD without any loss in ID accuracy compared to standard fine-tuning.

(1 − ξ) · f(x, θ0) + ξ · f(x, θ1) where ξ is a Bernoulli(α) random variable. For this method
and all others with a hyperparameter α ∈ [0, 1] we evaluate models for α ∈ {0, 0.05, 0.1, ..., 1}.
Ensembling softmax outputs. Instead of ensembling in weight space, this method combines soft-
max probabilities assigned by the zero-shot and fine-tuned linear classifier. Concretely, for hyper-
parameter α ∈ [0, 1] outputs are computed as (1− α) · softmax(f(x, θ0)) + α · softmax(f(x, θ1)).
This method performs comparably to weight-space ensembling but requires slightly more compute.

Linear classifier with various regularizers. We explore fine-tuning linear classifiers with four
regularization strategies: no regularization, weight decay, L1 regularization, and label smoothing
(Müller et al., 2019). Linear-classifiers are trained with mini-batch optimization, using the AdamW
optimizer (Loshchilov & Hutter, 2019; Paszke et al., 2019) with a cosine-annealing learning rate
schedule (Loshchilov & Hutter, 2016). This method is significantly faster and less memory-intensive
than the L-BFGS implementation used by Radford et al. (2021) at ImageNet scale with similar
accuracy. Additional details on hyperparameters and more analyses are provided in Appendix C.3.

Distillation. Network distillation (Hinton et al., 2015) trains one network to match the outputs of
another. We use this technique to fine-tune while matching the outputs of the zero-shot model, in an
attempt to boost out-of-distribution performance. For a hyperparameter α ∈ [0, 1] and cross-entropy
loss ` we fine-tune θ according to the minimization objective∑

(xi,yi)∈S tr
D

(1− α) · `(f(xi, θ), yi) + α · `(f(xi, θ), f(xi, θ0)) . (2)

Regularization towards zero-shot. We train a linear classifier with an additional regularization
term which penalizes movement from the zero-shot classifier’s weights. For a hyperparameter
λ ∈ {1 · 10−8, 5 · 10−8, 1 · 107, ..., 5 · 102} we add the regularization term λ ‖W −Wzero-shot‖2F
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Figure 9: Comparing the relative ID and OOD accuracy of weight-space ensembling with the
alternatives described in Section B.3. Many methods follow a concave trend, though weight-space
ensembling provides the best performance overall.

IN-V2 IN-R IN-Sketch ObjectNet IN-A Avg

Weight-space ensemble 1.1 4.2 2.7 2.6 2.9 2.7
Output-space ensemble 0.8 4.1 3.1 2.7 2.7 2.7
Distillation 0.4 2.7 1.2 1.0 1.7 1.4
Regularize to zero-shot 0.0 3.6 0.0 1.8 0.0 1.1

Table 4: OOD accuracy gain (percentage points) without any loss in ID accuracy relative to the
fine-tuned linear classifier for the methods described in Section B.3.

where W is the linear classifier being fine-tuned. In most cases this method performs slightly worse
than distillation.

Figures 25-29 in Appendix F provide a breakdown of Figure 9 for each dataset. Table 4 offers an
alternative perspective, showing the amount of out-of-distribution accuracy which can be gained
without reducing in-distribution performance for each method.

Figure 10 demonstrates that WiSE-FT achieves better OOD and ID accuracy than the recently
proposed CoOp method (Zhou et al., 2021) on ImageNet and four derived distribution shifts. Instead
of fine-tuning network parameters, CoOp instead learns continuous embedding for the language
prompts. We note that CoOp and WiSE-FT could be used in conjunction in future work. We compare
with the ViT-B/16 section in Table 7 of Zhou et al. (2021). For comparison we use the same CLIP
model as CoOp and also train only on 16 images per class. Finally, we note the reported zero-shot
numbers of Zhou et al. (2021) are slightly lower than Radford et al. (2021) as Zhou et al. (2021) do
not use prompt ensembling.

B.4 IN-DISTRIBUTION ACCURACY IMPROVEMENTS

Beyond robustness, Figure 11 demonstrates that WiSE-FT provides ID accuracy improvements on
ImageNet and a number of datasets considered by Kornblith et al. (2019b): CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), Describable Textures (Cimpoi et al., 2014), Food-101 (Bossard et al.,
2014), SUN397 (Xiao et al., 2016), and Stanford Cars (Krause et al., 2013). This is surprising as
standard fine-tuning optimizes for low ID error. Figure 11 supplements Table 3 by providing accuracy
information for all mixing coefficients α.
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Figure 10: Comparing WiSE-FT with CoOp (Zhou et al., 2021). Both methods fine-tune the
ViT-B/16 CLIP model on 16 examples per class of ImageNet.
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Figure 11: The ID accuracy of WiSE-FT (end-to-end) with mixing coefficient α on ImageNet and a
number of datasets considered by Kornblith et al. (2019b): CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), Describable Textures (Cimpoi et al., 2014), Food-101 (Bossard et al., 2014), SUN397 (Xiao
et al., 2016), and Stanford Cars (Krause et al., 2013).

In many application-specific scenarios, only a small amount of data is available for fine-tuning.
Accordingly, we examine the performance of WiSE-FT when only k examples per class are used for
fine-tuning on the seven aforementioned datasets (k = {1, 5, 10, 25, 50}). In contrast with Figure 11,
we now fine-tune only the linear classifier allowing for comprehensive experiments. When five
examples per class are used for fine-tuning, WiSE-FT improves in-distribution performance by 0.3 to
6.1 percentage points compared to the best of the zero-shot and fine-tuned models. Average results
are shown in Figure 12, while Figures 13, 14 provide a breakdown for all datasets.

B.5 ROBUSTNESS ACROSS SCALES OF PRE-TRAINING COMPUTE

The strong correlation between standard test accuracy and accuracy under distribution shift holds
from low to high performing models. This offers the opportunity to explore robustness for smaller,
easy to run models. Our exploration began with the lowest accuracy CLIP models and similar trends
held at scale. Figure 15 shows improved out-of-distribution accuracy with minimal loss in-distribution
across orders of magnitude of pre-training compute with WiSE-FT when fine-tuning only a linear
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Figure 12: WiSE-FT can improve in-distribution accuracy over the linear classifier and zero-shot
model in the low data regime. On the x-axis we consider k = {1, 5, 10, 25, 50} examples per
class for fine-tuning. On the y-axis we display in-distribution accuracy improvements of WiSE-FT
averaged over seven datasets (Deng et al., 2009; Krizhevsky et al., 2009; Cimpoi et al., 2014; Bossard
et al., 2014; Xiao et al., 2016; Krause et al., 2013). For k = 1, the zero-shot model outperforms
the fine-tuned linear classifier, and ensembles closer to the zero-shot model (small α) yield high
performance. When more data is available, the reverse is true, and higher values of α improve
in-distribution performance. Appendix F, displays a breakdown for all datasets.
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Figure 13: WiSE-FT improves in-distribution accuracy over the linear classifier and zero-shot model
in the low data regime. On the x-axis we consider k = {1, 5, 10, 25, 50} examples per class and the
full training set. On the y-axis we consider the in-distribution accuracy improvement of WiSE-FT over
the (top) zero-shot model, (middle) fine-tuned linear classifier, and (bottom) best of the zero-shot
and fine-tuned linear classifier.

classifier. Moreover, Figure 16 we recreate the experimental results for ImageNet and five associated
distribtuion shifts with a smaller CLIP ViT-B/16 model, finding similar trends.
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Figure 14: WiSE-FT improves in-distribution accuracy over the linear classifier and zero-shot model
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full training set. On the y-axis we consider the in-distribution accuracy improvement of WiSE-FT over
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Figure 15: WiSE-FT provides benefits for all CLIP models. Accuracy can be improved out-of-
distribution relative to the linear classifier with less than ε ∈ {0, 0.1, 1} percentage points (pp) loss
in-distribution across orders of magnitude of training compute. The CLIP model RN50x64 requires
the most GPU hours to train.

B.6 ENSEMBLING ZERO-SHOT CLIP WITH INDEPENDENTLY TRAINED MODELS

So far we have shown that a zero-shot model can be used to improve out-of-distribution performance
of the derived fine-tuned model. Here, we investigate whether this improvement is specific to the
fine-tuned model. On the contrary, we find that ensembling with robust models can improve out-of-
distribution accuracy of independently trained models. Note that in the general case where the models
being ensembled have different architectures, we are unable to perform weight-space ensembling;
instead, we ensemble the outputs of each model. This increases the computational cost of inference,
in contrast to the results shown in Section 4.
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Figure 16: WiSE-FT improves ID and OOD accuracy across a number of distribution shifts with a
smaller CLIP ViT-B/16 model.
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Figure 17: Ensembling with a zero-shot model improves the out-of-distribution performance
of an independently trained model. (Left) Output-space ensembling with an independently trained
model (NoisyStudent EfficientNet-B6) with comparable in-distribution performance to the end-to-end
fine-tuned model. (Right) Output-space ensembling with an independently trained model with
strong in-distribution performance (NoisyStudent EfficientNet-L2). Results averaged over the five
distribution shifts as in Figure 1.

Concretely, we ensemble zero-shot CLIP with two Noisy Student EfficientNet models (Xie et al.,
2020; Tan & Le, 2019): (i) EfficientNet-B6 (Figure 17, left), with in-distribution performance
comparable to the end-to-end fine-tuned CLIP model; and (ii) EfficientNet-L2 (Figure 17, right),
the strongest model available on PyTorch ImageNet Models (Wightman, 2019). In both cases, we
observe substantial improvements from ensembling—13.6 pp and 6.9 pp in average out-of-domain
accuracy without reducing in-distribution performance. Further result are sown in table 5.

C EXPERIMENTAL DETAILS

C.1 CLIP ZERO-SHOT

This section extends Section 2 with more details on inference with the CLIP zero-shot model. First, in
all settings we use the CLIP model ViT-L/14@336px except for: (i) on CIFAR-10 and CIFAR-100
we find that ViT-L/14 performs slightly better than ViT-L/14@336px. (ii) In Figures 3 and 16
where we use ViT-B/16. Second, CLIP learns a temperature parameter which is factored into the
learned weight matrix Wzero-shot described in Section 2. Finally, to construct Wzero-shot we ensemble
the 80 prompts provided by CLIP at https://github.com/openai/CLIP. However, we
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OOD datasets Avg Avg
IN (ID) IN-V2 IN-R IN-Sketch ObjectNet IN-A OOD ID,OOD

CLIP
End-to-end fine-tuned 86.2 76.8 79.8 57.9 63.3 65.4 68.6 77.4
WiSE-FT, α=0.75 87.0 78.8 86.1 62.5 68.1 75.2 74.1 80.5
WiSE-FT, α=0.4 86.2 79.2 89.9 65.0 71.9 80.7 77.3 81.8
WiSE-FT, optimal α 87.1 79.5 90.3 65.0 72.1 81.0 77.6 82.3

NS EfficientNet-B6
No ensemble 86.5 77.7 65.6 47.8 58.3 62.3 62.3 74.4
OSE, α=0.75 87.0 78.8 86.4 56.7 66.5 75.9 72.9 80.0
OSE, α=0.4 84.3 77.2 89.5 63.8 69.7 79.0 75.8 80.0
OSE, optimal α 87.1 79.3 89.7 63.8 69.7 79.3 76.4 81.8

NS EfficientNet-L2
No ensemble 88.3 80.8 74.6 47.6 69.8 84.7 71.5 79.9
OSE, α=0.75 88.6 81.6 88.0 53.4 72.2 87.1 76.5 82.5
OSE, α=0.4 85.2 78.5 90.5 63.9 72.6 86.0 78.3 81.8
OSE, optimal α 88.6 81.7 90.5 63.9 73.1 87.1 79.3 83.9

Table 5: Accuracy of various independently trained models ensembled with CLIP on ImageNet
and derived distribution shifts. OSE denotes output-space ensembling. Avg OOD displays the mean
performance among the five out-of-distribution datasets, while Avg ID,OOD shows the average of
ImageNet (ID) and Avg OOD.

manually engineer prompts for five datasets: WILDS-FMoW, WILDS-iWildCam, Stanford Cars,
Describable Textures and Food-101, which are found in the code.

C.2 END-TO-END FINE-TUNING

Two important experimental details for fine-tuning are as follows:

• We initialize the final classification layer with the zero-shot classifier used by CLIP. This
includes the temperature parameter, which is no longer decoupled during fine-tuning.

• As the zero-shot classifier expects the outputs of the image-encoder g to be normalized, we
continue to normalize the outputs of g during fine-tuning.

When fine-tuning end-to-end we use the AdamW optimizer (Loshchilov & Hutter, 2019; Paszke et al.,
2019) and choose the largest batch size such that the model fits into 8 GPUs (512 for ViT-B/16).
We use the default PyTorch AdamW hyperparameters β1 = 0.9, β2 = 0.999, ε = 10−8, weight decay
of 0.1 and a cosine-annealing learning rate schedule (Loshchilov & Hutter, 2016) with 500 warm-up
steps. We use a learning rate of 3× 10−5, gradient clipping at global norm 1 and fine-tune for a total
of 10 epochs. We use the same data augmentations as Radford et al. (2021), randomly cropping a
square from resized images with the largest dimension being 336 pixels for ViT-L/14@336px and
224 for the remaining models.

C.3 FINE-TUNING A LINEAR CLASSIFIER

This section extends the description of linear classifier training from Appendix B.3 with details
on hyperparameters and additional analyses. In each of the four regularization strategies—no
regularization, weight decay, L1 regularization, and label smoothing—we run 64 hyperparameter
configurations. For each trial, mini-batch size is drawn uniformly from {64, 128, 256} and learning
rate is set to 10−β with β chosen uniformly at random from the range [0, 4]. Hyperparameters for each
regularization strategy are as follows: (i) The weight decay coefficient is set to 10−λ where λ is chosen
uniformly at random from [0, 4] for each trial; (ii) The L1 regularization coefficient is set to 10−λ

where λ is chosen uniformly at random from [4, 8] for each trial; (iii) The label smoothing (Müller
et al., 2019) coefficient λ is chosen uniformly at random from [0, 0.25] for each trial. The linear
classifier used for ensembling attains the best performance in-distribution. The hyperparameters from
this trial are then used in the distillation and regularization experiments described in Appendix B.3.
In the low-data regime (Section B.4), this process is repeated for each k and dataset.

Figure 18 demonstrates that various regularization strategies largely move along the same parabolic
trend—even linear classifiers trained without explicit regularization. Figure 19 demonstrates that in
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Figure 18: Various regularizers trace similar trends when fine-tuning a linear classifier. Com-
paring the relative in- and out-of-distribution performance of fine-tuning a linear classifier with the
various methods of regularization discussed in Section C.3.
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Figure 19: Comparing the relative in- and out-of-distribution performance of fine-tuning a linear
classifier with various learning rates and no explicit regularization. As discussed in Section C.3,
batch size is chosen randomly from {64, 128, 256} for each experiment. As learning rate increases
the linear classifiers follow a parabolic trend similar to the trend followed by explicit regularization
(see Figure 18).

the absence of explicit regularization, increasing the learning rate moves monotonically along this
trend.

When training linear classifiers with k images per class as in Section B.4 the number of epochs is
scaled approximately inversely proportional to the amount of data removed (e.g., with half the data
we train for twice as many epochs so the number of iterations is consistent). To choose the number of
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Figure 20: Effective robustness scatter plots for ObjectNet, with and without adapting to class shift.
Left: Using ImageNet class names to construct the zero-shot classifier. Right: Using ObjectNet
class names to construct the zero-shot classifier.

epochs we use default PyTorch AdamW hyperparameters (learning rate 0.001, weight decay 0.01)
and double the number of epochs until performance saturates.

C.4 OBJECTNET

The zero-shot models in Table 2 use the ImageNet class names instead of the ObjectNet class names.
However, this adaptation to class shift improves performance by 2.3% (Radford et al., 2021). Out of
the 5 datasets used for the majority of the experiments in Section 3, ObjectNet is the only dataset for
which this is possible. In Figure 20 we compare weight-space ensembles with and without adaptation
to class shift.

D DIVERSITY MEASURES

Let S = {(x(i), y(i)), 1 ≤ i ≤ N} be a classification set with input data x(i) and labels y(i) ∈
{1, ..., C}, where C is the number of classes. A classifier f is a function that maps inputs x to logits
f(x) ∈ RC , yielding predictions ŷ = arg max1≤c≤C f(x)c. We consider measures of diversity

M(f, g,S) between two classifiers f and g and the dataset S. For simplicity, ŷ(i)f is used to denote
the predictions from classifier f given inputs x(i) (and similarly for g).

Prediction Diversity (PD). One of the most intuitive ways to measure diversity between pairs of
classifiers is to compute the fraction of samples where they disagree while one is correct (Ho, 1998;
Skalak et al., 1996). Formally, the prediction diversity PD is defined as:

PD(f, g,S) =
1

N

∑
1≤i≤N

1

[(
ŷ
(i)
f = y(i) ∧ ŷ(i)g 6= y(i)

)
∨
(
ŷ
(i)
f 6= y(i) ∧ ŷ(i)g = y(i)

)]
. (3)

Cohen’s Kappa Complement (CC). Cohen’s kappa coefficient is a measure of agreement between
two annotators (McHugh, 2012). Here, we use it’s complement as a diversity measure between two
classifiers:

CC(f, g,S) = 1− po − pe
1− pe

=
1− po
1− pe

, (4)

where pe is the expected agreement between the classifiers and po is the empirical probability of
agreement. Formally, if nf,k is the number of samples where classifier f predicted label k (i.e.
nf,k =

∑
1≤i≤N 1[ŷif = k]), then:

pe =
1

N2

∑
1≤c≤C

nf,cng,c, po =
1

N

∑
1≤i≤N

1[ŷif = ŷig] (5)

KL Divergence (KL). The Kullback-Leibler divergence measures how different a probability distri-
bution is from another. Let p(i)f = softmax

(
f(x(i))

)
for a classifier f , and let p(i)f,c be the probability

assigned to class c. We consider the average KL-divergence over all samples as a diversity measure:

KL(f, g,S) =
1

N

∑
1≤i≤N

∑
1≤c≤C

p
(i)
f,c log

(
p
(i)
f,c

p
(i)
g,c

)
. (6)
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Figure 21: Prediction Diversity (PD) for multiple datasets and CLIP models (Equation 3).

Centered Kernel Alignment Complement (CKAC). CKA is a similarity measure that compares
two different sets of high-dimensional representations (Kornblith et al., 2019a). It is commonly used
for comparing representations of two neural networks, or determining correspondences between two
hidden layers of the same network. CKA measures the agreement between two matrices containing
the pair-wise similarities of all samples in a dataset, where each matrix is constructed according to
the representations of a model. More formally, let S ∈ RN×d denote the d-dimensional features for
all samples in a dataset S, pre-processed to center the columns. For two models f and g yielding
similarity matrices Sf and Sg , CKA is defined as:

CKA(f, g,S) =
||S>g Sf ||2F

||S>f Sf ||2F ||S>g Sg||2F
, (7)

where ||S||F denotes the Frobenius norm of the matrix S. Larger CKA values indicate larger
similarities between the representations of the two models, and thus, smaller diversity. We define the
diversity measure CKAC as:

CKAC = 1− CKA. (8)

Note that CKAC is computationally expensive to compute for large datasets. For this reason, in our
experiments with distributions larger than 10,000 samples, we randomly sample 10,000 to compute
this measure.

Diversity across different architectures We extend Figure 4 to show results for all combinations
of diversity measures, datasets, and CLIP models. Similarly to before, the baselines compares models
with the same encoder, with two linear classifiers trained on different subsets of ImageNet with half
of the data. Results are shown in Figures 21-24.

E WHEN DO WEIGHT-SPACE ENSEMBLES APPROXIMATE OUTPUT-SPACE
ENSEMBLES?

In practice we observe a difference between weight-space and output-space ensembling. However, it
is worth noting that these two methods of ensembling are not as different as they initially appear. In
certain regimes a weight-space ensemble approximates the corresponding output-space ensemble—
for instance, when training is well approximated by a linear expansion, referred to as the NTK regime
(Jacot et al., 2018). Fort et al. (2020) find that a linear expansion becomes more accurate in the later
phase of neural network training, a phase which closely resembles fine-tuning.

Consider the set Θ = {(1− α)θ0 + αθ1 : α ∈ [0, 1]} consisting of all θ which lie on the linear path
between θ0 and θ1.

Proposition 1. When f(θ) = f(θ0) +∇f(θ0)>(θ− θ0) for all θ ∈ Θ, the weight- and output-space
ensemble of θ0 and θ1 are equivalent.
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Figure 22: Cohen’s Kappa Complement (CC) for multiple datasets and CLIP models (Equation 4).
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Figure 23: Average KL Divergence (KL) for multiple datasets and CLIP models (Equation 6).

Proof. We may begin with the weight-space ensemble and retrieve the output-space ensemble

f((1− α)θ0 + αθ1) (9)

= f(θ0) +∇f(θ0)
>

((1− α)θ0 + αθ1 − θ0) (10)

= f(θ0) + α∇f(θ0)
>

(θ1 − θ0) (11)

= f(θ0) + α∇f(θ0)
>

(θ1 − θ0) + αf(θ0)− αf(θ0) (12)

= (1− α)f(θ0) + α
(
f(θ0) +∇f(θ0)

>
(θ1 − θ0)

)
(13)

= (1− α)f(θ0) + αf(θ1) (14)

where the first and final line follow by the linearity assumption.

F ADDITIONAL FIGURES

This section provides supplemental figures:

• We compare weight-space ensembling to a series of alternatives as in Appendix B.3 and
Figure 9. However, instead of displaying average in- and out-of-distribution we show the
comparison separately for each dataset (Figures 25, 26, 27, 28, and 29).

• Figures 13 and 14 show a breakdown of in-distribution gains in the low-data regime for the
seven datasets averaged in Figure 12.
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Figure 24: Central Kernel Alignment Complement (CKAC) for multiple datasets and CLIP
models (Equation 8).
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Figure 25: Comparing the relative in- and out-of-distribution performance of WiSE-FT with the
alternatives described in Appendix B.3 on ImageNetV2.

• Figure 30 provides a schematic for the average error landscape.
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Figure 26: Comparing the relative in- and out-of-distribution performance of WiSE-FT with the
alternatives described in Appendix B.3 on ImageNet-R.
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Figure 27: Comparing the relative in- and out-of-distribution performance of WiSE-FT with the
alternatives described in Appendix B.3 on ImageNet Sketch.
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Figure 28: Comparing the relative in- and out-of-distribution performance of WiSE-FT with the
alternatives described in Appendix B.3 on ObjectNet.
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Comparison to regularize to zero-shot
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Figure 29: Comparing the relative in- and out-of-distribution performance of WiSE-FT with the
alternatives described in Appendix B.3 on ImageNet-A.
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CLIP fine-tuned end-to-end 
(low ID error, high OOD error)

Schematic: 
average test 
error on all 

datasets

CLIP zero-shot (high ID error, 
low OOD error)

Weight-space ensemble 
(low ID and OOD error)

Figure 30: Schematic of the average error landscape. Li et al. (2018) observe that solution spaces
for a given task are high dimensional, while D’Amour et al. (2020); Wortsman et al. (2021) observe
that movement within the solution space can change model performance on other data distributions.
According to these observations, it is possible that the model finds a solution that performs well on
the downstream task during fine-tuning without leaving a region of low error on the original task.
Moreover, interpolating between the two solutions may travel closer to a true minimum (Neyshabur
et al., 2020; Izmailov et al., 2018).
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