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Abstract
Do different generative image models secretly learn similar underlying representations? We in-
vestigate this by measuring the latent space similarity of four different models: VAEs, GANs,
Normalizing Flows (NFs), and Diffusion Models (DMs). Our methodology involves training linear
maps between frozen latent spaces to “stitch” arbitrary pairs of encoders and decoders and measur-
ing output-based and probe-based metrics on the resulting “stitched” models. Our main findings are
that linear maps between latent spaces of performant models preserve most visual information even
when latent sizes differ; for CelebA models, gender is the most similarly represented probe-able
attribute. Finally we show on an NF that latent space representations converge early in training.

1. Introduction

Recent literature on deep networks has suggested that all models are converging to the same rep-
resentation of “reality”. Huh et al. [6] show that the embedding spaces of performant vision and
language models learn similar notions of “distance” between datapoints of the appropriate modali-
ties. Bansal et al. [2] “stitch” together layers of pairs of powerful vision networks via a simple map
and show that the combined network has minimal loss in performance.

Asperti and Tonelli [1] investigate whether a similar conclusion holds for latent spaces of gen-
erative image models by extending the model stitching framework. They train a linear map between
the latent spaces of a Variational Autoencoder (VAE) and Generative Adversarial Network (GAN)
and show that this stitched VAE-encoder-GAN-decoder model is able to produce reconstructions of
images that look similar to the originals and have a low RMSE.

However, despite previous work, it remains unclear how well these conclusions hold for other
families of generative image models, especially those with vastly different latent sizes. Further, it
is not clear which specific visual attributes are represented similarly by models and which aren’t.
In our work, we address these drawbacks by (1) extending the study to include NFs and DMs, (2)
including probe-based metrics to capture semantics of representations. On CelebA we find that
powerful models can be stitched via their latent spaces to reconstruct an image with little loss in
quality. In addition to color, pose, and lighting, attributes related to gender are most similarly
represented. Finally, we explore the question of how quickly the local minimum corresponding
to this shared latent space is found, by seeing how early in training latent space probe accuracy
plateaus. On an NF, we find that this happens less than 20% of the way into training.
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Our overall contributions are:
(1) In §3.2, we propose two sets of metrics (reconstruction-based, probe-based) grounded in a model
“stitching”-based procedure to measure the similarity of generative image model latent spaces.
(2) In §4, we perform extensive experiments across four generative image model classes trained on
CelebA (VAEs, GANs, NFs and DMs), and find significant similarity among their latent spaces on
our metrics, especially in their representation of gender. On the Normalizing Flow model, we find
that this common latent space structure is learned early in training.

2. Related Works

Exploring latent spaces. Several supervised [15] [24] and unsupervised [7] approaches have been
proposed to discover vectors corresponding to high-level image concepts (e.g. hair color) in the
GAN latent space. These techniques have been applied to find edit directions in the latent spaces
of VAEs [29] and NFs [11] as well. Our work compares the structure of different models’ latent
spaces and is thus orthogonal to the exploration of a model’s latent space in isolation.

Metrics to compare representations. CCA [19] and CKA [13] are metrics that have been used
to measure representational similarity between layers of different models. Another work compared
distances between sets of datapoints in different models’ embedding spaces [6].

Model stitching to compare representations. One branch of work compares representations via
“stitching” where a simple map is learned between layers of two different models [16]. One work
stitched together neural networks of different strengths at an intermediate layer, concluding that
good models tended to converge on similar representations and that stitching strong models to weak
models improved their performance [2]. Work on stitching the latent spaces of generative models
has also been explored. One paper showed that it is possible to construct a linear map between the
latent space of image encoders and text decoders to obtain text describing an image, demonstrating
that models learn similar representations of multi-modal data [18].

The work most closely related to ours showed that it is possible to linearly stitch the latent
spaces of a VAE and GAN and reconstruct an image with little loss in quality [1]. Our work extends
this idea to more architectures; we also identify what specific concepts models represent similarly.

3. Methodology

3.1. Models and Datasets

We experiment on 5 generative image models trained on CelebA [17] – a dataset of celebrity faces
annotated with 40 binary attributes. The models and their corresponding latent space sizes are:
GAN (512), VAE (512), VQVAE (768), NF (12288), DM (12288). Models output images of size
64 × 64 with slightly different crops.

We use a GAN-generated dataset CelebA-Synthetic to train linear maps to and from the GAN
latent space, since GANs lack an encoder. The “latent space” of the DM is taken to be the noised im-
age after running the forward process using the DDIM scheduler with 50 timesteps [25]. As a base-
line, we use a “random” encoder which maps images deterministically to arbitrary 512-dimensional
standard Gaussian vectors.
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3.2. Proposed Metrics

Model latent spaces are first stitched via linear maps (see Appendix A.4).
Reconstruction-Based Metrics. We qualitatively assess the image reconstructions of stitched mod-
els. We also compute the latent space MSE of the mapping, pixel-space RMSE of the reconstructed
image, LPIPS score [30] which measures the perceptual similarity between a pair of images, and the
FID [4] which measures how similar the distribution of reconstructed images is to the distribution
of target images. Lower is better for all metrics.

Probe-Based Metrics. We train linear probes (see Appendix A.5) on the latent spaces of encoder-
decoder models to detect the presence of binary attributes and report test set accuracy. We then
measure the percentage of times probe predictions on latents encoded by the model whose latent
space it was trained on and those mapped from other latent spaces match (higher is better). We also
measure the percent change in probe accuracy on these sets of latents (near 0 is better).

4. Results

4.1. Assessing Stitched Model Reconstructions

Figure 1: Left. Reconstruction of a CelebA image using stitched models. The leftmost image is
the ground truth. Right. Heatmaps of latent-space MSE, pixel-space RMSE, LPIPS and
FID for images reconstructed by stitched models. Stitched models using the VQVAE and
NF encoders yield the best reconstructions and lowest metric values.

We stitch the latent spaces of a VAE, VQVAE, NF, DM and GAN pairwise and compute the
reconstruction-based metrics described in §3.2. From Figure 1 we see that stitching the NF and
VQVAE encoders to any model X’s decoder yields reconstructions resembling those generated by

Figure 2: Reconstruction of CelebA-Synthetic image
by stitching to GAN decoder. VQVAE, NF
encoders yield the closest reconstructions.
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X (boxed in red) and obtain relatively low latent MSE, RMSE, LPIPS and FID scores. Additional
examples are in Appendix A.7.

Conversely, the DM and VAE encoders barely outperform the random encoder in terms of
stitched reconstruction quality. Poor VAE performance can be attributed to significant informa-
tion loss during encoding, reflected in lossy reconstructions even with its own decoder. For the DM,
we note that the “latent vectors” we use to construct our mappings are heavily noised versions of
the image rather than true encodings, resuling in poor linear probe performance (Figure 3). Latent
space maps pick up on remaining signal, which is sometimes enough to map to an area of the de-
coder model’s latent space producing images in the visual vicinity of an target image (Figure 2).
The spatial nature of DM “latents” (the“representation” of a feature is a function of the pixel values
in the region of the image that the feature manifests) makes the ability to stitch another model’s en-
coder to its decoder at all unexpected. However, it explains why models stitched to the DM decoder
produce reconstructions preserving the geometry of the target image but not the colors.

Finally, Figure 2 shows reconstructions of a test image from CelebA-Synthetic obtained by
stitching various models’ encoders to the GAN decoder. Due to the strength of the GAN decoder,
all reconstructions resemble a face. Furthermore, mapping to the vicinity of the true GAN latent is
sufficient to produce a reconstruction preserving most characteristics of the target image (e.g. age,
hair and skin color, expression) supporting results from literature [1].

4.2. Identifying Similarly Represented Attributes

Figure 3: Left. Top 4 rows show latent space probe accuracies. NF and VQVAE have the most
linear representations. Remaining rows show change in accuracy of probe trained on
model X’s latent space when making predictions on latents encoded by X and latents
mapped from X′ → X. Right. Percentage of times a probe trained on model X’s latent
space produces the same prediction on latents encoded by X and latents mapped from
X′ → X. Attributes correlated with gender are represented similarly by nearly every
model.
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Figure 4: Test accuracy of probes on NF
latent space frozen at increasing
training epochs; accuracy plateaus
after epoch 6.

We stitch the latent spaces of a VAE, VQVAE, NF, DM and GAN pairwise and compute the
probe-based metrics described in §3.2 on 10 interesting CelebA attributes. Results for all 40 at-
tributes are in Appendix A.6. From Figure 3 we see that linear probes for the gender-related at-
tributes Male and Heavy Makeup achieve 80% accuracy on the NF, VAE and VQVAE latent
spaces. In Figure 3 we see that NF probes produce similar predictions on latents produced by its
own decoder and latents encoded and mapped from the VQVAE latent space (and vice versa), in
agreement with the results from §4.1.

We hypothesize that attributes that are represented similarly in all models’ latent spaces are ei-
ther uniformly represented in the training dataset (e.g. Smiling), or explain much of the variance
in an image (e.g. Male and related attributes). Interestingly, post-map probe match percentages are
high for gender-related attributes, particularly Heavy Makeup and Male, even for for maps orig-
inating from the non-linear DM latent space indicating that signal corresponding to these attributes
is least likely to be lost in the noising process.

Finally, we note in Figure 3 that probes trained on less linearly separable latent spaces are often
more accurate when applied on latents mapped from a more linearly separable latent space, explain-
ing why corresponding reconstructions have more “extreme” versions of the attributes present in the
target image (e.g. distinct, block-like bangs in NF → DM and VQVAE → DM maps in Figure 1).

4.3. Observing Latent Space Structure Over Training

We train the Glow NF [11] on CelebA for 26 epochs checkpointing every 5 epochs. We train linear
probes for 10 interesting attributes on the frozen latent spaces and measure how their accuracy
changes as model training progresses. Figure 4 shows that probe accuracy begins to plateau for all
attributes by epoch 6 of 26. Attributes correlated with gender as well as Smiling (the similarly
represented attributes identified in §4.2) change minimally in their representations after epoch 1 of
26. Thus, we hypothesize that a “universal” representation is natural for models to learn and that
later training epochs improve the decoder given a somewhat fixed latent representation.

5. Discussion and Future Work

This work advances the hypothesis that as (unconditional) generative image models become more
expressive, their latent space representations (given that they are meaningful) become more sim-
ilar to one another. We find that this shared representation is learned early on in model training,
indicating that it is quite “natural” in describing the data. This suggests that the latent spaces of
increasingly expressive models may be converging to an “optimal” data representation in the limit,
which has deep implications for how we construct world models.

Similarity of latent space representations also means that edit directions, unsafe regions, or areas
of bias found in the latent space of one model, can be mapped onto any other model via a simple
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linear map. It also allows for more powerful image editing by stitching models with strong encoders
to models with strong decoders via their latent spaces.

Future work can investigate whether similar results hold for models trained on datasets contain-
ing images from multiple classes with more variance, and can probe similarity of representation of
non-binary attributes. We expect to see similar results given that the models used are able to pro-
duce realistic samples from the data distribution. We also wish to extend our analysis to pipelines
composed of multiple foundation models, for example, the latent diffusion model [23] which trains
a DM on the VQVAE latent space. Since it is the first foundation model in this pipeline that learns
a latent representation of the data, we expect to see similar results to this paper. Finally, work has
shown that it is possible to find a linearly separable latent space for DMs [14]; we can validate that
this latent space is similarly structured to those studied in our paper.
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Appendix A.

A.1. Source Code

All code for this paper is available in the following GitHub repository:
https://github.com/charumathib/thesis-latent-spaces.

A.2. Background on Models

All generative image models learn to “sample” images following their the distribution of their train-
ing set. However, the four main families of models – Variational Autoencoders (VAEs), Generative
Adversarial Networks (GANs), Normalizing Flows (NFs) and Diffusion Models (DMs) – differ
drastically in how they do so.

A VAE [12] consists of an encoder network mapping images to latent vectors of lower dimen-
sion, and a decoder neural network that maps latent vectors to images with the objective of mini-
mizing image reconstruction error. A KL-Divergence term is added to the objective to encourage a
marginally Gaussian latent space distribution.

A GAN [3] is comprised of a generator network (decoder) that learns to generate images from
marginally Gaussian latent samples and a discriminator network whose objective is to distinguish
images from the training set from generated images. Both networks improve by playing a minimax
game, ultimately yielding a generator capable of producing realistic images.

An NF [22] samples a latent variable from a simple distribution and repeatedly applies a series of
invertible functions to this variable until it is transformed into an image. The marginal likelihood of
each datapoint can be derived via the change of variables theorem for distributions and the objective
is the negative data log likelihood.

Finally, a DM [5] progressively adds Gaussian noise to an image producing a sequence noisy
samples that become isotropic to a Gaussian in the limit (“forward process”). It then learns how
to produce samples from the “reverse process” to gradually transform pure noise into an image.
DMs dont have an obvious latent space in the same way as VAEs, GANs and NFs since marginally
Gaussian “latents” are created via progressive noising rather then by a transformation that would
force a representation to be learned.

A.3. Models Used

The pre-trained GAN we use is from the Diffusion-GAN codebase [28] and follows the StyleGAN2-
ADA architecture [9]. The pre-trained VAE is from the DiffuseVAE codebase [20]. The pre-trained
VQVAE [26] from the Hugging Face diffusers library [27]. The NF implementation is from an
independent source [10] follows the Glow architecture [11]. The DM is from the DDIM codebase
[25].

A.4. Training Latent Space Linear Maps

Many of our experiments rely on the construction of linear maps between model latent spaces. For
each pair of encoder-decoder models (VAE, VQVAE, NF, DM), we encode the first 9000 images
from the CelebA test split into their respective latent spaces and use a closed-form linear regression
solver from sklearn to predict one set of latents from the other [21]. To prevent overfitting in
maps originating from the NF and DM latent spaces, we use ridge regression with manually tuned
values of α as summarized in Table 1.
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Map α

DM → GAN 2000
DM → VAE 100

DM → VQVAE 5000
DM → NF 5000

NF → GAN 50000
NF → VAE 5000

NF → VQVAE 50000
NF → DM 50000

Table 1: Regularization parameters used in Ridge regression for each linear map. Maps that are not
listed in this table were not regularized.

Our training procedure differs slightly for maps to and from the GAN latent space. We use the
“style space” as our latent space (a layer connected to the base latent space by an 8 layer MLP) [8].
We use the first 9000 images in the CelebA-Synthetic dataset to train maps in the way described
earlier; the latent used by the GAN to generate each image is treated as the image’s “encoding” in
the GAN latent space. All maps are tested on a holdout set of 100 images from either CelebA or
CelebA-Synthetic as appropriate.

Figure 5: Latent space map MSE on train (left) and test (right) sets.

A.5. Training Latent Space Linear Probes

We train linear probes to predict the value of each of the 40 binary attributes (e.g. Male) CelebA
images are annotated with. To construct a balanced training set for an attribute’s probe, we first
compute the number of images with and without that attribute in the first 9000 CelebA images. 80%
of the minimum of these two numbers is how many positive and negative examples are included.
Probes are trained using lasso regression in sklearn where α = 0.005 for probes on the VAE
and VQVAE latent spaces, 0.02 for probes on the DM latent space and 0.1 for probes on the NF
latent space. [21]. We use a holdout set of 200 latents (100 with attribute, 100 without attribute) to
evaluate probe performance.
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A.6. Full Probe Results

Figure 6: Full version of Figure 3 (left, top) with results for all 40 attributes.

Figure 7: Full version of Figure 3 (left, bottom) with results for all 40 attributes.

Figure 8: Full version of Figure 3 (right) with results for all 40 attributes.
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A.7. Additional Examples of Stitched Model Reconstructions

Figure 9: See caption of Figure 1.

Figure 10: See caption of Figure 2.
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