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ABSTRACT

Sequential decision making in highly complex MDPs with high-dimensional ob-
servations and state dynamics became possible with the progress achieved in deep
reinforcement learning research. At the same time, deep neural policies have been
observed to be highly unstable with respect to the minor sensitivities in their state
space induced by non-robust directions. To alleviate these volatilities a line of
work suggested techniques to cope with this problem via explicitly regularizing
the temporal difference loss for the worst-case sensitivity. In this paper we provide
theoretical foundations on the failure instances of the approaches proposed to
overcome instabilities of the deep neural policy manifolds. Our comprehensive
analysis reveals that certified reinforcement learning learns misaligned values. Our
empirical analysis in the Arcade Learning Environment further demonstrates that
the state-of-the-art certified policies learn inconsistent and overestimated value
functions compared to standard training techniques. In connection to this analysis,
we highlight the intrinsic gap between how natural intelligence understands and in-
teracts with an environment in contrast to policies learnt via certified training. This
intrinsic gap between natural intelligence and the restrictions induced by certified
training on the capabilities of artificial intelligence further demonstrates the need
to rethink the approach in establishing reliable and aligned deep reinforcement
learning policies.

1 INTRODUCTION

Inspired by the learning dynamics and cognitive abilities of natural intelligence (Watkins, 1989;
Kehoe et al., 1987; Romo & Schultz, 1990; Montague et al., 1996; Schultz et al., 1993; Pan et al.,
2005), reinforcement learning research has been the focal point of immense research progress (Mnih
et al., 2015; Hasselt et al., 2016b). Deep reinforcement learning has become an emerging field in
the past decade with the introduction of deep neural networks as function approximators leading to
learning policies that can surpass human cognitive abilities in highly complicated tasks by solely
interacting with a given environment through trial and error (Mnih et al., 2015; Kapturowski et al.,
2023).

Along with the strong inspiration from neuroscience, remarkably reinforcement learning further
comes with mathematically provable guarantees on what can be learnt asymptotically (Sutton, 1984;
Watkins & Dayan, 1992). A recent line of research highlighted the safety concerns of reinforcement
learning, and further proposed a line of algorithms that modify standard reinforcement learning
algorithms to ensure reliability and robustness in deep reinforcement learning (Madry et al., 2018;
Korkmaz, 2024).

At the same time, recent research in neuroscience has been able to identify structures in the human
brain that directly compute counterfactual action-values, and then compare these values in order
to make decisions. In particular, recent work in decision neuroscience demonstrated that while
the prefrontal cortex of natural intelligence records the expected value of the actions executed, the
dorsomedial frontal cortex analyzes counterfactual decisions of the human brain (Wunderlich et al.,
2009; Lau & Glimcher, 2007; Klein-Flügge et al., 2016).
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In this paper, we analyze the effects of safety in reinforcement learning and our analysis discovers
that the line of research focused on safety fails to deliver the guarantees implied by "certified safety
and robustness", and further risks potentially significant changes to the behavior and semantics of the
trained policies, particularly in how they align with how natural intelligence reasons about the values
of actions.

Essentially in this paper we aim to seek answers for the following questions: (i) What is the intrinsic
alignment between natural intelligence decision making and reinforcement learning?, (ii) Do our
efforts on ensuring safety divert the original neuroscientific motivations of reinforcement learning
algorithms? To be able to answer these questions we focus on the foundations of reinforcement
learning and its alignment with natural intelligence, and make the following contributions:

• We introduce a theoretically well-founded analysis of the state-action value function learnt
by state-of-the-art certified adversarial training and standard reinforcement learning. Our
paper is the first one that demonstrates, both theoretically and empirically, that certified
robust training has manifold flaws, and security and safety issues that do not match its
promises.

• We highlight the connection between neural correlates of action values in natural intelligence
and understanding deep neural policy decision making. In particular, our analysis reveals
that robust training methods learn policies that are misaligned with human decision making
processes, in which humans have a better than random perception of actions that they do
not take. Furthermore, our results demonstrate that standard reinforcement learning in fact
captures the values of counterfactual actions while robust training methods cannot.

• We conduct experiments in MDPs with high-dimensional state spaces from the Arcade
Learning Environment (ALE). Our comprehensive systematic analysis demonstrates that
vanilla deep neural policies learn values for decisions that are highly close to how natural
intelligence assigns values for actions, yet further orthogonal to how certified training makes
decisions. Thence these results demonstrate that standard reinforcement learning learns a
more accurate and stable representation of the state-action value function compared to the
state-of-the-art adversarially trained deep neural policies.

• Our paper further provides foundations and demonstrates that there is an intrinsic trade-off
between accurate estimation of state-action values and robustness. Our comprehensive and
systematic analysis reveals the loss of information in the state-action value function as a
novel fundamental trade-off intrinsic to certified training.

2 BACKGROUND AND PRELIMINARIES

Neuroscientific Results and Alignment with Natural Intelligence Decisions Making: The fact
that natural intelligence assigns meaningful values to counterfactual actions is a well-studied
phenomenon in neuroscience (Wunderlich et al., 2009; Lee et al., 2012; Phillips et al., 2019).

Figure 1: Human decision
making and value assignment
for options (Klein-Flügge
et al., 2016).

In particular, human cognitive decision making assigns counterfac-
tual values to decisions not taken, and uses these values to inform
future decision making. Furthermore, humans do preserve the knowl-
edge on the correct ordering of both factual and counterfactual deci-
sions (Hoeck et al., 2015; Phillips et al., 2019; Grabenhorst & Rolls,
2011). Notably, the results in Figure 1 report analysis of fMRI scans
of human brains during a decision-making task to identify a neural
structure that compares the values of chosen and unchosen options
for a particular decision. The results demonstrate that the value of
each option was encoded in this structure, and that the actual deci-
sions made were correlated with these values (Klein-Flügge et al.,
2016).

Our extensive analysis and results discover that current robust training methods move artificial intelli-
gences further out of alignment with natural intelligence by systematically disrupting the information
on the values of counterfactual actions to be nearly random. We believe that such misalignment
provides evidence that certified training methods are insufficient to resolve the robustness and safety
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problems of current artificial intelligence, and further portrays the dichotomy between certified
training and natural intelligence.

Preliminaries In deep reinforcement learning the goal is to learn a policy for taking actions in a
Markov Decision Process (MDP) that maximize discounted expected cumulative reward. An MDP is
represented by a tuple M = (S,A, P, r, ρ0, γ) where S is a set of continuous states, A is a discrete
set of actions, P is a transition probability distribution on S ×A× S, r : S ×A → R is a reward
function, ρ0 is the initial state distribution, and γ is the discount factor. The objective in reinforcement
learning is to learn a policy π : S → P (A) which maps states to probability distributions on
actions in order to maximize the expected cumulative reward R = E

∑T−1
t=0 γtr(st, at) where

at ∼ π(st). In Q-learning (Watkins, 1989) the goal is to learn the optimal state-action value function
Q∗(s, a) = R(s, a) +

∑
s′∈S P (s′|s, a)maxâ∈A Q∗(s′, â). Thus, the optimal policy is determined

by choosing the action a∗(s) = argmaxa Q(s, a) in state s.

Adversarial Crafting and Training: Szegedy et al. (2014) observed that imperceptible perturbations
could change the decision of a deep neural network and proposed a box constrained optimization
method to produce such perturbations. Goodfellow et al. (2015) suggested a faster method to produce
such perturbations based on the linearization of the cost function used in training the network. Kurakin
et al. (2016) proposed the iterative version of the fast gradient sign method proposed by Goodfellow
et al. (2015) inside an ϵ-ball

xN+1
adv = clipϵ(x

N
adv + αsign(∇xJ(x

N
adv, y))) (1)

in which J(x, y) represents the cost function used to train the deep neural network, x represents
the input, and y represents the output labels. While several other methods have been proposed (e.g.
Korkmaz (2020)) using a momentum-based extension of the iterative fast gradient sign method,

vt+1 = µ · vt +
∇sadvJ(s

t
adv + µ · vt, a)

∥∇sadvJ(s
t
adv + µ · vt, a)∥1

, st+1
adv = stadv + α · vt+1

∥vt+1∥2

adversarial training has mostly been conducted with perturbations computed by projected gradient
descent (PGD) proposed by Madry et al. (2018) (i.e. Equation 1).

Adversaries, Robustness and Certified Training in Deep Neural Policies: The initial investigation
on resilience of deep neural policies was conducted by Kos & Song (2017) and Huang et al. (2017)
concurrently based on the utilization of the fast gradient sign method proposed by Goodfellow et al.
(2015). Recent work demonstrated that deep reinforcement learning policies learn shared adversarial
features across MDPs revealing an underlying linear structure learnt by the deep reinforcement
learning policies (Korkmaz, 2022; 2024). While several studies focused on improving optimization
techniques to compute optimal perturbations, a line of research focused on making deep neural
policies resilient to these perturbations. In particular, Pinto et al. (2017) proposed to model the
dynamics between the adversary and the deep neural policy as a zero-sum game where the goal
of the adversary is to minimize expected cumulative rewards of the deep neural policy. Gleave
et al. (2020) approached this problem with an adversary model which is restricted to take natural
actions in the MDP instead of modifying the observations with ℓp-norm bounded perturbations. The
authors model this dynamic as a zero-sum Markov game and solve it via self play. Recently, Huan
et al. (2020) proposed to model this interaction between the adversary and the deep neural policy
as a state-adversarial MDP, and claimed that their proposed algorithm State Adversarial Double
Deep Q-Network (SA-DDQN) learns theoretically certified robust policies against natural noise
and perturbations. Recent work demonstrated that certified training learns identical high-sensitivity
directions with standard training, thence can be attacked with a black-box approach (Korkmaz, 2022).
Furthermore, some studies showed that certified training while not able to generalize compared
to vanilla training, furthermore learns non-robust directions that are more unstable with larger
oscillations (Korkmaz, 2024). Yet none of these studies provided foundational explanations on why
such a promising and theoretically well-founded line of algorithms were in fact doomed to fail.

3 THE ORTHOGONALITY OF NATURAL INTELLIGENCE DECISION MAKING
AND ADVERSARIAL TRAINING

The theoretically motivated adversarial, i.e. certified robust, training techniques achieve certified
defense against adversarial perturbations inside the ϵ-ball Dϵ(s) = {s̄ : ∥s− s̄∥∞ ≤ ϵ}. However,
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Figure 2: Representation of the misalignment between natural intelligence and robust training, and
the alignment between reinforcement learning and natural intelligence.

we provide foundational evidence that this approach induces significant changes in the Q-function
where the state-action value function no longer accurately represents the MDP. In particular, robust
training causes deep neural policies to learn overestimated state-action values, and furthermore the
Q-values for non-optimal actions are reduced in accuracy to the point where their relative ranking
changes. Furthermore, we connect and highlight the neural processing of decision making of natural
intelligence and certified training (Wunderlich et al., 2009; Lau & Glimcher, 2007; Grabenhorst &
Rolls, 2011). Our results demonstrate that certified training constructs policies that are disjoint and
orthogonal to natural intelligence decision making. The fundamental theoretical basis for adversarial
training techniques comes from Danskin’s theorem.
Theorem 3.1 (Danskin (1967)). Let X be a compact topological space f : Rn ×X → R, f(·, x) is
differentiable for every x ∈ X , x∗(θ) = {x ∈ argmaxx∈X f(θ, x)} and ∇θf(θ, x) is continuous on
Rn×X . Then the max function κ(θ) = maxx∈X f(θ, x) is locally Lipschitz continuous, directionally
differentiable, and its directional derivatives satisfy κ′(θ, h) = supx∈x∗(θ) h

⊤∇θf(x, θ). Further-
more, if the set x∗(θ) has size one i.e. there is a unique maximizer x∗

θ then ∇θκ(θ) = ∇θf(θ, x
∗
θ).

In particular, Danskin’s theorem gives a method to compute the gradient of a function that is defined
in terms of a maximization over some set. With this theoretically well-motivated start a line of
algorithms have been proposed to make models robust including deep reinforcement learning (i.e.
Section 2). The basic approach of certified (i.e. adversarial) training techniques is based on adding a
regularizer to the standard Q-learning update. The regularizer is designed to penalize Q-functions
for which a perturbed state s̄ ∈ Dϵ(s) can change the identity of the highest Q-value action. For the
baseline adversarial training technique (Huan et al., 2020) we will theoretically analyze the effects of
this regularizer.
Definition 3.2 (Baseline Adversarial Training). The regularizer to achieve certified robustness for
Qθ(s, a) ∀s̄ ∈ Dϵ(s) is given by

R(θ) =
∑
s

(
max

s̄∈Dϵ(s)
max

a̸=argmaxa Qθ(s,a)
Qθ(s̄, a)−Qθ(s̄, argmax

a
Qθ(s, a))

)
.

The adversarial training algorithm proceeds by adding R(θ) to the standard temporal difference loss
used in DQN L(θ) = LH (r(s, a) + γmaxa′ Qtarget(s′, a′)−Qθ(s, a)) +R(θ).

In the remainder of this section we will provide the theoretical foundations on: (i) how certified
training produces policies that are completely orthogonal to natural intelligence decision making,
and (ii) why this promising line of algorithms has failed to deliver its promises. Let us now describe
the construction of an MDP M where the use of the regularizer causes randomized decision making
∀a ∈ A⊥

s where A⊥
s := {a|a ̸= argmaxâ Q(s, â)}, and overestimation of the state-action values

∀a ∈ A. There are two states parametrized by feature vectors s1, s2 ∈ Rn, and there are three
possible actions {ai}3i=1 in each state. Taking any of the three actions in state s1 leads to a transition
to state s2 and vice versa. Let 1 > γ > 0 be the discount factor, and let δ > η > 0 be small constants
with γ > δ. The rewards for each action are as follows: r(s1, a1) = 1 − γ, r(s1, a2) = η − γ,
r(s1, a3) = δ − γ, r(s2, a1) = η − γ, r(s2, a2) = 1 − γ, and r(s2, a3) = δ − γ. Clearly, the
optimal policy is to always take action a1 in state s1, and action a2 in state s2 as these are the only
actions giving positive reward. Thus the optimal state-action values are given by: Q∗(s1, a1) =
Q∗(s2, a2) =

∑∞
t=0(1 − γ)γt = 1, Q∗(s1, a2) = Q∗(s2, a1) = η − γ + γ

∑∞
t=0(1 − γ)γt = η

, and Q∗(s1, a3) = Q∗(s2, a3) = δ − γ + γ
∑∞

t=0(1 − γ)γt = δ. Let the Q-function be linearly
parametrized by θ = (θ1, θ2, θ3) so that Qθ(s, ai) = ⟨θi, s⟩. Finally, let Φi for i ∈ {1, 2, 3} be three
orthonormal vectors, and let the state feature vectors satisfy:

1. s1 = Φ1 + δΦ3 + ηΦ2 and 2. s2 = Φ2 + δΦ3 + ηΦ1

4
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Then it follows that the optimal Q-function is parametrized by θ∗ = (θ∗1 , θ
∗
2 , θ

∗
3) where θ∗i = Φi

i.e. Qθ∗(s, a) = Q∗(s, a) for all s and a. Thus, according to the function Qθ∗(s, a), for s1 the best
action is a1, for s2 the best action is a2, and in all states the second-best action is a3. Next we identify
the optimal perturbations used in the computation of the regularizer R(θ∗) for this setting.

Proposition 3.3. In the MDP M for any ϵ > 0.

1. For s = s1 : s+
ϵ√
2
(θ∗3 − θ∗1) = argmax

s̄∈Dϵ(s)

max
a̸=a∗(s)

Qθ∗(s̄, a)−Qθ∗(s̄, a∗(s))

2. For s = s2 : s+
ϵ√
2
(θ∗3 − θ∗2) = argmax

s̄∈Dϵ(s)

max
a̸=a∗(s)

Qθ∗(s̄, a)−Qθ∗(s̄, a∗(s))

Proof. We will prove item 1, and item 2 will follow from an identical argument with roles of θ∗1 and
θ∗2 swapped. Let s = s1. Since a∗(s) = 1, there are two case to consider for the maximum over
a ̸= a∗(s), either a = 2 or a = 3. In the case that a = 2 we have

max
s̄∈Dϵ(s)

Qθ∗(s̄, a)−Qθ∗(s̄, a∗(s)) = max
s̄∈Dϵ(s)

⟨θ∗2 , s̄⟩ − ⟨θ∗1 , s̄⟩. (2)

This is the maximum in a ball of radius ϵ around s of the linear function ⟨θ∗2 − θ∗1 , s̄⟩. Therefore the
maximum is achieved by s̄ = s+ ϵ√

2
(θ∗2 − θ∗1). The corresponding maximum value is

max
s̄∈Dϵ(s)

⟨θ∗2 , s̄⟩ − ⟨θ∗1 , s̄⟩ = ⟨θ∗2 − θ∗1 , s⟩+ ϵ∥θ∗2 − θ∗1∥2 = η − 1 + ϵ
√
2. (3)

In the case that a = 3 an identical argument implies that the maximum is achieved by s̄ = s +
ϵ√
2
(θ∗3 − θ∗1), with corresponding maximum value

max
s̄∈Dϵ(s)

⟨θ∗3 , s̄⟩ − ⟨θ∗1 , s̄⟩ = ⟨θ∗3 − θ∗1 , s⟩+ ϵ∥θ∗3 − θ∗1∥2 = δ − 1 + ϵ
√
2. (4)

Because δ > η we conclude that the value achieved in 4 is larger than that in 3. Thus the maximizer
is s̄ = s+ ϵ√

2
(θ∗3 − θ∗1) as desired.

In words, the optimal direction to perturb the state s1 in order to have a∗(s) ̸= a∗(s̄) is toward
θ∗3 − θ∗1 . Similarly for the state s2, the optimal perturbation is toward θ∗3 − θ∗2 . Next we use this fact
to show that in order to decrease the regularizer it is sufficient to simply increase the magnitude of θ1
and θ2, and decrease the magnitude of θ3.

Proposition 3.4. In the MDP M let λ > 0 and suppose that (1 − λ)δ < (1 + λ)η < δ. Let
θ = (θ1, θ2, θ3) be given by θ1 = (1 + λ)θ∗1 , θ2 = (1 + λ)θ∗2 and θ3 = (1 − λ)θ∗3 . Then
R(θ) < R(θ∗).

The proof is provided in the supplementary material. Combining Proposition 3.4 and Proposition
3.3 we can prove the main result of this section on the effects of worst-case regularization on the
state-action value function.

Theorem 3.5 (Existence of Overestimation and Misalignment of Counterfactual Decisions). There is
an MDP with linearly parameterized state-action values, optimal state-action value parameters θ∗,
and a parameter vector θ such that: L(θ) < L(θ∗), and the parameter vector θ overestimates the
optimal state-action value and re-orders the sub-optimal ones.

Proof. Let M be the MDP in the setting of Proposition 3.3 and define θ as in Proposition 3.3 by
setting θ1 = (1 + λ)θ∗1 , θ2 = (1 + λ)θ∗2 , and θ3 = (1− λ)θ∗3 . The overall regularized loss has the
form L(θ) = T D(θ) +R(θ). Where T D(θ) is the standard temporal difference loss. For the MDP
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M and parameters θ we can explicitly calculate this loss:

T D(θ) =
1

6

2∑
i=1

3∑
j=1

(r(si, aj) + γmax
k

⟨θk, s3−i⟩ − ⟨θj , si⟩)2

≤ 1

6

2∑
i=1

3∑
j=1

(r(si, aj) + γmax
k

(1 + λ)⟨θ∗k, s3−i⟩ − (1− λ)⟨θ∗j , si⟩)2

=
1

6

2∑
i=1

3∑
j=1

(r(si, aj) + γmax
k

⟨θ∗k, s3−i⟩ − ⟨θ∗j , si⟩+ λγmax
k

⟨θ∗k, s3−i⟩+ λ⟨θ∗j , si⟩)2

=
1

6

2∑
i=1

3∑
j=1

(λγmax
k

⟨θ∗k, s3−i⟩+ λ⟨θ∗j , si⟩)2

where the final equality follows from the optimality of the paramters θ∗. Using the fact that ⟨θ∗j , si⟩ ≤
1 for all i, j we conclude that T D(θ) ≤ (γλ+ λ)2 < 4λ2. Thus, for λ < 1

4 we have by Proposition
3.3

T D(θ) ≤ 4λ2 < λ < R(θ∗)−R(θ).

Therefore L(θ) < L(θ∗). Clearly, θ overestimates the optimal state-action values in both s1 and s2
by a factor of 1 + λ. Furthermore, setting λ such that 1+λ

1−λ > δ
η implies that a3 will be the third

ranked action in both states s1 and s2 i.e. that θ leads to re-ordering of the suboptimal actions.

Next we will prove that there is a fundamental trade-off between accurate estimation of Q-values
and adversarial robustness. In particular, note that the goal of adversarial training is to ensure that a
perturbation of magnitude ϵ to a state s will not result in a change to the action receiving the highest
Q-value. Thus, formally the canonical definition of ϵ-robustness in deep reinforcement learning is
Definition 3.6 (ϵ-robust deep neural policy). A state-action value function Qθ(s, a) is ϵ-robust if
argmaxaQ(s, a) = argmaxaQ(s̄, a), for all s̄ ∈ Dϵ(s) such that ∥s− s̄∥2 < ϵ.

We will next demonstrate the instances of MDPs with linear function approximation where the
optimal state-action value function Q∗ is not robust, but there is a robust state-action value function
Qθ that overestimates the optimal state-action values.
Theorem 3.7 (Intrinsic trade-off between overestimation and robustness). Let ϵ > 0. In the linear
function approximation setting, there is an MDP such that all linear-state action value functions
matching the optimal state-action values Q∗ are not ϵ-robust. Furthermore, there is a linear state-
action value function Qθ that is ϵ-robust, but overestimates the optimal state-action values while
maintaining the correct optimal action.

Proof. Let there be two states s1 and s2 such that ∥s1 − s2∥2 = 1. Further suppose that the
optimal state-action values satisfy Q∗(s1, a1) = ϵ/10, Q∗(s1, a2) = 0, Q∗(s2, a1) = 0.8, and
Q∗(s2, a2) = 1.0. Next let Qθ(s, a) be any linearly parameterized state-action value function that
agrees with Q∗(s, a) on the states s1 and s2. Consider the one-dimensional functions Ψ1(ξ) =
Qθ((1 − ξ) · s1 + ξ · s2, a1) and Ψ2(ξ) = Qθ((1 − ξ) · s1 + ξ · s2, a2) which are the restriction
of Qθ(s, a) to the line segment from s1 to s2. By linearity of Qθ we also have that both Ψ1 and
Ψ2 are linear. Furthermore, since Qθ agrees with Q∗ at s1 and s2, we know the values of both
functions at two points i.e. Ψ1(0) = Q∗(s1, a1), Ψ1(1) = Q∗(s2, a1), Ψ2(0) = Q∗(s1, a2), and
Ψ2(1) = Q∗(s2, a2). As Ψ1 and Ψ2 are linear functions on R, the values at two points are sufficient
to uniquely determine the functions. In particular we have

Ψ1(ξ) = (0.8− ϵ/10)ξ + ϵ/10 and Ψ2(ξ) = ξ

Note that these two lines intersect at the point ξ̂ = ϵ
2+ϵ . Let ŝ = (1−ξ̂)·s1+ξ̂·s2. Since the lines of Ψ1

and Ψ2 intersect at ξ̂, we conclude that Qθ(ŝ, a2) ≥ Qθ(ŝ, a1). However, Qθ(s1, a1) > Qθ(s1, a2).
Furthermore, ∥s1 − ŝ∥ = ϵ

2+ϵ < ϵ. Thus, Qθ is not ϵ-robust.

However, if we instead choose new parameters θ′ for the state-action value function so that
Qθ′(s1, a1) = 0.8 and Qθ′(s1, a2) = 0.7 one can easily check that Qθ′ is ϵ-robust for all ϵ < 0.1.
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Figure 3: Q values of argmaxa∈A Q(s, a) for adversarially and vanilla trained deep neural policies.

Furthermore, observe that Qθ′ gives the correct ranking of actions in state s1, but overestimates the
optimal state-action value by a factor of 8/ϵ.

Next we demonstrate that this is a general phenomenon which occurs with neural-network approxi-
mation of the Q-function in robust, i.e. adversarially, trained deep reinforcement learning policies.

4 EMPRICAL ANALYSIS IN HIGH-DIMENSIONAL MDPS

The empirical analysis is conducted in high dimensional state representation MDPs. In particular,
our experiments are conducted in the Arcade Learning Environment (ALE) (Bellemare et al., 2013).
The vanilla trained deep neural policy is trained via Double Deep Q-Network (DDQN) (Wang et al.,
2016) initially proposed in (Hasselt et al., 2016a) with prioritized experience replay proposed by
(Schaul et al., 2016), and the state-of-the-art adversarially trained deep neural policy is trained via
State-Adversarial Double Deep Q-Network (SA-DDQN) (Section 2) with prioritized experience
replay (Schaul et al., 2016). The results are averaged over 10 episodes. We explain in detail all the
necessary hyperparameters for the implementation in the supplementary material. The standard error
of the mean is included for all of the figures and tables. Note that in the main body of the paper we
focus on the baseline adversarial training method. In the supplementary material we also provide
analysis on the follow-up more recent studies in adversarial training techniques. The results reported
for all of the adversarial training techniques remain the same: that the adversarially trained policies
learn inaccurate, inconsistent and overestimated state-action values. Performance drop P is given
by P = (Scorebase − Scoreactmod)/(Scorebase − Scoremin), where Scorebase represent the baseline
run of the game with no action modification, Scoremin represents the minimum score available for
a given game, and Scoreactmod represents the run of the game where the actions of the agent are
modified for a fraction of the state observations. To measure the accuracy for the state-action value
estimates formally, let ai be the ith best action decided by the deep neural policy in a given state s
(i.e. Q(s, a) is sorted in decreasing order, and ai is the action corresponding to ith largest Q-value).
For a trained agent, the value of Q(s, ai) should represent the expected cumulative rewards obtained
by taking action ai in state s, and then taking the highest Q-value action (i.e. a1) in every subsequent
state. Thus, a natural test to perform would be: for a random state s the policy should take action
ai in state s, and the highest Q-value action for the rest of the states. By comparing the relative
performance drop P in this test to a clean run where the agent always takes the highest Q-value
action, one can measure the decline in rewards caused by taking action ai. Further, we can provide
a measure of accuracy for the state-action value function by comparing the results of the test for
each i ∈ {1, 2 . . . |A|}, and checking that the relative performance drops Pi are in the correct order
i.e. 0 = P1 ≤ P2 · · · ≤ P|A|. We take this one step further and analyze the performance drop with
Ω-fraction of the states in the episode uniformly at random, and making the policy execute action
ai in each of the sampled states. We then record the relative performance drop as a function of Ω,
yielding a performance drop curve Pi(Ω). More formally, we define

Definition 4.1 (Performance Drop Curve). Let M be an MDP and Q(s, a) be a state-action value
function for M. In each state label the actions a1, . . . a|A| in order so that Q(s, a1) ≥ Q(s, a2) · · · ≥
Q(s, a|A|). The performance drop curve Pi(Ω) is the expected performance drop of an agent in M
which takes action ai in a randomly sampled Ω-fraction of states, and executes a1 in all other states.

Using these performance drop curves one can confirm whether Pi(Ω) lies above Pj(Ω) whenever
i > j. Yet to be precise we will quantify the relative ordering of the performance drop curves.
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Figure 4: Up: Performance drop P2(Ω) with respect to action modification a2 for the state-of-the-art
certified (i.e. adversarially) and vanilla trained deep neural policies. Down: Performance drop Pw(Ω)
with respect to action modification aw. Left: BankHeist. Center: RoadRunner. Right: Freeway.

Table 1: Area under the curve of performance drop under action modification (AM) a2 and aw for
the state-of-the-art adversarially trained deep neural policies and vanilla trained deep neural policies.

Environments BankHeist RoadRunner Freeway

Training Method Adversarial Vanilla Adversarial Vanilla Adversarial Vanilla

AM a2 0.449±0.007 0.191±0.04 0.414±0.015 0.247±0.009 0.351±0.009 0.302±0.007
AM aw 0.311± 0.011 0.398±0.011 0.345±0.011 0.393±0.009 0.241±0.007 0.311±0.010

Definition 4.2 (τ -domination). Let F : [0, 1] → [0, 1] and G : [0, 1] → [0, 1]. For any τ > 0, we say
that the F τ -dominates G if

∫ 1

0
(F(Ω)− G(Ω)) dΩ > τ .

To compare the accuracy of state-action values for vanilla versus adversarially trained agents, we
can thus perform the above test, and check the relative ordering of the curves Pi(Ω) using Definition
4.2 for each agent type. In addition, we can also directly compare for each i the curve Padv

i (Ω)
for the adversarially trained agent with the curve Pvanilla

i (Ω) for the vanilla trained agent. This is
possible because Pi(Ω) measures the performance drop of the agent relative to a clean run, and so
always takes values on a normalized scale from 0 to 1. Thus, if we observe for example that Padv

2 (Ω)
τ -dominates Pvanilla

2 (Ω) for some τ > 0, we can conclude that the state-action value function of the
vanilla trained agent more accurately represents the second-best action than that of the adversarially
trained agent.

4.1 RANDOMIZED DECISIONS OF ROBUST REINFORCEMENT LEARNING

Figure 4 reports the performance drop P2(Ω) and Pw(Ω) as a function of the fraction of states Ω in
which the action modification is applied for certified trained deep neural policies and vanilla trained
deep neural policies. In particular, the action modification is set for the second best action a2 decided
by the state-action value function Q(s, a). As we increase the fraction of states in which the action
modification set to a2 is applied, we observe a performance drop for both of the deep neural policies.
However, we observe that the vanilla trained deep neural policies experience a lower performance
drop with this modification. Especially in BankHeist we observe that the performance drop does not
exceed 0.55 even when the action modification is applied for a large fraction of the visited states for
the vanilla trained deep neural policies. This gap in the performance drop between the adversarially
trained and vanilla trained deep neural policies indicates that the state-action value function learnt by
vanilla trained deep neural policies has a better estimate for the state-action values. As we measured
the impact of a2 modification on the policy performance, we further test aw = argmina Q(s, a)
(i.e. worst possible action in a given state) modification on the deep neural policy. Figure 4 shows
that the performance drop Pw(Ω) is higher in the vanilla trained deep neural policies compared to
adversarially trained deep neural policies when the action modification is set to aw. This again further
demonstrates that the state-action value function learnt by the vanilla trained deep neural policy has a
more accurate representation. We argue that adversarial training places higher emphasis on ensuring
that the highest ranked action (i.e. the action that maximizes the state-action value function in a given

8
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state) does not change under small ℓp-norm bounded perturbations, rather than accurately computing
the state-action value function as discussed in Section 3. A method which places higher emphasis
on the highest ranked action risks converging to a state-action value function with overestimated
Q-values. We further demonstrate this in Section 4.3.

4.2 COUNTERFACTUAL DECISIONS AND THE MISALIGNMENT OF ADVERSARIAL TRAINING

Figure 5: P2 and Pw of ad-
versarial training.

The results reported in this section demonstrate the misalignment
between deep neural policies and human decision making caused by
robust training. Reinforcement learning is founded on the inspiration
drawn from natural intelligence (Watkins, 1989; Kehoe et al., 1987;
Romo & Schultz, 1990; Montague et al., 1996) providing further
theoretical guarantees on its limitations and capabilities (Watkins &
Dayan, 1992; Sutton, 1988; Barto et al., 1995). Our analysis and results
demonstrate that an extensive recent line of work myopically focusing
on safety diverts the main contributions and the tight core connection
of reinforcement learning with neuroscience while producing policies that are both in fact not safe
and misaligned. In particular, Figure 5 demonstrates that choosing the worst action leads to a smaller
performance drop than choosing the second best action i.e. Pw(Ω) < P2(Ω) for all Ω in BankHeist.
Notably, the results reported in Figure 5 reveal that robust training methods assign random values to
the counterfactual actions which is a direct misalignment with natural intelligence decision making.
The results reported in Figure 4 demonstrate the clear juxtaposition between standard reinforcement
learning and safety concerned reinforcement learning, i.e. robust trained. Intriguingly, these results
reveal that standard reinforcement learning indeed learns aligned values with natural intelligence;
however, robust training converts these values to be misaligned. Furthermore, the misalignment of
the adversarial, i.e. robust, training causes these deep neural policies to learn inconsistent action
ranking which can be seen as a vulnerability problem from a security point of view. Nonetheless,
most intriguingly these results demonstrate the foundational loss of information in the state-action
value function as a novel fundamental trade-off intrinsic to adversarial training.

4.3 OVERESTIMATION OF Q-VALUES IN ADVERSARIALLY TRAINED DEEP NEURAL POLICIES

Overestimation of Q-values was initially discussed by Thrun & Schwartz (1993) as a byproduct
of the use of function approximators, and was subsequently explained as being caused by the use
of the max operator in approximating the maximum of the expected Q-values (van Hasselt, 2010).
Furthermore, it has been shown that the overestimation bias results in learning sub-optimal policies
(Hasselt et al., 2016a), and thus the deep double-Q learning algorithm has been proposed to alleviate
the overestimation problem (Hasselt et al., 2016a), that was initially observed in DQN (Mnih et al.,
2016). In this section we empirically demonstrate that state-of-the-art certified training indeed leads
to overestimation in Q-values, as has been theoretically predicted in Section 3. In particular, Figure 3
reports the overestimation bias on the state-action values learned by the adversarially trained deep
neural policies. Note that the fact that adversarially trained deep reinforcement learning policies
assign higher state-action values than the vanilla trained deep reinforcement learning policies while
performing similarly, i.e. obtaining similar expected cumulative rewards, clearly demonstrates that
the adversarial training techniques, on top of the inconsonance and the inaccuracy issues, learn
explicitly biased state-action values.

While these state-of-the-art adversarial training algorithms have attracted a significant level of
attention from the research community, i.e. multiple spotlight presentations in NeurIPS, to encourage
more efforts on this line of research to ensure that these policies will not cause harm and benefit
humanity, it carries a significant level of responsibility to reveal the principal vulnerabilities of
these models. The uncovered issues with this line of algorithms carry utmost importance due to
the fact that these studies influence future research directions while significantly pivoting research
focus. Furthermore, without the knowledge of the actual costs and drawbacks of these algorithms
a significant level of research efforts might be misdirected. While the results reported in Figure
5, Section 4.1, and Section 4.3 reveal concrete problems of the state-of-the-art adversarial training
techniques particularly regarding the inconsonance and overestimation issues, from the security
perspective these results call for an urgent reconsideration and discussion on the certified robustness
algorithms and their implications.
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Table 2: Normalized state-action value estimates and state-action value estimate shift for the second
best action for certified adversarially trained and vanilla trained deep reinforcement learning policies.
Q Estimates Q(s, a∗) Q(s, a2) Q(s, aw)

ALE Adversarial Vanilla Adversarial Vanilla Adversarial Vanilla

BankHeist 0.1894±0.002 0.170±0.003 0.130±0.0006 0.169±0.002 0.127±0.0010 0.161±0.004
RoadRunner 0.1696±0.008 0.236±0.094 0.132±0.0026 0.159±0.079 0.126±0.0049 -0.265±0.071
Freeway 0.1894±0.002 0.341±0.008 0.130±0.0006 0.333±0.002 0.127±0.0010 0.325±0.009

4.4 ACTION GAP PHENOMENON

Figure 6: Normalized state-action val-
ues for the best action a∗, second best
action a2 and worst action aw over
states. Left: Vanilla trained. Right:
State-of-the-art adversarially trained2.

The action gap is defined as the difference Q-values

G(Q, s) = max
â∈A

Q(s, â)− max
a∈A⊥

s

Q(s, a).

A connection between the action gap and the approximation
errors has been mentioned in prior studies (Bellemare et al.,
2016) and have been hypothesized that increasing the ac-
tion gap of the learned value function causes a decrease in
overestimation of Q-values. Following this study, several
papers built on the hypothesis that increasing the action gap
causes reduction in bias. However, our results reveal that
targeting to increase the action gap must be upper-bounded
by the preserving the order of the counterfactual actions to
obtain truly robust and safe policies. Once this upperbound
is passed the policy forms values that are misaligned with
human decision making. To preserve the initial core foun-
dations of reinforcement learning and its alignment with
human decision making process we must preserve the ap-
proaches that targeted learning methods align and matched
natural intelligence decision making (Baird & Moore, 1993;
Watkins & Dayan, 1992; Averbeck & Costa, 2017; Wang
et al., 2018).

5 CONCLUSION

In this paper we focus on the juxtaposition of human decision making and reinforcement learning
within the realm of alignment of robust training. We provide an extensive theoretical analysis on the
on the fundamental effects of robust training compared to standard reinforcement learning. Both our
empirical analysis conducted in high-dimensional state representation MDPs and theoretical analysis
demonstrate that standard deep reinforcement learning is aligned with the human decision making
process while techniques focused on providing certified safety and robustness are in fact misaligned.
More intriguingly, we demonstrate that this misalignment reaches up to a level that adversarially,
i.e. robust, trained deep neural policies completely lose all the information in the state-action value
function that contains the relative ranking of the actions. Moreover, orthogonal to misalignment
issues our theoretical analysis reveals the fundamental trade-off in robust training methods. Our
results demonstrate that the certified-safety claims of the prior line of research fail to deliver their
promises, and our paper discovers manifold issues with certified training regarding what truly robust
training methods learn. Our investigation while highlighting the gap between natural intelligence
decision making and certified training, further lays out the intrinsic properties of adversarial training
while systematically revealing the underlying vulnerabilities, and thence can be conducive to building
truly robust and aligned deep neural policies.

2Figure 6 reports that robust, i.e. adversarial, training increases the action gap, yet still learns overestimated
state-action values. See supplementary material for further discussion on the action gap and the connection we
highlight between consistent Bellman operator and the implicit Kullback-Leibler regularization. Note that due to
the fact that the adversarially trained deep neural policy overestimates Q-values, we introduce a normalization in
order to compare the action gaps of adversarially and vanilla trained policies. In particular, in Figure 6 we report
normalized Q-values in each state s by dividing Q(s, a) by

∑
a |Q(s, a)|.
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