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Abstract

There is considerable interest in predicting the pathogenicity of protein variants1

in human genes. Due to the sparsity of high quality labels, recent approaches2

turn to unsupervised learning, using Multiple Sequence Alignments (MSAs) to3

train generative models of natural sequence variation within each gene. These4

generative models then predict variant likelihood as a proxy to evolutionary fitness.5

In this work we instead combine this evolutionary principle with pretrained protein6

language models (LMs), which have already shown promising results in predict-7

ing protein structure and function. Instead of training separate models per-gene,8

we find that a single protein LM trained on broad sequence datasets can score9

pathogenicity for any gene variant zero-shot, without MSAs or finetuning. We call10

this unsupervised approach VELM (Variant Effect via Language Models), and11

show that it achieves scoring performance comparable to the state of the art when12

evaluated on clinically labeled variants of disease-related genes.13

1 Introduction14

Understanding and quantifying the pathogenicity of human gene variants could transform healthcare,15

better inform treatment decisions, and enable new treatment modalities. However, relating specific16

missense variants to phenotypical disease indications is challenging, since the number of such variants17

(6.5 million) observed in the human population so far exceeds that which can be analyzed Karczewski18

et al. [2020]. Despite large-scale efforts to collate the disease relevance of gene variants Landrum and19

Kattman [2018], the majority of variants remain pathogenically unclassified Van Hout et al. [2020].20

Computational methods offer the promise of at-scale interpretation of variants at speeds useful in a21

clinical setting Jagadeesh et al. [2019], Rentzsch et al. [2019]. However, many supervised models22

are trained on clinical labels of variable quality or with inconsistent clinical annotations resulting23

in inconsistent model performance. Unsupervised generative models avoid the labeling issues and24

have been successfully used to predict protein function and stability Hopf et al. [2014], Lapedes25

et al. [2012], Meier et al. [2021]. More recently, Frazer et al. [2021] introduced EVE, a family of26

variational autoencoders (VAEs) trained on protein Multiple Sequence Alignments (MSAs) for each27

gene of interest. EVE scores pathogenicity using variant probabilities as proxies for evolutionary28

fitness, and achieves current state-of-the art performance compared to other computational approaches29

without training on clinical labels.30

In this work we describe VELM (Variant Effect via Language Models), an unsupervised approach31

for scoring variant pathogenicity using protein language models (LMs). Like prior unsupervised32

evolutionary approaches, VELM scores pathogenicity by using a sequence model to predict sequence33

likelihood. However, instead of training separate gene-specific generative models to estimate likeli-34

hoods, we use protein LMs pretrained by self-supervised learning on large open datasets of protein35

sequences. This training procedure produces models that capture statistical patterns across a broad36
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Figure 1: Left: Receiver Operating Characteristic (ROC) curve of VELM and EVE scores on our
evaluation set of clinically labeled gene variants. VELM (T5) outperforms both the EVE score and
VELM (Bert). Positive ⇐⇒ pathogenic, negative ⇐⇒ benign. Right: Histogram of VELM (T5)
scores on clinically labeled variants. Broadly speaking, VELM assigns higher scores to pathogenic
variants than for benign ones.

distribution of protein sequences, and enables estimating sequence likelihood for any gene variant37

zero-shot without finetuning on any MSAs. Thus, our approach uses a single model to efficiently38

scores pathogenicity for any gene variant of interest without having to train a new generative model39

per-gene. Ultimately, VELM allows us to efficiently predict pathogenicity for the large number of40

currently unlabeled variants across human disease-related genes.41

When evaluated on a set of variants with known clinical labels from the ClinVar dataset [Landrum42

and Kattman, 2018], we find that the VELM score can discriminate variant pathogenicity with an43

AUC=0.92, exceeding the performance of EVE (AUC=0.89), see Figure 1.44

2 VELM: Variant Effect via Language Models45

Starting from a reference wildtype protein, our goal is to predict the pathogenicity of a given variant46

directly from its protein sequence. Following an unsupervised evolutionary approach, we leverage the47

relationship between sequence likelihood and evolutionary fitness to score variants without training48

on clinical labels (which can cause overfitting). We estimate sequence likelihood through protein49

language models (LMs) pretrained on large protein sequence datasets. Compared to EVE [Frazer50

et al., 2021], this removes the need to train separate per-gene generative models on processed MSAs.51

Indeed, we will show that a single pretrained LM can score any gene variant with no finetuning.52

Inspired by techniques from natural language processing (NLP), protein language models are typically53

trained on large datasets of protein sequences with a masked language modeling objective. This trains54

the model to estimate the distribution over residues at particular positions given the context residues at55

surrounding positions. More precisely, these models compute P (xi1 = •, · · · , xim = •|x\{i1,··· ,im}),56

where in practice the context x\{i1,··· ,im} is created by masking the sequence at positions i1, · · · , im.57

To define the VELM pathogenicity score, we need to use the protein LM to estimate a notion of variant58

likelihood (relative to the wildtype). We denote the wildtype sequence xwt and variant sequence xmt,59

and define the set of mutation positions M = {i : xmt
i ̸= xwt

i }. Meier et al. [2021] found that the log60

odds ratio at mutated positions can effectively predict protein function. We define the VELM score61

using the same approach:62

S(xmt) :=
∑
i∈M

logP (xi = xwt
i |xwt

\M )− logP (xi = xmt
i |xmt

\M ) (1)

where x\M indicates masking x at all positions i ∈ M (notably, xmt
\M = xwt

\M ). Intuitively, S(xmt)63

should be higher when the variant is less likely, indicating that it is more likely to be pathogenic.64
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Method VELM (T5) VELM (Bert) EVE REVEL MA DG2
mAUC (≥ 1 labels) 0.901 0.858 0.917 0.934 0.888 0.895
mAUC (≥ 3 labels) 0.912 0.876 0.930 0.946 0.895 0.901
mAUC (≥ 5 labels) 0.933 0.892 0.936 0.956 0.904 0.916

Figure 2: Mean of AUCs (mAUC) over the evaluation set of disease-relevant genes (weighted by
number of known labels). For each row, “≥ N labels” means we restrict evaluation to genes that have
at least N pathogenic and N benign labels for evaluating AUC. Note that VELM (ours), EVE [Frazer
et al., 2021] and MA (MutationAssessor) are all unsupervised methods. DG2 (DEOGEN2) [Raimondi
et al., 2017] is supervised by clinical labels, while REVEL [Ioannidis et al., 2016] is an ensemble
method that combines the output of multiple individual tools.

Computing S(xmt) is relatively efficient and requires |M | forward passes to evaluate a single variant.65

For reasonably small |M |, GPU batching leads to only a single forward pass in practice.66

3 Experiments and Analysis67

We apply VELM to missense variants of human disease-related genes whose sequence lengths are68

≤ 5121. From the ClinVar dataset [Landrum and Kattman, 2018] there are known clinical labels for69

10011 variants across the 1348 genes we consider2: 6613 variants are labeled “pathogenic” while70

3398 are labeled “benign.” For these clinically labeled variants, we compare our VELM score71

against the value of the label, and evaluate the effectiveness of using VELM score to classify variant72

pathogenicity.73

Computing the VELM pathogenicity score (Eq. 1) requires a pretrained protein LM, for which74

there are multiple choices. Here we consider both ProtBert (420M parameters) and ProtT5 (3B75

parameters) [Elnaggar et al., 2021], both trained by masked language modeling on BFD [Steinegger76

and Söding, 2018] and UniRef [Suzek et al., 2015]. We will denote the results of scoring variants77

with each LM as VELM (Bert) and VELM (T5), respectively. For comparison, we also evaluate the78

performance of other methods on the same set of variants:79

1. EVE [Frazer et al., 2021]: An unsupervised evolutionary method that trains separate generative80

models on MSAs for each gene.81

2. MutationAssessor (MA) Reva et al. [2011]: Another unsupervised scoring approach.82

3. DEOGEN2 (DG2) [Raimondi et al., 2017]: A supervised method trained on clinical disease labels.83

4. REVEL [Ioannidis et al., 2016]: An ensemble method that combines the output of multiple84

individual tools.85

Aggregate Metrics: Figure 1 shows how the VELM score discriminates pathogenicity on our set86

of labeled variants. The VELM (T5) score has an AUC of 0.92, outperforming both EVE and87

VELM (Bert), with AUCs 0.88 and 0.87, respectively. The ROC Curve indicates that VELM (T5)88

produces pathogenicity scores with an overall better tradeoff beteween TPR and FPR compared to89

the other methods. The histogram of scores shaded by clinical label shows that the VELM scores90

is broadly capable of separating pathogenic and benign gene variants. Since the score is simply91

computed from the output of a protein LM, this indicates that the pretraining process learns statistical92

patterns in protein sequence that are relevant to predicting pathogenicity (via predicting likelihood).93

Per-Gene Metrics: We can also evaluate how VELM scores discriminate pathogenicity on a per-gene94

basis. We calculate the Mean AUC (mAUC) by computing AUC for variants of each gene separately,95

then average the AUCs over genes weighted by the number of clinical labels available. Since many96

genes have just a few clinically labeled variants, per-gene evaluation statistics may be very noisy. We97

separately evaluate mAUC over genes with at least N pathogenic and benign labels, where N = 1, 3,98

or 5. Figure 2 shows that REVEL generally achieves the highest Mean AUC on each evaluation set.99

Among non-ensemble methods, EVE generally performs best, though for the least noisy evaluation100

set of genes with ≥ 5 labels, VELM (T5) and EVE perform comparably.101

1This is not a general limitation of VELM, but the particular protein LMs we use in this evaluation were only
trained on sequences of length ≤ 512.

2We restrict to those labels with a ClinVar quality rating of at least one star.
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3.1 Analysis102

Overall, VELM (T5) achieves state of the art performance at predicting pathogenicity for arbitrary103

gene variants (aggregate AUC). It is comparable to other methods when scoring at a per-gene level104

(mean AUC), nearly matching state of the art for the least noisy evaluation set. These results are105

notable since VELM simply uses a pretrained protein LM to score any gene variant zero-shot, while106

other methods either train on clinical labels or on gene-specific evolutionary data. This leaves open107

the possibility for further improving performance by finetuning the protein LM on data pertaining to108

the disease-relevant genes of interest.109

The fact that VELM (T5) outperforms VELM (Bert) falls in line with prior observations that ProtT5110

outperforms ProtBert on a variety of structure and function prediction tasks Elnaggar et al. [2021].111

This suggests that pathogenicity prediction may be yet another “downstream task” where performance112

can improved by simply pretraining better protein LMs.113

4 Related Work114

There has been extensive prior work in computational techniques to predict protein pathogenicity and115

in using large-scale self-supervised language models for protein sequences.116

The literature on computational approaches for predicting protein pathogenicity is large and growing.117

Roughly speaking, these approaches can be categorized into supervised methods (e.g., Adzhubei et al.118

[2010], Raimondi et al. [2017]), unsupervised methods (e.g., Sim et al. [2012], Choi et al. [2012]),119

and supervised meta-predictor methods that use the outputs of both supervised and unsupervised120

methods as features (e.g., Ioannidis et al. [2016], Jagadeesh et al. [2016], Feng [2017], Qi et al.121

[2021], Ionita-Laza et al. [2016]). The unsupervised approach is favored in prior work which cites the122

variable quality of labels, bias in label availability, and sparsity of labels as difficulties in developing123

and validating supervised methods. In comparing to our work, the most recent and relevant such124

unsupervised approach is EVE Frazer et al. [2021], which is state-of-the-art. The key features125

distinguishing our work from that of Frazer et al. [2021] are: (a) we have one global protein LM126

instead of per-family sequence models (b) we train on a large database of protein sequences with127

no fine-tuning instead of EVE’s individual MSAs, and (c) we perform zero-shot inference across all128

residue locations of a protein, instead of EVE’s focus indices.129

There has been a recent growth of interest in training language models on protein sequence datasets130

for the purposes of predicting protein structure and function [Alley et al., 2019, Lu et al., 2020,131

Madani et al., 2020, Elnaggar et al., 2021, Rives et al., 2021, Notin et al., 2022]. Most closely related132

to our work is ESM-1v [Meier et al., 2021], which used protein LMs and the log odds ratio at mutated133

positions to predict the effect of mutations on protein function zero-shot. Given the success of protein134

LMs for predicting structure and function, VELM explores their effectiveness for directly predicting135

pathogenicity in disease-relevant human genes.136

5 Conclusion137

In this work, we investigate the effectiveness of pretrained protein language models for assessing138

variant pathogenicity, a problem of great clinical interest. We introduce an unsupervised method139

called VELM that scores variant sequences by using protein LMs to estimate sequence likelihood,140

and show that it matches state of the art predictive performance. VELM is computationally efficient141

and flexible, using a single model to score variants of any gene with no finetuning.142

The current work can be improved along multiple directions. First, the current protein LMs were143

trained on sequences of limited length, restricting our evaluation to sequences of length ≤ 512. Aside144

from removing this technical limitation, results can likely be improved by using better pretrained145

LMs such as ESM [Hsu et al., 2022], or by finetuning the LMs on relevant sequences (to human146

disease-related genes).147

References148

I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova, P. Bork, A. S. Kondrashov,149

and S. R. Sunyaev. A method and server for predicting damaging missense mutations. Nature150

4



methods, 7(4):248–249, 2010.151

E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi, and G. M. Church. Unified rational protein152

engineering with sequence-based deep representation learning. Nature methods, 16(12):1315–1322,153

2019.154

Y. Choi, G. E. Sims, S. Murphy, J. R. Miller, and A. P. Chan. Predicting the functional effect of155

amino acid substitutions and indels. 2012.156

A. Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi, Y. Wang, L. Jones, T. Gibbs, T. Feher, C. Angerer,157

M. Steinegger, et al. Prottrans: towards cracking the language of lifes code through self-supervised158

deep learning and high performance computing. IEEE transactions on pattern analysis and159

machine intelligence, 2021.160

B.-J. Feng. Perch: a unified framework for disease gene prioritization. Human mutation, 38(3):161

243–251, 2017.162

J. Frazer, P. Notin, M. Dias, A. Gomez, J. K. Min, K. Brock, Y. Gal, and D. S. Marks. Disease variant163

prediction with deep generative models of evolutionary data. Nature, 599(7883):91–95, 2021.164

T. A. Hopf, C. P. Schärfe, J. P. Rodrigues, A. G. Green, O. Kohlbacher, C. Sander, A. M. Bonvin, and165

D. S. Marks. Sequence co-evolution gives 3d contacts and structures of protein complexes. elife, 3:166

e03430, 2014.167

C. Hsu, R. Verkuil, J. Liu, Z. Lin, B. Hie, T. Sercu, A. Lerer, and A. Rives. Learning inverse folding168

from millions of predicted structures. bioRxiv, 2022. doi: 10.1101/2022.04.10.487779. URL169

https://www.biorxiv.org/content/early/2022/04/10/2022.04.10.487779.170

N. M. Ioannidis, J. H. Rothstein, V. Pejaver, S. Middha, S. K. McDonnell, S. Baheti, A. Musolf,171

Q. Li, E. Holzinger, D. Karyadi, et al. Revel: an ensemble method for predicting the pathogenicity172

of rare missense variants. The American Journal of Human Genetics, 99(4):877–885, 2016.173

I. Ionita-Laza, K. McCallum, B. Xu, and J. D. Buxbaum. A spectral approach integrating functional174

genomic annotations for coding and noncoding variants. Nature genetics, 48(2):214–220, 2016.175

K. A. Jagadeesh, A. M. Wenger, M. J. Berger, H. Guturu, P. D. Stenson, D. N. Cooper, J. A. Bernstein,176

and G. Bejerano. M-cap eliminates a majority of variants of uncertain significance in clinical177

exomes at high sensitivity. Nature genetics, 48(12):1581–1586, 2016.178

K. A. Jagadeesh, J. M. Paggi, J. S. Ye, P. D. Stenson, D. N. Cooper, J. A. Bernstein, and G. Bejerano.179

S-cap extends pathogenicity prediction to genetic variants that affect rna splicing. Nature genetics,180

51(4):755–763, 2019.181

K. J. Karczewski, L. C. Francioli, G. Tiao, B. B. Cummings, J. Alföldi, Q. Wang, R. L. Collins, K. M.182

Laricchia, A. Ganna, D. P. Birnbaum, et al. The mutational constraint spectrum quantified from183

variation in 141,456 humans. Nature, 581(7809):434–443, 2020.184

M. J. Landrum and B. L. Kattman. Clinvar at five years: Delivering on the promise. Human mutation,185

39(11):1623–1630, 2018.186

A. Lapedes, B. Giraud, and C. Jarzynski. Using sequence alignments to predict protein structure and187

stability with high accuracy. arXiv preprint arXiv:1207.2484, 2012.188

A. X. Lu, H. Zhang, M. Ghassemi, and A. Moses. Self-supervised contrastive learning of protein189

representations by mutual information maximization. BioRxiv, 2020.190

A. Madani, B. McCann, N. Naik, N. S. Keskar, N. Anand, R. R. Eguchi, P.-S. Huang, and R. Socher.191

Progen: Language modeling for protein generation. arXiv preprint arXiv:2004.03497, 2020.192

J. Meier, R. Rao, R. Verkuil, J. Liu, T. Sercu, and A. Rives. Language models enable zero-shot193

prediction of the effects of mutations on protein function. Advances in Neural Information194

Processing Systems, 34:29287–29303, 2021.195

5

https://www.biorxiv.org/content/early/2022/04/10/2022.04.10.487779


P. Notin, M. Dias, J. Frazer, J. M. Hurtado, A. N. Gomez, D. Marks, and Y. Gal. Tranception: protein196

fitness prediction with autoregressive transformers and inference-time retrieval. In International197

Conference on Machine Learning, pages 16990–17017. PMLR, 2022.198

H. Qi, H. Zhang, Y. Zhao, C. Chen, J. J. Long, W. K. Chung, Y. Guan, and Y. Shen. Mvp predicts the199

pathogenicity of missense variants by deep learning. Nature communications, 12(1):1–9, 2021.200

D. Raimondi, I. Tanyalcin, J. Ferté, A. Gazzo, G. Orlando, T. Lenaerts, M. Rooman, and W. Vranken.201

Deogen2: prediction and interactive visualization of single amino acid variant deleteriousness in202

human proteins. Nucleic acids research, 45(W1):W201–W206, 2017.203

P. Rentzsch, D. Witten, G. M. Cooper, J. Shendure, and M. Kircher. Cadd: predicting the deleteri-204

ousness of variants throughout the human genome. Nucleic acids research, 47(D1):D886–D894,205

2019.206

B. Reva, Y. Antipin, and C. Sander. Predicting the functional impact of protein mutations: application207

to cancer genomics. Nucleic acids research, 39(17):e118–e118, 2011.208

A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott, C. L. Zitnick, J. Ma, et al.209

Biological structure and function emerge from scaling unsupervised learning to 250 million protein210

sequences. Proceedings of the National Academy of Sciences, 118(15):e2016239118, 2021.211

N.-L. Sim, P. Kumar, J. Hu, S. Henikoff, G. Schneider, and P. C. Ng. Sift web server: predicting212

effects of amino acid substitutions on proteins. Nucleic acids research, 40(W1):W452–W457,213

2012.214

M. Steinegger and J. Söding. Clustering huge protein sequence sets in linear time. Nature communi-215

cations, 9(1):1–8, 2018.216

B. E. Suzek, Y. Wang, H. Huang, P. B. McGarvey, C. H. Wu, and U. Consortium. Uniref clusters: a217

comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics,218

31(6):926–932, 2015.219

C. V. Van Hout, I. Tachmazidou, J. D. Backman, J. D. Hoffman, D. Liu, A. K. Pandey, C. Gonzaga-220

Jauregui, S. Khalid, B. Ye, N. Banerjee, et al. Exome sequencing and characterization of 49,960221

individuals in the uk biobank. Nature, 586(7831):749–756, 2020.222

6


	Introduction
	VELM: Variant Effect via Language Models
	Experiments and Analysis
	Analysis

	Related Work
	Conclusion

