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Abstract: Language-based communications are essential in human-robot interac-
tion, especially for the majority of non-expert users. In this paper, we present
SeeAsk, an open-world interactive visual grounding system to grasp specified
targets with ambiguous natural language instructions. The main contribution of
SeeAsk is that it can robustly handle open-world scenes in terms of both open-set
objects and open-vocabulary interactions. Specifically, our SeeAsk is built upon
modern large-scale vision-language pre-trained models and traditional decision-
making process, and shows promising results to be deployed in real-world scenar-
ios. SeeAsk outperforms previous state-of-the-art algorithms with a clear margin
in terms of not only success rate but also asking smarter and more informative
questions. User studies also demonstrate its advantages over previous works.
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1 Introduction
It has been a long dream for human beings to make intelligent robots enter our houses and live
together with us. To get closer to non-expert users, robots must learn to understand the world
visually, listen and speak in natural languages, and more importantly, connect visual concepts and
languages properly for grounded communications. However, it remains super challenging for robots
to do so because:

• Visual uncertainty: visual perceptions are not always reliable or even worse. How to make
decisions with noisy visual inputs is important for robustness.

• Language ambiguity: natural languages are always ambiguous even for humans. How to
resolve ambiguity is important for interaction efficiency.

• Open-world concepts: our daily life scenes usually contain open-world objects that are
unknown to robots. Moreover, open-vocabulary instructions are also difficult for robots to
understand. How to adapt to such open-world concepts is important for deployment.

Previous works [1, 2, 3, 4] have tried to resolve the first two challenges and achieved promising re-
sults. Nevertheless, the final challenge remains completely untouched. Fortunately, recent advances
in deep multi-model learning [5, 6, 7, 8, 9] have made impressive achievements in bridging the gap
among vision, language, and open worlds. Then a question arises naturally: how can we push inter-
active visual grounding algorithms into open worlds by harnessing the large-scale vision-language
pre-trained models?

In this paper, we propose an agent SeeAsk, an interactive visual grounding system designed for
open-world scenarios. In SeeAsk, we decompose the interactive visual grounding into three key
components: Scene Understanding, Visual Grounding, and Decision Making. The raw observation
image is first fed into the Scene Understanding module to output a structured visual representation,
containing object categories, attributes, spatial locations, and binary relations. Then, the user in-
struction (e.g., Give me the red cup in the table) and the structured visual representation are used by

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



(a) Interactive disambiguation process. (b) Open-world objects used to test SeeAsk.

Figure 1: Our agent SeeAsk first converts the raw visual input to structured representations (See),
and tries to ground user instructions and generate disambiguation questions (Ask). Finally, the robot
will grasp the target when it is confident enough (Grasp). In SeeAsk, the user defines tasks in the
open world using open-vocabulary languages with the robot. With the help of active interaction, the
robot can finish tasks robustly even with severe ambiguity and perceptual uncertainty in zero-shot
manners.

the Visual Grounding module for grounding user instructions and generating disambiguation ques-
tions. The Visual Grounding module takes the image and user’s instruction as input, and outputs
the initial probabilistic belief of each object being the target. The probabilistic belief is finally fed
into the Decision Making module to determine whether it should directly grasp a target, or ask an
informative question to resolve the ambiguity.

During the planning of the Decision Making module, SeeAsk maintains a belief over all objects,
which will be initialized by the Visual Grounding module and updated continuously using observa-
tions from the user. Intuitively, this belief encodes all historical information for decision-making to
maximize the cumulative rewards. In each time step, if the uncertainty level is low, our robot will
grasp the target directly. Otherwise, the Decision Making module will be invoked to generate the
most informative questions using an improved decision-making planner.

To the best of our knowledge, SeeAsk is the first open-world interactive visual grounding system that
supports open-set objects and open-vocabulary interactions. It tightly and interpretably combines
modern large-scale vision-language pre-trained models and traditional decision-making planners,
and shows promising results to be deployed in real-world scenarios. Through experiments, we show
that SeeAsk outperforms previous state-of-the-art algorithms with a clear margin in terms of not only
robustness but also asking smarter and more informative questions. User studies also demonstrate
that they do prefer SeeAsk over other baselines.

2 Related Works

Language grounding has been extensively studied [10]. Recently, researchers have been pushing
grounding tasks to scenarios with unrestricted objects and language descriptions [11, 12, 13, 14].
Even though, single-round visual grounding cannot locate language descriptions with ambiguity.
Therefore, interactive visual grounding is then introduced into grounding tasks [15, 16, 2, 3, 4, 17].
Particularly, INGRESS [1, 2] builds an interactive system for disambiguation in robot grasping tasks.
It generates self-referential and relation descriptions with DenseCap [18], and does grounding and
question generation with these descriptions. INVIGORATE [3] extends interactive visual grounding
to clutter scenes by leveraging the integration of learning and planning. Attr-POMDP [4] explicitly
uses object attributes to guide the planning of human-robot interaction for disambiguation. Nev-
ertheless, these methods can fail in open-world domains. In this paper, we aim to bridge the gap
between interactive disambiguation and open-world concepts by leveraging the modern large-scale
pre-trained models and traditional planning framework.

Human-robot interaction (HRI) by asking questions is also related to our work. Traditional methods
usually rely on templates [19, 20, 21] and plan with probabilistic models [22, 23, 24]. Recently,
with the help of deep visual models, robots can generate unrestricted descriptions for objects sub-
ject to the training data. To interact with humans, especially for disambiguation, a straightforward
question is to ask “Is it ...?” or “Do you mean ...?” for confirmation. To do so, some models
[18, 25, 26, 27, 28, 2, 29] are trained on RefCOCO [30, 31], Visual Genome [32], or other vision-
language datasets to generate object descriptions fitting the pre-defined question templates. There

2



Figure 2: Overview of the interactive disambiguation workflow. First, the scene understanding
module generates visual concepts to describe the scene and all objects, e.g., objects, attributes, and
relationships. These visual concepts and user input will then be employed by visual grounding
module to generate initial belief of each object being the desired target. Finally, the robot will ask
various questions and have the next round of dialog with the user, until the robot becomes confident
enough and then executes the grasp action.

are also works [33, 34, 13, 35, 36] exploring how to ask useful questions to locate objects. Besides,
multi-modal interaction is also proved to be helpful when it is hard to generate descriptions [21],
especially in open-world settings. Inspired by these works, we equip the robot with multi-modal in-
teraction ability to disambiguate when meeting ambiguity and develop a user-friendly human-robot
interaction system to follow verbal instructions.

3 Problem Formulation

SeeAsk is designed to grasp a specified object following ambiguous natural language instructions.
Formally, the input includes a visual observation ov0 and a linguistic observation ol0. ov0 defines the
workspace including a set of open-set objects {xi}Ni=1. ol0 defines the initial instruction given by the
user, which may be ambiguous, i.e., not informative enough to distinguish the ground-truth target x∗

from other objects in {xi}Ni=1. To disambiguate, the robot is allowed to actively ask questions, and
then gets additional linguistic observations, i.e., the answers from the user {olt}Tt=1. After collecting
enough information, it will grasp the target with the highest belief. Following previous works [1, 2],
we make the following assumptions in our task: a) The user is trustworthy and does not change the
target during interaction; b) There is one and only one target object in the scene.

4 SeeAsk

The overview of SeeAsk is shown in Figure 2. SeeAsk takes an image ov0 and a user instruction ol0
as the initial observation. It includes three components, Scene Understanding, Visual Grounding,
and Decision Making. The Scene Understanding module is used to parse all possible visual con-
cepts in the input image, including object categories, attributes, spatial locations, and relationships.
Based on the parsed results, the Visual Grounding module assigns a matching probability between
each detected object with the user instruction. The matching probability is the initial belief over the
underlying true state inferred from the initial observation ov0 and ol0. If the uncertainty level after
matching is low, the robot will grasp the matched target directly without asking any questions. Oth-
erwise, it invokes the Decision Making module to generate the optimal question which is expected
to bring more information. In SeeAsk, it is implemented as a tree planner to search forward for the
optimal trajectory with the highest cumulative reward. In each asking round, the robot will get an
additional linguistic observation olt ∈ {olt}Tt=1. It will then use the observation to update its belief
over the underlying true state of the environment, i.e., to determine which object is the desired target.
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Table 1: Question types in SeeAsk

Visual Concept Question Type Answer List

Self Attribute What color is it? 13 commonly seen colors
Is it <COLOR>? Yes/No

Spatial Location Where is it? Left/Right/Back/Front/Center
Is it <LOC>? Yes/No

Binary Relation Where is it w.r.t. <OBJ>? Left/Right/Back/Front/Itself
Is it <LOC> w.r.t. <OBJ>? Yes/No

- Do you mean <OBJ>? Yes/No

4.1 Scene Understanding

The Scene Understanding module mainly extracts four types of visual concepts: objects, attributes,
spatial locations, and relationships. They are all used to ground user instructions as well as generate
diversified questions in case of ambiguity.

Object Detection To detect open-set objects, we apply the most recently proposed open-vocabulary
object detector, Detic [7]. It can locate and classify unseen objects using open vocabularies using the
large-scale visual-language pre-trained model CLIP [5]. The detected objects {xi}Ni=1 will be used
throughout all the following steps, including attribute and relationship extraction, visual grounding,
and decision-making.

Attribute Extraction For object attributes, we run CLIP [5] for 0-shot classification using its image
patch. Specifically, we pre-define a list of possible attributes, and then do prompt-based categorical
or binary classification on each of them [5]. For example, “a photo of a bottle that is (not) red”
for attribute “red”, while “a photo of a red/yellow/.../blue bottle” for attribute “color” categorical
classification.

Spatial Location Object location is important for referring. To extract the spatial location, we split
the canvas into 3x3 grids first , and the object location is classified softly by calculating its IoU with
each grid cell: P (pi|xi) ∝ IoU(pi, xi), where pi represents the spatial location of object xi.

Relationship We support 4 basic binary relations “on the left”, “on the right”, “in front of”, and
“behind” in this part. Concretely, in a horizontal plane, let the shortest vector from a point on object
xj to xi be v(xj , xi) = (vx, vy). In case that i = j, i.e., v(xj , xi) = (0, 0), we set “itself” as an
additional relation. To support “itself”, we attach an additional dimension to v(xj , xi) and set it to 1
for convenience. Then for each relation rk ∈ {left, right, front, back, itself}, we set a vector e(rk) as
(0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0), (0, 0, ϵ), respectively, where ϵ ≪ 1 is positive. Therefore,
we empirically have Rel(xi, xj, rk) = max{v(xj , xi)·e(rk), 0}, and P (rk|xi, xj) ∝ Rel(xi, xj , rk)
for each relation.

4.2 Visual Grounding

We base our Visual Grounding module on ReCLIP [9]. Given an expression of natural language,
ReCLIP resolves the self-referential part via CLIP and binary-relation part via heuristics by parsing
the grammar tree with SpaCy [37]. However, original ReCLIP cannot handle spatial locations since
they are not captured either by CLIP or binary relations. Therefore, we extend ReCLIP so that the
expression can then be parsed and resolved with three parts: self-referential part, spatial location
part, and binary-relation part.

Formally, our Visual Grounding module is expected to output the probability of each object being
the target P (xi = x∗|e) given an expression e (abbreviated as P (xi|e)) in a one-shot manner. For
any open-vocabulary expression e (e.g., “The blue cup on the left in front of the red cup.”), we first
decompose it using SpaCy into three parts: e = eself ∪ eloc ∪ erel, where eself , eloc, and erel
represent self-referential part (e.g., “The blue cup”), spatial location part (e.g., “on the left”), and
binary-relation part (e.g., “in front of the red cup”) respectively. Then the posterior P (xi|e) can be
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derived as:
P (xi|e) ∝ P (xi)P (e|xi) ∝ P (xi)P (eself |xi)P (eloc|xi)P (erel|xi), (1)

where P (xi|eself ) is from CLIP:
P (eself |xi) ∝ P (xi|eself ) ∝ CLIP(eself , xi) (2)

given the prior P (eself ) is uniform since we do not assume that linguistic prior knowledge is avail-
able. P (eloc|xi) can be derived as following:

P (eloc|xi) =
∑
pi

P (eloc|pi)P (pi|xi) ∝
∑
pi

P (pi|eloc)P (pi|xi) (3)

given the prior P (eloc) is uniform, meaning that the object will uniformly distribute across all trials.
In Equation 3, P (pi|eloc) is calculated using text similarity:

P (pi|eloc) ∝ L(pi, eloc) (4)
where L(·, ·) represents the text similarity score. In our case, we use SpaCy. Since a binary relation
can be represented with a tuple (xi, ri,j , xj), and the binary-relation part erel contains information
of both ri,j and xj , we explicitly decompose P (erel|xi) as:

P (erel|xi) ∝ P (xi|erel)

=
∑
xj

P (xj |erel)
∑
ri,j

P (ri,j |erel)P (xi|xj , ri,j)

∝
∑
xj

P (xj |erel)
∑
ri,j

P (ri,j |erel)P (ri,j |xi, xj)

(5)

The last step assumes the prior distribution P (ri,j) is uniform since again, we do not assume any
prior knowledge on relational information between objects. In Equation 5, we adopt the relationships
extracted in Section 4.1 for P (ri,j |xi, xj). For P (xj |erel) and P (ri,j |erel), we first parse erel into
two separate phrases that contain the information of ri,j and ej respectively. Then, P (xj |erel) is
derived using the same method introduced in Equation 2 and 3, while P (ri,j |erel) is calculated in
the same way as Equation 4 by the text similarity between ri,j and erel:

P (ri,j |erel) ∝ L(ri,j , erel) (6)

4.3 Decision Making

SeeAsk is built upon the extracted various visual concepts with a POMDP (Partially Observable
Markov Decision Process) [38] defined by (S,A,O, T ,Z,R).

State Space S State st is defined as a one-hot vector over all objects {xi}Ni=1 with 1 indicating the
target. Since we assume that the desired target does not change, for simplicity, we denote st as s.
Note that the true state is not available, and must be estimated through observations. Hence, we
maintain a belief bt, a categorical distribution over state st.

Action Space A In brief, we allow the robot to ask questions when necessary and grasp the target
when confirmed. For asking, each type of concept from Section 4.1 supports a set of questions. We
list all possible questions and their corresponding visual concepts in Table 2.

Observation Space O Observation includes both visual ov0 and linguistic {olt}Tt=1. In general, we
allow free-form linguistic observations from the user to track the belief bt.

Transition Model T The transition model is defined as: T (st+1|st, at) = P (st+1|st, at) =
1st+1=st since we assume the user does not change their mind during interaction.

Observation Model Z Observation model Z captures the distribution of all possible observations
(the possible answers in our case) given the state and action. Because our transition model is iden-
tical, the belief is fully updated using Z . To be specific, as shown in Table 2, our observation
models Z(ot|s, at) for different questions are predefined from the probabilistic visual representa-
tions in Section 4.1. Notably, however, we assumed that users can provide open-vocabulary an-
swers when facing a question. To achieve so, we assume that the answer olt from the user can
have either or both of two parts: response αt (e.g., ”Yes” or ”No”) and description dt (e.g., ”No,
the other one to the right.”). Without loss of generality, we assume that if both parts exist, the re-
sponse always goes first. Hence, we first parse the answer into these two parts explicitly using
SpaCy [37]. Then we play with them sequentially and update the belief accordingly:

bt+1(s) ∝ bt(s)Z(dt|s)Z(αt|s, at)
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Table 2: Observation Models

Question Type Z(ot|st, at)

ot=Yes ot=No

Is it <COLOR>? CLIP(<COLOR>, x∗) CLIP(not <COLOR>, x∗)
Is it <LOC>? IoU(<LOC>, x∗) 1− IoU(<LOC>, x∗)
Is it <LOC> w.r.t. <OBJ>? Rel(x∗, < OBJ >,< LOC >) 1− Rel(x∗, < OBJ >,< LOC >)
Do you mean <OBJ>? 1(< OBJ >= x∗) 1− 1(< OBJ >= x∗)

What color is it? CLIP(<COLOR>, x∗)
Where is it? IoU(<LOC>, x∗)
Where is it w.r.t. <OBJ>? Rel(x∗, < OBJ >,< LOC >)

Figure 3: (Left) Experiment setting and (Right) scene settings.

For the description dt, we regard it as an additional instruction and do an additional round of visual
grounding with our Visual Grounding module in Section 4.2 to get Z(dt|s). For αt, we derive
Z(αt|s, at) approximately from the observation model Z(olt|s, at) defined in Table 2. Due to no
assumption on linguistic priors, we assume that prior distributions of αt and olt are both uniform.
Hence, we have:

Z(αt|s, at) =
∑
olt

P (αt|olt)Z(olt|s, at) = P (αt)
∑
olt

P (olt|αt)Z(olt|s, at)

P (olt)
∝

∑
olt

P (olt|αt)Z(olt|s, at)

Where P (olt|αt) proportional to their text similarity.

Reward Intuitively, our reward function R(s, at) is empirically designed to encourage the robot
to confirm and grasp the target x∗ with the fewest questions. R(s, at) is -1 for asking, 10 for
successfully grasping x∗, and -10 for wrong object xi ̸= x∗.

Planning We directly use the vanilla tree search as our planner [38]. Searching depth is set to 3,
meaning that we expect the robot to ask fewer than 3 questions. If the robot decides to ask self-
referential questions, it simply uses templates like “Is it red?” or “What color is it?”. For relational
(e.g., “Where is it w.r.t. ...?”) or confirming questions (e.g., “Do you mean ...?”), the robot needs
to fill in the template with the description of a particular object. We implemented a referring ex-
pression generator that auto-regressively adds attributives to the object class name according to their
distinctiveness and accuracy. To generate natural descriptions, we set the maximum of attributives
to 3.

5 Experiments
In this section we aim to answer 3 questions: (1) Does SeeAsk outperform previous interactive visual
grounding methods on open-set objects? (2) Does SeeAsk generate better interactive questions? (3)
What components in SeeAsk contribute to its disambiguation performance?

5.1 Experimental settings
Platform Our experimental platform is shown in Figure 3. We deploy SeeAsk as well as all base-
lines on a UR5 with a GeForce RTX 2070 GPU. Input images are from a RealSense camera with
1280×720 resolution. Interaction volunteers sit on the opposite of the robots.

Interaction Procedure We set up 10 different scenes, shown in Figure 3, with severe ambiguity
to test the disambiguation performance for SeeAsk and all baseline algorithms. For each scene,
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we recruit 10 volunteers for interaction. Before the interaction, each volunteer will be required
to: (1) choose one target at the beginning, and give an instruction to the robot to grasp it; (2)
give correct instructions and answers if necessary; (3) give ambiguous instructions if possible. For
each scene, each volunteer will interact with the robot twice, one using self-referential instructions
and another using relational instructions. We allow the robot to ask at most 5 questions. In total,
we have conducted 10×10×2=200 interaction experiments for each algorithm. For INGRESS and
INGRESS-POMDP, we only collect 186 valid data points since it sometimes totally fails in open
settings.

Metrics To evaluate the performance of different algorithms from comprehensive perspectives, we
set up 5 different metrics: (1) Success Rate (SR) for the percentage of successfully grasping the
correct target specified by the user; (2) Number of Questions (#Questions) to complete disam-
biguation; (3) Cumulative Reward for trade-off between asking and grasping; (4) Information
Gain computed using entropy changes of the belief before and after asking each question to mea-
sure the quality of questions; (5) User Experience from the volunteers to evaluate how users feel
about the interaction.

5.2 Real-robot Experiments
5.2.1 Baselines
We mainly compare our method to 6 baselines: Greedy Asking only asks confirming questions
“Do you mean ...?” for the object with the highest belief. ReCLIP [9] directly invokes ReCLIP for
visual grounding and grasps the object with the highest belief. It does not ask questions. INGRESS
[1] uses DenseCap [18] and UMDRef [39] for generative visual grounding and question-asking. It
only supports “Do you mean ...?” questions. INGRESS-POMDP [2] re-models INGRESS with
a POMDP planner. Open INGRESS [1] is the re-implemented version of INGRESS using our
open-world visual models. Open Attr-POMDP [4] is also a re-implemented version using open-
world visual models. It explicitly parses attributes (e.g., color and location) of each object to facil-
itate question-asking and disambiguation. It is the state-of-the-art algorithm for interactive visual
grounding.

5.2.2 Results

Table 3: Compared with previous methods.

Method Success (%) #Q

ReCLIP[9] 22.0 -
Greedy Asking 81.5 2.85
INGRESS[1] 15.6 2.10
INGRESS-POMDP[2] 13.4 1.26
Open INGRESS*[1] 61.5 1.76
Open Attr-POMDP*[4] 85.0 2.92

Ours 92.0 1.94

* means that we replaced all visual models with our
open-world models.

All results are shown in Table 3. We can see
that SeeAsk has outperformed all baseline al-
gorithms in the disambiguation tasks, i.e., it
achieves the highest success rate 92% with only
a few questions. By contrast, due to high am-
biguity, ReCLIP achieves only 22.0% success
rate. It is also noteworthy that both INGRESS
and INGRESS-POMDP failed in most cases
with a success rate of 15.6% and 13.4% respec-
tively, even lower than ReCLIP, which is non-
interactive. The reason is that DenseCap, as an
object detector, fails to locate and classify ob-
jects in most cases of our open-world settings, and INGRESS relies heavily on what DenseCap has
generated for visual grounding. When equipped with open-world visual models, INGRESS gets
a much higher performance of 61.5% success rate. However, its performance is still 30.5% lower
than SeeAsk due to its limited interaction modes (it only supports asking “Do you mean ...?” ques-
tions). Open Attr-POMDP also achieves commendable performance in our open-world settings.
Nevertheless, it can hardly make use of object relationships. As a result, when known attributes are
not applicable, especially for open-world settings, it degenerates into Greedy Asking because it can
only iteratively ask “Do you mean...?” to confirm one by one. We also demonstrate some qualitative
examples in Figure 4. Particularly, we show the significance of relationship understanding during
interactive visual grounding. With the help of relationship understanding, we can see that the robot
can smartly ask dichotomous questions and quickly converge to the target with only a few questions.
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Figure 4: Qualitative examples. Objects with low confidence have been disabled.

w/o Interaction w/o Pointing w/o Relation Ours

Greedy Asking INGRESSINGRESS-POMDP

Open INGRESS Open Attr-POMDP Ours

Outliers Mean Outliers Mean Outliers Mean

Figure 5: (Left) Ablation on interaction, pointing and relation. (Right) User study over methods.

5.3 Ablations
We also conduct a series of ablation studies to validate the contributions of different components in
SeeAsk. w/o Interaction removes all asking actions in SeeAsk. Compared to the ReCLIP baseline,
it is a modified version introduced in Section 4.1. It is used to validate the significance of interaction
for disambiguation. w/o Pointing disables pointing actions during the interaction. It is used to
validate the efficiency of multi-modal interaction. w/o Relation disables object relation parts both
in visual grounding and question asking. It is used to validate the importance of object relationship
understanding in human-robot interaction.

From the ablation study shown in Table 3, we can conclude that: (1) Interaction is necessary in
open-world scenarios since it can actively ask for more information and fix perception errors during
the dialogue. (2) Pointing is crucial to improve robustness, especially in complex scenes where it
helps the user clearly know which one the object of interest is. (3) Object relationship modeling
helps reduce the number of questions being asked and slightly improves the final performance, as it
provides a robust and informative choice for disambiguation.

5.4 User Study
We also interviewed our experiment participants to collect their experiences during the interaction.
Results, together with each question’s reward and average information gain, are shown in Figure 5.
We can see that users do prefer SeeAsk over other baselines. Interestingly, we find that the user
experience is highly related to the cumulative reward we directly optimize during planning. This
phenomenon indicates that to some extent, our algorithm is directly optimizing the user experience.

Besides, we also find that the number and average information gain of questions do not dominate
the user experience. Here we list four potential reasons: (a) Users tend to rate highly those agents
who ask meaningful and interpretable questions. (b) Users’ attitude toward lucky success varies.
(c) Pointing actions are less preferred than clear questions. (d) Spatial locations are sometimes
confusing and hence less preferred than relational questions. Users tend to use relative location to
the same kind of objects rather than the workspace.

6 Conclusions
In this work, we present an interactive disambiguation system, SeeAsk, for open-world robotic
grasping tasks. Equipped with large-scale pre-trained vision-language models, SeeAsk can plan to
ask various questions (self-referential, relational, or pointing-based) to perform effective interaction,
or decide to do grasping then. We evaluate SeeAsk in real-robot settings. With open-world objects
and ambiguous instructions, our system achieves 92.0% success rate, which outperforms other base-
lines with significantly better accuracy and user experience. There are several possible directions for
future work: (a) explore further on the modularized integration of modern large-scale models and
planning algorithms; (b) embodied interactive visual grounding in open domains; (c) optimize user
experience rather than manually designed rewards.
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