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Abstract

Mathematical models of infectious diseases have long been used for studying the mechanisms
by which diseases spread, for predicting the spread of epidemics, and also for controlling
their outbreaks. These models are based on some assumptions and different assumptions
give rise to different models. Models on social networks of individuals which capture con-
tact patterns are usually more realistic and can more accurately model contagion dynamics.
Unfortunately, computing the output of realistic models is often hard. Thus, modeling the
evolution of contagion dynamics over large complex networks constitutes a challenging task.
In this paper, we present a computational approach to model the contagion dynamics under-
lying infectious diseases. Specifically, we focus on the susceptible-infectious-recovered (SIR)
epidemic model on networks. Given that this model can be expressed by an intractable
system of ordinary differential equations, we devise a simpler system that approximates the
output of the model. Then, we capitalize on recent advances in neural ordinary differential
equations and propose a neural architecture that can effectively predict the course of an
epidemic on the network. We apply the proposed architecture on several network datasets
and compare it against state-of-the-art methods under different experimental settings. Our
results indicate that the proposed method improves predictions in various spreading scenar-
ios, paving the way for the extensive application of interpretable neural networks in the field
of epidemic spreading. At the same time, the proposed model is highly efficient even when
trained on very large networks where traditional algorithms become significantly slower.

1 Introduction

Spreading phenomena over complex networks are ubiquitous ranging from infectious diseases (Colizza et al.,
2007) and gossip in physical networks (Chierichetti et al., 2011) to misinformation (Budak et al., 2011) and
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marketing campaigns (Domingos & Richardson, 2001) on social media. Modeling such spreading phenomena
over complex networks has been lying at the core of various applications over the years. Indeed, such models
would allow governments and policymakers to predict and control the spread of epidemics (e. g., COVID-19)
on networks of contacts (Lorch et al., 2021; Panagopoulos et al., 2021), while they would also allow social me-
dia platforms to predict and prevent the spread of rumors and misinformation (Zhao et al., 2015; Tasnim et al.,
2020). Different mathematical models have been developed over the years. For instance, in epidemiology,
compartmental models such as susceptible-infectious-recovered (SIR) and susceptible-infectious-susceptible
(SIS), are often applied to the mathematical modeling of infectious diseases.

The outcome of a spreading process over a network is generally quantified as a node’s probability of infec-
tion, for simple models like the Independent Cascade, or a quantity in compartmental models such as SIR.
Several methods have been invented to derive a fast and reliable prediction of a spreading process over a
given network. One can solve the system of differential equations that describes the epidemic model using
computational methods (Butcher, 1996). Alternatively, the real state of the system can be approximated
by simulating the spreading process multiple times in a Monte-Carlo fashion (Kempe et al., 2003; Pastor-
Satorras & Vespignani, 2001). The first option is fast enough but suffers from low accuracy, while the second
is more accurate but too inefficient, as it requires typically several thousands or millions of simulations for an
accurate approximation. A more balanced approach, dynamic message passing, approximates the solution
using dynamic equations between nodes (Karrer & Newman, 2010).

Recently, there has been an increasing interest in applying machine learning and artificial intelligence ap-
proaches to combinatorial optimization problems on networks (Dai et al., 2017; Karalias & Loukas, 2020).
This approach usually involves training predictive models on instances of those problems. Once these mod-
els are trained, they can then be used for making predictions, but also for gaining insights into complex
phenomena. These approaches usually rely on graph neural networks (Wu et al., 2020), a family of deep
learning models that has attracted a lot of attention recently and which is particularly suited to problems
that involve some kind of network structure. These models have been applied with great success to different
problems such as predicting the quantum mechanical properties of molecules (Gilmer et al., 2017) and traffic
prediction (Derrow-Pinion et al., 2021). Thus, graph neural networks could offer great potential to build
effective data-driven dynamical models on networks. However, graph neural networks, on their own, might
fail to fully capture the underlying dynamics of complex processes. For instance, in the case of mathemat-
ical models of infectious diseases such as the well-known SIR model, it might be challenging for the model
to learn to predict the state of a node in a given time step. Fortunately, several of those compartmental
models can be described mathematically by a set of differential equations. One can capitalize on such kind
of information and incorporate structure into the learning process. This approach has already been applied
to some problems (e. g., in physics) and the results indicate that it makes it easier for the model to encode
the underlying dynamics (Karniadakis et al., 2021).

In this paper, we propose a novel deep neural network architecture for modeling and predicting spreading
processes. We focus on the well-established susceptible-infectious-recovered (SIR) epidemiological model on
arbitrary networks. In each time step, the network can be in one of 3n states, where n is the number of nodes
of the network. The dynamics of the SIR model is described by a Markov chain on a state space of dimension
3n, while the time dependence of the probabilities of the states is governed by a system of 3n linear ordinary
differential equations. The exponential size of the system makes the analysis hard and thus, previous studies
have resorted to large-scale simulations. However, for large networks, it is computationally challenging to
simulate the network SIR model, and hence, for such kind of networks, little is known about the long- but
also short-term evolution of the model. Instead, in this paper, we capitalize on recent advancements in
the field of neural ordinary differential equations (Chen et al., 2018) and we propose a new architecture,
so-called GN-ODE, to predict the probability that a node is in each one of the three states in a given time
step. More specifically, we study each node individually and we employ a simpler system of differential
equations which consists of 3n equations instead of 3n. Not surprisingly, by decreasing the complexity, we
obtain an approximation of the exact solution. This simpler system of differential equations is integrated into
a neural network model which is responsible for fine-tuning the approximate system, thus leading to more
accurate predictions. The output of the neural network is computed using a black-box differential equation
solver with constant memory cost. It turns out that the proposed architecture employs a message passing
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mechanism similar to those of graph neural networks (GNNs) (Gilmer et al., 2017), that forms the temporal
discretized approximation equations of the ODE solver, aiming to enhance their representational power in
predicting epidemics spreading. To evaluate the proposed architecture, we conduct experiments on several
networks of different sizes, including out of distribution testing of their generalization ability. We further
investigate whether the proposed model can generalize to unseen networks by training on small networks and
then evaluating the predictive performance on larger networks. Our results indicate that the proposed neural
differential equation architecture outperforms vanilla GNNs in forecasting complex contagion phenomena,
and thus can replace time-consuming simulations in several scenarios.

2 Neural ODEs for Modeling Epidemic Spreading

2.1 Background

Problem definition. Epidemics are usually studied via compartmental models, where individuals can be
in different states, such as susceptible, infected, or recovered. Contact networks have been considered in
modeling epidemics, as a realistic simulation of the contact process in a social context. A contact network is
composed of nodes representing individuals and links representing the contact between any pair of individuals.
Following previous studies, we use an individual-based SIR approach to model the spread of epidemics in
networks (Youssef & Scoglio, 2011).

Let G = (V, E) denote a graph (a.k.a., network) where V is the set of nodes and E is the set of edges. We
will denote by n the number of vertices and by m the number of edges. The adjacency matrix A ∈ Rn×n of
a network G is a matrix that encodes edge information in the network. The element of the i-th row and j-th
column is equal to the weight of the edge between vertices vi, vj ∈ V if such an edge exists, and 0 otherwise.
There are three states each node can belong to: (1) susceptible S; (2) infected I; or (3) recovered R.

The transmission of the disease is probabilistic. Thus, each edge (vi, vj) ∈ E is associated with a probability
that vi transmits the disease to vj in case vi becomes infected while vj is susceptible. Also, let βij ∈ [0, 1]
be the infection rate of edge (i → j) and γi ∈ [0, 1] be the recovery rate of node i. In this work, we assume
uniform infection and recovery rates, i. e., βij = β for all pairs of nodes (vi, vj) connected by an edge and
γi = γ for every node vi of the network.

In the considered model, disease spread takes place at discrete time steps t = 1, 2, . . . , T . For a given
network G and some time step t, three different probabilities are associated with each node representing the
probability that the node belongs to each one of the above three states. These probabilities are stored in
vectors s(t), i(t), r(t) ∈ Rn for t ∈ {1, . . . , T}. Given the structure of the network and some initial conditions,
exactly computing those probabilities is intractable. Indeed, it has been shown that finding the probability
of infection of an SIR model on a network is an NP-hard problem and that this problem is related to
long-standing problems in the field of computer networks (Shapiro & Delgado-Eckert, 2012).

Neural ODEs. These are deep neural network models which generalize standard layer to layer propagation
to continuous depth models (Chen et al., 2018). More specifically, the continuous dynamics of hidden units
are parametrized using an ODE specified by a neural network:

dh(t)
dt

= f(h(t), t, θ)

where t ∈ {0, . . . , T} and h(t) ∈ Rd. Starting from the initial layer h(0), the output layer h(T ) is the
solution to this ODE initial value problem at some time T . This value can be obtained by a black-box
differential equation solver. Euler’s method is the simplest method for solving ODEs, among others (e. g.,
Runge-Kutta). For example, using Euler’s/1st-order Runge-Kutta method the solution can be approximated
by:

h(t + s) = h(t) + s f(h(t), t, θ)
where s is the step size. To compute gradients with respect to all inputs of any ODE solver (Chen et al.,
2010) introduce a method that scalably backpropagates through the operations of the solver. This allows
training with constant memory cost as a function of depth.
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2.2 The Proposed GN-ODE Model

As already discussed, we use an individual-based SIR approach to model the spread of epidemics in networks.
Nodes represent individuals, while edges represent the contact between pairs of individuals. Unfortunately,
the exact computation of the epidemic spread in a network under this model is not feasible in practice.
Therefore, approximate computation schemes have been proposed, and some of them are described by a
system of ordinary differential equations (ODEs) (Youssef & Scoglio, 2011). We employ the following system
of ODEs:

dS
dt

= −β(A Ih) ⊙ Sh

dI
dt

= β(A Ih) ⊙ Sh − γIh

dR
dt

= γIh

(1)

where A ∈ Rn×n is the adjacency matrix of the network, S, I, R ∈ Rn are vectors that represent the three
different states of the SIR model for all the nodes of the network, Sh, Ih, Rh ∈ Rn the hidden representations
of the three states and ⊙ denotes the elementwise product. We also denote as β ∈ [0, 1] the infection rate of
edges and as γ ∈ [0, 1] the recovery rate of nodes. By solving the above ODEs (with some initial conditions),
we can approximate the spread of the epidemic in the network.

Unfortunately, the above system of ODEs might fail to capture the complex dynamics of the epidemic, thus
offering solutions that are not very accurate. Thus, to overcome these limitations, we capitalize on recent
advancements in neural ODEs. Specifically, we parameterize the dynamics of the individual-based SIR model
using a neural network. We compute a vector for each node vi of the network, but we still require the ODEs
of equation 1 to hold (this time Sh, Ih, Rh ∈ Rn×d are matrices where nodes’ representations are stored in
their rows). The output of the network is computed using a black-box differential equation solver.

We next give more details about the proposed model. Let s(0), i(0), r(0) ∈ Rn denote the initial conditions
of the SIR instance. Hence, s(0), i(0), r(0) are binary vectors and a value equal to 1 in the i-th component
of those vectors denotes that node vi is in the corresponding state of SIR. Note that s(0) + i(0) + r(0) = 1
where 1 is the n-dimensional vector of ones. Therefore, each node initially belongs to exactly one of the
three states of SIR. Those representations of the nodes are passed on to a fully-connected layer followed by
the ReLU activation function, and are thus transformed into vectors of dimension d (i. e., 0 and 1 integers
are mapped to d-dimensional vectors), as follows:

S(0) = ReLU
(
s(0)W0 + b0

)
I(0) = ReLU

(
i(0)W0 + b0

)
R(0) = ReLU

(
r(0)W0 + b0

)
where W0 ∈ R1×d the weight matrix and b0 ∈ Rd the bias term. Thus, three vectors are associated with
each node and each vector corresponds to one of the three states of the SIR model. These vectors correspond
to the rows of three matrices S(0), I(0), R(0) ∈ Rn×d.

Then, these representations are fed to an ODE solver. The solver iteratively updates the representations of
the nodes stored in matrices S(t), I(t), R(t) ∈ Rn×d for t ∈ {1, . . . , T}. In each iteration of the solver, first
the representations of the previous iteration are further transformed using a fully-connected layer followed
by the sigmoid activation function σ(·). Formally, the following updates take place:

S(t)
h = σ

(
S(t)Wh + bh

)
I(t)

h = σ
(
I(t)Wh + bh

)
R(t)

h = σ
(
R(t)Wh + bh

)
where Wh ∈ Rd×d the weight matrix and bh ∈ Rd the bias term. Then, the representations are re-updated
based on the system of ODEs in equation 1. We need to mention that training the model requires performing
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Figure 1: Overview of the proposed GN-ODE architecture.

backpropagation through the ODE solver. Even though differentiating through the operations of the forward
pass is straightforward, it incurs a high memory cost and it also introduces numerical error. Following recent
advancements in the field of implicit differentiation (Chen et al., 2018), we treat the ODE solver as a black
box, and compute gradients using the adjoint sensitivity method (Pontryagin, 1987) which solves a second,
augmented ODE backwards in time. This approach is computationally attractive since it scales linearly with
problem size and has low memory requirements, while it also explicitly controls numerical error.

Once the solver has finalized its computations, the representations that correspond to the problem’s discrete
time steps are fed into a multi-layer perceptron (consisting of two fully connected layers) which for each
node and time step outputs a 3-dimensional vector. The components of this vector correspond to the three
states. Finally, the softmax function is applied to all those 3-dimensional vectors, and the emerging values
can be thought of as the probabilities that a specific node belongs to state S, I or R in a given time step.
These probabilities are then compared to the ground-truth probabilities that emerge from the simulations
to compute the error. A high-level overview of the proposed model is given in Figure 1.

It is interesting to note that the update scheme of the ODE solver is related to a family of graph neural
networks known as message passing neural networks (Gilmer et al., 2017). These models employ a message
passing procedure where they update the representation of each node by aggregating information from its
neighborhood. The matrix multiplication A I performed by the solver to update the states of the nodes
can be seen as a form of message passing. Indeed, for each node, the output of this operation produces a
vector that aggregates the representations of state I of its neighbors. Then, the emerging representations are
multiplied in an element-wise manner with S. Therefore, it is evident that message passing models naturally
emerge in different applications, and this perhaps justifies why these models have demonstrated great success
in several problems.

3 Experiments

In this section, we evaluate the proposed GN-ODE model on several real-world datasets. We first present
the employed datasets, the baselines and other experimental details, and then, we present and discuss the
experimental results.

3.1 Experimental Setup

Datasets. We perform our experiments on real-world networks that represent social networks and are
derived from online social networking and communication platforms (all datasets are publicly available).
Specifically, we experiment with the following network datasets: (1) karate that contains social ties among
the members of a University karate club; (2) dolphins representing a social network of bottlenose dolphins;
(3) fb-food and (4) fb-social which represent the food page network of Facebook and private messages sent on
a Facebook-like platform at UC-Irvine, respectively; (5) openflights that contains ties between two non-US-
based airports and is downloaded from Openflights.org; (6) Wiki-Vote, a network created by all the voting
data between administrators of Wikipedia; (7) Enron, an e-mail communication network; and (8) Epinions,
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Table 1: Statistics of the 8 datasets that were employed in this study. All networks are undirected and are
reduced to their largest connected component.

Dataset karate dolphins fb-food fb-social openflights Wiki-Vote Enron Epinions
#nodes 34 62 620 1,893 2,905 7,066 33,696 75,877
#edges 78 159 2,102 13,835 15,645 100,736 180,811 405,739
Transitivity 0.256 0.309 0.223 0.057 0.255 0.125 0.085 0.066
Density 0.1390 0.0841 0.0110 0.0077 0.0037 0.0040 0.0003 0.0001
Max. degree 17 12 134 255 242 1065 1383 3044

an online social network created from the product review website Epinions.com. More details about the
datasets are given in Table 1. The datasets are publicly available and can be derived from the following
sources: Wiki-Vote, Enron, Epinions are available in https://snap.stanford.edu/data/ and the rest five
datasets in https://networkrepository.com/ (Rossi & Ahmed, 2015).

Baseline models. In all experiments, we compare the proposed model against three baseline methods,
namely Dynamic Message Passing (DMP) (Karrer & Newman, 2010; Lokhov et al., 2015), Graph Convolution
Network (GCN) (Kipf & Welling, 2017) and Graph Isomorphism Network (GIN) (Xu et al., 2019). DMP is
an algorithm for inferring the marginal probabilities of stochastic spreading processes on networks. Under the
individual-based SIR process, DMP is exact on trees and asymptotically exact on locally tree-like networks,
while its complexity is linear in the number of edges and spreading time steps. Note that DMP is not a
machine learning approach, but a purely combinatorial method. GCN and GIN are two well-established
graph neural networks that have been recently applied with great success to different problems. Both
models belong to the family of message passing neural networks. These architectures recursively update the
representation of the nodes of a graph by aggregating information from the nodes’ neighborhoods.

Hyperparameters. In order to select the combination of hyperparameters that leads to the best perfor-
mance for each deep neural network architecture (GCN, GIN and GN-ODE), we performed grid search on a
set of parameters and selected those that achieved the lowest error in the validation set. We chose learning
rate from {0.0001, 0.001, 0.01}, batch size from {2, 4, 8, 16, 32, 64, 128} and hidden dimension size for the
trainable layers from {16, 32, 64, 128, 256, 512}. For larger datasets such as Wiki-Vote, Enron, Epinions we
only tested the combinations of batch size and hidden dimension size that could fit into the memory of a
single GPU (NVidia Quadro RTX 6000). We used the mean absolute error as our loss function and trained
each architecture for 500 epochs. To make predictions, we used the model that achieved the lowest loss in
the validation set. For the ODE solver in the case of GN-ODE, we used Euler’s method with a step size
equal to 0.5. The ground-truth values s(t), i(t), r(t) were extracted after performing 104 simulations for 20
time-steps.

Evaluation metric. We measure the mean absolute error (mae) across all nodes of all test instances,
states and time steps. More specifically, the error is computed as follows:

mae = 1
3NnT

N∑
i=1

n∑
j=1

T∑
t=1

∑
s∈{S,I,R}

|yi,j,t,s − ŷi,j,t,s|

where N denotes the number of test samples, n the number of nodes of the graph (a.k.a., network), and T
the number of time steps (i. e., 20 in our setting). Furthermore, yi,j,t,s denotes the probability that node j
of the i-th test sample is in state s in time step t, and ŷi,j,t,s the corresponding predicted probability.

3.2 Results

We next present the experimental settings and the performance of the different models in different scenarios.
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Figure 2: (a) Mean absolute error (lower is better) achieved by the different approaches on the test set of
datasets consisting of instances of a single network structure. The values of β and γ for the different network
instances are sampled randomly. (b) Comparison of the inference time (in sec) of the different approaches
on the test set of the considered datasets.

3.2.1 Spreading Prediction on a Single Network

Within distribution performance. In the experimental results that follow, we investigate whether the
different approaches can accurately estimate the spreading results of the individual-based SIR model. In
these experiments, all approaches are trained and evaluated on instances of a single network.

To evaluate the performance of the different approaches, for each dataset, we created 200 samples by applying
different instances of the SIR epidemic model to each network dataset. For each instance, we choose the
values of hyperparameters β and γ of SIR randomly from [0.1, 0.5] with uniform probability. This range for
the hyperparameters is chosen so as to form a realistic model and to evaluate how useful each method could
be in a real-world scenario (Kitsak et al., 2010). We also choose two nodes randomly with uniform probability
and set them to be in the infected state I, while the rest of the nodes are set to be in the susceptible state
S. To estimate the marginal probabilities, we perform 10, 000 simulations, each running for 20 spreading
time steps. The 200 samples were split into training, validation, and test sets with a 60 : 20 : 20 split ratio,
respectively.

Figure 2a illustrates the performance of the different methods. Note that each experiment is repeated 5 times,
and Figure 2a illustrates the average mean absolute error along with the corresponding standard deviation.
We observe that on most datasets, the proposed model outperforms the baselines. More specifically, GN-
ODE is the best-performing approach on 5 out of the 8 benchmark datasets. On some datasets, the proposed
model outperforms the baselines with wide margins. For instance, on the dolphins and fb-food datasets, it
offers absolute improvements of 58.37% and 49.41% in mae, respectively, compared to the best competitor,
respectively. Furthermore, on several datasets the proposed GN-ODE model achieves very low values of
error, i. e., less than 0.02 which demonstrates that it can provide accurate predictions. With regards to the
baselines, DMP and GCN perform comparably well in most cases, while GIN is the worst-performing method.
This is an interesting result since GIN is known to be more powerful than GCN in terms of distinguishing
non-isomorphic graphs (Xu et al., 2019). However, it turns out that in this task, we are more interested in
estimating distributions of the states of the neighbors of a node than the exact structure of the neighborhood.

For the same set of experiments, we also demonstrate in Figure 2b the inference time of each model on
the test set of the considered datasets. We can clearly observe that the inference time increases along with
the size of the input networks. More specifically, the employed models show equivalent computational costs
for relatively small networks such as karate, dolphins and fb-food, where the proposed GN-ODE is slightly
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Figure 3: Mean absolute error (lower is better) achieved by the different approaches on the test set of
datasets consisting of instances of a single network structure. Most test instances have emerged from values
of diffusion parameters β and γ different from those of training instances. Figures (a) and (b) illustrate the
performance of the different approaches for out of distribution values of β and γ, respectively.

slower (a few seconds) compared to the fast, in those cases, DMP. However, DMP becomes dramatically
slower on larger datasets, such as Epinions, where it suffers by an approximately ten times greater inference
cost compared to the proposed model. This behaviour demonstrates the necessity of the development of
accurate models that remain scalable on large datasets and can be employed as alternatives to algorithms
such as DMP. We also observe that the vanilla GNNs (GCN and GIN) remain quite fast even for larger
networks. The inference time of the proposed GN-ODE model becomes relatively worse than that of the
GNN variants, especially on the three larger networks, which can be attributed to the intermediate step used
for the computations of the ODE solver, as explained in Section 2.

We also provide a visualization of the evolution of the diffusion process on the karate dataset (i. e., proba-
bilities of infection for all the nodes of the network) in the Appendix.

Out of distribution generalization. Neural network models might fail to generalize to unseen data.
Thus, we also perform some experiments where we study whether the different methods can accurately
predict the spreading process over instances of the network that are different from the ones the methods
were trained on. To achieve this, we add to the test set of a dataset, instances that emerged from values
of β and γ that fall outside of the range of values used to train the model. In order to create the dataset,
the different values of β and γ (from the 200 instances described above) were divided into 5 bins. Then,
80 instances sampled from bins 2, 3 and 4 constitute the training set. The validation and the test set both
consist of some instances from bins 2, 3 and 4 and some instances from bins 1 and 5. Overall, the validation
set contains 40 samples, while the test set contains 80 samples. Note that the training set contains instances
sampled exclusively from bins 2, 3 and 4, while the test set mostly consists of samples from bins 1 and 5.
Therefore, test instances can be considered as sampled from a different distribution compared to those of
the training set.

Figure 3 illustrates the performance of the different approaches on the eight datasets. We again report
the mean absolute errors across all nodes of all test instances, states and time steps. The mean absolute
errors are averaged over 5 runs. We observe that for out of distribution values of both β and γ, the GN-
ODE model outperforms both GCN and GIN on all datasets. We can also see that the performance of
the proposed architecture degrades on the largest networks (i. e., Wiki-Vote, Enron and Epinions) where
DMP is the best-performing approach. GIN yields the worst results and achieves much higher values of
mae than the rest of the methods. This might be due to the neighborhood aggregation method that this
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Figure 4: Mean absolute error (lower is better) achieved by the different approaches on each test sample (i. e.,
network) of a given dataset. Results are provided for the following four datasets: karate, dolphins, fb-food,
fb-social. Each figure is associated with one dataset and one parameter (β or γ). The out of distribution
generalization performance of the different methods is evaluated. Test samples that appear in between the
two dotted vertical lines correspond to test instances where values of β and γ were sampled from the same
distribution as that of training instances. The rest of the samples correspond to instances where values of β
and γ were sampled from different distributions than those of training instances.

neural network model utilizes (i. e., sum function). Figures 4 and 5 illustrate the error of the considered
approaches for the different instances of each dataset (for clarity, we provide for each dataset a single plot
illustrating the generalization performance with respect either to β or γ). The vertical lines distinguish bins
1 and 5 (those from which test samples emerged) from bins 2, 3 and 4 (those from which training instances
were sampled). The results indicate that the proposed GN-ODE model is relatively robust. In most cases,
its generalization performance is similar to its within distribution performance, i. e., the obtained error for
samples from bins 2, 3 and 4 is similar to the error for samples from bins 1 and 5. On the other hand, the two
baseline architectures achieve lower levels of performance on instances where values of β or γ are different
from those the models were trained on. It is interesting to note that GIN yields much higher errors for the
out of distribution samples, thus the results suggest that this neural network model might not be useful in
real-world scenarios. With regards to the proposed model, as already mentioned, it achieves very good levels
of generalization performance on the karate, dolphins, fb-food, fb-social, and openflights datasets, while
a decrease in performance occurs on the largest datasets, namely Wiki-Vote, Epinions, and Enron. Still,
GN-ODE consistently outperforms the two baseline neural architectures, while the obtained errors are not
prohibitive.
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(b) (Wiki-vote) Out of distribution β values
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Figure 5: Same as Figure 4. Results are provided for the rest of the datasets: openflights, Wiki-vote, Enron,
Epinions.

3.2.2 Spreading Prediction on Multiple Networks

We are also interested in investigating whether a model that is trained on one or more networks can generalize
to networks different from the ones it is trained on. Thus, we designed a series of experiments where the
model was trained on a subset of the datasets shown in Table 1, and evaluated on some dataset that was not
contained in that subset. These experiments are of very high significance since for the model to be useful
in real-world problems, it is necessary that it can generalize to unseen networks. That would suggest that a
model trained on some networks could be then applied to any network.

More specifically, we investigated whether models trained on karate, dolphins, fb-food fb-social, and open-
flights networks can accurately predict the spreading process over Wiki-Vote, Enron, and Epinions. In the
case of Wiki-Vote, training was performed on instances of the dolphins, fb-food, fb-social, and openflights
networks. We used 45 instances of each of those networks, i. e., 180 training samples in total. The validation
and test sets contain 60 instances of the Wiki-Vote network each. In the case of the Enron and Epinions
networks, training was performed on instances of the dolphins, fb-food, fb-social, openflights, and Wiki-Vote
networks. Specifically, 36 instances of each of those networks were generated giving rise to 180 training
samples in total. The validation and test sets both contain 60 instances of the considered network (i. e.,
Enron and Epinions). With regards to the rest of the hyperparameters, for each instance, β and γ of SIR
were randomly chosen from [0.1, 0.5] with uniform probability. Furthermore, for each instance, two nodes
were randomly chosen with uniform probability and were set to be in the infected state I, while the rest
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Figure 6: (a) Mean absolute error (lower is better) on the test set achieved by the different approaches when
trained on instances of small networks and evaluated on instances of a large unseen network (as mentioned
in the x-axis). (b) Comparison of the mean absolute error achieved by the different approaches when trained
on instances of small networks and evaluated on instances of larger unseen networks (Many Graphs) vs.
when both trained and evaluated on instances of the larger networks (Single Graph).

of the nodes were set to be in the susceptible state S. To estimate the marginal probabilities, we perform
10, 000 simulations, each running for 20 spreading time steps.

Figure 6a illustrates the performance of the different methods on the three datasets. Once again, we report
the mean absolute error achieved by each method, where we compare the predicted probabilities that nodes
belong to the different states against those that emerged from the simulations. Each experiment is repeated
5 times, and besides the average mean absolute error, also standard deviations are provided. We observe
that in all three experiments, the proposed GN-ODE model outperforms the baselines, i. e., the GCN and
GIN models. Thus, the results suggest that the proposed model can generalize better to unseen networks
than the baseline models. The GIN model fails to accurately predict the probabilities that nodes belong
to the different states of SIR, thus achieving very high values of mean absolute error. On the other hand,
the proposed model and GCN make more accurate predictions, and seem to be more robust since they can
generalize to unseen networks.

We also investigate how the performance of the models on those three datasets compares to their performance
when they are trained directly on them (i. e., results of Figures 2a and 6a combined). Figure 6b shows the
results. It is clear that all models achieve better performance when instances of the network in the test set
also occur in the training set. However, for the proposed model GN-ODE, we can see that the difference in
performance is very small, while for the baseline models it is much higher. In the case of GIN, there is a
dramatic increase in mean absolute error when the test set contains unseen networks. In the case of GCN,
the increase is not that large, but still significantly greater than that of the proposed model. Overall, the
results indicate that the GN-ODE model is very robust and can achieve good levels of performance even
on unseen data. DMP on the other hand, can be directly applied to the test set of the unseen networks,
achieving comparably better performance than the rest methods, as shown Figure 6a, with the disadvantage
however of being significantly slower during inference and impractical to scale to large networks (as shown
in Figure 2b).

4 Discussion and Conclusion

The analysis and modeling of spreading processes have been a key issue in different fields, including physics,
biology and computer science, among others. For instance, predicting the course of an epidemic is of
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paramount importance for governments and policymakers. Indeed, such predictions provide valuable infor-
mation for adapting policies and protocols such that the spread of the disease is controlled. Mathematical
models have traditionally been used to describe the underlying dynamics of different spreading phenomena.
However, to capture the exact dynamics of most spreading processes, we need more realistic models which
incorporate more parameters and are thus very complex. For example, most social and biological contagion
processes require incorporating each individual’s contact patterns in the mathematical model. Unfortunately,
most real-world systems exhibit very complex connectivity patterns, thus leading to models that are hard
to solve. It turns out that even the well-established SIR model on general networks is computationally
intractable. Therefore, there is a need for approximation techniques which can efficiently predict the model’s
output.

In the past years, machine learning has emerged as a promising tool for studying physical systems and
has shown great potential in providing approximate solutions to complex problems. Even though machine
learning approaches can learn useful patterns directly from empirical data, recently there is a trend towards
embedding the knowledge of any physical laws that govern a given dataset in the learning process. In our
setting, these physical laws are described in the form of a system of ODEs. More specifically, to enhance
the effectiveness of neural network models specifically for the SIR problem on networks, we incorporate
knowledge on the evolution functions of the S,I,R using an approximate system of ODEs. Combining ODE
solvers with neural networks has recently become an area of increasing interest for the research community.
In this study, we are the first to apply task-specific neural ODEs for the SIR model, intending to advance
the learning capabilities of a standard neural network model.

The obtained empirical results on a single network structure indicate that the proposed architecture out-
competes the baselines on almost all datasets and parameter settings. We need to stress that for a model
to be useful, it is necessary to achieve high levels of performance even on instances of the problem that are
different from the ones the model was trained on. This is, for instance, the case for most real-world datasets
where training data might be available only for specific values of parameters (i. e., β and γ) and it is thus
crucial for the model to learn to generalize to previously unseen parameter values. Therefore, a great deal of
emphasis was placed on testing the generalization power of the models on parameters’ combinations that are
not seen during training. This is because neural networks are often prone to overfitting which results in a
dramatic decrease in their performance when the parameter distribution of the test set is different from that
of the training set. The obtained results demonstrate that the proposed model achieves better performance
than GCN and GIN for all (out of distribution) combinations of β and γ, while it is competitive with DMP in
the case of larger networks (Wiki-Vote, Enron, Epinions), where DMP achieves state-of-the-art performance
at the cost of being significantly slower in terms of inference time. Besides the generalization performance
with respect to the values of β and γ, many applications require a model to be able to generalize to unseen
networks. For instance, one might employ a model trained on small networks (for which ground-truth labels
might be available) to make predictions for larger networks. In this setting, algorithms like Dynamic Mes-
sage Passing, which are directly calculated on the test data (in our case the final large network) cannot be
implemented in a way to achieve faster inference. Thus, neural network architectures that can generalize well
to unseen networks can be very useful for several real-world applications. Our empirical results demonstrate
that graph neural networks and especially the proposed GN-ODE model are quite successful in this task,
and can thus serve as a promising approach for the modeling of spreading processes on complex networks.

Overall, even though there exist mathematical models tailored to the specificities of complex spreading
phenomena, these models are usually analytically intractable. This is more evident in the case of modern
large-scale applications where large networks are involved and simulation methods are inapplicable. In
such settings, there is a need for approximate techniques which can accurately predict the output of the
mathematical models. In this paper, we have introduced and evaluated a neural network model that is
robust and scalable to large networks. The model employs prior knowledge in the form of a system of ODEs
in order to increase the correctness of the function approximation. Hence, the model can make more accurate
predictions and generalize well even with a small number of training examples. We believe that the proposed
model can serve as a useful addition to the list of traditional approximation approaches and motivate the
further development of deep learning methods for capturing the dynamics of physical systems.
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A Appendix

A.1 Individual-based SIR Model

We next give more details about the considered individual-based SIR model. We consider a system Γ. In our
setting, Γ corresponds to a complex epidemiological system, i. e., the SIR epidemiological model. There are
3n different states in total (where n denotes the number of nodes of the network) and each state is denoted
by Γα where α ∈ {1, 2, . . . , 3n}. Then, the probability P (Γ = α) that the system is in state Γα is given by
the master equations:

dP (Γ = Γα)
dt

=
3n∑

β=1

[
Rβα P (Γ = Γβ) − Rαβ P (Γ = Γα)

]
where Rβα denotes the transition rate from state Γβ to state Γα. By solving these equations, we can obtain
the complete evolution of the probabilities of the states of the stochastic system Γ. However, solving these
equations is only feasible for very small networks.

We suppose that within the system Γ, there exist well-defined smaller systems (i. e., subsystems). Such a set
of subsystems is formed by the individuals themselves. Let P (Xi = S) denote the probability that node vi is
susceptible, P (Xj = I ∩Xi = S) denotes the probability that node vj is infectious and node vi is susceptible.
Probabilities and joint probabilities for the other states are defined in a similar manner. Then, the following
system is an exact description of node probability dynamics for an SIR model on a network:

dP (Xi = S)
dt

= −β

n∑
j=1

AijP (Xj = I ∩ Xi = S)

dP (Xi = I)
dt

= β

n∑
j=1

AijP (Xj = I ∩ Xi = S) − γP (Xi = I)

dP (Xi = R)
dt

= γP (Xi = I)

The above system is indeed exact, i. e., it gives the exact evolution of the probabilities of being susceptible,
infectious or recovered during an epidemic. Unfortunately, it is not closed and thus, has no solution. We
can obtain a closed system if we assume statistical independence in the states of individuals:

dP (Xi = S)
dt

= −β

n∑
j=1

AijP (Xj = I) P (Xi = S)

dP (Xi = I)
dt

= β

n∑
j=1

AijP (Xj = I) P (Xi = S) − γP (Xi = I)

dP (Xi = R)
dt

= γP (Xi = I)

The above approximate set of equations (from which our model is inspired) focuses on an individual level and
can be employed to evaluate the evolution of complex epidemics on networks of individuals. The accuracy
of the above system depends on how much the independence assumption used to derive it holds in practice.
Previous studies have shown that the above system is less accurate than more complex models (e. g., pair-
based models) (Sharkey, 2008). Roughly speaking, the proposed approach uses a neural network architecture
to refine the output of the above system.

A.2 Comparison against System of ODEs

The system of ODEs of equation 1, which motivated the proposed GN-ODE model, can also be used to predict
the spread of epidemics of networks as a function of time. More specifically, by solving the system for some
initial values s(0), i(0), r(0) ∈ Rn, we can obtain for each time step t a set of vectors Ŝ(t), Î(t), R̂(t) ∈ Rn that
describe the nodes’ states. Note that no trainable parameters are involved in this system. We compare in
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Table 2: Mean absolute error achieved by GN-ODE and simple fixed ODE system with Runge-Kutta solver,
ODE-RK, on the test set of datasets consisting of instances of a single network structure. The values of β
and γ for the different network instances are sampled randomly.

Dataset MODELS
ODE-RK GN-ODE

karate 0.09608 0.05631 ± 0.00062
dolphins 0.10653 0.01527 ± 0.00049
fb-food 0.19109 0.01924 ± 0.00111
fb-social 0.11061 0.01089 ± 0.00102
openflights 0.16087 0.02000 ± 0.00145
Wiki-Vote 0.12287 0.04173 ± 0.00287
Enron 0.16572 0.04885 ± 0.00125
Epinions 0.15917 0.05915 ± 0.00224

Table 2 the proposed GN-ODE model against the solution of the system of equation 1. To solve the system,
we utilized the ODE-RK method. ODE-RK follows the implementation of the SciPy package1 and solves
the fixed system of ODEs with a Runge-Kutta solver of order 5(4) (Dormand & Prince, 1980). The results
reported in Table 2 highlight the poor performance of the approximate system when the representations that
emerge at the different iterations of the solver are not refined by a neural network model. We can observe
that for all datasets, the fixed system fails to capture the dynamics of the SIR process since it performs
significantly worse compared to GN-ODE, and the rest of the methods of Figure 2.

A.3 Visualization of the Spreading Process

We provide a visualization of the evolution of the diffusion process on the karate dataset in Figure 7. The
results correspond to the experimental setting of subsection 3.2.1 and within distribution hyperparameter
selection. More specifically, we illustrate the probabilities of infection (i. e., probability of a node being in
state I) for all the nodes of the network, starting from a fixed initial set of infected nodes and fixed values
of the transmission β and recovery γ rates, for several subsequent time steps (t = 4, t = 8 and t = 12).
We compare the predictions obtained by applying the proposed GN-ODE model against the ground truth
probabilities extracted via Monte-Carlo simulations on the test set. The color bars on the right demonstrate
the ranges of the probability of infection per time step, with dark red and blue indicating the highest and
lowest probabilities respectively. Not surprisingly, based on the low score in Figure 2a, it is clearly observed
that the proposed GN-ODE architecture gives highly accurate predictions in comparison to the probabilities
that emerge from the Monte-Carlo simulations. Due to the small size of the considered network, we notice
that within a few time steps, many nodes become infected. In contrast, others obtain low probabilities of
infection, probably by transitioning to the recovered set.

A.4 Out of Distribution Generalization - Complementary Figures

We provide complementary results in Figure 8 for the out of distribution performance of the different methods
for each dataset and different values of parameters β, γ. These results complement those of Figures 4 and 5.
The results show the error of the considered approaches for different instances of each dataset, including
samples outside of the ranges of the parameters β or γ in the training set. Following the observations made
for Figures 4 and 5, in the plots for each dataset and the remaining out of distribution parameters β or γ
in Figure 8, the proposed GN-ODE method seems to have comparatively more robust performance when
generalizing to unseen data compared to the other GNN models.

1https://docs.scipy.org/doc/scipy/reference/integrate.html
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Figure 7: Visualization of the evolution of infection over time on the karate dataset. Given the initially
infected nodes (with red at t = 0), we compare the predictions (probability that a node is in state I) of
the proposed GN-ODE model (right) against the ground truth probabilities obtained through Monte-Carlo
simulations (left).
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(b) (dolphins) Out of distribution γ values
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(e) (openflights) Out of distribution β values
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(f) (Wiki-vote) Out of distribution γ values
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(g) (Epinions) Out of distribution β values
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(h) (Enron) Out of distribution γ values

Figure 8: Mean absolute error (lower is better) achieved by the different approaches on each test sample
(i. e., network) of a given dataset. Each figure is associated with one dataset and one parameter (β or γ).
The out of distribution generalization performance of the different methods is evaluated. Complementary
figures for each dataset and the out of distribution parameter (β or γ) are shown in Figures 4 & 5.
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