
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Towards Benchmarking Foundation Models for Tabular Data With Text

Anonymous Authors1

Abstract
Foundation models for tabular data are rapidly
evolving, with increasing interest in extending
them to support additional modalities such as free-
text features. However, existing benchmarks for
tabular data rarely include textual columns, and
identifying real-world tabular datasets with se-
mantically rich text features is non-trivial. We
propose a series of simple yet effective ablation-
style strategies for incorporating text into con-
ventional tabular pipelines. Moreover, we bench-
mark how state-of-the-art tabular foundation mod-
els can handle textual data by manually curating
a collection of real-world tabular datasets with
meaningful textual features. Our study is an im-
portant step towards improving benchmarking of
foundation models for tabular data with text.

1. Introduction
Foundation models have begun to transform tabular learn-
ing (Erickson et al., 2020b; Hollmann et al., 2025), echo-
ing the trajectory of other research fields. A natural next
step is mixed-modality tabular modeling, where structured
columns may also include free-text fields such as job de-
scriptions, clinical notes, or product summaries. Current
tabular benchmarks, however, almost never contain textual
columns, cf. (Bischl et al., 2019; Liu et al., 2024; McEl-
fresh et al., 2024). Moreover, locating real-world datasets
with semantically rich text features is exceptionally difficult,
with even exhaustive searches of OpenML and Kaggle only
yielding a handful of usable candidates (Shi et al., 2021).
Consequently, current tabular foundation models are rarely
evaluated for tabular data with text.

Pipelines that can handle tabular data with text vary greatly
in their implementation. AutoGluon’s AutoMLPipeline-
FeatureGenerator (Erickson et al., 2020a) converts text to
sparse TF-IDF vectors; CARTE (Kim et al., 2024) applies

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

fastText sentence embeddings (Bojanowski et al., 2017);
and the TabPFNv2 API accepts raw text and uses a language
model embedding. These divergent choices raise a funda-
mental question: Which embedding strategy works best,
and under what conditions?

To answer this question, we present the first systematic
study of predictive machine learning with foundation mod-
els for tabular data with text. We study the performance
of three representative embedding routes: fastText, Skrub’s
TableVectorizer, and AutoGluon’s TF-IDF text encoder. We
show qualitatively, with a simple synthetic counter-example,
that both TF-IDF and off-the-shelf sentence embeddings can
fail to recover highly predictive semantic patterns. More-
over, quantitatively, we evaluate these methods on a man-
ually curated set of real-world tabular benchmark that (i)
contain genuinely informative free-text columns (ii) spans
over a variety of domains and samples.

Our contributions are: (I) A qualitative study show casing
the limitations of standard TF-IDF and generic NLP-based
embeddings for tabular tasks with text. (II) A manually
curated set of real-world tabular datasets with semantically
rich textual columns. (III) An empirical study of three text
embedding pipelines for TabPFNv2 and XGBoost with the
TabPFNv2 API and AutoGluon TabularPredictor as base-
lines.

Our study reveals the limitations of current methods and
underscores the need for new methods to handle tabular data
with free text.

2. Related Work
Approaches incorporating free-text in tabular learning
largely follow two paradigms. First, row-as-text meth-
ods serialize entire rows into prompts and delegate pre-
diction to a large language model (LLM), as seen in
TABLLM (Hegselmann et al., 2022), TABLE-LLM (Zhang
et al., 2024). These work well when textual fields dominate
or in few-shot settings. Second, per-column embedding
strategies extract textual embeddings from a single or groups
of features, while preserving the structural nature of tabular
data. They embed each column using fastText or LLMs and
then concatenate the resulting embeddings to the table, or
replace the feature with its individual textual embedding,

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Towards Benchmarking Foundation Models for Tabular Data With Text

Figure 1. Accuracy of TabPFNv2 with text-embedding methods under label-leakage tests. Left: Baseline (No Text) and Complete
Leak (upper bound) scenarios. Right: Degradation in TF-IDF, FastText, and Bert across adversarial conditions: TF-IDF (N-Grams) fails
with unseen synonyms, FastText (Simple NLP model) breaks under under added noise to text, Bert (LLM) breaks under signal ambiguity.

cf. (Koloski et al., 2025; Carballo et al., 2023; Kim et al.,
2024). In this study, we investigate pre-column embeddings
because we focus on a many-shot setting (e.g., more than 32
training samples), in which LLM-based predictive methods
do not perform well, cf. (Hegselmann et al., 2023) and (Ma
et al., 2024), or require a prohibitive amount of fine-tuning
(Shysheya et al., 2025).

Most popular prior tabular benchmarks contain no free-text
field, cf. (Bischl et al., 2019; Gijsbers et al., 2022; McEl-
fresh et al., 2023). For tabular data with text, Shi et al.
(2021) curated 18 datasets with mixed modalities, but many
rely almost entirely on text, with only one or two tabular
features, or features derived from the long text, e.g. # of
words (Tang et al., 2024). Thus, they benchmark text-based
models rather than tabular models, focusing on text data
with tabular features. In contrast, we focus on tabular mod-
els extended to handle text, focusing on tabular data with
additional text features. Other studies were often limited to
an evaluation with just one or two datasets (Carballo et al.,
2023; Lu et al., 2023). Overall, existing studies for tabular
data with text lack a domain-agnostic benchmark where
textual features complement, rather than dominate, tabular
data. This motivates the new benchmark we present.

The Problematic CARTE Benchmark. The CARTE (Kim
et al., 2024) benchmark includes 51 datasets for tabular data
with text. However, when we investigated these datasets
more closely, we found that at most 11 out of the 51
datasets are suited to evaluate tabular data with text.
Moreover, our manually curated collection of datasets for
benchmarking only includes 1 out of the 51 datasets.
We share an extensive report of our investigation in Ap-
pendix G. In short, we found that most datasets (a) do not
represent predictive machine learning tasks for tabular data
with text; (b) are skewed towards text data representing
many categories instead of longer free text; (c) were pre-
processed manually per dataset with logic that seems to

favor CARTE; (d) or were very similar datasets from the
same domain, with the same features, or similar semantic
content. Thus, while CARTE was a significant step toward
benchmarking and learning for tabular data with text, it falls
short in several aspects. Our work complements CARTE’s
efforts and aims to improve benchmarking for tabular data
with text further.

3. Qualitative Investigation
Textual features can contain strong predictive signals that
support tabular prediction, but these signals may be diluted
in complex cases. We explore failure modes of three major
embedding techniques by systematically “leaking” the target
into text in diluted forms. This section reveals how certain
dilution strategies disrupt specific embeddings.

Experimental Setup. We evaluate three widely used text
embedding methods in literature: (1) TF-IDF for n-grams,
(2) fastText as a sentence NLP model, and (3) a small BERT-
style sentence encoder (Wang et al., 2020) as a representa-
tive of more capable LLMs. We leak and dilute the target
feature for four binary classification datasets from OpenML.
(see Appendix E for details). We split the data into 80-20%
train-test sets and use TabPFNv2 (Hollmann et al., 2025)
for predictions.

Dilution Strategies. To test robustness, we simulate three
scenarios where textual features contain varying degrees
of predictive signals and noise. (1) N-Grams Break: we
encode the leaked target labels as ‘good’/‘number’. For
training, we replace ‘good’ with synonyms (e.g., ‘pos-
itive’, ‘great’) and ‘number’ with numerals (e.g., ‘one’,
‘three’). At test time, unseen synonyms (‘nice’, ‘two’) are
used. (2) Simple NLP Break: we replace labels with ‘posi-
tive’/‘negative’ and additionally insert 5-10 random words
(e.g., “apple mountain positive girl”, “compass echo boy
negative”). (3) LLM Encoding Break: we replace labels

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Towards Benchmarking Foundation Models for Tabular Data With Text

with ‘positive’/‘negative’ and additionally insert 50 ran-
dom synonyms of both ’postive’ and ’negative’ at random
positions for each sample. See Appendix E for more details.

Results. Figure 1 shows the results of our qualitative inves-
tigation: (1) N-Grams (TF-IDF) fail to generalize to unseen
synonyms, due to their reliance on word frequencies. (2)
FastText fails to exploit all predictive signals when random
words dilute the semantic meaning of a sentence embedding.
LLM remains robust in this scenario due to clear distinction
of signals: ‘positive’/‘negative’ in corresponding labels and
possibly due to relatively short context. TF-IDF preserves
100% accuracy too by preserving term frequency. (3) BERT-
style sentence encoder and FastText fail to exploit predictive
signals when the combination of synonyms and antonyms
cancels out the text’s semantic meanings. Term frequency
of TF-IDF continues to identify the leakage and sustains
100% accuracy.
Our experiments highlight critical weaknesses in existing
text embedding methods for tabular data: (1) N-Grams
fail on out-of-distribution synonyms due to their frequency-
based design. (2) Simple NLP models (e.g., fastText) are
sensitive to contextual semantic noise such as shared se-
mantic meaning across classes. (3) Language Models (e.g.,
BERT) degrade when the presence of opposite semantic sig-
nals weaken their judgement and blur classfication bound-
aries. These findings underscore the need for more advanced
techniques that can unmask predictive signals from textual
data. Future work should focus on hybrid approaches that
balance statistical robustness with deep semantic under-
standing.

4. Towards Quantitative Benchmarks

Dataset Task # Cat # Num # Text # Rows

fraud b-clf 4 4 7 17880
kick b-clf 10 4 4 94125
osha b-clf 15 1 3 4847

cards m-clf 4 3 3 2810
complaints m-clf 4 2 5 96935
spotify m-clf 5 11 3 10000

airbnb reg 32 13 11 3818
beer reg 3 13 5 2914
houses reg 21 5 4 44913
laptops reg 29 1 26 984
mercari reg 2 1 4 100000
permits reg 12 12 5 90876
wine reg 7 3 6 1281

Table 1. Overview of benchmark datasets with counts of categori-
cal, numerical, and text columns, grouped by task type.

Existing collections of datasets for benchmarking tabular

data with text do not yet suffice for a robust evaluation.
Therefore, we curate a new corpus according to five rules:
(i) Real (free) text features. We select datasets that are
not merely short categorical codes. Instead, we include
datasets with real text features that can contain any free
text. (ii) Dual-signal requirement. Both textual and struc-
tural features must carry predictive information; otherwise,
a task collapses into either a pure-NLP or pure-tabular test.
(iii) Tabular predictive task. The dataset must be primarily
a tabular predictive task. Thus, we exclude datasets that are,
for example, recommender systems or text retrieval/look-up
tasks. (iv) Accessibility. Restricted data, such as real-world
patient records (e.g. MIMIC-III (Goldberger et al., 2000)),
are omitted so that the benchmark remains easily accessible
for all users. (v) Domain and target diversity. We do
not reuse the same source datasets for multiple benchmark
tasks. Instead, we cover commerce, reviews, finance, and
sensor-augmented data, spanning regression and (binary/-
multi-class) classification tasks.

Table 1 overviews our curated datasets. Besides bootstrap-
ping on datasets from prior work (Kim et al., 2024; Shi
et al., 2021), we manually searched for datasets on UCI,
OpenML, and Kaggle portals. After deduplication, only
Kaggle provided datasets that satisfied all four criteria. Pre-
processing is deliberately minimal, emulating a first-pass
data-scientist workflow (e.g., HTML stripping, basic impu-
tation) and supplemented by explicit checks that no target
information leaks into the inputs. We provide complete
dataset schemas, acquisition scripts, and preprocessing de-
tails in Appendix A.
In comparison to prior work, our datasets (i) exhibit a health-
ier balance between textual and numeric/categorical infor-
mation, (ii) span diverse domains and scales, and (iii) are
accompanied by transparent preprocessing scripts to ensure
reproducibility.

Code availability. We make all dataset acquisition, pre-
processing, embedding, and experiments code public here:
REMOVED-FOR-REVIEW.

A note to dataset creators. We encourage the community to
release tabular data before heavy aggregation or category
collapsing, so that the original free-text variation remains
available for multimodal research.

5. Quantitative Experiments and Results
In this section, we use our benchmark to conduct an em-
pirical study comparing three textual embedding strategies
across two tabular prediction models and two baselines with
built-in text processing. We further evaluate performance
under various feature downsampling strategies.

Experimental Setup. We evaluate three text embedding
methods that are currently used for handling text by tabular

3

https://www.kaggle.com/datasets/shivamb/real-or-fake-fake-jobposting-prediction
https://www.kaggle.com/datasets/yashkantharia/kickstarter-campaigns
https://www.kaggle.com/datasets/ruqaiyaship/osha-accident-and-injury-data-1517
https://www.kaggle.com/datasets/jeradrose/hearthstone-cards
https://www.kaggle.com/datasets/selener/consumer-complaint-database
https://www.kaggle.com/datasets/maharshipandya/-spotify-tracks-dataset
https://www.kaggle.com/datasets/airbnb/seattle?select=listings.csv
https://www.kaggle.com/datasets/ruthgn/beer-profile-and-ratings-data-set
https://www.kaggle.com/competitions/california-house-prices/data?select=train.csv
https://www.kaggle.com/datasets/dhanushbommavaram/laptop-dataset
https://www.kaggle.com/c/mercari-price-suggestion-challenge/data?select=train.tsv.7z
https://www.kaggle.com/datasets/aparnashastry/building-permit-applications-data
https://www.kaggle.com/datasets/elvinrustam/wine-dataset

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Towards Benchmarking Foundation Models for Tabular Data With Text

Dataset TabPFNv2 XGBoost TabPFNv2 API AG Tabular Predictor

Emb with Text w/o Text Emb with Text w/o Text with Text w/o Text with Text w/o Text

airbnb TF-IDF 0.692±0.048 0.679±0.045 TF-IDF 0.603±0.060 0.592±0.048 0.686±0.037 0.673±0.033 0.638±0.023 0.645±0.039

beer Fasttext 0.646±0.023 0.579±0.020 Fasttext 0.594±0.036 0.468±0.020 0.643±0.032 0.573±0.034 0.586±0.027 0.512±0.039

houses Fasttext 0.753±0.035 0.733±0.027 TF-IDF 0.696±0.020 0.673±0.028 0.745±0.052 0.727±0.082 0.537±0.154 0.626±0.121

laptops TF-IDF 0.902±0.023 0.881±0.021 Skrub 0.833±0.046 0.801±0.047 0.900±0.014 0.868±0.014 0.841±0.020 0.827±0.032

mercari Fasttext 0.237±0.050 0.001±0.016 Fasttext 0.110±0.062 0.001±0.006 0.262±0.080 0.012±0.027 0.134±0.037 -0.086±0.095

permits Fasttext 0.494±0.062 0.506±0.057 Fasttext 0.426±0.040 0.467±0.065 0.492±0.050 0.470±0.055 0.440±0.093 0.427±0.073

wine Fasttext 0.571±0.115 0.423±0.137 Fasttext 0.394±0.098 0.125±0.266 0.588±0.058 0.455±0.033 0.460±0.064 0.448±0.054

complaints FastText 0.688±0.024 0.646±0.017 Fasttext 0.672±0.021 0.584±0.023 0.667±0.008 0.639±0.015 0.679±0.011 0.630±0.024

frauds TF-IDF 0.962±0.008 0.852±0.006 TF-IDF 0.958±0.004 0.849±0.015 0.954±0.003 0.845±0.012 0.960±0.009 0.848±0.014

cards Fasttext 0.703±0.008 0.662±0.007 Fasttext 0.724±0.011 0.632±0.009 0.705±0.012 0.659±0.020 0.700±0.023 0.655±0.027

kick Fasttext 0.779±0.016 0.702±0.010 Fasttext 0.769±0.014 0.657±0.013 0.781±0.013 0.686±0.021 0.776±0.020 0.699±0.020

osha TF-IDF 0.613±0.006 0.566±0.013 TF-IDF 0.599±0.020 0.539±0.012 0.547±0.029 0.527±0.015 0.559±0.019 0.544±0.018

spotify Fasttext 0.815±0.010 0.663±0.016 Fasttext 0.807±0.012 0.636±0.027 0.841±0.027 0.665±0.016 0.735±0.006 0.636±0.013

Table 2. Performance comparison of best text-embedding strategy vs. no-text setting. This table shows the predictive performance (R²
for regression, accuracy for classification) of each model and baseline using the best-performing text embedding strategy with SHAP-based
feature selection, compared to the same model trained without any textual features. For each model and dataset, the higher score between
the text and no-text settings is bolded.

models: (1) FastText sentence vectors, (2) Skrub’s TableVec-
torizer, and (3) the TF-IDF approach from AutoGluon’s
AutoMLPipelineFeatureGenerator. In each case, we replace
the text columns with the corresponding embeddings. To
mitigate feature noise and reduce memory consumption
introduced by the additional embedding features, we ex-
periment with various dimensionality reduction and feature
selection techniques. These include statistical tests (t-test,
ANOVA), regularization (Lasso), variance-based selection,
Principal Component Analysis (PCA), correlation filtering,
and SHAP-based (Lundberg & Lee, 2017) importance. Fur-
ther downsampling details are in Appendix B.

We evaluate two models: TabPFNv2 (Hollmann et al., 2025)
and XGBoost (Chen & Guestrin, 2016). We downsample
each dataset to a maximum of 3,000 rows and 300 features
to accommodate TabPFNv2’s memory constraints (details
in Appendix D). Although XGBoost does not share these
limitations, we apply the same downsampling to ensure
consistency across results. Additionally, we include the
TabPFNv2-API (Hollmann et al., 2025) and AutoGluon’s
Tabular Predictor (Erickson et al., 2020b) with the same
settings as baselines with built-in text handling approach.
We report R2 score for regression and accuracy score for
classification, averaged over 5-fold cross-validation.

Results. Table 2 reports the highest prediction accuracy
using SHAP-based feature selection across three embedding
techniques versus no-text baselines. Key findings include:

(i) Text features boost accuracy. In 9 of 13 datasets,

text embeddings improve performance over no-text, bene-
fiting all models and baselines. (ii) No single best embed-
ding method. FastText performs best on 7 of 13 datasets
(53.85%), outperforming simpler TF-IDF variants. How-
ever, no method dominates universally, suggesting room
for stronger text embedding methods. (iii) Feature down-
sampling matters. SHAP-based selection helps extract
signal from high-dimensional embeddings and outperforms
zero-shot baselines (Appendix F). Still, excessive down-
sampling, e.g., in the PERMITS dataset, can reduce accuracy,
calling for better tuning. (iv) TabPFN API baseline is more
consistent, embeddings yield larger gains. TabPFNv2
API consistently beats no-text, but FastText achieves greater
relative gains with other models. Thus we infer that text
for tabular data remains an unsolved problem. Given the
breaking points identified in Section 3, investigating better
integration strategies may help close, or even surpass, the
current performance gap.

Conclusion. We conclude with these statements: (A) Em-
bedding choice is context-specific: FastText often performs
best, but is not universal. (B) Target-aware downsampling
(e.g., SHAP) for embeddings is crucial, but must be bal-
anced to avoid over-pruning features. Overall, our study
study provides a strong motivation to build text-centric tabu-
lar benchmarks that include diverse downstream prediction
tasks. More importantly, it motivates the development of
pipelines that can natively handle a wide range of text modal-
ities, without relying on extensive manual preprocessing.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Towards Benchmarking Foundation Models for Tabular Data With Text

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang,

M., Mantovani, R. G., van Rijn, J. N., and Vanschoren,
J. Openml benchmarking suites. arXiv:1708.03731v2
[stat.ML], 2019.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. En-
riching word vectors with subword information, 2017.
URL https://arxiv.org/abs/1607.04606.

Carballo, K. V., Na, L., Ma, Y., Boussioux, L., Zeng, C.,
Soenksen, L. R., and Bertsimas, D. Tabtext: A flexi-
ble and contextual approach to tabular data representa-
tion, 2023. URL https://arxiv.org/abs/2206.
10381.

Chen, T. and Guestrin, C. XGBoost: A scalable tree boost-
ing system. In Krishnapuram, B., Shah, M., Smola, A.,
Aggarwal, C., Shen, D., and Rastogi, R. (eds.), Proceed-
ings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’16), pp.
785–794, 2016.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy,
P., Li, M., and Smola, A. Autogluon-tabular: Robust and
accurate automl for structured data. arXiv:2003.06505
[stat.ML], 2020a.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy,
P., Li, M., and Smola, A. Autogluon-tabular: Robust
and accurate automl for structured data, 2020b. URL
https://arxiv.org/abs/2003.06505.

Gijsbers, P., Bueno, M. L. P., Coors, S., LeDell, E., Poirier,
S., Thomas, J., Bischl, B., and Vanschoren, J. Amlb:
an automl benchmark, 2022. URL https://arxiv.
org/abs/2207.12560.

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M.,
Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B.,
Peng, C.-K., and Stanley, H. E. Physiobank, physiotoolkit,
and physionet: Components of a new research resource
for complex physiologic signals. Circulation, 101(23):
e215–e220, 2000.

Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang,
X., and Sontag, D. Tabllm: Few-shot classification of
tabular data with large language models, 2022. URL
https://arxiv.org/abs/2210.10723.

Hegselmann, S., Parziale, A., Shanmugam, D., Tang, S.,
Asiedu, M. N., Chang, S., Hartvigsen, T., and Singh,
H. Machine learning for health symposium 2023 – find-
ings track, 2023. URL https://arxiv.org/abs/
2312.00655.

5

https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/2206.10381
https://arxiv.org/abs/2206.10381
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2207.12560
https://arxiv.org/abs/2207.12560
https://arxiv.org/abs/2210.10723
https://arxiv.org/abs/2312.00655
https://arxiv.org/abs/2312.00655

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Towards Benchmarking Foundation Models for Tabular Data With Text

Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A.,
Körfer, M., Hoo, S. B., Schirrmeister, R. T., and Hut-
ter, F. Accurate predictions on small data with a tabu-
lar foundation model. Nature, 01 2025. doi: 10.1038/
s41586-024-08328-6. URL https://www.nature.
com/articles/s41586-024-08328-6.

Kim, M. J., Grinsztajn, L., and Varoquaux, G. Carte: Pre-
training and transfer for tabular learning, 2024. URL
https://arxiv.org/abs/2402.16785.

Koloski, B., Margeloiu, A., Jiang, X., Škrlj, B., Simidjievski,
N., and Jamnik, M. Llm embeddings for deep learning
on tabular data, 2025. URL https://arxiv.org/
abs/2502.11596.

Liu, S.-Y., Cai, H.-R., Zhou, Q.-L., and Ye, H.-J. Talent:
A tabular analytics and learning toolbox. arXiv preprint
arXiv:2407.04057, 2024.

Lu, J., Qian, Y., Zhao, S., Xi, Y., and Yang, C. Mug:
A multimodal classification benchmark on game data
with tabular, textual, and visual fields. In Findings of
the Association for Computational Linguistics: EMNLP
2023, pp. 5332–5346. Association for Computational Lin-
guistics, 2023. doi: 10.18653/v1/2023.findings-emnlp.
354. URL http://dx.doi.org/10.18653/v1/
2023.findings-emnlp.354.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. Advances in neural informa-
tion processing systems, 30, 2017.

Ma, J., Thomas, V., Hosseinzadeh, R., Kamkari, H., Labach,
A., Cresswell, J. C., Golestan, K., Yu, G., Volkovs, M.,
and Caterini, A. L. Tabdpt: Scaling tabular foundation
models, 2024. URL https://arxiv.org/abs/
2410.18164.

Maćkiewicz, A. and Ratajczak, W. Principal compo-
nents analysis (pca). Computers & Geosciences,
19(3):303–342, 1993. ISSN 0098-3004. doi:
https://doi.org/10.1016/0098-3004(93)90090-R.
URL https://www.sciencedirect.com/
science/article/pii/009830049390090R.

McElfresh, D., Khandagale, S., Valverde, J., Prasad C, V.,
Ramakrishnan, G., Goldblum, M., and White, C. When
do neural nets outperform boosted trees on tabular data?
In Proceedings of the 37th International Conference
on Advances in Neural Information Processing Systems
(NeurIPS’23), pp. 76336–76369, 2023.

McElfresh, D., Khandagale, S., Valverde, J., C, V. P., Feuer,
B., Hegde, C., Ramakrishnan, G., Goldblum, M., and
White, C. When do neural nets outperform boosted trees
on tabular data?, 2024. URL https://arxiv.org/
abs/2305.02997.

Shi, X., Mueller, J., Erickson, N., Li, M., and Smola, A. J.
Benchmarking multimodal automl for tabular data with
text fields, 2021. URL https://arxiv.org/abs/
2111.02705.

Shysheya, A., Bronskill, J., Requeima, J., Siddiqui, S. A.,
Gonzalez, J., Duvenaud, D., and Turner, R. E. Jolt: Joint
probabilistic predictions on tabular data using llms, 2025.
URL https://arxiv.org/abs/2502.11877.

Tang, Z., Fang, H., Zhou, S., Yang, T., Zhong, Z., Hu, T.,
Kirchhoff, K., and Karypis, G. Autogluon-multimodal
(automm): Supercharging multimodal automl with foun-
dation models, 2024. URL https://arxiv.org/
abs/2404.16233.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and Zhou,
M. Minilm: Deep self-attention distillation for task-
agnostic compression of pre-trained transformers, 2020.
URL https://arxiv.org/abs/2002.10957.

Zhang, X., Luo, S., Zhang, B., Ma, Z., Zhang, J., Li, Y., Li,
G., Yao, Z., Xu, K., Zhou, J., Zhang-Li, D., Yu, J., Zhao,
S., Li, J., and Tang, J. Tablellm: Enabling tabular data
manipulation by llms in real office usage scenarios, 2024.
URL https://arxiv.org/abs/2403.19318.

6

https://www.nature.com/articles/s41586-024-08328-6
https://www.nature.com/articles/s41586-024-08328-6
https://arxiv.org/abs/2402.16785
https://arxiv.org/abs/2502.11596
https://arxiv.org/abs/2502.11596
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.354
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.354
https://arxiv.org/abs/2410.18164
https://arxiv.org/abs/2410.18164
https://www.sciencedirect.com/science/article/pii/009830049390090R
https://www.sciencedirect.com/science/article/pii/009830049390090R
https://arxiv.org/abs/2305.02997
https://arxiv.org/abs/2305.02997
https://arxiv.org/abs/2111.02705
https://arxiv.org/abs/2111.02705
https://arxiv.org/abs/2502.11877
https://arxiv.org/abs/2404.16233
https://arxiv.org/abs/2404.16233
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2403.19318

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Towards Benchmarking Foundation Models for Tabular Data With Text

A. Datasets
We applied a consistent preprocessing pipeline to all datasets prior to training, aiming to ensure quality, reduce noise, and
standardize formats across diverse sources.

General Preprocessing. After downloading the raw CSV files, each dataset was cropped to a maximum of 100,000 rows
to reduce memory and compute overhead. This limit was chosen as it extensively exceeds the typical size needed to train a
performant in-context learner in our setting.

We then applied the following preprocessing steps:

• Missing value filtering: Columns with more than 50% missing values were dropped (with a few exceptions of small
pushing the boundry).

• Constant column removal: Columns containing only a single unique value (often placeholder IDs or corrupted entries)
were removed.

• Duplicate removal: Exact duplicate rows were dropped to avoid sampling bias.

• Target validation: Rows with missing target labels were discarded.

• Unnamed column cleanup: Spurious columns labeled “Unnamed” (typically from CSV formatting issues) were
dropped.

Column Type Classification. To determine appropriate encoding strategies, we automatically classified columns into
numerical, categorical, and textual types using the following heuristics:

• Numerical columns:

– Columns explicitly typed as numeric were preserved.
– String columns were also considered numerical if their values were mostly numeric after stripping relatively few

(towards total char length) formatting characters (e.g., “15s”, → 15).
– Additionally, if the non-numeric part of a string column was repetitive across rows (e.g., [“ABV 12%”, “ABV

15%”, “ABV 10%”] → [12, 15, 10]), the column was interpreted as numeric.
– After being classified as numerical, these columns were automatically cleaned of non-numeric artefacts.

• Categorical columns:

– The threshold for categoricity was typically set to 50 unique values for large datasets, or computed as 5% of the
number of rows for smaller ones.

– In rare cases, this boundary was manually adjusted, for example, when the number of unique values slightly
exceeded the default threshold (e.g., 51 categories in a dataset with several thousand rows).

• Textual columns:

– String columns with a large number of unique values and little to no numeric structure were classified as textual.

These heuristics ensured robust and interpretable categorisation across the heterogeneous collection of datasets. The category
assignments were manually verified for correctness, and in a small number of cases required reassessment and tailored
adjustments. For example, string placeholders like “no-data” were mapped to NaN, zip codes embedded in longer strings
(e.g., “1234XXX”) were trimmed to their numeric prefix (“1234”). In features that were predominantly numerical, if only
a few rows contained irregular textual entries (e.g. “3 or 4, not sure”), these were manually cleaned and converted to
approximate numeric values (e.g., “3.5”) rather than dropping the entire feature, to preserve data utility.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Towards Benchmarking Foundation Models for Tabular Data With Text

Manual Dataset-Specific Adjustments. Following the general preprocessing and type classification, we applied an
additional round of light manual cleaning. These modifications were dataset-specific and aimed at removing irrelevant or
non-essential columns (e.g., constant metadata, indices, or redundant identifiers), which could otherwise introduce noise or
imbalance.

To ensure fairness across model types, we explicitly avoided transformations that would favor a particular modality. For
instance, we did not split compound textual columns into multiple fields, as such engineering might disproportionately
benefit text-aware models.

The types of changes applied in this step included:

• Dropping hand-identified non-informative columns (IDs, replicated features, etc.).

• Converting clearly timestamp-formatted strings into UNIX numeric time representations.

• Personalised preprocessing of numerical features (e.g. a conversion [’700ml’, ’8dl’, ’0.65l’, ...] → [700, 800, 650, ...])

These dataset-specific adjustments were kept minimal and only made when necessary to ensure compatibility, reduce noise,
or preserve valid numerical representations, without imposing any domain expertise.

Reproducibility. All such dataset-specific changes are clearly documented in the corresponding preprocessing notebooks
within our benchmark repository. We commit to open-sourcing these notebooks upon acceptance to ensure full transparency
and reproducibility of our setup.

Classification Datasets

• Consumer Complaints Dataset This dataset contains records of consumer complaints filed against financial service
companies, featuring structured fields such as product type, state, and submission method, alongside rich textual
attributes like sub-product, issue, sub-issue, and company name. The prediction target is the company’s response to the
complaint, consolidated into four meaningful classes: CLOSED WITH EXPLANATION, CLOSED WITH NON-MONETARY
RELIEF, CLOSED WITH MONETARY RELIEF, AND CLOSED WITHOUT RELIEF. This focused setup maintains a
challenging multi-class classification task while allowing for a fair assessment of how textual embeddings can enhance
tabular model performance in real-world customer service scenarios. The original dataset has approx. 1.42m rows,
which we randomly downsample to 100k to include a fair representation of rare classes while keeping the size feasible
for training.

• Hearthstone Cards Dataset
Describes collectable cards from the game Hearthstone, with features covering gameplay stats, categorical traits, and
rich textual descriptions. The prediction target is the player class to which a card belongs (10 categories), with a
notable class imbalance. Neutral cards dominate, while other classes have significantly fewer samples. This natural
imbalance reflects the game design and poses a realistic challenge for classification tasks. Text fields like text (card
effects) and flavor (lore snippets) provide valuable semantic signals, making this dataset well-suited to benchmark how
textual features can improve tabular model performance, especially for minority classes.

• Job Posting Fraud Detection
This dataset contains job advertisements with structured attributes (e.g., employment type, required experience) and rich
textual content (e.g., job title, description, company profile). The prediction target is fraudulent (binary classification:
real vs fake). Textual fields such as description, requirements, and company profile carry essential semantic cues for
detecting fraudulent postings, making this dataset highly suitable for evaluating text-augmented tabular models. The
target is notably imbalanced, with legitimate postings outnumbering fraudulent ones.

• Spotify Genres Dataset
This dataset contains audio features and metadata for a large collection of songs, combining numerical attributes (e.g.,
danceability, tempo), categorical musical traits (e.g., key, time signature), and rich textual fields such as track name,
album name, and artist. The prediction target is track genre, we downsample the original 114 balanced genres to only
10, easier to differentiate classes:

[’CLASSICAL’, ’COUNTRY’, ’ELECTRONIC’, ’HIP-HOP’, ’INDIE’, ’JAZZ’, ’METAL’, ’POP’, ’R-N-B’, ’ROCK’]

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Towards Benchmarking Foundation Models for Tabular Data With Text

• Kickstarter Success Dataset
This dataset contains metadata from Kickstarter crowdfunding projects, including campaign characteristics such as
funding goal, duration, and category information, as well as descriptive textual fields like project name, sub-category,
and city. The prediction target is the binary status (successful vs. failed). Temporal features like launched at and
deadline are represented as numerical timestamps.

• OSHA Accidents Dataset
This dataset captures detailed records of workplace accidents reported to the Occupational Safety and Health Adminis-
tration (OSHA), combining structured attributes such as project type, degree of injury, and part of body affected with
rich textual descriptions including abstract summaries, event descriptions, and associated keywords. The prediction
target is whether the injured employee was performing a regularly assigned task at the time of the incident (binary
classification).

Regression Datasets

• Airbnb Rates Dataset
This dataset includes Airbnb listings from Seattle with structured features such as property type, room type, coordinates,
and host metrics, alongside rich textual fields like listing summaries, neighborhood overviews, and amenities. The
prediction target is the listing price (continuous regression). It is a mix of structured and textual inputs making it an
excellent benchmark for assessing how well tabular models can leverage textual embeddings in price prediction tasks.

• California Housing Prices
The dataset includes structured property details such as lot size, year built, and school quality, along with free-text
descriptions of home features (e.g., appliances, flooring, heating). The prediction target is Total Interior Livable Area,
shifting focus away from price toward physical home size estimation. Price-related columns are excluded to prevent
leakage. This setting tests how well textual features help infer structural characteristics.

• Laptop Dataset
This dataset contains laptop listings with specifications, textual descriptions, and target prices. Inputs include categorical
traits (e.g., Processor Brand), numerical specs (e.g., RAM, Screen Size), and verbose text (e.g., Sales Package, Additional
Features). Rather than filtering, all features are retained to simulate real-world noise and redundancy. It serves as a
robust stress test for tabular foundation models under messy conditions.

• Mercari Price Suggestion Dataset
This dataset comes from a consumer-to-consumer marketplace and includes listings with structured fields (e.g., item
condition, shipping) and high-cardinality textual inputs like product names, brand names, and descriptions. The goal is
to predict the item price. Hierarchical category fields (e.g., Women/Jewelry/Necklaces) are retained as textual inputs.
The dataset is ideal for evaluating semantic reasoning in text-rich, user-generated data.

• San Francisco Building Permits Dataset
The task is to predict time to approve (in days) for permit applications. Features include structured fields (e.g., permit
type, construction type, estimated cost) and descriptive metadata (e.g., project description, location). While many
permits have zero delay (often legitimate), these are retained. The target’s long-tail distribution together with high
frequency of zero-day-permits poses a meaningful challenge for modelling bureaucratic latency with mixed inputs.

• Wine Cost Dataset
This dataset includes structured product data (e.g., grape variety, vintage, ABV) and rich textual descriptions such as
sensory profiles and marketing text. The prediction target is price. Given the subjective nature of descriptions and
influence on perceived value, this setting benchmarks how well tabular models can integrate free text for subjective
value estimation.

B. Downsampling Strategies
We select a diverse set of feature downsampling techniques to evaluate across datasets and embedding strategies. These
include both supervised methods that rely on the target variable and unsupervised methods that operate independently of
it. Some techniques are task-specific—for example, statistical tests require classification targets, and correlation-based

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Towards Benchmarking Foundation Models for Tabular Data With Text

filters are only meaningful for regression. They also vary in complexity: while some are zero-shot filters based on simple
statistics (e.g., variance, correlation), others require training a predictive model to estimate feature importance (e.g., SHAP,
L1 regularization). This diversity allows us to compare the effectiveness of different selection strategies under varied
conditions and modeling setups.

Selector Regression Binary Clf Multi-class Clf Zero-Shot Supervised

t-test × ✓ × ✓ ✓

ANOVA × ✓ ✓ ✓ ✓

L1 (Lasso) ✓ ✓ ✓ × ✓

Variance ✓ ✓ ✓ ✓ ×
PCA ✓ ✓ ✓ ✓ ×
Correlation ✓ × × ✓ ✓

SHAP ✓ ✓ ✓ × ✓

Random ✓ ✓ ✓ ✓ ×

Table 3. Applicability and properties of feature selection strategies. A checkmark (✓) indicates support or applicability; a cross (×)
indicates that the method is not suitable for that task type or does not have the specified property.

T-test This method checks whether the average value of each feature is different between binary classes. It runs a statistical
test (t-test) on each feature and selects those with the most significant differences. Only works for binary classification. No
model training is needed.

ANOVA This method checks if the average values of a feature are different across three or more classes. It runs a statistical
test (ANOVA) on each feature and keeps the ones with the strongest differences. Works for both binary and multi-class
classification. No model training is needed.

Variance This method selects features that vary the most across all rows. It keeps the top-k features with the highest
variance, assuming that more variable features may carry more information. It is unsupervised and does not use the target
variable.

PCA (Maćkiewicz & Ratajczak, 1993) This method uses Principal Component Analysis (PCA) to find combinations of
features that explain how the data varies the most. Each feature gets a score based on how much it contributes to these
combinations. This score is computed by taking the feature’s contribution (called a loading), multiplying it by how much
that combination explains, and summing across all combinations. The features with the highest total scores are kept. This
method does not use the target variable.

L1 regularisation This method trains a linear model with an ℓ1 penalty, which forces some feature weights to become
exactly zero. For regression tasks, it uses Lasso (linear regression with L1 regularisation). For classification, it uses logistic
regression with an L1 penalty. After training, it selects the top-k features with the largest non-zero weights. This method is
supervised and requires fitting a model.

Correlation This method computes the correlation between each feature and the target, using either Pearson or Spearman
correlation. It ranks features by the absolute correlation and selects the top-k. It is supervised and mainly used for regression.
It can also be applied to binary classification, but is less reliable than methods like the t-test.

SHAP (Lundberg & Lee, 2017) This method trains a model and then uses SHAP values to measure how much each feature
contributes to the model’s predictions. It computes the average absolute SHAP value for each feature across the dataset and
selects the top-k most important ones. It is supervised and requires training a model such as XGBoost or logistic regression.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Towards Benchmarking Foundation Models for Tabular Data With Text

C. Hyperparameters and Training Details
Training Settings Summary

TabPFNv2: The TabPFNv2 model is used in inference-only mode with the argument
ignore pretraining limits=True, allowing it to bypass dataset constraints from pretraining.

XGBoost: The XGBoost model uses default hyperparameters unless otherwise specified. For binary classification, it
uses the binary:logistic objective and logloss as the evaluation metric. For multi-class classification, it uses
multi:softprob with mlogloss. Regression uses the default objective (reg:squarederror). Label encoding is
disabled via use label encoder=False. Early stopping, max depth, and learning rate are not explicitly set, so the
defaults apply (max depth=6, learning rate=0.3).

TabPFNv2 API: This refers to the standardized inference interface provided in the TabPFN (Hollmann et al., 2025), which
enables users to leverage the pretrained TabPFNv2 model without the need of external hardware like GPU. For best results,
we kept similar samples to other experiments and ensure that all datasets were passed as raw tables (with basic preprocessing
as already stated in the paper except for ‘osha’ where the API does not support “Abstract Text” column and crashes) to the
API in our experiments with and without text.

AutoGluon’s Tabular Predictor: It is included as a strong AutoML baseline. It is trained per fold with presets=best
quality and time limit=360 seconds across most datasets on eval metrics of R2 score for regression and
accuracy for classification tasks. These adjustments allowed AutoGluon’s internal model selection, hyperparameter
tuning, and ensembling mechanisms to perform more effectively and fairly reflect the model’s potential.

Our time constraints were selected to ensure computational feasibility and comparability across datasets. A more generous
budget could allow these systems to explore a richer search space and potentially yield higher predictive performance,
however we prefer shorter budgets to compare to the ICL performance of TabPFN. Conducting a fair comparison would
then necessitate tuning TabPFN as well—an approach that has already demonstrated superior performance compared to
AutoGluon’s Tabular Predictor under default configurations.

D. Hardware Specifications
We ran all experiments on a single NVIDIA GeForce RTX 2080 Ti GPU with 11 GB RAM for each experiment on TabPFNv2
and single CPU core with 6 GB RAM for each XGBoost experiment, and 32GB RAM for AutoGluon’s Tabular Predictor.

Table 4. Classification accuracies across break points and embedding methods.

BREAK TYPE DATASET ID TF-IDF BERT FASTTEXT (FT)

TF-IDF BREAKS

31 80.0 100.0 100.0
42193 55.0 100.0 100.0
1461 80.0 100.0 100.0
1590 89.5 100.0 100.0

AVERAGE 76.1 100.0 100.0

FASTTEXT BREAKS

31 100.0 100.0 85.0
42193 100.0 100.0 95.0
1461 100.0 100.0 80.0
1590 100.0 100.0 94.7

AVERAGE 100.0 100.0 88.7

BERT BREAKS

31 100.0 85.0 75.0
42193 100.0 80.0 70.0
1461 100.0 80.0 80.0
1590 100.0 94.7 89.5

AVERAGE 100.0 84.9 78.6

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Towards Benchmarking Foundation Models for Tabular Data With Text

E. Motivational Setup
Datasets Used: We used four OpenML datasets for aggregating the scores of the three tested embedding techniques for the
motivational setup. We subsample 100 rows randomly in each dataset for these test scenarios. The table 4 details the scores
for each dataset and embedding.

Complete list of Dilution Strategies. We present the complete lists of target replacement strategies used in the three
test scenarios (excluding the baselines). The full set of synonyms for the terms ’good’ and ’number’ used in the TF-IDF
breakpoint simulation is shown in Listing 1. The full set of random words used for the FastText breakpoint simulation
appears in Listing 2. The complete list of synonyms appended to ’positive’ or ’negative’ in the Bert-based test is provided in
Listing 3.

self.synonyms = {
’train’: {

"good": [
"positive", "great", "excellent", "favorable", "pleasant",
"admirable", "beneficial", "wonderful", "commendable", "worthy"

],
"number": [

"one", "three", "four", "five", "six",
"seven", "eight", "nine", "ten", "eleven"

]
},
’test’: {

"good": ["nice"],
"number": ["two"]

}
}

Listing 1. TF-IDF Breakpoint Simulation

self.random_words = [
"breeze", "crystal", "jungle", "sunset", "clock",
"river", "pencil", "butterfly", "cloud", "guitar", "forest",
"echo", "mirror", "flame", "galaxy", "shadow", "storm", "pearl",
"ember", "whisper", "velvet", "feather", "lantern", "cherry", "fog",
"nutmeg", "rocket", "canyon", "harbor", "planet", "sketch", "compass",
"dream", "saddle", "maple", "python", "quartz", "cactus", "ladder",
"amber", "panther", "blanket", "marble", "candle", "helmet",
"anchor", "sand", "ocean", "lemon", "boulder", "ink", "ribbon",
"nest", "basket", "flute", "meadow", "thunder", "vine", "shell",
"drift", "carpet", "sapphire", "tiger", "honey", "blossom", "stream",
"mountain", "lighthouse", "cliff", "pebble", "tunnel", "bubble",
"apple", "silver", "chalk", "frost", "comet", "antler", "bramble",
"ripple", "beacon", "groove", "hazel", "dune", "harvest",
"twig", "cobweb", "glider", "ivory", "petal", "plume",
"island", "whistle", "puzzle", "snowflake", "cradle",
"nail", "window", "tassel"

]

Listing 2. FastText Breakpoint Simulation

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Towards Benchmarking Foundation Models for Tabular Data With Text

self.random_words = [
Positive Synonyms
"favorable", "happy", "joyful", "pleased", "delighted", "cheerful", "content",

"grateful", "optimistic", "upbeat", "ecstatic",
"radiant", "thrilled", "hopeful", "enthusiastic", "elated", "blissful",

"satisfied", "charming", "agreeable", "nice",
"awesome", "fabulous", "fantastic", "glorious", "marvelous", "splendid",

"superb", "terrific", "admirable", "commendable",
"noble", "excellent", "great", "incredible", "lively", "lovely", "magnificent",

"outstanding", "peaceful",
"kind", "rejoicing", "serene", "soothing", "supportive", "sympathetic",

"tender", "vibrant", "warmhearted", "winsome"

Negative Synonyms
"harsh", "sad", "angry", "upset", "depressed", "bitter", "gloomy", "anxious",

"worried", "hostile", "resentful",
"unhappy", "irritable", "moody", "pessimistic", "fearful", "dismal",

"horrible", "awful", "nasty", "unpleasant",
"terrible", "mean", "cruel", "hurtful", "jealous", "malicious", "miserable",

"regretful", "scornful",
"troubled","spiteful", "tense", "vindictive", "vulgar", "wicked", "wretched",

"abrasive", "agonizing",
"evil", "brutal", "callous", "coldhearted", "disrespectful", "frustrated",

"hateful", "hostile", "intolerant", "nervous",
"repulsive"

]

Listing 3. Bert Breakpoint Simulation

F. Downsampling Ablation Studies
Tables 5, 6 and 7 compare performance of TabPFN and XGBoost under different downsampling techniques for 3 embeddings
fasttext, skrub and autogluon types respectively. We include multiple strategies including statistical tests (t-test, ANOVA),
regularization (Lasso), variance-based selection, PCA, correlation, and SHAP importance. We preserve important default
columns while downsampling high-dimensional features to a specified maximum, with fallback to random selection if
needed. The blanks generally mean the features were below the max-features threshold, or at times it’s task specific, for e.g:
t-test and Anova are classification specific downsampling techniques so these techniques are skipped for regression tasks.
Skrub embeddings generally remained below the dimensionality threshold hence downsampling techniques were skipped
for most datasets, whereas fasttext embeddings generally overshot the threshold hence we downsampled them, expecting
noise reduction to improve performance. Table 2 compares the best model-embedding combination under SHAP feature
selection technique selected from these tables.

Dataset TabPFNv2 XGBoost

t-test anova variance pca corr. shap rand. all t-test anova variance pca corr. shap rand. all

airbnb – – 0.675±0.043 0.675±0.044 0.686±0.050 0.682±0.054 0.682±0.049 – – – 0.582±0.057 0.595±0.036 0.570±0.037 0.567±0.053 0.583±0.045 –

beer – – 0.632±0.013 0.640±0.015 0.617±0.018 0.646±0.023 0.631±0.021 – – – 0.519±0.024 0.520±0.024 0.570±0.020 0.594±0.036 0.562±0.023 –

calif houses – – 0.736±0.040 0.741±0.045 0.761±0.039 0.753±0.035 0.745±0.042 – – – 0.702±0.035 0.683±0.039 0.706±0.032 0.660±0.074 0.706±0.032 –

laptops – – 0.880±0.016 0.874±0.024 0.884±0.009 0.882±0.014 0.893±0.017 – – – 0.761±0.033 0.770±0.031 0.806±0.048 0.811±0.037 0.807±0.037 –

mercari – – 0.199±0.050 0.197±0.041 0.221±0.036 0.237±0.050 0.199±0.042 – – – -0.006±0.194 -0.014±0.227 0.127±0.046 0.110±0.062 0.077±0.125 –

sf permits – – 0.504±0.058 0.500±0.058 0.489±0.066 0.494±0.062 0.494±0.062 – – – 0.406±0.041 0.400±0.052 0.412±0.034 0.426±0.040 0.403±0.061 –

wine – – 0.486±0.110 0.479±0.113 0.512±0.115 0.571±0.115 0.516±0.093 – – – 0.149±0.237 0.153±0.223 0.343±0.177 0.394±0.098 0.301±0.202 –

customer complaints – 0.691±0.025 0.681±0.027 0.683±0.029 – 0.688±0.024 0.687±0.027 – – 0.666±0.021 0.667±0.026 0.662±0.029 – 0.672±0.021 0.672±0.029 –

job frauds 0.945±0.005 0.949±0.005 0.941±0.014 0.937±0.012 – 0.954±0.005 0.951±0.007 – 0.947±0.001 0.948±0.005 0.944±0.012 0.939±0.010 – 0.949±0.005 0.948±0.007 –

hs cards – 0.709±0.011 0.707±0.008 0.712±0.009 – 0.703±0.008 0.694±0.008 – – 0.726±0.005 0.729±0.010 0.729±0.012 – 0.724±0.011 0.718±0.008 –

kickstarter 0.772±0.009 0.772±0.013 0.764±0.010 0.766±0.011 – 0.779±0.016 0.770±0.015 – 0.755±0.007 0.755±0.012 0.749±0.016 0.750±0.023 – 0.769±0.014 0.747±0.011 –

osha accidents 0.575±0.008 0.566±0.009 0.551±0.023 0.563±0.019 – 0.579±0.015 0.552±0.018 – 0.561±0.029 0.551±0.016 0.538±0.006 0.535±0.018 – 0.571±0.009 0.554±0.017 –

spotify – 0.822±0.013 0.823±0.016 0.826±0.014 – 0.815±0.010 0.816±0.012 – – 0.814±0.007 0.812±0.009 0.811±0.009 – 0.807±0.012 0.800±0.010 –

Table 5. Comparison of TabPFNv2 and XGBoost on FastText data embedding across downsampling techniques. Bolded values indicate
the best performing method per model. Standard deviations (±) are shown as subscripts.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Towards Benchmarking Foundation Models for Tabular Data With Text

Dataset TabPFNv2 XGBoost

t-test anova variance pca corr. shap rand. all t-test anova variance pca corr. shap rand. all

airbnb – – 0.680±0.047 0.680±0.049 0.679±0.049 0.681±0.048 0.681±0.047 – – – 0.552±0.027 0.541±0.047 0.568±0.043 0.562±0.047 0.545±0.059 –

beer – – – – – – – 0.634±0.005 – – – – – – – 0.560±0.021

calif houses – – – – – – – 0.738±0.037 – – – – – – – 0.689±0.012

laptops – – 0.895±0.025 0.896±0.023 0.908±0.022 0.900±0.022 0.896±0.024 – – – 0.809±0.044 0.825±0.040 0.829±0.053 0.833±0.046 0.822±0.041 –

mercari – – – – – – – 0.155±0.028 – – – – – – – 0.099±0.046

sf permits – – – – – – – 0.505±0.060 – – – – – – – 0.437±0.053

wine – – – – – – – 0.467±0.145 – – – – – – – 0.213±0.263

customer complaints – – – – – – – 0.692±0.027 – – – – – – – 0.678±0.037

job frauds – – – – – – – 0.953±0.007 – – – – – – – 0.952±0.007

hs cards – – – – – – – 0.689±0.011 – – – – – – – 0.723±0.013

kickstarter – – – – – – – 0.763±0.019 – – – – – – – 0.747±0.023

osha accidents – – – – – – – 0.560±0.015 – – – – – – – 0.535±0.018

spotify – – – – – – – 0.810±0.007 – – – – – – – 0.760±0.021

Table 6. Comparison of TabPFNv2 and XGBoost using Skrub features across downsampling techniques. Bolded values indicate the best
performing method per model. Standard deviations (±) are shown as subscripts.

Dataset TabPFNv2 XGBoost

t-test anova variance pca corr. shap rand. all t-test anova variance pca corr. shap rand. all

airbnb – – 0.673±0.048 0.675±0.044 0.684±0.047 0.692±0.048 0.678±0.047 – – – 0.603±0.043 0.601±0.034 0.617±0.057 0.603±0.060 0.598±0.040 –

beer – – 0.609±0.016 0.612±0.015 0.609±0.019 0.618±0.014 0.603±0.020 – – – 0.559±0.010 0.540±0.023 0.548±0.024 0.553±0.030 0.539±0.023 –

calif houses – – 0.736±0.037 0.738±0.030 0.741±0.032 0.747±0.039 0.735±0.026 – – – 0.678±0.044 0.687±0.041 0.707±0.033 0.696±0.020 0.678±0.027 –

laptops – – 0.897±0.027 0.899±0.029 0.890±0.021 0.902±0.023 0.895±0.018 – – – 0.804±0.041 0.799±0.047 0.822±0.016 0.815±0.042 0.804±0.037 –

mercari – – 0.119±0.021 0.123±0.023 0.151±0.022 0.173±0.037 0.051±0.021 – – – 0.096±0.092 0.072±0.042 0.096±0.192 0.096±0.070 -0.266±0.270 –

sf permits – – 0.491±0.061 0.482±0.061 0.494±0.065 0.492±0.058 0.488±0.052 – – – 0.437±0.046 0.437±0.025 0.451±0.050 0.420±0.054 0.436±0.032 –

wine – – 0.505±0.124 0.503±0.114 0.531±0.110 0.527±0.135 0.456±0.134 – – – 0.283±0.305 0.281±0.288 0.317±0.354 0.339±0.243 0.184±0.302 –

customer complaints – 0.673±0.029 0.681±0.034 0.682±0.027 – – 0.677±0.030 0.678±0.029 – 0.666±0.021 0.669±0.018 0.650±0.014 – 0.664±0.019 0.662±0.020 –

job frauds 0.950±0.006 0.947±0.007 0.945±0.006 0.946±0.005 – 0.962±0.008 0.915±0.007 – 0.940±0.006 0.946±0.002 0.953±0.005 0.952±0.005 – 0.958±0.004 0.919±0.008 –

hs cards – – – – – – – 0.683±0.010 – – – – – – – 0.698±0.015

kickstarter 0.756±0.021 0.700±0.017 0.762±0.015 0.763±0.018 – 0.767±0.015 0.757±0.017 – 0.721±0.020 0.679±0.014 0.721±0.008 0.721±0.012 – 0.731±0.010 0.729±0.020 –

osha accidents 0.568±0.012 0.556±0.011 0.560±0.018 0.565±0.014 – 0.613±0.006 0.557±0.013 – 0.557±0.011 0.535±0.013 0.564±0.015 0.559±0.025 – 0.599±0.020 0.542±0.007 –

spotify – 0.713±0.011 0.718±0.006 0.713±0.007 – 0.716±0.011 0.704±0.015 – – 0.712±0.028 0.713±0.015 0.711±0.023 – 0.706±0.019 0.703±0.023 –

Table 7. Performance comparison of TabPFNv2 and XGBoost using AutoMLPipelineFeatureGenerator across various downsampling
techniques. Bolded values indicate the best performing method per model. Standard deviations (±) are shown as subscripts.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Towards Benchmarking Foundation Models for Tabular Data With Text

G. Previous Benchmarks Accessment
We provide a detailed review of two prior tabular benchmarks involving text features: CARTE (Kim et al., 2024) and
Amazon’s Multimodal AutoML for Tabular Data (Shi et al., 2021). Our primary focus is CARTE, as it is the more recent
and comprehensive of the two.

The CARTE benchmark includes 40 regression and 11 classification datasets. However, upon close examination, we find that
many of these datasets are ill-suited for benchmarking systems that aim to handle tabular data with semantically rich free-text
features. Below, we highlight common issues and explain why a significant portion of the benchmark is incompatible with
our goal of an evaluation design representative of real-world tabular data with text.

G.1. TL;DR

Applying the following filters left only a handful of CARTE tasks that meet our criteria for a realistic “tables & text”
benchmark. Datasets were discarded if they

1. reused identical rows with highly correlated targets;

2. collapsed into the same domain once feature spaces were merged;

3. exposed artificially thresholded (binary) classification labels;

4. relied on undocumented, dataset-specific feature engineering; or

5. contained no genuinely semantic text column after a uniqueness check.

What survived. Ultimately, we retained only three well-aligned datasets, Spotify , Wine reviews, and Beer reviews—keeping
the single variant of each that best showcases semantically rich text.

Augmentation. Even after this trimming, the pool was too small for a balanced benchmark, so we added datasets from
Amazon’s Multimodal AutoML for Tabular Data benchmark (Shi et al., 2021), whose “quality-over-quantity” philosophy
already requires only light cleaning.

Context. We recognise that CARTE was designed mainly for schema-matching based transfer learning, not pure text–tabular
modelling. That broader goal explains its generous, sometimes redundant selection, but also renders several tasks ill-suited
to our focus on semantic text usage.

Resulting suite. The final benchmark therefore combines carefully screened tasks from both sources, providing an even mix
of regression and classification problems, each with

• a native, semantically meaningful target,

• at least one rich text column complementing structured features, and

• minimal, fully documented preprocessing.

G.2. Domain Redundancy and Target Overlap

One of the most immediate issues we observed is the reuse of the same dataset under different targets. For example, several
wine review datasets are evaluated both on price and rating targets:

Table 8. List of datasets reused with different target columns.

Dataset Target 1 Target 2 Retains the Other Target?

Wine.com Rating Prices Yes
Wine Enthusiasts Points Price Yes
Wine Vivino Price Rating Yes

From a modeling perspective, targets like price and rating are often strongly correlated and are unlikely to offer an
independent benchmarking signal. Including both only serves to overweight particular domains and can bias results toward
models that perform well in those areas.

15

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

Towards Benchmarking Foundation Models for Tabular Data With Text

G.3. Limited Domain Diversity

Beyond target redundancy, we also observe limited domain diversity within the dataset pool. When grouped by thematic
content or feature-space similarity, the 51 datasets consolidate into approximately 14 to 20 distinct domains. The exact
number depends on how strictly one chooses to merge datasets that differ topically but share structural similarities. For
example, coffee and alcohol reviews exhibit nearly identical feature schemas and prediction targets, and can reasonably be
grouped under a single “consumables/sensory” domain.

To reduce manual bias in domain classification, we leverage large language models for an independent grouping. Specifically,
we use OpenAI’s GPT-4o to assess dataset similarity based solely on feature names, representative values, and a prompt
describing the benchmark context. This LLM-driven process yields 14 coherent domain groupings, aligning with the lower
bound of our manual estimate.

Below, we present our manually derived, more permissive domain categorization of datasets from the CARTE benchmark:

Regression Dataset Domains
• Movies and Shows: Anime Planet, Japanese Anime, K-Drama, Filmtv Movies, Mydramalist, Rotten Tomatoes

• Kid Products: Babies R Us, Buy Buy Baby

• Alcohol Reviews: Beer Rating, Wikiliq (Beer & Spirits), Wina Poland, Wine.com, WineEnthusiasts, WineVivino

• Bike & Car Listings: Bikewale, Bikedekho, Cardekho, Used Cars 24, Used Cars Benz Italy, UsedCars.com, Used
Cars Pakistan, Used Cars Saudi Arabia

• Salaries: Employee remuneration, Employee Salaries, ML/DS Salaries

• Academic Text: Journal Score JCR, Journal Score SJR

• Other: Clear Corpus, Company Employees, Fifa22 Players, Museums, Prescription Drugs, Videogame Sales, US
Accidents

Classification Dataset Domains
• Restaurants: Zomato, Yelp, Michelin

• Cross-domain: Whisky (Alcohol), Roger Ebert (Movies), US Accidents (also used in regression)

• Miscellaneous: NBA Draft, Spotify, Ramen rating, Chocolate Bars Ratings, Coffee Ratings

G.4. Qualitative Evaluation via Semantic Matching

To better understand the extent of feature overlap across datasets, we performed a semantic feature comparison using
OpenAI’s gpt-4o. Given the cost of evaluating all pairwise combinations, we present a smaller pilot study using a standardized
prompt to extract semantically aligned and misaligned features.

prompt_template = """
Analyze and compare the feature space of two datasets: {dataset1_name} and

{dataset2_name}.
Identify relationships between feature names using semantic reasoning.

Your Task:
1. **Find Similar Features**: Identify columns that represent the same concept, even

if their names differ.
- Match based on **data type, structure, and naming conventions**, rather than

relying solely on example values.
- Consider cases where **one feature in a dataset maps to multiple features** in

the other dataset.
- Note: When a column represents an inherent property of the entity (such as its

name, title, or composition/build/materials), treat it as similar across
datasets unless context clearly indicates a different meaning.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Towards Benchmarking Foundation Models for Tabular Data With Text

2. **Identify Dissimilar Features**: Columns that do not have a meaningful equivalent
in the other dataset.
- Consider **data type mismatches** (e.g., numeric vs. categorical).
- Features that belong to completely different contexts should be classified as

dissimilar.
- For instance, even if the same term (e.g., "location") is used in both datasets,

they should only be considered similar if their contexts align.

Additional Guidelines:
- **Return column names, with original example values.** Do not assume or generate

example values.
- Consider **semantic similarity** beyond direct string matching.
- Account for **differences in feature naming conventions** (e.g., "price" vs.

"cost", "region" vs. "province").
- **Preserve structured output strictly in JSON format** - avoid any additional text

or explanations.
- Make sure you always return a pair of features for the "similar_features" section.

Expected Output:
{format_template}

Dataset 1: {dataset1_name}
{dataset1_values}

Dataset 2: {dataset2_name}
{dataset2_values}

"""

Listing 4. Prompt for feature similarity decision via ChatGPT’s 4o model. The <format template> is excluded from the prompt to save
space, its structure is visible from the example return in Listing 5.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Towards Benchmarking Foundation Models for Tabular Data With Text

"carte_ramen_ratings vs carte_coffee_ratings": {
"similar_features": [

{
"dataset1_col_name": {"Brand": "MIT"},
"dataset2_col_name": {"roaster": "A.R.C."},
"reason": "Both represent the product’s manufacturer or origin."

},
...

],
"dissimilar_features": {

"dataset1": [{"col_name": "Style", ...}],
"dataset2": [{"col_name": "origin", ...}]

}
}

Listing 5. Sample output: comparing coffee vs ramen datasets

This structured approach highlights redundancy in several benchmark domains and provides a stronger justification for a
more curated benchmark.

Visualizing Feature Overlap. Figures 2 and 3 visualize the directional feature coverage between dataset pairs using
both continuous and binary heatmaps. Each matrix cell (A → B) quantifies the proportion of features in dataset A that
were semantically matched to features in dataset B, computed as #similar features/(#similar+#dissimilar features in A).
This directional score captures asymmetries due to differing feature schema sizes.

The left heatmaps show the raw similarity scores, masked where no semantic match was found. The right binary heatmaps
classify directional similarity using a threshold of 0.5. Blue cells indicate weak or no similarity, green cells indicate strong
directional similarity (≥ 0.5), and light grey diagonal entries denote self-comparisons.

The vehicle-related datasets (Figure 2) form a tightly connected group, exhibiting high inter-coverage and structural overlap.
In contrast, cross-domain comparisons (Figure 3) such as between healthcare, music, and automotive datasets show low
feature alignment.

Together, these visualizations support our core observation: while some dataset groups exhibit redundancy and high overlap,
the broader benchmark pool lacks diversity and coherent structure, underscoring the need for more principled dataset
selection in text-tabular benchmarks.

Directional Table Comparisons. Tables 10 and 9 provide the raw counts underlying the directional similarity scores in
Figures 2 and 3. Each cell reports the number of semantically matched features divided by the total number of features in
the source dataset (row).

These counts demonstrate why directionality is essential. A large dataset may match many features in a smaller one, but this
overlap may still represent a small fraction of its own schema. For example, cars 24 matches 2 features in museums,
yielding 2/17 in one direction and 2/9 in the other—highlighting a twofold difference in perceived similarity.

We observe similar effects even among closely related datasets. In Table 10, comparisons with cardekho (17 features)
consistently yield lower scores from other datasets, despite sharing similar content. Without directionality, such asymmetries
would be obscured, potentially misleading benchmark interpretations.

G.5. Dataset-Specific Pre-processing

A less visible, but highly consequential, aspect of CARTE is the amount of dataset-specific pre-processing embedded in
the official dataset loaders shared by the authors. These routines do far more than generic cleaning: while many datasets
receive only light scrubbing, a non-trivial subset is significantly modified: columns are renamed, features merged or split,
categorical values recoded with expert priors, and even the target variable transformed. While such changes may boost model
performance by providing richer semantics, the paper itself mentions only “minimal preprocessing,” without elaboration.
Because these steps are hard-coded and undocumented, reproducing CARTE results with an independent pipeline is
effectively impossible.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Towards Benchmarking Foundation Models for Tabular Data With Text

cars 24 museums spotify prescript drugs wine vivino rating videogame sales anime planet

cars 24 – 2 / 17 3 / 19 3 / 8 3 / 9 2 / 6 2 / 11
museums 2 / 9 – 1 / 19 2 / 8 2 / 9 2 / 6 3 / 11
spotify 3 / 9 1 / 17 – 3 / 8 3 / 9 1 / 6 2 / 11
prescript drugs 3 / 9 2 / 17 3 / 19 – 4 / 9 2 / 6 3 / 11
wine vivino rating 3 / 9 2 / 17 3 / 19 4 / 8 – 2 / 6 4 / 11
videogame sales 2 / 9 2 / 17 1 / 19 2 / 8 2 / 9 – 4 / 11
anime planet 2 / 9 3 / 17 2 / 19 3 / 8 4 / 9 4 / 6 –

Table 9. Matched feature counts for dissimilar datasets. Row = source dataset, column = target dataset.

bikedekho cardekho cars 24 cars pakistan bikewale cars italy cars SA cars dot com

bikedekho – 4 / 16 7 / 9 5 / 8 7 / 8 4 / 8 7 / 11 7 / 12
cardekho 4 / 8 – 7 / 8 4 / 8 5 / 8 5 / 8 8 / 11 7 / 11
cars 24 7 / 8 7 / 17 – 5 / 8 6 / 8 5 / 8 7 / 11 7 / 11
cars pakistan 5 / 8 4 / 17 5 / 9 – 5 / 8 4 / 8 6 / 11 7 / 11
bikewale 7 / 8 5 / 17 6 / 9 5 / 8 – 6 / 9 5 / 11 4 / 11
cars italy 4 / 8 5 / 17 5 / 8 4 / 8 6 / 8 – 5 / 11 4 / 11
cars SA 7 / 8 8 / 17 7 / 9 6 / 8 5 / 8 5 / 8 – 9 / 11
cars dot com 7 / 8 7 / 17 7 / 9 7 / 9 4 / 8 4 / 8 9 / 12 –

Table 10. Matched feature counts for similar datasets. Row = source dataset, column = target dataset.

Figure 2. Directional feature coverage between used vehicle listing datasets. Left: proportion of semantically similar features from dataset
A to B. Right: binary thresholded version where coverage ≥ 0.5 is highlighted in blue. Grey cells indicate missing comparisons.

Not all datasets are affected. While many datasets in CARTE undergo only minimal hygiene steps (e.g., dropping
high-null columns or coercing obvious types), we find that a substantial subset, roughly 10 out of the 51, are subject to
heavier, dataset-specific transformations. These go beyond what we would consider acceptable for a general-purpose
benchmark and instead introduce domain-specific engineering choices. Our concern is not with basic cleanup, but with the
lack of transparency and consistency in how deeper interventions are applied. For details on what we consider minimal and
acceptable preprocessing, see Section A.

Illustrative examples. Listings 6 and 7 show two typical cases:

19

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

Towards Benchmarking Foundation Models for Tabular Data With Text

Figure 3. Directional feature coverage between cross-domain datasets with low expected similarity. The left heatmap shows continuous
coverage from dataset A to B; the right applies a binary threshold of ≥ 0.5. Grey cells indicate unpaired or unmatched datasets.

• whisky 1. maps a five-level price code ($–$$$$$) to coarse text ranges, 2. replaces a one-letter flavour cluster with
a multi-word description, 3. drops three columns, fills missing values, binarises the Meta Critic target at 8.6, and
4. prunes high-null and single-unique features.

• used cars pakistan 1. concatenates Brand, Model, and Version into one string, 2. log-transforms the price
(base 100), 3. coerces several numeric columns to strings or floats, and 4. applies the same null- and uniqueness-based
column drops.

1 # --- recode price brackets (5 -> 6 text ranges) ------------------
2 data["Cost"] = data["Cost"].map({
3 "$$$$$+": "over 300 CAD",
4 "$$$$$" : "125-300 CAD",
5 "$$$$" : "70-125 CAD",
6 "$$$" : "50-70 CAD",
7 "$$" : "30-50 CAD",
8 "$" : "< 30 CAD"
9 })

10

11 # --- expand one-letter flavour clusters -------------------------
12 cluster_map = {"A": "... sweet, fruity, spicy",
13 "B": "... floral, malty",
14 "J": "dry, very smoky, pungent", ...}
15 data["Cluster"] = data["Cluster"].map(cluster_map)
16

17 # --- binarise target ---
18 data["Meta_Critic"] = (data["Meta_Critic"] > 8.6).astype(int)

Listing 6. CARTE’s key preprocessing steps for whisky

1 # --- standardise column names & dtypes -------------------------
2 data.rename(columns={"Make":"Brand","Make_Year":"Year","CC":"Engine_Capacity"},

inplace=True)
3 data = data.astype({"Year":str, "Engine_Capacity":float, "Mileage":float})
4

5 # --- join brand/model/version into one text feature ------------
6 data["Model"] = data["Brand"] + " " + data["Model"] + ", " + data["Version"]
7 data.drop(columns=["Brand","Version"], inplace=True)
8

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Towards Benchmarking Foundation Models for Tabular Data With Text

9 # --- log-transform target (base-100) ---------------------------
10 data["Price"] = np.emath.logn(100, data["Price"])

Listing 7. CARTE’s key preprocessing steps for used cars pakistan

Why this matters. Such tailored transformations effectively inject domain knowledge and can inflate performance for
models that rely on these engineered signals (e.g., composite model names or price buckets). At the same time, other models
that might have performed better with the original data are negatively represented. We argue that one would either perform
manual preprocessing for all models individually, or for none at all.

G.6. Artificial Targets and Label Construction

Another concern in CARTE is the presence of artificial or weakly motivated targets, particularly in their classification tasks.
Of the 11 classification datasets, many are derived from regression settings where continuous labels are simply thresholded
into binary classes.

This design choice introduces several problems:

• Loss of task fidelity: Binarising a continuous outcome (e.g., review scores or numerical metrics) removes useful
information and distorts the underlying distribution.

• Unclear target motivation: In several cases, the classification target does not appear meaningfully aligned with
the available features. For example, in nba draft, the label indicates whether a player had “positive value over
replacement”. This is a long-term outcome influenced by team context, opportunity, and external factors not represented
in the dataset. Without such contextual features, it’s unclear how this target can be reliably predicted.

• Reduced benchmark utility: These constructions skew the task distribution toward binary classification, limiting the
benchmark’s diversity and making it a poor proxy for real-world classification challenges.

Not all classification targets in CARTE are problematic, e.g., spotify uses “major vs minor key” which, while narrow, is
at least categorical by nature. But overall, we find that most of the classification datasets do not represent native classification
problems and instead reflect arbitrary thresholding over numerical data.

For a robust benchmark, classification tasks should arise from semantically grounded, categorical outcomes rather than
being retrofitted from regression labels.

G.7. Data Accessibility and Reproducibility

While not a primary concern for CARTE, we believe it’s important to highlight a broader issue in multimodal tabular
benchmarks: dataset accessibility. For a benchmark to be truly useful and reproducible, its datasets should be easy to access,
ideally via direct download or a minimal sign-up process.

Unfortunately, several works in this domain, such as the AutoML Benchmark (Shi et al., 2021), include datasets sourced
from platforms like MachineHack or private competitions. These often require non-trivial setup: creating platform accounts,
joining specific challenges, or navigating manual approval processes.

The situation is even more restrictive for medical datasets like MIMIC-III, where individual institutional review and data
use agreements are needed. While these restrictions are understandable in domain-specific contexts, they pose a significant
barrier for community benchmarks that aim to support widespread experimentation and reproducibility.

In our view, benchmark datasets should be:

• publicly accessible without extended registration or approval steps;

• accompanied by scripts or loaders that work out of the box

• stable over time (i.e., not dependent on ephemeral hosting or event-based portals).

Without these guarantees, reproducing results becomes cumbersome and sharing new methods becomes dependent on access
to gated data, ultimately undermining the purpose of benchmarking.

21

https://machinehack.com

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

Towards Benchmarking Foundation Models for Tabular Data With Text

G.8. Free Text Is Not Always Free Text

When building benchmarks for tabular models that incorporate textual inputs, it is essential to verify that the so-called ”text”
columns are truly semantic in nature, not merely strings in format. Many datasets include string-valued fields that function
more like categorical variables or identifiers, such as product codes, model names, or brand labels. While technically textual,
these features typically do not require or benefit from text-aware modeling.

To better characterize this, our internal analysis includes basic statistics such as the number of unique values per column.
This helps reveal whether string columns behave more like free text or structured categories. For instance, a column with
only a few dozen repeated string values is unlikely to encode the kind of nuanced semantics that justify using advanced text
encoders.

In the case of CARTE, to be fair, the benchmark does not explicitly position itself as targeting free-text reasoning. However,
it has often been interpreted that way within the community. Based on our analysis, only around half of the datasets
(depending on the threshold applied) contain string features with enough diversity to be meaningfully treated as textual
inputs. This highlights the importance of validating the modality of features, rather than assuming all string-typed columns
warrant semantic modeling.

Yet, at least one example of a dataset with non-semantically rich free text features: ‘us-accidents-counts’ dataset in the
CARTE benchmark has textual columns such as ’ZIPCODE’ or ‘AIRPORT-CODE’ which have no semantic value or
concrete relevance to the target feature of accident counts in the city.

G.9. How to Choose a Good Prediction Task Dataset?

To assess the suitability of datasets for prediction tasks, we conducted an analysis on both CARTE’s benchmark datasets and
those in our own benchmark. This analysis leveraged GPT-4o to evaluate whether each dataset is well-aligned with the
intended task objectives. The prompt used for this evaluation is shown in Listing 8.

We illustrate GPT’s assessment using two example datasets: CARTE’s us-accidents and our own beer-rating.
Based on GPT’s evaluations, the majority of CARTE’s datasets were categorized as either Red or Yellow, indicating potential
issues in task alignment. In contrast, our benchmark datasets were predominantly classified as Green, suggesting a stronger
fit for the intended prediction tasks.

These findings support our motivation to develop a new benchmark that addresses some of CARTE’s limitations, as identified
through GPT’s interpretations. It is important to note that these assessments were based on GPT-4o at the time of testing and
may evolve with future model updates.

prompt_template = """
I am a researcher in the field of AI and I want to create a benchmark for tabular

datasets with meaningful textual features. The textual features would be replaced
with textual embeddings and the dataset will be used to benchmark a set of different
tabular models. For each dataset I will provide you with column names, first few
rows and declaration of the target feature. Based on conditions below, review each
dataset and classify it as Green (meets all conditions), Yellow (meets some), or Red
(meets none) based on its fitness to be included in the benchmark, then justify your
choice.

The general conditions are:
(1) suitability for regression/classification (not recommendation or look up table tasks),
(2) prediction is to be boosted by both textual and non textual features
(3) target feature is native to the prediction task and relavant to the feature space
(4) Textual features are semantically rich (e.g., ’item_condition’ > ’seller_name’).
(5) The features must contain enough signal for the model to go beyond predicting the

mean/target statistics.
Always explain your reasoning
(e.g., ’Yellow: meets 1, 3, and 5 but lacks long-text features’ and hence is not a good

fit for the benchmark).
"""

Listing 8. Prompt for analysing dataset fit for Text for Tabular data benchmark.

Answer: """

22

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

Towards Benchmarking Foundation Models for Tabular Data With Text

Classification: RED

Analysis:

Condition 1: Suitability for regression or classification

Met. The target column "Counts" is a numeric value, which makes the dataset suitable for
a regression task.

Condition 2: Prediction is to be boosted by both textual and non-textual features

Not met. While the dataset includes textual features like "City", "County", and "State",
these are short categorical labels. They are not semantically rich and are unlikely
to benefit from textual embeddings. Features like "Zipcode", "Code", and
"Airport_Code" are identifiers or codes, not meaningful text.

Condition 3: Target is native to the task and relevant to the features

Partially met. The target "Counts" might represent some countable event or measurement,
but there is no clear link between the features and the target. For example, the same
city and zipcode appear with very different count values, suggesting missing context.

Condition 4: Textual features are semantically rich

Not met. The textual features in the dataset are names of locations and codes. These are
not descriptive, long-form, or semantically meaningful in a way that text embeddings
would capture. This limits their utility in a benchmark focused on rich textual input.

Condition 5: Dataset has enough signal to go beyond predicting the mean

Partially met. While ’Counts’ varies across rows, the available features do not clearly
explain that variance. This limits a model’s ability to learn meaningful patterns
beyond simple statistics.

Conclusion:
This dataset is not a good candidate for a benchmark focused on textual embeddings in

tabular models. It lacks rich textual features and does not offer strong predictive
links between inputs and target values.

Final Rating: RED: Only condition 1 is clearly met.
"""

Listing 9. GPT’s verdict on ‘us-accidents-counts’ dataset from CARTE benchmark.

Answer: """
Classification: GREEN

Analysis:

Condition 1: Suitability for regression or classification
Met. The target column "review_overall" is a numeric value, which makes this a valid

regression task.

Condition 2: Prediction is to be boosted by both textual and non-textual features
Met. The dataset includes a rich textual feature ("Description") that contains tasting

notes and product details. In addition, there are structured numeric features like
"ABV", "Min IBU", "Max IBU", and flavor attributes such as "Sweet", "Sour", and
"Hoppy". This combination supports modeling with both types of features.

Condition 3: Target is native to the task and relevant to the feature space
Met. The "review_overall" rating is directly related to the beer’s style, taste, and

description. It is a natural outcome of the given features, which makes it highly
relevant.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Towards Benchmarking Foundation Models for Tabular Data With Text

Condition 4: Textual features are semantically rich
Met. The "Description" field includes full sentences and tasting notes. This is

semantically rich text that can benefit from text embeddings and contributes
meaningfully to model performance.

Condition 5: Dataset has enough signal to go beyond predicting the mean
Met. There is variability in the review scores and the number of reviews. Combined with

detailed feature data, the model has enough signal to learn meaningful patterns
rather than just guessing the average.

Conclusion:
This dataset is well-suited for benchmarking tabular models that integrate textual

embeddings. It includes a strong combination of structured and unstructured features,
a meaningful target, and enough variability to support learning.

Final Rating: GREEN - Meets all conditions.
"""

Listing 10. GPT’s verdict on ‘beer-rating’ dataset from our benchmark.

24

