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ABSTRACT

Many graphs can be represented as Text-attributed Graphs (TAGs). Due to the
rich textual information present in each node of TAGs, traditional graph neu-
ral networks (GNNs) often struggle to deliver satisfactory performance. Recent
advancements leveraging large language models (LLMs) to augment new node
text features have notably enhanced node representations, resulting in significant
performance improvements. However, these methods typically require extensive
annotations or fine-tuning on all nodes, which are both time-consuming and ex-
pensive. To address this challenge, we propose GAGA, a novel and lightweight
framework for TAG representation learning. GAGA employs a more efficient
strategy by annotating only representative nodes and edges, thereby reducing both
annotation time and cost. It further capitalizes on these annotations by construct-
ing an annotation graph that captures the topological relationships among them.
Additionally, GAGA introduces a two-level alignment module to integrate the an-
notation graph with the TAG, ensuring effective alignment of their underlying
structures. Experiments demonstrate that GAGA achieves classification accura-
cies comparable to or exceeding state-of-the-art methods while requiring only 1%
of the data to be annotated, making it highly efficient.

1 INTRODUCTION

In real-world scenarios, many graphs can be effectively represented as text-attributed graphs (TAGs)
(Yang et al., 2021), such as paper citation networks and product purchase graphs. In TAGs, nodes
represent pieces of text, and edges signify connections between these nodes, such as citations or
purchases. A classic example is the Ogbn-arxiv (Hu et al., 2020a) dataset, where nodes represent
the titles and abstracts of academic papers, and edges denote citation relationships. TAGs hold
significant practical value in areas such as text classification (Yang et al., 2015), recommendation
systems (Juan et al., 2023), social networks (Li et al., 2022), and fake news detection (Kananian
et al., 2024).

In recent years, numerous models have been proposed to tackle challenges related to node classifi-
cation (Maekawa et al., 2022) and link prediction (Zhang & Chen, 2018) in TAGs. For example, tra-
ditional graph neural networks (GNNs) like Graph Convolutional Network (GCN) (Kipf & Welling,
2016a) and GraphSAGE (Hamilton et al., 2017) have been widely used for node classification tasks
on TAGs. However, compared to classical graph data, directly leveraging these GNN architectures
often struggles to achieve satisfactory performance on TAGs, particularly on large-scale datasets
like Ogbn-arxiv. A key challenge with TAGs is that canonical GNN models tend to emphasize the
graph structure while potentially underutilizing the rich textual information associated with each
node, which is essential for capturing the context of nodes (Yan et al., 2023).

To further improve the performance, some recent works have started to augment information on
graph data. Specifically, with the advent of large language models (LLMs), several studies started
to leverage LLMs to generate new textual features for TAGs. The primary motivation for incor-
porating LLM-generated textual features is to utilize the vast world knowledge embedded in these
models. This allows for the extraction of high-quality features that surpass those derived from raw
text alone (He et al., 2023; Duan et al., 2023). For example, TAPE (He et al., 2023) prompts LLMs
to predict node categories and to provide explanations for their own predictions. These predictions
and explanations can be seen as summarization or an enhancer for each node and utilized as new
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Time: 694 min
Cost: 113.39 $

TAG

Annotate all nodes Select and Annotate

Annotation Graph

Time:    80 min
Cost:     2.87 $

[Q]Title: An all around near optimal solution for the
classic bin packing problem
Abstract: In this paper we present the first algorithm
with optimal average-case ...
Question: Which arXiv CS subcategory does this
paper belong to? Give 5 likely arXiv CS sub-
categories as a comma-separated list ordered from
most to least likely, in the form “cs.XX”, list the
most important concepts in the paper. Explain what
knowledge is needed to understand the concepts.

[A]Based on the content of the abstract, the paper likely
belongs to the following arXiv CS subcategories: cs.DS,
cs.CG, cs.NE, cs.AI …
Important Concepts in the Paper:
1. Bin Packing Problem: A classic optimization

problem where the goal is to pack objects …
2. Competitive Ratio: Measure of performance of …
3. Average-case Performance: …
4. First Fit and Best Fit Algorithms: …
5. Harmonic Algorithm: A specific algorithm for bin

packing that improves the competitive ratio …
Knowledge Needed to Understand the Concepts:
Algorithm Analysis, Probability and Statistics ...
Reasoning: The paper focuses on algorithms for the bin
packing problem, which is a fundamental topic in data
structures and algorithms (cs.DS). ...

Title: An all around near optimal solution
for the classic bin packing problem
Abstract: In this paper we present the first
algorithm with optimal average-case ...
Question: Which arXiv CS subcategory
does this paper belong to? Give 5 likely
arXiv CS sub-categories as a comma-
separated list ordered from most to least
likely, in the form “cs.XX”, and provide
your reasoning.

The paper you described seems to belong to
the field of theoretical computer science,
specifically in the area of algorithms and
data structures. Based on the content of the
abstract, here are five likely arXiv CS sub-
categories, ordered from most to least likely,
along with the reasoning:
cs.DS : ...
cs.DM : ...
cs.GT : ...
These categories are based on the content of
the abstract and the focus on algorithmic
analysis and performance evaluation.

Figure 1: Comparison of TAPE and GAGA. Unlike TAPE, GAGA does not annotate all nodes.
Instead, it employs representative selection to identify and annotate only the most important nodes.
This approach significantly reduces both the time and cost associated with annotating.

textual features. Sun et al. (2023) takes a different approach by using LLMs to refine the topological
structure of TAGs for node classification. This method begins by employing LLMs to assess se-
mantic similarity between node attributes, which guides the addition and deletion of edges to refine
the graph structure. Furthermore, pseudo-labels generated by the LLMs are used for pseudo-label
propagation, acting as regularization to guide the GNNs to learn appropriate edge weights. Other
work, such as SIMTEG (Duan et al., 2023), first fine-tune language models using node classification
and link prediction tasks to learn node representations. Subsequently, it trains GNNs based on the
embeddings generated by the LLM for node classification. While this approach is straightforward,
fine-tuning LLMs can be time-consuming when dealing with large datasets.

Although existing literature leveraging the powerful text-processing capabilities of LLMs has
achieved impressive results in classification tasks, several critical limitations remain (see Figure
1 for an illustration). Firstly, current approaches need to generate summarization or refine features
for each node or edge, which can be highly time-consuming, especially when dealing with large
datasets. For example, as noted by He et al. (2023), generating predictions and explanations for the
Ogbn-arxiv dataset takes about 9 hours. Secondly, after annotating or refining, previous methods
need to fine-tune all data, making them further time-consuming. Thirdly, using LLMs for annota-
tion is expensive. Existing methods require LLMs to annotate each node, which incurs extremely
high costs and is impractical for large datasets. For example, TAPE costs approximately $128 for
Ogbn-arxiv.

To address the limitations outlined before, we propose GAGA: Graph Alignment Guided Text-
attributed Graph Learning. Instead of generating summarization or refining features for each node,
GAGA focuses on a more efficient strategy by only annotating representative nodes (edges), thereby
reducing both the time and cost of annotation via LLMs. To further utilize these annotations, GAGA
recognizes and incorporates the topological relationships between them by constructing an annota-
tion graph. Then, an alignment module between the annotation graph and the TAGs is introduced,
ensuring that the underlying structures of both graphs are effectively integrated.

There are three stages in GAGA. We aim to obtain a representative set of nodes or edges in the first
stage. Then, we generate annotations for these nodes or edges by prompting LLMs. These anno-
tations are constructed into an annotation graph. In the second stage, through contrastive learning
between these sub-annotation graphs and their corresponding sub-textual graphs, we simultaneously
fine-tune an LLM and a GNN. During our novel-designed and lightweight two-level contrastive
learning process, the LLM captures semantic information from the text, while the GNN processes
the topological structure information of the annotation graphs and textual graphs. In the third stage,
which involves downstream tasks, we only fine-tune the GNN while keeping the LLM frozen. Ex-
perimental results demonstrate that GAGA achieves a classification accuracy that is comparable to
or even exceeds SOTA methods while requiring only 1% of the data to be annotated, making it
3 ∼ 100 times more time-and-cost-efficient. Our contributions can be summarized as follows:
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• We propose GAGA, a lightweight framework for TAG representation learning. Compared
to previous methods, GAGA considers an efficient strategy that only annotates represen-
tative nodes (edges), thereby reducing both the time and cost of annotation via LLMs.
It recognizes and incorporates the topological relationships between these annotations by
constructing an annotation graph.

• Unlike previous methods, which are based on fine-tuning the whole dataset, GAGA lever-
ages the alignment instead. To achieve this, we align sub-annotation graphs with the sub-
graphs in TAG. Specifically, we developed a two-level contrastive learning (sub-graph level
and prototype level), which provides significant improvement in performance. These two
components could also be used in other problems.

• We provide comprehensive experiments to demonstrate the performance of GAGA. Specif-
ically, via experiments over six datasets, GAGA achieves a classification accuracy that is
comparable to or even exceeds SOAT methods for node classification and link prediction
tasks. Moreover, compared to previous LLM-augmented SOTA methods, GAGA only re-
quires 1% of the data to be annotated, making it surprisingly efficient.

2 RELATED WORK

Language Models for Text-Attributed Graph. Traditional GNN approaches typically handle
TAGs by converting textual attributes into features via shallow neural networks, such as bag-of-
words, which limits the comprehensive understanding of textual semantics. Recent research has
focused on embeddings based on language models (LMs) like BERT (Devlin, 2018) to address this
issue. These fine-tuning pre-trained models can effectively generate deep embeddings to capture
the rich semantic information within TAGs. There are two main architectures for empowering TAG
tasks using LMs. The first is the cascaded architecture, where the textual information of nodes is
independently encoded by LMs, and GNN models then aggregate the outputs to obtain the final
embeddings, including TextGNN (Zhu et al., 2021a), GEAR (Zhou et al., 2019), GIANT (Chien
et al., 2021), GPT-GNN (Hu et al., 2020b), and SimTeG (Duan et al., 2023). However, this ap-
proach separates text encoding from graph aggregation, which prevents a unified integration of the
two processes. As a result, the nested architecture has also been widely studied. This approach in-
tegrates text encoding and graph aggregation, performing these tasks iteratively to better unify both
processes. For example, Graphormer (Yang et al., 2021), GLEM (Zhao et al., 2022) and DRAGON
(Yasunaga et al., 2022) follow this nested architecture.

LLMs such as ChatGPT (Brown et al., 2020) have shown tremendous potential in various NLP tasks.
However, how to apply LLMs to graph-structured data, such as TAGs, remains a challenge (Chai
et al., 2023; Qin et al., 2023). Chen et al. (2024) investigated the potential of LLMs in node classifi-
cation tasks. Some works have already attempted to use LLMs for TAGs. He et al. (2023) proposed
TAPE, which leverages LLMs to use the explanations generated during zero-shot classification as
informative features for the graph. Another category of methods utilizes LLMs’ strengths in text
understanding to improve the graph’s topology by enhancing the semantic understanding of node
information. A representative example of this approach is the work by Sun et al. (2023), where they
utilize LLMs to generate pseudo-labels and compute the semantic similarity between node attributes
to either remove or add edges, thereby improving the graph’s topology. Yu et al. (2023) propose ENG
that enhances TAGs by using LLMs to generate additional nodes and the corresponding additional
information. Additionally, Pan et al. (2024) employs a knowledge distillation approach to distill
LLMs into graph models specifically for TAG learning. However, focusing solely on either nodes
or edges has its limitations. Concentrating only on nodes (textual information) can result in the
loss of the network’s topological structure, while focusing exclusively on edges makes it difficult to
fully capture the semantic information of the nodes themselves. Therefore, we need a structure that
combines both nodes and edges to enhance the TAG representation, which is a strength of GAGA.
Moreover, as mentioned above, all previous SOTA methods are time-consuming and costly, while
our GAGA is highly lightweight and achieves almost the same performance.

Explanation-Guided Learning. With the advancement of AI, the importance of research in Ex-
plainable Artificial Intelligence (XAI) has become increasingly prominent. Although researchers
have made significant progress in XAI techniques, leading to more attempts to generate explanations
for Deep Neural Networks (DNNs), more profound issues, such as how to apply XAI techniques to
improve the performance of DNN models, warrant further attention as research progresses (Ross
et al., 2017; Gao et al., 2024). In the field of computer vision, there has been extensive research on
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using explanation supervision to guide model training (Das et al., 2017; Linsley et al., 2018; Qiao
et al., 2018; Mitsuhara et al., 2019; Zhang et al., 2019; Gao et al., 2022; Zhang et al., 2023; Saha &
Roy, 2023). In NLP tasks, explanations are primarily generated through attention mechanisms or by
utilizing auxiliary generative models (Bao et al., 2018; Strout et al., 2019; Zhong et al., 2019; Choi
et al., 2020; Ghaeini et al., 2019; Jain et al., 2020; Stacey et al., 2022). Recently, several explanation
supervision frameworks for GNNs have also emerged. For instance, GNES, proposed by Gao et al.
(2021), optimizes model explanations and predictions through weak supervision and regularization
of the model’s explanations. Compared to these papers, in GAGA, we consider the annotation given
by LLMs as an explanation, which can further guide us for contrastive learning.

3 PRELIMINARIES

Text-Attributed Graph. A Text-attributed Graph (TAG) can be formally represented as G =
(V,A, {sn}n∈V ), where V is a set of N nodes, A ∈ RN×N is the adjacency matrix, sn ∈ DLn

is a sequential text associated with node n ∈ V , with D as the dictionary of words or tokens, and
Ln as the sequence length.

Large Language Models and Prompting. Prompts can take various forms, such as a single sen-
tence or longer paragraphs, and may include additional information or constraints to guide the
model’s behavior. Let M be an LLM that takes an input sequence x = (x1, x2, . . . , xq) and pro-
duces an output sequence y = (y1, y2, . . . , ym). The model is typically trained to optimize the
conditional probability distribution p(y|x), which assigns a probability to each possible output se-
quence y given x. To incorporate a prompt w with the input sequence x, we can concatenate them
into a new sequence x̂ = (w, x1, x2, . . . , xq). The conditional probability distribution p(ŷ|x̂) is then
computed using x̂. Formally, the probability of the output sequence y given x̂ is:

p(ŷ|x̂) =
m∏
i=1

p(yi|y<i, x̂),

where y<i represents the prefix of the sequence y up to position i− 1, and p(yi|y<i, x̂) denotes the
probability of generating yi given y<i and x̂.

GNNs for Node Classification and Link Prediction. GNNs are utilized for both node classifi-
cation and link prediction via leveraging the structural and feature information of graphs. In node
classification, the objective is to assign labels to nodes based on their attributes and connections.
This is achieved by updating each node’s representation through a message-passing process defined
by:

hk
i = fk

(
hk−1
i ,AGG

(
{hk−1

j : j ∈ Ni}
))

∈ Rd,

where hk
i is the representation of node i at layer k, Ni represents the set of neighbors, and fk is a

neural network layer that integrates the previous layer’s representation with aggregated information
from neighbors via a function like sum.

In link prediction, the task is to predict the probability of an edge existing between two nodes, i
and j, based on their learned representations and the overall graph structure. This probability is
modeled by p(i, j) = f(hk

i , h
k
j ), where the function f uses the representations derived from the

node classification process to assess the likelihood between node i and j.

4 GAGA: GRAPH ALIGNMENT GUIDED TEXT-ATTRIBUTED GRAPH
LEARNING

In this section, we introduce our novel framework, GAGA. As illustrated in Figure 2, it primarily
comprises three stages: annotation graph generation, two-level (subgraph) alignment, and down-
stream task fine-tuning. In the first stage, we first obtain a small but important set of nodes or edges
through representative-based selection. Then, we generate annotations for these nodes or edges by
prompting LLMs. These annotations are constructed into an annotation graph. In the second stage,
we employ a two-level (subgraph level and prototype level) contrastive learning between the sub-
annotation graphs and their corresponding sub-textual graphs, enabling lightweight fine-tuning of
both the language model (LM) and GNNs using information from the selected nodes. In the third
stage, which involves downstream tasks, we only fine-tune the GNN while keeping the LM frozen.
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Figure 2: An overview of our GAGA framework.

4.1 ANNOTATION GRAPH GENERATION

The core idea of this stage is to use the information density metric to identify representative nodes
and edges and then employ carefully designed prompts to utilize LLMs for annotation, thereby
reducing costs.

Representative Node (Edge) Selection. As we mentioned earlier, using LLMs to annotate data
can enhance model performance on TAGs. However, given that a typical graph contains tens of
thousands of nodes, annotating each one can be both time-consuming and costly (Chen et al., 2023).
Thus, to maintain high performance while annotating only a small number of nodes, it is crucial to
select nodes (edges) with high information density (Cai et al., 2017). Information density, denoted
as ϕdensity, serves as a representative metric to identify nodes (edges) that best “represent” the un-
derlying data distribution in the embedding space. To locate nodes situated in dense regions of the
embedding space, we first perform k-means clustering on the embeddings of all unlabeled nodes.
We then compute each node’s Euclidean distance || · || to its nearest cluster center. The density score
for a node vi is determined by converting this distance into a similarity score:

ϕdensity(vi) =
1

1 + ∥Emb(vi)− Ce(vi)∥
,

where Emb(vi) represents the embedding of node vi, and Ce(vi) denotes the center of the cluster to
which node vi belongs. Intuitively, a higher value of ϕdensity(vi) indicates that node vi is closer to
its center, making it more representative in the embedding space. We denote the selected subset of
nodes as V ∗

a ⊂ V , which consists of the nodes with top-s highest information density, where s is a
hyperparameter.

For link prediction tasks, we need to select a set of edges. For edge ei,j , we define its information
density as the sum of the information densities of the nodes at both endpoints: ϕdensity(ei,j) =
ϕdensity(vi) + ϕdensity(vj). Similar to nodes, the selection of the subset of edges, V ∗

a is based on the
top-k̂ highest information density.

Annotation Generation. Next, we will annotate these selected nodes (edges). In GAGA, we prompt
LLMs not only to produce predictions and explanations for the selected nodes but also to infer and
understand the broader concepts and knowledge needed for these predictions and explanations. For
edges, we prompt LLMs to explain the rationale behind their formation and to grasp the concepts
and knowledge necessary to understand these connections. Our prompt templates can be found in
Appendix B.

Annotation Graph Construction. To structurally represent the most informative knowledge con-
tained in each node’s text and leverage potential relationships between annotations, we construct an
annotation graph G∗

A = (V ∗
a , E

∗
a). In detail, we first define each annotation for nodes or edges as a

node va ∈ V ∗
a , and then we build the annotation graph based on the similarity between each pair of
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nodes. For annotation node via, v
j
a ∈ V ∗

a , the similarity s(·) is computed as follows:

s(via, v
j
a) =

Emb(via) · Emb(vja)

∥Emb(via)∥ · ∥Emb(vja)∥
.

We then apply the k-nearest neighbors (KNN) algorithm to capture the relationships between anno-
tations, connecting each node to its k′ nearest neighbors with edges to form the annotation graph.
Formally, the edges of the annotation graph G∗

A is defined as:

E∗
a =

⋃
i

{(via, vja) | vja ∈ Nk′(via)},

where Nk′(via) is set of k′-nearest neighbors of annotation node via.

4.2 TWO-LEVEL ALIGNMENT

As we have only annotated a subset of nodes (edges), how to generalize these annotations becomes
the key question, which is the motivation of our two-level alignment. Our alignment consists of two
levels: one is for aligning sub-textual graphs and sub-annotation graphs, while the other one is for
aligning sub-textual graphs and the prototypes induced by sub-annotation graphs.

Subgraph Alignment. To adapt the Language Model Encoder for graph tasks, we perform graph
alignment. Given that only a subset of nodes (edges) are annotated, we have to sample and align
subgraphs based on this subset during this alignment process for better generalization. To achieve
this, we use a straightforward approach: for each selected node v∗, we sample its k-hop neighbors
in both the TAGs and annotation graphs to form a sub-text graph GT and sub-annotation graph GC ,
respectively. For selected edges e∗, the difference lies in including the t-hop neighbors of both nodes
connected by the selected edges to form the sub-annotation graph.

Through subsampling, we can obtain pairs of GT and GA corresponding to each selected node
(or edge). Our alignment goal is to maximize the similarity between each pair of GT and GA,
while simultaneously minimizing the similarity between non-corresponding pairs. Specifically, for
each graph, nodes obtain their representations through a Language Model Encoder (LMEncoder),
which are then integrated with graph structural information via a GNN. Mathematically, we have
the following loss:

L1 =
∑
i

(∥hi
t − hi

a∥2 −
1

n− 1

∑
j ̸=i

∥hi
t − hj

a∥2), (1)

hT = GNN(XT ), hA = GNN(XA),

XT = LMEncoder(GT ), XA = LMEncoder(GA),

where hT = {h1
t , h

2
t , . . . , h

n
t } and hA = {h1

a, h
2
a, . . . , h

n
a} is the embedding matrix for GT and GA

with number of nodes n in these subgraphs.

Prototype Alignment. In practice, we find the embedding matrix hA for the annotation graph is
quite large, which makes the computational complexity high (linear in n) for downstream tasks.
Additionally, there can be a significant amount of redundant information in hA. By using more
compact representations, the performance of downstream tasks may be effectively enhanced. To ad-
dress these issues, we employ vector quantization (VQ) (Van Den Oord et al., 2017) for projection
to get prototypes of the annotation graph representations. The prototype matrix is represented as a
kp × d matrix (Za), where kp denotes the size of the prototype projection, which is far less than n.
Furthermore, the relatively small value of k compels the model to learn more abstract representa-
tions of the annotations, thereby improving the generalization of the prototype embeddings. For the
embedding vector ha in each annotation graph, its prototype za is the closest vector in (Za):

za = Zm
a , where m = argmin

j

(
∥ha − Zj

a∥2
)
, (2)

where Zm
a is the m-th row vector of Zm

a . After we have the prototype projections for each ha,
similar to (1), we can build another contrative loss for ht and za. The final loss function is the sum
of these two, as expressed in the following equation.

L =α
∑
i

∥hi
t − zia∥2 −

1

n− 1

∑
j ̸=i

∥hi
t − zja∥2

+ (1− α)L1. (3)
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Here α is a hyper-parameter between 0 and 1, which controls the trade-off between subgraph textual
information and prototype information during the model alignment process. Intuitively, α cannot
be either too small or large. When α is small, the loss with more focus on the original contrastive
loss (1), making generalization ability worse as the model will learn too much redundant informa-
tion. When α is large, the model will focus more on prototype alignment, also making the utility
worse as the project may lose too much information.

4.3 DOWNSTREAM TASK FINETUNING

For a given downstream task, we first use the frozen Language Model Encoder to obtain the repre-
sentations of nodes X

′

T , which are then processed through GNN to acquire the node embeddings,
i.e., h = GNN(X

′

T ). Finally, by computing cross attention with the prototype embeddings of the
annotations, we integrate the information of the annotations and obtain the final node representation.

h′ = softmax(
hWQ · (ZaW

K)T√
dk

) · ZaW
V ,

where WQ, WK , WV are query, key, Za is the matrix of prototypes in (2), and value weight matrices
and dk is the normalization factor.

For the node classification task, we add a fully connected layer and then pass the output through a
softmax function to obtain the probability distribution for each category.

ŷ = softmax(f(h′)),

where f is a linear function. For the link prediction task, we use the element-wise multiplication of
the representations of nodes a and b as the corresponding edge representation. This feature is then
passed through a fully connected layer followed by a sigmoid function to obtain the probability of
the edge’s existence:

ŷ = sigmoid((h′
a ⊙ h′

b) ·W ).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets. We choose six datasets for evaluation: Cora (McCallum et al., 2000), PubMed (Sen et al.,
2008), ogbn-arxiv (Hu et al., 2020a), ogbn-products (Hu et al., 2020a; He et al., 2023), and tape-
arxiv23 (He et al., 2023) for the node classification tasks and use Cora, Citeseer (Giles et al., 1998b),
and PubMed for the link prediction tasks. Details about the datasets can be found in Appendix
A.1. The detailed prompts used for generating concepts for each dataset are shown in Appendix
B. We split the datasets for training, validation, and testing following (He et al., 2023) for node
classification tasks and HeaRT (Li et al., 2023; Mao et al., 2023) for link prediction tasks.

Baselines. In this study, we employed a variety of models for the node classification task to compre-
hensively evaluate the performance of different approaches on TAGs. Specifically, we selected the
following eleven models: (i) MLP; (ii) GCN (Kipf & Welling, 2016a); (iii) GraphSAGE (Sun et al.,
2021); (iv) RevGAT (Li et al., 2021); (v) InstructGLM (Ye et al., 2023); (vi) Graphormers (Ying
et al., 2021); and (vii) TAPE (He et al., 2023) (viii) GLEM (Zhao et al., 2022) (ix) SimTEG (Duan
et al., 2023) (x) ENGING (Zhu et al., 2024) (xi) GIANT (Chien et al., 2021). Further details about
the baselines are given in Appendix A.2.

For link prediction tasks, we selected four types of models, comprising a total of 19 models, as
baselines: heuristic models, embedding models, GNN models, and GNN+Pairwise Info models.
Heuristic models use graph structure-based scores to predict links. Embedding models learn low-
dimensional representations of nodes to estimate link likelihoods, GNN models leverage multi-hop
graph structures through message passing, and GNN+Pairwise Info models enhance GNNs with
additional node-pair-specific information to improve link prediction accuracy. More details are given
in Appendix A.2.

Evaluation Metrics. For node classification tasks, we use classification accuracy, time cost (min),
and money cost of the whole framework as evaluation metrics. In the experiment of time and money
comparison, time includes new textual feature annotation (like TAPE and GAGA), training and
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inference time. Money usage only includes the money spent on annotating new features with LLMs.
For link prediction tasks, we choose MRR@10 and AUC as metrics. See details in Appendix A.3.

Experimental Setup. In our experiments, we prompt GPT-3.5-turbo-1106 (Brown et al., 2020)
to generate annotations. The Language Model Encoder utilized is all-MiniLM-L6-v2 (Wang et al.,
2020), and the GNN employed is a 4-layer GCN. During the annotation step, we consider 40 clusters.
For the node classification task, we use 1% nodes for annotation and √

nedges for link prediction
annotation with edge number nedges. During the alignment process, we set α to 0.6, and prototype
dimension kp to 40. We also use 2-hop subgraphs for the alignment. We use the Adam optimizer
with the learning rate 5e−5 for alignment and 1e−3 for downstream task fine-tuning. All experiments
were conducted on a 32G V100 card with 10 CPU cores and a maximum memory of 64G. We run
each experiment for 5 times.

5.2 UTILITY ANALYSIS

Time and Money Cost Comparison. We present a comparative analysis of the previous LLM-
based methods and GAGA on the ogbn-arxiv and PubMed datasets, focusing on time efficiency
and cost efficiency. See Table 1 for results. From the results, we can easily see GAGA is highly
efficient compared to previous methods. The main reason is that GAGA only used 1% of the nodes
for annotation, whereas most other methods need annotating or fine-tuning all nodes. Due to the
high API cost and large annotations, TAPE is very expensive compared to other models. We also
observe that the ENGINE model runs out of memory. ENGINE cleverly combines LLM and GNN,
and although it freezes the LLM weights to save memory, the Llama-3-7B used in the method
still consumes a large amount of GPU memory, making it difficult to run on a single GPU when
dealing with large datasets. As for the GIANT model, it uses a self-supervised approach to learn
node representations, but its pre-training phase becomes extremely time-consuming as the number
of nodes increases. We can also see that although GLEM and GraphFormers are more expensive
than GAGA, they are the two most efficient methods among the previous methods. However, their
accuracy is much lower than that of the SOTA results and GAGA.

Table 1: Comparison of Time (Minute) and Money Usage ($) Highlighted by Efficiency and Ac-
curacy. OOM refers to instances where memory usage exceeded 32G of GPU memory or 64G of
system memory. Timeout refers to tasks that remained incomplete after 72 hours. We highlight the
best results in green .

ogbn-arxiv PubMed
Time Cost ↓ Money Cost ↓ Accuracy ↑ Time Cost ↓ Money Cost ↓ Accuracy ↑

TAPE 694 113.39 75.20 71 17.63 94.31
GLEM 446 7.81 76.04 50 0.87 92.57
SimTEG 1439 25.18 75.13 283 4.95 81.23
OneForAll 185 3.24 0.6983 85 1.48 73.01
ENGINE OOM OOM OOM 203 3.55 74.74
InstructGLM OOM OOM OOM OOM OOM OOM
GraphFormers 224 3.92 66.67 45 0.783 83.65
GIANT Timeout Timeout Timeout 431 7.54 76.89
GAGA(Ours) 80 2.87 76.23 17 0.49 94.61

Table 2: Node classification performance comparison on different datasets (all values in %). The
best results are highlighted with bold .

Model ogbn-arxiv PubMed Cora ogbn-products tape-arxiv23
MLP 53.36 ± 0.15 86.35 ± 0.20 63.88 ± 0.12 53.85 ± 0.18 62.02 ± 0.25
GCN 71.82 ± 0.20 80.31 ± 0.15 88.24 ± 0.10 70.52 ± 0.12 63.41 ± 0.20
SAGE 71.71 ± 0.18 88.81 ± 0.15 89.11 ± 0.12 69.13 ± 0.20 64.30 ± 0.18
RevGAT 70.83 ± 0.15 88.50 ± 0.20 89.11 ± 0.10 69.64 ± 0.15 65.63 ± 0.20

Graphormer 72.81 ± 0.18 88.24 ± 0.15 80.41 ± 0.20 68.15 ± 0.12 62.87 ± 0.25
InstructGLM 75.70 ± 0.20 93.84 ± 0.15 87.08 ± 0.12 65.32 ± 0.02 70.32 ± 0.12
GLEM 75.60 ± 0.15 92.57 ± 0.20 74.69 ± 0.18 73.77 ± 0.15 78.58 ± 0.20
SimTEG 75.29 ± 0.18 81.20 ± 0.01 88.04 ± 0.12 74.51 ± 0.20 79.51 ± 0.15
ENGINE 76.02 ± 0.20 74.72 ± 0.15 91.48 ± 0.10 80.05 ± 0.15 79.76 ± 0.20
GIANT 74.26 ± 0.15 76.90 ± 0.20 85.52 ± 0.18 74.06 ± 0.12 72.18 ± 0.25
TAPE 75.20 ± 0.18 94.31 ± 0.15 91.19 ± 0.12 79.96 ± 0.20 80.80 ± 0.18

GAGA(Ours) 76.21 ± 0.15 94.62 ± 0.20 89.67 ± 0.12 78.87 ± 0.18 81.03 ± 0.25
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Table 3: Link prediction results on Cora, Citeseer, and PubMed(%). The best results are highlighted
with bold .

Models Cora Citeseer PubMed
MRR@10 AUC MRR@10 AUC MRR@10 AUC

Heuristic

CN 20.99 70.85 28.34 67.49 14.02 63.9
AA 31.87 70.97 29.37 67.49 16.66 63.9
RA 30.79 70.96 27.61 67.48 15.63 63.9

Shortest Path 12.45 81.08 31.82 75.5 7.15 74.64
Katz 27.4 81.17 38.16 75.37 21.44 74.86

Embedding

Node2Vec 37.29 ± 8.82 90.97 ± 0.64 44.33 ± 8.99 94.46 ± 0.59 34.61 ± 2.48 93.14 ± 0.18
MF 14.29 ± 5.79 80.29 ± 2.26 24.80 ± 4.71 75.92 ± 3.25 19.29 ± 6.29 93.06 ± 0.43

MLP 31.21 ± 7.90 95.32 ± 0.37 43.53 ± 7.26 94.45 ± 0.32 16.52 ± 4.14 98.34 ± 0.10

GNN

GCN 32.50 ± 6.87 95.01 ± 0.32 50.01 ± 6.04 95.89 ± 0.26 19.94 ± 4.24 89.69 ± 0.06
GAT 31.86 ± 6.08 93.69 ± 0.27 48.69 ± 7.53 96.25 ± 0.20 18.63 ± 7.95 98.20 ± 0.07

SAGE 37.83 ± 7.75 95.63 ± 0.27 47.84 ± 6.39 97.39 ± 0.15 22.74 ± 5.47 98.87 ± 0.04
GAE 29.98 ± 3.21 95.08 ± 0.33 63.33 ± 3.14 97.06 ± 0.22 16.67 ± 0.19 97.47 ± 0.08

GNN + Pairwise Info

SEAL 26.69 ± 5.89 90.59 ± 0.75 39.36 ± 4.99 88.52 ± 1.40 38.06 ± 5.18 97.77 ± 0.40
BUDDY 26.40 ± 4.40 95.06 ± 1.67 59.48 ± 8.96 96.72 ± 0.26 23.98 ± 5.11 98.2 ± 0.05

Neo-GNN 22.65 ± 2.60 93.73 ± 0.36 53.97 ± 5.88 94.89 ± 0.60 31.45 ± 3.17 98.71 ± 0.05
NCN 32.93 ± 3.83 96.76 ± 0.18 54.97 ± 6.03 97.04 ± 0.26 35.65 ± 4.60 98.98 ± 0.04

NCNC 29.01 ± 3.83 96.90 ± 0.28 64.03 ± 3.67 97.65 ± 0.30 25.70 ± 4.48 99.14 ± 0.03
NBFNet 37.69 ± 3.97 92.85 ± 0.17 38.17 ± 3.06 91.06 ± 0.15 44.73 ± 2.12 98.34 ± 0.02

PEG 22.76 ± 1.84 94.46 ± 0.34 56.12 ± 6.62 96.15 ± 0.41 21.05 ± 2.85 96.97 ± 0.39

GAGA(Ours) 46.22 ± 2.13 96.78 ± 0.02 64.83 ± 3.11 98.13 ± 0.11 44.31 ± 2.12 99.24 ± 0.01

Node Classification. In the node classification task, as shown in Table 2, GAGA significantly
outperforms the previous classical GNN models, such as GCN, and transformer-based methods,
such as Graphormer over all datasets. Moreover, compared to LLM-based methods, our method
still performs quite well; it achieves the best for ogbn-arxiv, PubMed, and tape-arxiv23. While its
performance on the Cora and ogbn-products datasets was second only to ENGINE and TAPE, the
difference to the best, ENGINE, is less than 1.8%. These results demonstrate that GAGA achieves
a classification accuracy that is comparable to or even exceeds SOTA methods due to the high gen-
eralization ability of our alignment method.

Link Prediction. Similarly, we conducted experimental evaluations on the link prediction task,
whose results are shown in Table 3 in the Appendix. Thanks to the annotations on selected edges
and the two-level alignment, GAGA almost achieves the best results across all evaluated datasets for
both two metrics. It is only slightly less than NBFNet on the PubMed data for MRR@10.

5.3 ABLATION STUDY

In this section, we conducted ablation experiments on the validation and test sets of the ogbn-
arxiv dataset for node classification tasks to investigate the impact of different configurations on
our model. Additional studies can be found in Appendix Section D.

Impact of the GNN Backbone on Performance. Since our framework is plug-and-play and does
not alter the structure of the GNN model, it can be used with any GNN backbone. We explored
the impact of different GNN backbones on classification accuracy. We tested the effects on several
different backbones, including MLP, GCN, SAGE, GAT, and RevGAT in Table 4.

While using various GNNs as backbones did affect the final classification accuracy of the model,
the impact was not significant. The only exception is MLP; its accuracy is lower, maybe because it
is too simple to capture the relationship between the nodes. This demonstrates the robustness of our
model.

Table 4: Performance with different backbones
on ogbn-arxiv.

GNN Test Valid
MLP 0.7287 0.7375
GCN 0.7621 0.7725
SAGE 0.7596 0.7651
GAT 0.7616 0.7704
RevGAT 0.7565 0.7597

Table 5: Performance with different ratio (%) of
seed nodes on ogbn-arxiv.

Ratio Test Valid
0.1% 0.7572 0.7701
0.2% 0.7571 0.7700
0.4% 0.7571 0.7699
0.6% 0.7571 0.7699
0.8% 0.7570 0.7700
1.0% 0.7621 0.7725

Impact of the Prototype Size kp. We used prototype embeddings to reduce the computational
complexity during the downstream finetuning tasks. Here we will consider the effect of the prototype
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dimension. In Table 6, we can see while increasing kp generally leads to higher computational costs,
test accuracy remained relatively stable across different values. For instance, at kp = 10, the model
achieved a test accuracy of 0.7641 with the lowest time (200 seconds) and memory usage (5.07 GB).
As kp increased to 1280, the accuracy slightly improved to 0.7672, but this came at the expense of
significantly higher time (640 seconds) and memory (17.14 GB) requirements. Thus, the prototype
projection is highly efficient since kp = 10 already brings a good performance.

Table 6: Experimental results for different prototype dimension kp on ogbn-arxiv. Time and Memory
are for the fine-tuning stage.

kp Time (s) Memory (GB) Test Accuracy
10 200 5.07 0.7641
40 210 5.24 0.7666
80 223 5.47 0.7656

160 247 5.92 0.7646
320 298 7.44 0.7641
640 412 10.67 0.7656

1280 640 17.14 0.7672
1693 782 21.31 0.7666

Constructive Induction Using a Non-Greedy 
Strategy for Feature Selection <SEP> We 
present a method for feature construction and 
selection that finds a minimal set of 
conjunctive ... search for minimal multi-level 
boolean expressions is presented and analyzed 
with the help of some examples.

az

GAGA

Text-attributed Graph

Theory

Rule_learning

Safety guided deep reinforcement learning via 
online gaussian process estimation <|SEP|> 
An important facet of reinforcement learning 
(RL) has ..unknown environments to obtain 
high-performance control policies with 
provable stability certificates.

az

GAGA

Text-attributed Graph

CS.LG

CS.AI

Figure 3: Visualization of the effect of annotation prototype projection.

Impact of Number of Selected Nodes. We study the effect of different proportions of selected
nodes on performance. As shown in Table 5, while increasing the number of selected nodes can
slightly improve classification accuracy, the model can already achieve strong performance (0.7641)
even with just 0.1% annotated data. This efficiency is due to redundancy in the nodes’ textual
information. Specifically, in ogbn-arxiv, abstracts and titles of papers in the same category are
highly similar, enabling effective learning from limited data. The use of high-information-density
data allows the model to learn quality representations with fewer examples.

Effect Visualization of Annotation Prototype. We present two case studies, as shown in Figure 3,
to illustrate how the annotation prototype enhances the model’s performance. When the input textual
information is processed by GAGA, directly predicting the category of the node can sometimes
result in inaccurate predictions. However, by incorporating prototype information and integrating it
into the model’s prediction through a cross-attention mechanism, the model can effectively adjust
and refine its predictions. This is because the integration allows the model to leverage additional
contextual knowledge from the prototypes, thereby enhancing its ability to correct initial errors and
produce more accurate final predictions. Additional visualization examples are in the Appendix C.

6 CONCLUSIONS

We investigated node classification and link prediction tasks in Text-attributed Graphs (TAGs) and
introduced GAGA, a lightweight and highly efficient graph representation learning framework.
GAGA employs a streamlined approach by annotating only representative nodes and edges, thereby
significantly reducing both annotation time and cost. It leverages these annotations by construct-
ing an annotation graph that captures the topological relationships among the annotated elements.
Furthermore, GAGA features a two-level alignment module to effectively integrate the annotation
graph with the TAG, ensuring the alignment of their underlying structures. Experimental results
demonstrate that GAGA achieves classification accuracies comparable to or exceeding state-of-the-
art methods while requiring only 1% of the data to be annotated, underscoring its high efficiency.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 DATASETS

Table 7: Statistics of TAGs used in this work.

Dataset Nodes Edges Classes
Cora 2,708 5,429 7
PubMed 19,717 44,338 3
ogbn-arxiv 169,343 1,166,243 40
CiteSeer 3,312 4,732 6
ogbn-products 54,025 74,420 47
tape-arxiv23 46,198 78,543 40

The details of the datasets are as follows:

Cora. The Cora dataset (McCallum et al., 2000) consists of 2,708 scientific publications categorized
into seven distinct classes: case-based, genetic algorithms, neural networks, probabilistic methods,
reinforcement learning, rule learning, and theory. This dataset includes a citation network compris-
ing 5,429 links. The selection process ensured that each paper in the final corpus either cites or is
cited by at least one other paper.

PubMed. The PubMed dataset (Sen et al., 2008) comprises 19,717 scientific publications from
the PubMed database, all related to diabetes. These publications are categorized into three distinct
classes: Experimental Induced Diabetes, Type 1 Diabetes, and Type 2 Diabetes. The dataset also
includes a citation network with 44,338 links.

ogbn-arxiv. The ogbn-arxiv dataset (Hu et al., 2020a) is a directed graph representing the citation
network among all computer science papers on arXiv, as indexed by MAG (Wang et al., 2020). In
this dataset, each node corresponds to an arXiv paper, and each directed edge signifies a citation
from one paper to another. The primary task is to predict the 40 subject areas of the arXiv computer
science papers, such as cs.AI, cs.LG, and cs.OS, which are manually assigned by the authors and
arXiv moderators.

Citeseer. The CiteSeer dataset (Giles et al., 1998a) consists of 3312 scientific publications classified
into one of six classes. The citation network consists of 4732 links. Each publication in the dataset
is described by a 0/1-valued word vector indicating the absence/presence of the corresponding word
from the dictionary. The dictionary consists of 3703 unique words.

ogbn-products The ogbn-products Hu et al. (2020a) dataset is an Amazon product co-purchasing
network with products as nodes and edges indicating co-purchases. The task is to predict the product
category in a multi-class setup using 47 top-level categories as labels.

tape-arxiv23 The tape-arxiv23 He et al. (2023) dataset is a directed graph of citation networks
among computer science arXiv papers from 2023 onwards. Each node represents a paper, and the
edges show citation links. The task is to predict the 40 subject areas of these papers, such as cs.AI,
cs.LG, and cs.OS, based on author and moderator labels.

A.2 BASELINES

Details about the baseline models for node classification are as follows:

MLP. As a baseline model, MLP does not consider graph structure information and relies solely
on node features for classification. Its performance provides a reference point for assessing the
improvements offered by other models.

GCN. GCN (Kipf & Welling, 2016a) is a classical graph neural network model that effectively
captures local neighborhood information through graph convolution operations. We chose GCN due
to its strong performance and widespread application across many graph datasets.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

GraphSAGE. GraphSAGE (Sun et al., 2021) generates node embeddings by sampling and aggre-
gating information from neighboring nodes, making it suitable for handling large-scale graph data.
We used GraphSAGE to evaluate its generalization capability across different datasets.

RevGAT. RevGAT (Li et al., 2021) combines graph attention mechanisms with reversible network
structures, reducing memory consumption while maintaining performance. We selected RevGAT to
explore the effectiveness of attention mechanisms on graph data.

InstructGLM. InstructGLM Ye et al. (2023) integrates the strengths of graph neural networks and
language models, enhancing generalization through instruction learning. We here use InstructGLM
using Llama-7b (Touvron et al., 2023) as the backbone.

Graphormer. Graphormer (Ying et al., 2021) leverages the Transformer architecture to process
graph data, capturing global dependencies. We selected Graphormer to test the performance of
Transformer-based approaches in graph neural networks.

TAPE. The TAPE model (He et al., 2023) leverages LLMs to capture textual information as features,
which can be used to boost GNN performance on downstream tasks. A key innovation is its use of
explanations as features: TAPE prompts an LLM to perform zero-shot classification, requests textual
explanations for its decision-making process, and designs an LLM-to-LM interpreter to translate
these explanations into informative features for downstream GNNs. For fairness, we use TAPE with
the backbone of the GCN model, which is the same as our model.

GLEM. GLEM (Zhao et al., 2022) combines graph models with LLMs, like DeBERTa [12], in
a variational EM framework, alternating between updating the LLM and GNN in the E-step and
M-step to enhance downstream task performance.

OneForAll. OneForAll (Liu et al., 2023) represents all nodes and edges as human-readable texts
and encodes them from various domains into a unified space using LLMs. The framework then
adapts to different tasks by adding task-specific prompts into the input graph.

ENGINE. ENGINE (Zhu et al., 2024) introduces a lightweight, tunable G-Ladder module to each
LLM layer, using a message-passing mechanism to incorporate structural information. This allows
token-level outputs from each LLM layer to pass through the G-Ladder, enhancing node representa-
tions for node classification.

GIANT. GIANT (Chien et al., 2021) utilizes XR-Transformers (Zhang et al., 2021a) for neighbor-
hood prediction, producing an LLM that generates more effective feature vectors for node classifi-
cation than bag-of-words and vanilla BERT embeddings.

SimTEG. SimTeG (Duan et al., 2023) fine-tunes a pre-trained LM with parameter-efficient methods
for a task like node classification, then uses the LM’s last hidden states as node embeddings for GNN
training, significantly boosting performance on graph benchmarks.

For the link prediction tasks, we use the baseline models from HeaRT (Li et al., 2023; Mao et al.,
2023).

Heuristic methods: Common Neighbor (CN) (Newman, 2001), Adamic Adar (AA) (Adamic &
Adar, 2003), and Resource Allocation (RA) (Zhou et al., 2009) use common neighbors, while Short-
est Path (Liben-Nowell & Kleinberg, 2003) and Katz (Katz, 1953) rely on path information to score
link existence.

Embedding methods: Matrix Factorization (MF) (Menon & Elkan, 2011), Multilayer Perceptron
(MLP), and Node2Vec (Grover & Leskovec, 2016) learn low-dimensional node embeddings to pre-
dict link likelihood.

GNN methods: Graph Convolutional Network (GCN) (Kipf & Welling, 2016a), Graph Attention
Network (GAT) (Veličković et al., 2018), GraphSAGE (SAGE) (Sun et al., 2021), and Graph Au-
toencoder (GAE) (Kipf & Welling, 2016b) integrate multi-hop graph structures via message passing.

GNN + Pairwise Information: SEAL (Zhang et al., 2021b), BUDDY (Chamberlain et al., 2022),
and Neural Bellman-Ford Network (NBFNet) (Zhu et al., 2021b) use subgraph features; Neo-GNN
(Yun et al., 2021), Neighborhood Contrastive Network (NCN) (Wang et al., 2023), and NCNC
(Wang et al., 2023) utilize common neighbor information, while Position Encoding Graph Neural
Network (PEG) (Wang et al., 2022) employs positional encoding.
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A.3 EVALUATION METRICS

We use MRR@10 and AUC for link prediction tasks.

MRR =
1

N

N∑
i=1

1

ranki
,

where N is the number of positive samples and ranki is the rank of the i-th positive sample.

AUC =
1

|D0| × |D1|
∑
i∈D0

∑
j∈D1

I(scorei > scorej),

where D0 is the set of positive samples, D1 is the set of negative samples, and I is the indicator
function.

B PROMPTS FOR GENERATING ANNOTATIONS

Prompt Template

{Node’s textual information}

[Question]: Which of the following category does this node belong to: {possible categories}.
Give 5 likely categories as a comma-separated list ordered from most to least likely.

List the most important concepts in the paper. And you should tell me what knowledge is
needed to understand the concepts. After all, you should provide your reasoning.

[Your response]:

Prompt for node classification on ogbn-arxiv.

Abstract: {abstract}
Title: {title}
Question: Which arXiv CS subcategory does this paper belong to?
Give 5 likely arXiv CS sub-categories as a comma-separated list ordered from most to least
likely, in the form “cs.XX”, list the most important concepts in the paper.
And you should tell me what knowledge is needed to understand the concepts.
After all, you should provide your reasoning. Your response:

Prompt for node classification on Arxiv-2023.

Abstract: {abstract text}
Title: {title text}
Question: Which arXiv CS subcategory does this paper belong to? Give 5 likely arXiv
CS sub-categories as a comma-separated list ordered from most to least likely, in the form
“cs.XX”, List the most important concepts in the paper.
And you should tell me what knowledge is needed to understand the concepts.
After all, you should provide your reasoning. Your response:
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Prompt for node classification on Cora.

Abstract: {abstract text}
Title: {title text}
Question: Which of the following sub-categories of AI does this paper belong to: Case
Based, Genetic Algorithms, Neural Networks, Probabilistic Methods, Reinforcement Learn-
ing, Rule Learning, Theory? If multiple options apply, provide a comma-separated list or-
dered from most to least related, then for each choice you gave, explain how it is present in
the text. List the most important concepts in the paper.
And you should tell me what knowledge is needed to understand the concepts.
After all, you should provide your reasoning. Your response:

Prompt for node classification on PubMed.

Abstract: {abstract text}
Title: {title text}
Question: Does the paper involve any cases of Type 1 diabetes, Type 2 diabetes, or Ex-
perimentally induced diabetes? Please give one or more answers of either Type 1 diabetes,
Type 2 diabetes, or Experimentally induced diabetes; if multiple options apply, provide a
comma-separated list ordered from most to least related, then for each choice you gave, give
a detailed explanation with quotes from the text explaining why it is related to the chosen
option. List the most important concepts in the paper.
And you should tell me what knowledge is needed to understand the concepts.
After all, you should provide your reasoning. Your response:

Prompt for node classification on ogbn-products

Product description: {product description}
Question: Which of the following category does this product belong to: 1) Home & Kitchen,
2) Health & Personal Care, 3) Beauty, 4) Sports & Outdoors, 5) Books, 6) Patio, Lawn &
Garden, 7) Toys & Games, 8) CDs & Vinyl, 9) Cell Phones & Accessories, 10) Grocery &
Gourmet Food, 11) Arts, Crafts & Sewing, 12) Clothing, Shoes & Jewelry, 13) Electronics,
14) Movies & TV, 15) Software, 16) Video Games, 17) Automotive, 18) Pet Supplies, 19)
Office Products, 20) Industrial & Scientific, 21) Musical Instruments, 22) Tools & Home
Improvement, 23) Magazine Subscriptions, 24) Baby Products, 25) NAN, 26) Appliances,
27) Kitchen & Dining, 28) Collectibles & Fine Art, 29) All Beauty, 30) Luxury Beauty, 31)
Amazon Fashion, 32) Computers, 33) All Electronics, 34) Purchase Circles, 35) MP3 Play-
ers & Accessories, 36) Gift Cards, 37) Office & School Supplies, 38) Home Improvement,
39) Camera & Photo, 40) GPS & Navigation, 41) Digital Music, 42) Car Electronics, 43)
Baby, 44) Kindle Store, 45) Kindle Apps, 46) Furniture & Decor? Give 5 likely categories
as a comma-separated list ordered from most to least likely, list the most important concepts.
And you should tell me what knowledge is needed to understand the concepts.
After all, you should provide your reasoning. Your response:

Prompt for link prediction.

Paper 1: Title: {title1} Abstract: {abstract1} Paper 2: Title: {title2} Abstract: {abstract2}
Question: Why are these two papers related? list the most important concepts in the abstract.
And you should tell me what knowledge is needed to understand the concepts. Based on the
concepts, explain why they are related.
Your response:
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Constructive Induction Using a Non-Greedy 
Strategy for Feature Selection <SEP> We 
present a method for feature construction and 
selection that finds a minimal set of 
conjunctive ... search for minimal multi-level 
boolean expressions is presented and analyzed 
with the help of some examples.

az

GAGA

Text-attributed Graph

Theory

Rule_learning

(a)

Safety guided deep reinforcement learning via 
online gaussian process estimation <|SEP|> 
An important facet of reinforcement learning 
(RL) has ..unknown environments to obtain 
high-performance control policies with 
provable stability certificates.

az

GAGA

Text-attributed Graph

CS.LG

CS.AI

(b)

EE380L: Neural Networks for Pattern 
Recognition Pop Trees under the guidance of 
<|SEP|> Decision Trees have been widely 
used for classified data. In addition they 
provide us with a confidence measure. We 
allow option nodes in our trees, Again, instead 
of uniform voting, we learn the weightage of 
every subtree.

az

GAGA

Text-attributed Graph

Neural Networks

Theory

(c)

Structural scaffolds for citation intent 
classification in scientific publications 
</SEP|> Identifying the intent of a citation in 
scientific papers (e.g... compared with existing 
datasets). Our code and data are available at: 
this https URL.

az

GAGA

Text-attributed Graph

CS.CL

CS.DL

(d)

Figure 4: Visualization of the effect of annotation prototype projection.

C EFFECT VISUALIZATION OF ANNOTATION PROTOTYPE

In this section, we present several case studies, as shown in Figure 4, to illustrate how the annota-
tion prototype enhances the model’s performance. When the input textual information is processed
by GAGA, directly predicting the category of the node can sometimes result in inaccurate predic-
tions. However, by incorporating prototype information and integrating it into the model’s predic-
tion through a cross-attention mechanism, the model can effectively adjust and refine its predictions.
This is because the integration allows the model to leverage additional contextual knowledge from
the prototypes, thereby enhancing its ability to correct initial errors and produce more accurate final
predictions.

D ADDITIONAL ABLATION STUDY

Impact of Text Encoder. In this section, we aim to investigate the impact of different language
models on the performance of GAGA. We replace the language model with various alternatives and
compare their performance on the ogbn-arxiv dataset. In GAGA, we align annotations and graphs,
both of which are represented by features extracted from a language model. Therefore, the selection
of an appropriate language model significantly impacts the final performance of the model. We
compared the effects of different language models on the overall classification accuracy. The results
in Table 8 showed that using larger models may not improve classification accuracy. This may
be due to the high dimensionality of embeddings in larger models, which may hinder the learning
process of the GNN. Furthermore, due to the limited data utilized during the alignment process, it
is possible that larger language models were not adequately aligned, contributing to the suboptimal
performance observed.
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Table 8: Ablation study on the effects of different LLMs for annotation.

Backbone all-MiniLM-
L6-v2

MiniLM-
L12-H384-
uncased

gte-Qwen2-
1.5B-instruct

gte-Qwen2-
7B-instruct

LLM2Vec-
Meta-Llama-
3-supervised

Model Size 23M 33M 1.5B 7B 8B

Test 0.7620 0.7681 0.7253 0.7515 0.7519
Valid 0.7701 0.7722 0.7404 0.7531 0.7556

Impact of α. In Figure 5, we studied the effect of the hyperparameter α in equation (3), which
adjusts the model’s focus between the alignment of sub annotation graph and sub textual graph, and
the alignment of sub textual graph and prototype projections. As shown in the figure, when α is
set to 0, the model disregards the prototypes and focuses on the original contrastive loss, making
generalization ability worse as the model will learn too much redundant information. When α is
set to 1, it focuses more on prototype alignment and ignores the original sub annotation graphs,
making the utility worse as the project may lose too much information. Both extreme cases result
in a decline in model performance. However, when α is between 0 and 1, the model’s performance
remains relatively stable.
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Figure 5: Impact of α on Valid and Test Accuracy on ogbn-arxiv Dataset.
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