
Published as a conference paper at ICLR 2024

A QUADRATIC SYNCHRONIZATION RULE FOR
DISTRIBUTED DEEP LEARNING

Xinran Gu1∗ Kaifeng Lyu4∗ Sanjeev Arora4 † Jingzhao Zhang1,2,3† Longbo Huang1†
1Institute for Interdisciplinary Information Sciences, Tsinghua University
2Shanghai Qizhi Institute 3Shanghai AI Laboratory
4Department of Computer Science & Princeton Language and Intelligence, Princeton University
gxr21@mails.tsinghua.edu.cn {klyu,arora}@cs.princeton.edu
{jingzhaoz,longbohuang}@tsinghua.edu.cn

ABSTRACT

In distributed deep learning with data parallelism, synchronizing gradients at each
training step can cause a huge communication overhead, especially when many
nodes work together to train large models. Local gradient methods, such as Local
SGD, address this issue by allowing workers to compute locally for H steps with-
out synchronizing with others, hence reducing communication frequency. While
H has been viewed as a hyperparameter to trade optimization efficiency for com-
munication cost, recent research indicates that setting a proper H value can lead
to generalization improvement. Yet, selecting a proper H is elusive. This work
proposes a theory-grounded method for determiningH , named the Quadratic Syn-
chronization Rule (QSR), which recommends dynamically settingH in proportion
to 1

η2 as the learning rate η decays over time. Extensive ImageNet experiments on
ResNet and ViT show that local gradient methods with QSR consistently improve
the test accuracy over other synchronization strategies. Compared with the stan-
dard data parallel training, QSR enables Local AdamW on ViT-B to cut the train-
ing time on 16 or 64 GPUs down from 26.7 to 20.2 hours or from 8.6 to 5.5 hours
and, at the same time, achieves 1.12% or 0.84% higher top-1 validation accuracy.

1 INTRODUCTION

The growing scale of deep learning necessitates distributed training to reduce the wall-clock time.
Data parallel training is a foundational technique that distributes the workload of gradient computa-
tion toK workers, also serving as a key building block of more advanced parallel strategies. At each
step of this method, each worker first computes gradients on their own local batches of data. Then,
they take an average over local gradients, which typically involves a costly All-Reduce operation.
Finally, they update the model parameter with the averaged gradient and a gradient-based optimizer
OPT, e.g., SGD, AdamW. In this paper, we term the data parallel implementation of optimizer OPT
as “Parallel OPT”. See Algorithm 1 for the pseudocode. The cost for this data parallelism is obvi-
ous. Frequent gradient synchronization can induce huge communication overhead as the number of
workers and model size grow, severely hindering the scalability of distributed training (Tang et al.,
2021; Li et al., 2022; Xu et al., 2023).

One approach to reducing this communication overhead is Local SGD (Stich, 2018; Zhou & Cong,
2018; Woodworth et al., 2020). Rather than synchronizing gradients at every step, Local SGD
allows workers to independently train their local replicas using their own local batches with SGD
updates. It is only after completing H > 1 local steps that these workers synchronize, where the
model parameters get averaged over all replicas. Notably, while we mention SGD, this approach can
be readily adapted to other popular optimizers. In this paper, if a gradient-based optimizer OPT is
used for local updates, we term the variant as “Local OPT” (e.g., Local SGD, Local AdamW), and
collectively refer to this class of approaches as local gradient methods. We provide a pseudocode
for local gradient methods in Algorithm 2.

The main focus of this paper is to study the best strategies to set the synchronization period H (i.e.,
the number of local steps per communication round) in local gradient methods. While setting H to
a larger value reduces communication, a very large H can hinder the training loss from decreasing

∗Equal contribution
†Corresponding authors

1

Published as a conference paper at ICLR 2024

0 50 100 150 200
Epochs

60

65

70

75

80

T
op

-1
V

al
.

A
cc

.
(%

)

H Schedule and Communcation Volume

Parallel SGD, 100%

Post-local SGD, 56.3%

Constant Period, 25%

H ∼ η−1, 19.3%

QSR, 20.1%

170 180 190 200
79.0

79.5

80.0

80.5

(a) Local SGD on ResNet-152

0 100 200 300
Epochs

55

60

65

70

75

80

T
op

-1
V

al
.

A
cc

.
(%

)

H Schedule and Communcation Volume

Parallel AdamW, 100%

Constant Period, 25%

H ∼ η−1, 15.1%

QSR, 10.4%

250 300

79

80

81

(b) Local AdamW on ViT-B
Figure 1: When training ResNet-152 and ViT-B on ImageNet with cosine learning rate decay, Local
SGD/AdamW with QSR consistently outperforms data parallel methods or Local SGD/AdamW with other
synchronization strategies in terms of top-1 validation accuracy, while only requiring 20.1% and 10.4% of the
communication volume, respectively. With QSR, Local SGD on ResNet or Local AdamW on ViT cuts the
training time from 20.7 to 18 hours or 26.7 to 20.2 hours on 16 GPUs, when compared with data parallel meth-
ods. We report the mean and the standard deviation over 3 runs. See Appendix C for training details.

at normal speed, since the local replicas may significantly diverge from each other before averaging.
Indeed, it has been observed empirically that larger H leads to higher training loss after the same
number of steps (Wang & Joshi, 2021; Ortiz et al., 2021), and efforts to analyze the convergence of
local gradient methods in theory usually end up with loss bounds increasing with H (Khaled et al.,
2020; Stich, 2018; Haddadpour et al., 2019; Yu et al., 2019). To better trade-off between commu-
nication cost and optimization speed, Kamp et al. (2014); Wang & Joshi (2019); Haddadpour et al.
(2019); Shen et al. (2021) proposed adaptive synchronization schemes, such as linearly increasing
H as the iteration goes on (Haddadpour et al., 2019), or adjusting H based on the variance in model
parameters (Kamp et al., 2014). Nonetheless, their effectiveness has only been validated on linear
models or small-scale datasets, e.g., CIFAR-10/100.

All these strategies are developed to avoid sacrificing too much training loss, but training loss is
never the final evaluation metric that one cares about in deep learning. Due to the overparameterized
nature of modern neural networks, reaching the same training loss does not correspond to the same
performance on test data. It has also been long known that the choice of optimizers or hyperpa-
rameters can change not only the optimization speed of the training loss but also their implicit bias
towards solutions with different test accuracies.

The presence of this implicit bias indeed complicates the picture of setting H in local gradient
methods. Though a large H might be harmful for training loss, it has been observed empirically
that setting H properly can sometimes improve rather than hurt the final test accuracy. Lin et al.
(2020) are the first to report this phenomenon. Comparing with running just the standard data
parallel SGD (equivalent to H = 1), they observed that switching from SGD to Local SGD (H >
1) halfway through consistently leads to higher final test accuracy. Local SGD with this specific
schedule of H is designated as Post-local SGD. Lin et al. (2020)’s work opens up a new angle in
setting H in local gradient methods, yet, the proposed schedule in Post-local SGD, referred to as
the post-local schedule in this paper, is suboptimal in improving test accuracy. It was later reported
by Ortiz et al. (2021) that Post-local SGD does not improve much on ImageNet. For both stepwise
decay and cosine decay learning rate schedules, the test accuracy improvement of Post-local SGD
diminishes as learning rate decreases. Further, it remains unclear whether the generalization benefit
continues to appear when the optimizer is changed from SGD to adaptive gradient methods such as
Adam/AdamW, which are now indispensable for training large models.

Our Contributions. In this paper, we aim to propose a general and effective H schedule that can
be readily applied to various optimizers and neural network models. Specifically, we introduce a
simple yet effective strategy, called Quadratic Synchronization Rule (QSR), for dynamically adjust-
ing the synchronization period according to the learning rate: given a learning rate schedule, we set
H proportional to η−2 as the learning rate η decays. This rule is largely inspired by a previous theo-
retical work (Gu et al., 2023), which shows that the generalization benefits arise only if H = Ω(1η)

when η → 0, but did not make any recommendation on how to set H .

Our main contributions are:

2

Published as a conference paper at ICLR 2024

1. We propose the Quadratic Synchronization Rule (QSR) to simultaneously reduce the wall-clock
time and improve the final test accuracy of local gradient methods. Based on the theoretical
insights in Theorem 3.1, we provide a theoretical separation among data parallel SGD, Local
SGD with H ∼ η−1, and Local SGD with QSR in terms of SDE approximations. We show that
QSR can help reduce sharpness faster and hence improve generalization.

2. We demonstrate with ImageNet experiments that QSR can consistently improve the final test
accuracy of ResNet-152 and ViT-B over other synchronization strategies, including constant-
period and post-local schedules, and also H ∼ η−1 which one will expect to be optimal from
the optimization perspective (Figure 1).

3. We thoroughly validate the efficacy of QSR not only for Local SGD but also for Local AdamW,
which is arguably more suitable for training large models. We also validate its efficacy for
cosine, linear and step decay learning rate schedules that are commonly used in practice.

4. We evaluate the communication efficiency of QSR on a 64-GPU NVIDIA GeForce RTX 3090
cluster. As an illustrative example, the standard data parallel AdamW takes 8.6 hours to train
ViT-B for 300 epochs. With our QSR, Local AdamW cuts the training time down to 5.5 hours
with even higher test accuracy.

2 OUR METHOD: QUADRATIC SYNCHRONIZATION RULE

Below we formulate the local gradient methods and present our Quadratic Synchronization Rule.

Local Gradient Methods. Given any gradient-based optimizer OPT, the corresponding local gra-
dient method consists of multiple communication rounds. At the s-th round, each of the K workers
(say the k-th) gets a local copy of the global iterate θ̄(s), i.e., θ(s)

k,0 ← θ̄(s), and then performs H
steps of local updates. At the h-th local step of the s-th round, which corresponds to the (sH+h)-th
iteration globally, each worker gets a batch of Bloc samples (ξ

(s)
k,h,1, . . . , ξ

(s)
k,h,Bloc

) from a globally
shared dataset D̃, computes the gradient on that batch, and updates the model with optimizer OPT
and learning rate ηsH+h:

θ
(s)
k,h+1 ← OPT(θ

(s)
k,h, ηsH+h, g

(s)
k,h) where g

(s)
k,h =

1

Bloc

Bloc∑
i=1

∇ℓ(θ(s)
k,h; ξ

(s)
k,h,i). (1)

After finishing H steps of local updates, all workers average their local models to generate the
next global iterate: θ̄(s+1) ← 1

K

∑K
k=1 θ

(s)
k,H . Note that conventional local gradient methods set the

synchronization period as a constant, denoted as H , throughout training. See also Algorithm 2.

Quadratic Synchronization Rule. Given a learning rate schedule ηt, t ∈ {0, · · · , T − 1} that
decays with time, instead of keeping H constant, we propose to dynamically increase the synchro-
nization periodH(s) at each round s as the learning rate decreases. More specifically, if at the global
iteration t we need to start a new communication round, then we set

H(s) := max

{
Hbase,

⌊(
α

ηt

)2
⌋}

. (2)

Here Hbase is a constant indicating the minimum number of local steps one would like to use for
each round, which should be set according to the relative cost of computation and communication.
The coefficient α, termed the “growth coefficient” henceforth, is a hyperparameter controlling how
fast H(s) increases as ηt decreases.

As suggested by our later theorem 3.1, α should be set as a small constant. In our experiments, we
tune α properly between 0.01 and 0.5 and test the effectiveness of QSR with Hbase = 2, 4, 8. Note
that the last communication round may not finish exactly at the last iteration of the learning rate
schedule. If this is the case, we force a synchronization at the last step by setting H(s) := T − t.
A surprising part of our method is that we use the power 2 in the above formula (2). This choice
of power 2 is inspired by the analysis in Gu et al. (2023), which suggests that setting H = Ω(1η)

is beneficial for reducing the sharpness of the local landscape. Indeed, H(s) could have been set

to H(s) := max
{
Hbase,

⌊(
α
ηt

)γ⌋}
for any γ. However, using γ = 2 is crucial for the success

of our method, and we will provide theoretical justification and empirical evidence for this choice
in Section 3. We also visualize the H schedule for QSR in Figure 5 in the appendix.

3

Published as a conference paper at ICLR 2024

Dealing with Learning Rate Warmup. Many learning rate schedules use a warmup phase where
the learning rate increases linearly from 0 to ηmax, and then decays monotonically. This warmup
phase is often used to avoid the instability caused by the initial large learning rate (Goyal et al.,
2017). Our rule is not directly compatible with the warmup phase, since it is designed for a decaying
learning rate, but the learning rate increases rather than decreases in this phase. Practically, we
recommend setting H(s) as the value to be used in the communication round right after the warmup.

3 THEORETICAL MOTIVATIONS OF QUADRATIC SYNCHRONIZATION RULE

To justify our choice of power 2, we build on the same theoretical setup as Gu et al. (2023) to
analyze the Stochastic Differential Equation (SDE) approximation of SGD and Local SGD using
different scalings of H with respect to η. Though the learning rate continuously decays over time
in most of our experiments, it does not usually change much within a couple of epochs. Inspired by
this, we take a quasistatic viewpoint: consider a significant period of time where the learning rate is
relatively constant, and directly treat the learning rate as a real constant η. First, we recap Gu et al.
(2023)’s theory that applies to Local SGD withH ∼ η−1, then we show how to generalize the result
to our rule where H ∼ η−2, leading to a stronger implicit bias towards flatter minima.

Setup. Consider optimizing the loss function L(θ) := Eξ∼D̃[ℓ(θ; ξ)], where θ ∈ Rd is the pa-
rameter vector and ℓ(θ; ξ) is the loss function for a single data sample ξ drawn from a training
set/training distribution D̃. We use Σ(θ) := Covξ∼D̃[∇ℓ(θ; ξ)] to denote the covariance matrix of
the stochastic gradient ∇ℓ(θ; ξ) at θ. Following Gu et al. (2023), we make regularity assumptions
on L(θ),Σ(θ) and ∥∇ℓ(θ; ξ)∥2 in Assumption E.1, and we assume that L has a manifold Γ of
minimizers in Assumption E.2. Our analysis is based on SDE approximations near Γ, providing a
clean view of how different choices of H affect the selection of minimizers by Local SGD.

SDE approximations of SGD and Local SGD. SDE is a powerful tool to precisely character-
ize the effect of noise in SGD, leading to many applications such as Linear Scaling Rule (Goyal
et al., 2017). The SDE dθ(t) = −∇L(θ(t))dt+ 1√

B
Σ(θ(t))1/2dWt is conventionally used in the

literature (Jastrzębski et al., 2017; Smith et al., 2020; Li et al., 2021b), where Wt is the standard
Wiener process. In this SDE, each discrete step corresponds to a continuous time interval of length
η, and the expected gradient and gradient noise become a deterministic drift term and a stochastic
diffusion term, respectively. When the training proceeds to a point θ(t) near a minimizer ζ0 on the
manifold Γ, the gradient ∇L(θ(t)) is almost zero but the gradient noise 1√

B
Σ(θ(t))1/2dWt drives

the parameter to diffuse locally. This can be captured by a careful first-order approximation of the
dynamics, leading to an Ornstein-Uhlenbeck process (Zhu et al., 2019; Li et al., 2019a; Izmailov
et al., 2018). However, these rough approximations only hold for about O(η−1) steps, whereas
neural networks in practice are usually trained for much longer.

Recently, a series of works (Blanc et al., 2020; Damian et al., 2021; Li et al., 2021c) study the
dynamics of SGD on a longer horizon. They show that higher-order terms can accumulate over time
and drive this local diffusion to gradually move on the manifold Γ. Among them, Li et al. (2021c)
precisely characterized this with an SDE tracking the gradient flow projection of θ(t) on Γ, denoted
as Φ(θ(t)) (see Definition E.1). Here, Φ(θ(t)) can be thought of as a natural “center” of the local
diffusion. This SDE, termed as Slow SDE, tracks the dynamics of SGD over O(η−2) steps, which
is much longer than the O(η−1) horizon for conventional SDEs.

To provide a theoretical understanding of why Local SGD generalizes better than SGD, Gu et al.
(2023) derived the Slow SDEs for Local SGD using the scaling H ∼ η−1. By comparing the
Slow SDEs, they argued that Local SGD drifts faster to flatter minima than SGD. However, their
analysis does not encompass the more aggressive scaling H ∼ η−2 recommended by our QSR.
Recognizing this gap, we derive the Slow SDE for this scaling, enriching the theoretical framework
for the generalization behavior of Local SGD. Below, we first present the Slow SDEs for SGD and
Local SGD with H ∼ η−1 and H ∼ η−2, then we interpret why H ∼ η−2 may generalize better.
Definition 3.1 (Slow SDE for SGD, informal, (Li et al., 2021c; Gu et al., 2023)). Given ζ0 ∈ Γ,
define ζ(t) as the solution to the following SDE with initial condition ζ(0) = ζ0:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion on Γ

− 1
2B∇3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸

(b) drift on Γ

)
. (3)

4

Published as a conference paper at ICLR 2024

Here, Pζ is a projection operator of differential forms to ensure that taking an infinitesimal step
from ζ ∈ Γ remains on the manifold Γ. B is the total batch size. Σ∥(ζ) and Σ̂♢(ζ) are certain PSD
matrices related to gradient noise and Hessian. See Definition E.2 for the full definition.
Definition 3.2 (Slow SDE for Local SGD with H ∼ η−1, informal (Gu et al., 2023)). Consider the
scaling H = β/η for some constant β. Given ζ0 ∈ Γ, define ζ(t) as the solution to the following
SDE with initial condition ζ(0) = ζ0:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion on Γ

− 1
2B∇3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸
(b) drift on Γ, same as SGD

−K−1
2B ∇3L(ζ)[Ψ̂(ζ;Hη)]dt︸ ︷︷ ︸

(c) an extra drift term on Γ

)
, (4)

where K is the number of workers, B,Σ∥(ζ) and Σ̂♢(ζ) are the same as in Definition 3.1.
Here, Ψ̂(ζ;β) is a PSD matrix depending on gradient noise and Hessian. It scales with β as
limβ→0 Ψ̂(ζ;β) = 0, limβ→+∞ Ψ̂(ζ;β) = Σ̂♢(ζ). 1 See Definition E.3 for the full definition.
Definition 3.3 (Slow SDE for Local SGD with QSR). Given ζ0 ∈ Γ, define ζ(t) as the solution to
the following SDE with initial condition ζ(0) = ζ0:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion on Γ

− K
2B∇3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸

(b) drift on Γ,K times larger

)
, (5)

where K,B,Σ∥(ζ) and Σ̂♢(ζ) are defined in Definitions 3.1 and 3.2.

The following approximation theorem indicates that when the learning rate η and the growth co-
efficient α for QSR are small, the above Slow SDEs closely track their discrete counterparts. The
approximation theorem for QSR is new, and we defer the proof to Appendix E.2.
Theorem 3.1 (Weak Approximations). Let T > 0 be a constant and ζ(t) be the solution to one of
the above Slow SDEs with the initial condition ζ(0) = Φ(θ(0)) ∈ Γ. Let g(θ) be any C4-smooth
function.

1. (Gu et al., 2023) For SGD, let ζ(t) be the solution to (3). Then, max0≤s≤ T
η2
|E[g(Φ(θs))] −

E[g(ζ(sη2))]| = Õ(η0.25).
2. (Gu et al., 2023) For Local SGD with H = β/η for some constant β, let ζ(t) be the solution to

(4). Then, max0≤s≤ T
Hη2
|E[g(Φ(θ(s)))]− E[g(ζ(sHη2))]| = Õ(η0.25).

3. For Local SGD with H = (αη)
2, where the positive constant α is small but larger than

Ω(ηγ) for all γ > 0, let ζ(t) be the solution to (5). Then, max0≤s≤ T
Hη2
|E[g(Φ(θ(s)))] −

E[g(ζ(sHη2))]| = O(α2).

Here, O(·) and Õ(·) hide constants that are independent of α and η but can depend on g and T .
Õ(·) also hides log terms.

By comparing the Slow SDEs, we can predict the generalization order for different scaling as QSR
> {H ∼ η−1} > {constant H}, which we explain in detail below.

Interpretation of the Slow SDEs. We first focus on the Slow SDE for SGD (3). The key com-
ponent of this Slow SDE is the drift term (b), which comes from higher-order approximations of
the aforementioned local diffusion that happens in O(η−1) steps. Viewing ∇3L(ζ)[Σ̂♢(ζ)] as a
semi-gradient of ⟨∇2L(ζ), Σ̂♢(ζ)⟩ that discards the dependence of θ in Σ̂♢(ζ), we can interpret
the Slow SDE as a continuous version of a semi-gradient method for reducing ⟨∇2L(ζ), Σ̂♢(ζ)⟩ on
Γ. Since the Hessian matrix ∇2L(ζ) determines the local curvature of the loss landscape, we can
conclude from the Slow SDE that SGD tends to reduce sharpness and move towards flatter minimiz-
ers in O(η−2) steps. Reduced sharpness has been shown to yield better sample complexity bounds
in specific theoretical settings. For details, we refer the readers to Li et al. (2021c).

1Given ζ, Ψ̂(ζ;β) is a monotonically increasing function of β in the eigenspace of the Hessian matrix
∇2L(ζ).

5

Published as a conference paper at ICLR 2024

17.5 20.0 22.5 25.0
Communication Volume (%)

79.5

80.0

T
op

-1
V

al
.

A
cc

.
(%

)

(β = 0.6)
(β = 0.8)

(β = 1)

(β = 1.2)

(α = 0.2)

(α = 0.25)(α = 0.3)

(α = 0.4)

100

(a) Local SGD on ResNet-152

10 15 20 25
Communication Volume (%)

79.5

80.0

80.5

81.0

T
op

-1
V

al
.

A
cc

.
(%

)

(β = 0.025)

(β = 0.03)

(β = 0.035)

(β = 0.04)

(α = 0.01)

(α = 0.015)
(α = 0.0175)

(α = 0.02)

100

H = b(αη)2c
H = bβη c
H = 4

Parallel SGD/AdamW

(b) Local AdamW on ViT-B

Figure 2: Empirical results on Local SGD and Local AdamW validate the generalization performance order
predicted by our theory: QSR > {H ∼ η−1}> {constant H}. For SGD, we additionally have {constant H} ≈
{parallel SGD} since the latter is equivalent to Local SGD with H = 1. Here, α and β are tuned to maximize
the test accuracy of QSR and H ∼ η−1, respectively.

Now, we turn to the Slow SDE for QSR. Compared with the SDE for SGD, it possesses a K times
larger drift term, leading to much faster sharpness reduction than SGD. An intuitive explanation for
why this extra drift arises is as follows. Since the local batch size is K times smaller than the global
one, this local diffusion at each worker is much more significant than that in parallel SGD, thereby
leading to an extra drift term in Slow SDE accumulated from higher-order terms.

The case of Local SGD withH = β/η is somewhere in between QSR and SGD. Compared with the
SDE for SGD, it has an extra drift term (c), where β serves as the knob to control the magnitude of
the drift term. For small β, Ψ̂(ζ) diminishes to zero, yielding the same SDE as SGD. By contrast,
as β goes to infinity, Ψ̂(ζ) approximates Σ̂♢(ζ), leading to the Slow SDE for QSR.

Comparison of different scalings. Based on the interpretation, keeping H constant as η dimin-
ishes is equivalent to setting a small β for H = β/η, making the extra drift term negligible and thus
yielding nearly no generalization benefit over SGD. Conversely, the SDE for H = β/η converges to
the SDE of QSR in the limit β → ∞, maximizing the drift term. But in practice, β cannot be arbi-
trarily large. In Theorem 3.3 of Gu et al. (2023), the distance between the iterate and Γ blows up as
Õ(√βη), suggesting that setting a very large β for a not-so-small η can blow up the loss. Therefore,
the generalization performance ofH∼η−1 is expected to be worse than QSR. In summary, the order
of generalization performance predicted by our theory is QSR > {H ∼ η−1} > {constant H}.

Experimental results in Figure 2 validate that this order of generalization performance for different
scalings holds not only for Local SGD but also for Local AdamW. For Local SGD we additionally
have {constant H} ≈ {parallel SGD} since parallel SGD is mathematically equivalent to Local
SGD with H = 1. Apart from H ∼ η−1 and H ∼ η−2, we also tried a more aggressive scaling,
H ∼ η−3, but it does not provide consistent improvements over QSR. See Appendix G for more
discussion.

4 EXPERIMENTS

In this section, we empirically demonstrate that QSR not only improves the test accuracy of local
gradient methods but also reduces the wall-clock time of standard data parallel training, with a focus
on the ImageNet classification task (Russakovsky et al., 2015). Our experiments include Local SGD
on ResNet-152 (He et al., 2016), and Local AdamW on ViT-B with patch size 16x16 (Dosovitskiy
et al., 2021). We briefly outline our training configuration below. See Appendix C for full details.

Baselines. For QSR with base synchronization period Hbase, we benchmark their performance
against two baselines running the same number of epochs: ① Local SGD/AdamW with constant
synchronization period H = Hbase, and ② parallel SGD/AdamW. When comparing with these
baselines, we mainly focus on validating that (a) QSR maintains or sometimes outperforms the
communication efficiency of ①, thus communicating much less than ②, and (b) QSR improves the
generalization performance of ①, even surpassing ② in test accuracy.

Comparison with other synchronization strategies. Besides the above two baselines, other po-
tential baselines include ③ Post-local SGD, ④ the scaling of H ∼ η−1, and ⑤ large batch training
with batch size H × B, which we discuss below. ③ is proposed for the same purpose as QSR: to
improve communication efficiency and generalization together. However, it is less communication
efficient than our QSR because it starts with parallel SGD and sustains this for a significant frac-
tion of the training duration, leading to a limited reduction in communication. Also, as shown by

6

Published as a conference paper at ICLR 2024

Table 1: QSR enhances the test accuracy of local gradient methods, even outperforming the communication-
intensive data parallel approach. The experiments below use batch size 4096. We report the validation accuracy
and train loss averaged over 3 runs, along with the standard deviation.

(a) Local SGD on ResNet-152

Method Val. acc. (%) Train loss Comm.

Parallel SGD 79.53 (0.07) 1.57 (0.01) 100%

Local SGD (H=2) 79.54 (0.07) 1.58 (0.00) 50%
+ QSR (Hbase=2) 80.30 (0.04) 1.67 (0.01) 39.7%

Local SGD (H=4) 79.48 (0.12) 1.62 (0.02) 25%
+ QSR (Hbase=4) 80.27 (0.05) 1.69 (0.01) 20.1%

(b) Local AdamW on ViT-B

Method Val. acc. (%) Train loss Comm.

Parallel AdamW 79.86 (0.03) 1.09 (0.00) 100%

Local AdamW (H=4) 79.32 (0.06) 1.01 (0.02) 25%
+ QSR (Hbase=4) 80.98 (0.05) 1.32 (0.00) 10.4%

Local AdamW (H=8) 78.93 (0.10) 1.06 (0.00) 12.5%
+ QSR (Hbase=8) 80.56 (0.10) 1.35 (0.01) 6.9%

our comparison in Figure 1(a) (also observed in Ortiz et al. 2021), its generalization benefits over
SGD appear shortly after switching and diminish in the end. ④ is inspired by Gu et al. (2023) and
may also improve generalization while reducing communication, but we have conducted a thorough
comparison between QSR and ④ in Figure 2, demonstrating the superiority of QSR. ⑤ has the same
communication efficiency as Local SGD with the same constant H (①), but it has been observed to
have worse test accuracy than parallel SGD/AdamW without scaling up the batch size (②), which
we also observe in Table 2. For the above reasons, we mainly compare with baselines ① and ②.

Hardware. We conduct the experiments on Tencent Cloud, where each machine is equipped with
8 NVIDIA GeForce RTX 3090 GPUs. The machines are interconnected by a 25Gbps network.
Since intra-machine communication speed is not substantially faster than inter-machine speed on
our specific hardware, we treat each GPU as an independent worker and set the batch size on each
GPU as Bloc = 256. In this paper, we use axb GPUs to denote a machines with b GPUs each.

Training Setup. Our experiments on ResNet-152 follow the 200-epoch recipe in Foret et al.
(2021b) except that we use 5 epochs of linear learning rate warmup. For experiments on ViT-B,
we follow the simple and effective 300-epoch recipe proposed in Beyer et al. (2022) with RandAug-
ment and Mixup. We use the cosine decay unless otherwise stated. The hyperparameters (primarily
learning rate and weight decay) are optimally tuned for all baselines. We explore Hbase = 2, 4 for
ResNet-152 and Hbase = 4, 8 for ViT-B. This choice stems from the observation that the communi-
cation overhead for ResNet-152 is smaller than ViT-B (see Table 4). To tune the growth coefficient
α for QSR, we first fix the learning rate schedule and then search among a few values of α. The α
values we explore typically allow the training to start with Hbase, maintain H = Hbase for an initial
period to optimize the training loss, and gradually increase H as η decays in the late phase.

4.1 QSR IMPROVES GENERALIZATION

Through experiments spanning various batch sizes and learning rate schedules, in this subsection,
we illustrate that QSR consistently enhances the generalization of gradient methods, even outper-
forming the communication-intensive data parallel approach.

Main results. We first present our main results for batch size B = 4096 on 2x8 GPUs, covering
Local SGD on ResNet-152 and Local AdamW on ViT-B. As shown in Table 1, QSR significantly
improves the validation accuracy of local gradient methods by up to 0.8% on ResNet-152 and 1.7%
on ViT-B, despite inducing higher training loss. The results support the thesis that the improvement
in generalization is due to the implicit regularization of local gradient noise instead of better opti-
mization. Noticeably, QSR surpasses the data parallel approach in validation accuracy by 0.7% on
ResNet-152 and by 1.1% on ViT-B while cutting the communication volume to less than 25%. As
an added benefit of increasing the synchronization interval in line with the decaying learning rate,
QSR further reduces communication overhead, even halving the communication volume compared
to Local AdamW with a fixed synchronization period on ViT-B.

The advantages of QSR are more pronounced for ViT-B compared to ResNet-152. This is probably
because vision transformers are general-purpose architectures with less image-specific inductive
bias than CNNs (Dosovitskiy et al., 2021; Chen et al., 2021). As a result, they may benefit more
from external regularization effects, such as those induced by adding local steps.

Scaling up the batch size. In Table 2, when scaling the training up to 8x8 GPUs with total batch
sizeB = 16384, we observe a drop in test accuracy for both data parallel approach and local gradient
methods. This generalization degradation for large batch training, which has been widely observed

7

Published as a conference paper at ICLR 2024

Table 2: QSR mitigates the generalization degradation in large-batch training. Here the batch size is 16384.

(a) Local SGD on ResNet-152

Method Val. Acc.(%) Comm. (%)

Parallel SGD 79.20 100

Local SGD (H=2) 78.67 50
+ QSR (Hbase = 2) 79.27 42.8

Local SGD (H=4) 78.34 25
+ QSR (Hbase = 4) 78.65 21.9

(b) Local AdamW on ViT-B

Method Val. Acc. (%) Comm. (%)

Parallel AdamW 78.52 100

Local AdamW (H=4) 77.83 25
+QSR (Hbase = 4) 79.36 16.1

Local AdamW (H=8) 77.62 12.5
+QSR (Hbase = 8) 78.26 9.8

Table 3: QSR also exhibits strong generalization performance on the step-decay learning rate schedule.

(a) Local SGD on ResNet-152.

Method Val. Acc. (%) Comm. (%)

Parallel SGD 79.68 100

Local SGD (H=2) 79.58 50
+QSR (Hbase = 2) 80.40 40.3

Local SGD (H=4) 79.53 25
+QSR (Hbase = 4) 80.11 20.5

(b) Local AdamW on ViT-B.

Method Val. Acc.(%) Comm.(%)

Parallel AdamW 79.91 100

Local AdamW (H=4) 79.36 25
+ QSR (Hbase = 4) 80.9 12.7

Local AdamW (H=8) 79.23 12.5
+ QSR(Hbase = 8) 80.65 7.2

in the literature (Shallue et al., 2019; Jastrzębski et al., 2017; You et al., 2018), probably arises from
a reduced level of gradient noise associated with increased batch size (Keskar et al., 2017b; Smith
et al., 2021). While the Linear Scaling Rule for SGD (Krizhevsky, 2014; Goyal et al., 2017) and the
Square Root Scaling Rule (Malladi et al., 2022; Granziol et al., 2022) for adaptive gradient methods
– which increase the learning rate in proportion to the total batch size or its square root – can mitigate
this degradation, they cannot fully bridge the gap. In Table 2, the test accuracy drop persists even
when we tune the learning rate for all baselines. Applying QSR to local gradient methods can help
reduce this generalization gap. It improves the validation accuracy of local gradient methods by
up to 0.6% on ResNet-152 and 1.5% on ViT-B. This enables local gradient methods to achieve
comparable validation accuracy as the data parallel approach on ResNet or outperform it by 0.8%
on ViT while communicating considerably less.

0 100 200 300
Epochs

60

65

70

75

80

T
op

-1
V

al
.

A
cc

.
(%

)

Method and Communcation Volume

Parallel AdamW, 100%

Local AdamW (H = 4), 25%

QSR (Hbase = 4), 9.3%

280 290 300
79

80

81

Figure 3: For linear decay, QSR improves
the test accuracy of Local AdamW on ViT-
B, even outperforming the communication-
intensive parallel AdamW.

Other learning rate schedules. So far, our experi-
ments are conducted with the cosine learning rate sched-
ule, which is a common choice for training modern deep
neural nets (Liu et al., 2021; 2022; Brown et al., 2020). To
further validate the efficacy of QSR, we now investigate
other popular learning rate schedules, including linear (Li
et al., 2020a; Izsak et al., 2021; Leclerc et al., 2023) and
step decay (He et al., 2016; Huang et al., 2017; Ma et al.,
2019). See Figure 4 for a visualization of these sched-
ules. Figure 3 presents the results for Local AdamW on
ViT-B with linear decay, where the peak learning rates for
baselines are tuned optimally. QSR improves the test ac-
curacy of Local AdamW by a significant margin of 1.4%,
even outperforming parallel AdamW by 0.6% while cut-
ting the communication volume to only 9.3%. The step
decay scheduler divides the learning rate by factors such as 2 or 10 at some specified epochs. Given
the absence of standard recipes to determine the decay points in our training setup, we derive a
step decay schedule from the cosine decay by rounding its learning rate to powers of 2, which is
defined as ηstep(t) := 2round(log2 ηcos(t)). As shown in Table 3, QSR exhibits strong generalization
performance with this decay schedule, enhancing the test accuracy of local gradient methods by up
to 0.8% on ResNet-152 and 1.5% on ViT-B. It even surpasses the communication-intensive parallel
SGD by 0.7% on ResNet and parallel AdamW by 1% on ViT.

4.2 QSR REDUCES WALL-CLOCK TIME

In addition to improving generalization, our original motivation for adopting local steps is to reduce
communication overhead and hence reduce the wall-clock time. In this section, we confirm this
for training with 2x8 and 8x8 GPUs, as shown in Table 4. See also Appendix F for our method
of measuring the communication time. In our setup, scaling the training from 2x8 to 8x8 GPUs

8

Published as a conference paper at ICLR 2024

Table 4: QSR reduces the wall-clock time of data parallel training. The following tables present wall-clock
time for the entire training process on 2x8 GPUs and 8x8 GPUs, with batch sizes 4096 and 16384, respectively.
We highlight the wall-clock time of QSR when it matches or outperforms the data parallel baseline in test
accuracy. “Ratio” represents communication time divided by total time, reflecting the communication overhead.
We also include local gradient methods with a constant synchronization period for reference.

(a) ResNet-152 (200 epochs) on 2x8 GPUs

Method Comm. (h) Total (h) Ratio (%)

Parallel SGD 3.3 20.7 15.9
QSR (Hbase = 2) 1.3 18.7 7.0
QSR (Hbase = 4) 0.7 18.0 3.9

Local SGD (H=2) 1.6 19.0 8.4
Local SGD (H=4) 0.8 18.0 4.4

(b) ViT-B (300 epochs) on 2x8 GPUs

Method Comm. (h) Total (h) Ratio(%)

Parallel AdamW 7.3 26.7 27.3
QSR (Hbase = 4) 0.8 20.2 4.0
QSR (Hbase = 8) 0.5 20.0 2.5

Local AdamW (H=4) 1.8 21.2 8.4
Local AdamW (H=8) 0.9 20.5 4.4

(c) ResNet-152 (200 epochs) on 8x8 GPUs

Method Comm. (h) Total (h) Ratio (%)

Parallel SGD 1.3 5.7 22.8
QSR (Hbase = 2) 0.6 5.0 12.0
QSR (Hbase = 4) 0.3 4.7 6.4

Local SGD (H=2) 0.7 5.1 13.7
Local SGD (H=4) 0.3 4.8 6.3

(d) ViT-B (300 epochs) on 8x8 GPUs

Method Comm. (h) Total (h) Ratio (%)

Parallel AdamW 3.7 8.6 43.0
QSR (Hbase = 4) 0.6 5.5 10.9
QSR (Hbase = 8) 0.4 5.3 7.5

Local AdamW (H=4) 0.9 5.8 15.5
Local AdamW (H=8) 0.5 5.3 9.4

increases the communication overhead for both models. Notably, on 8x8 GPUs, communication
accounts for almost half of the total training time for ViT-B. Since communication makes up a
larger portion of the total time for ViT-B compared to ResNet-152, the speedup from QSR is more
significant on ViT-B: the time is cut from 26.7 to 20.2 hours on 2x8 GPUs, and 8.6 to 5.5 hours
on 8x8 GPUs. As discussed in Section 4.1, compared to the constant period local gradient method,
QSR further reduces the communication cost by increasing the synchronization period in the late
phase. For example, applying QSR to Local AdamW with H = 4 further reduces the time by 1 hour
for ViT training on 2x8 GPUs.

Discussion on the choice ofHbase. As elaborated in Section 2, Hbase indicates the minimum syn-
chronization period and should be determined based on the communication overhead. For ResNet-
152, given that communication only accounts for 3.3 out of 20.7 hours on 2x8 GPUs and 1.3 out
of 5.7 hours on 8x8 GPUs, setting Hbase as 2 or 4 suffices to reduce the communication time to an
inconsequential amount. By contrast, the communication overhead for ViT-B is more prominent,
motivating us to consider larger values ofHbase, such as 4 and 8. As shown in Tables 1 and 2, Hbase

introduces a tradeoff between communication efficiency and final test accuracy. For instance, when
training ResNet-152 with batch size 16384, one can either choose Hbase = 2 to achieve compara-
ble test accuracy as parallel SGD, or Hbase = 4 to further halve the communication volume at the
expense of a 0.6% drop in test accuracy. One probable explanation for this accuracy drop for larger
Hbase can be worse optimization in the early training phase, where the learning rate is large.

5 DISCUSSIONS AND FUTURE DIRECTIONS

This paper primarily focuses on relatively large models trained with long horizons, and proposes
the Quadratic Synchronization Rule (QSR). As validated by our experiments, QSR effectively im-
proves test accuracy and communication efficiency simultaneously for training large vision models
(ResNet-152 and ViT-B) with quite a few hundred epochs. However, on the downside, for smaller
models trained with shorter horizons, QSR may not consistently deliver noticeable generalization
improvements (see Table 5). Nonetheless, training in this regime is not costly, either, making it less
of a critical concern. Another limitation of our work is that the effectiveness of QSR relies on the im-
plicit regularization effects of noise, but regularization techniques become less important in bridging
the gap between the training and population loss (Vyas et al., 2023) in pertaining large model with
unsupervised learning, where the training is done on massive data with only a few epochs. Still, cer-
tain implicit/explicit regularization effects have been found to be effective in improving downstream
performance despite the same pertaining loss (Liu et al., 2023; Panigrahi et al., 2024). We leave it
to future work to explore and design communication-efficient methods for unsupervised learning,
particularly language model pretraining, that improve models’ transferability to downstream tasks.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT AND DISCLOSURE OF FUNDING

The work of Xinran Gu and Longbo Huang is supported by the Technology and Innovation Major
Project of the Ministry of Science and Technology of China under Grant 2020AAA0108400 and
2020AAA0108403. The work of Kaifeng Lyu and Sanjeev Arora is partly supported by NSF and
ONR.

REFERENCES

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix fac-
torization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 32, pp. 7411–7422. Curran Asso-
ciates, Inc., 2019.

Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on the edge of
stability in deep learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 948–1024. PMLR,
17–23 Jul 2022.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-SGD: Distributed
SGD with quantization, sparsification and local computations. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k.
arXiv preprint arXiv:2205.01580, 2022.

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep neural
networks driven by an ornstein-uhlenbeck like process. In Jacob Abernethy and Shivani Agarwal
(eds.), Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings
of Machine Learning Research, pp. 483–513. PMLR, 09–12 Jul 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

Kai Chen and Qiang Huo. Scalable training of deep learning machines by incremental block train-
ing with intra-block parallel optimization and blockwise model-update filtering. In 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5880–5884,
2016. doi: 10.1109/ICASSP.2016.7472805.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. In International Conference on Learning Rep-
resentations, 2021.

Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Jacob Abernethy and Shivani Agarwal (eds.), Proceedings of
Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning
Research, pp. 1305–1338. PMLR, 09–12 Jul 2020.

Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. In International Conference on Learning
Representations, 2020.

Aditya Cowsik, Tankut Can, and Paolo Glorioso. Flatter, faster: scaling momentum for optimal
speedup of sgd. arXiv preprint arXiv:2210.16400, 2022.

10

https://arxiv.org/abs/2005.14165

Published as a conference paper at ICLR 2024

Alex Damian, Tengyu Ma, and Jason D Lee. Label noise SGD provably prefers flat global mini-
mizers. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 27449–27461. Curran As-
sociates, Inc., 2021.

Alex Damian, Eshaan Nichani, and Jason D. Lee. Self-stabilization: The implicit bias of gradient
descent at the edge of stability. In The Eleventh International Conference on Learning Represen-
tations, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In International conference on machine learning, pp. 1309–
1318. PMLR, 2018.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021a.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021b.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information pro-
cessing systems, 31, 2018.

Rong Ge, Yunwei Ren, Xiang Wang, and Mo Zhou. Understanding deflation process in over-
parametrized tensor decomposition. Advances in Neural Information Processing Systems, 34,
2021.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Diego Granziol, Stefan Zohren, and Stephen Roberts. Learning rates as a function of batch size:
A random matrix theory approach to neural network training. The Journal of Machine Learning
Research, 23(1):7795–7859, 2022.

Xinran Gu, Kaifeng Lyu, Longbo Huang, and Sanjeev Arora. Why (and when) does local SGD gen-
eralize better than SGD? In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=svCcui6Drl.

Vipul Gupta, Santiago Akle Serrano, and Dennis DeCoste. Stochastic weight averaging in parallel:
Large-batch training that generalizes well. In International Conference on Learning Representa-
tions, 2020.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local
SGD with periodic averaging: Tighter analysis and adaptive synchronization. Advances in Neural
Information Processing Systems, 32, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

11

https://openreview.net/forum?id=svCcui6Drl

Published as a conference paper at ICLR 2024

Wenqing Hu, Chris Junchi Li, Lei Li, and Jian-Guo Liu. On the diffusion approximation of noncon-
vex stochastic gradient descent. arXiv preprint arXiv:1705.07562, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Hikaru Ibayashi and Masaaki Imaizumi. Exponential escape efficiency of SGD from sharp minima
in non-stationary regime. arXiv preprint arXiv:2111.04004, 2021.

P Izmailov, AG Wilson, D Podoprikhin, D Vetrov, and T Garipov. Averaging weights leads to wider
optima and better generalization. In 34th Conference on Uncertainty in Artificial Intelligence
2018, UAI 2018, pp. 876–885, 2018.

Peter Izsak, Moshe Berchansky, and Omer Levy. How to train bert with an academic budget. arXiv
preprint arXiv:2104.07705, 2021.

Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in SGD. arXiv preprint
arXiv:1711.04623, 2017.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 17176–17186. Curran Associates, Inc., 2020.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2020.

Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon Shaolei Du, and Jason D. Lee. Understanding incremental
learning of gradient descent: A fine-grained analysis of matrix sensing. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 15200–15238. PMLR, 23–29 Jul 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Michael Kamp, Mario Boley, Daniel Keren, Assaf Schuster, and Izchak Sharfman. Communication-
efficient distributed online prediction by dynamic model synchronization. In Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2014, Nancy,
France, September 15-19, 2014. Proceedings, Part I 14, pp. 623–639. Springer, 2014.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017a.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017b.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local SGD on iden-
tical and heterogeneous data. In International Conference on Artificial Intelligence and Statistics,
pp. 4519–4529. PMLR, 2020.

12

Published as a conference paper at ICLR 2024

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does SGD escape lo-
cal minima? In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
2698–2707. PMLR, 10–15 Jul 2018.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. ffcv. https://github.com/libffcv/ffcv/, 2022.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Alek-
sander Mądry. Ffcv: Accelerating training by removing data bottlenecks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12011–12020,
June 2023.

Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam Rajbhandari, and Yuxiong He. 1-bit
lamb: communication efficient large-scale large-batch training with lamb’s convergence speed. In
2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics
(HiPC), pp. 272–281. IEEE, 2022.

Mengtian Li, Ersin Yumer, and Deva Ramanan. Budgeted training: Rethinking deep neural network
training under resource constraints. In International Conference on Learning Representations,
2020a.

Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and dynamics of stochastic
gradient algorithms i: Mathematical foundations. Journal of Machine Learning Research, 20(40):
1–47, 2019a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020b.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. In International Conference on Learning Representations, 2019b.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Sébastien Bubeck, Vianney
Perchet, and Philippe Rigollet (eds.), Proceedings of the 31st Conference On Learning Theory,
volume 75 of Proceedings of Machine Learning Research, pp. 2–47. PMLR, 06–09 Jul 2018.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. In International Conference on Learning
Representations, 2021a.

Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling SGD with stochastic
differential equations (sdes). Advances in Neural Information Processing Systems, 34:12712–
12725, 2021b.

Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after SGD reaches zero loss?–a
mathematical framework. In International Conference on Learning Representations, 2021c.

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches,
use Local SGD. In International Conference on Learning Representations, 2020.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better down-
stream: Implicit bias matters for language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings
of the 40th International Conference on Machine Learning, volume 202 of Proceedings of Ma-
chine Learning Research, pp. 22188–22214. PMLR, 23–29 Jul 2023.

13

https://github.com/libffcv/ffcv/

Published as a conference paper at ICLR 2024

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
In International Conference on Learning Representations, 2020.

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
Margin maximization and simplicity bias. Advances in Neural Information Processing Systems,
34, 2021.

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normal-
ization layers: Sharpness reduction, 2022.

Chao Ma and Lexing Ying. On linear stability of SGD and input-smoothness of neural networks. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 16805–16817. Curran Associates, Inc.,
2021.

Chao Ma, Daniel Kunin, Lei Wu, and Lexing Ying. Beyond the quadratic approximation: The
multiscale structure of neural network loss landscapes. Journal of Machine Learning, 1(3):247–
267, 2022. ISSN 2790-2048.

Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and Raquel Urtasun. Deep rigid instance
scene flow. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 3614–3622, 2019.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the SDEs and scaling
rules for adaptive gradient algorithms. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Gideon Mann, Ryan T. McDonald, Mehryar Mohri, Nathan Silberman, and Dan Walker. Efficient
large-scale distributed training of conditional maximum entropy models. In Advances in Neural
Information Processing Systems 22, pp. 1231–1239, 2009.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Mor Shpigel Nacson, Suriya Gunasekar, Jason Lee, Nathan Srebro, and Daniel Soudry. Lexico-
graphic and depth-sensitive margins in homogeneous and non-homogeneous deep models. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 4683–4692, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Giorgi Nadiradze, Amirmojtaba Sabour, Peter Davies, Shigang Li, and Dan Alistarh. Asynchronous
decentralized sgd with quantized and local updates. Advances in Neural Information Processing
Systems, 34:6829–6842, 2021.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring gener-
alization in deep learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Jose Javier Gonzalez Ortiz, Jonathan Frankle, Mike Rabbat, Ari Morcos, and Nicolas Ballas. Trade-
offs of Local SGD at scale: An empirical study. arXiv preprint arXiv:2110.08133, 2021.

Abhishek Panigrahi, Nikunj Saunshi, Kaifeng Lyu, Sobhan Miryoosefi, Sashank Reddi, Satyen Kale,
and Sanjiv Kumar. Efficient stagewise pretraining via progressive subnetworks. arXiv preprint
arXiv:2402.05913, 2024.

14

Published as a conference paper at ICLR 2024

Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of dnns with natural gradi-
ent and parameter averaging. arXiv preprint arXiv:1410.7455, 2014.

Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
norms. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 21174–21187. Curran Associates, Inc.,
2020.

Noam Razin, Asaf Maman, and Nadav Cohen. Implicit regularization in hierarchical tensor fac-
torization and deep convolutional neural networks. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 18422–18462. PMLR, 17–23 Jul 2022.

Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019.

Shuheng Shen, Yifei Cheng, Jingchang Liu, and Linli Xu. Stl-sgd: Speeding up local sgd with stage-
wise communication period. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 9576–9584, 2021.

Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
gradient descent. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 9058–9067. PMLR, 13–18 Jul 2020.

Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of implicit regular-
ization in stochastic gradient descent. In International Conference on Learning Representations,
2021.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
plicit bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):
1–57, 2018a.

Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on separable
data. In International Conference on Learning Representations, 2018b.

Sebastian U Stich. Local SGD converges fast and communicates little. In International Conference
on Learning Representations, 2018.

Dominik Stöger and Mahdi Soltanolkotabi. Small random initialization is akin to spectral learning:
Optimization and generalization guarantees for overparameterized low-rank matrix reconstruc-
tion. Advances in Neural Information Processing Systems, 34, 2021.

Hang Su and Haoyu Chen. Experiments on parallel training of deep neural network using model
averaging. arXiv preprint arXiv:1507.01239, 2015.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru
Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training
with adam’s convergence speed. In Proceedings of the 38th International Conference on Machine
Learning, 2021.

15

Published as a conference paper at ICLR 2024

Nikhil Vyas, Depen Morwani, Rosie Zhao, Gal Kaplun, Sham Kakade, and Boaz Barak. Beyond im-
plicit bias: The insignificance of SGD noise in online learning. arXiv preprint arXiv:2306.08590,
2023.

Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the best error-runtime
trade-off in local-update SGD. Proceedings of Machine Learning and Systems, 1:212–229, 2019.

Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and analysis
of local-update SGD algorithms. Journal of Machine Learning Research, 22(213):1–50, 2021.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving
communication-efficient distributed SGD with slow momentum. In International Conference
on Learning Representations, 2019.

Runzhe Wang, Sadhika Malladi, Tianhao Wang, Kaifeng Lyu, and Zhiyuan Li. The marginal value
of momentum for small learning rate sgd. arXiv preprint arXiv:2307.15196, 2023.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcma-
han, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

Mitchell Wortsman, Suchin Gururangan, Shen Li, Ali Farhadi, Ludwig Schmidt, Michael Rabbat,
and Ari S. Morcos. lo-fi: distributed fine-tuning without communication. Transactions on Ma-
chine Learning Research, 2023. ISSN 2835-8856.

Lei Wu, Chao Ma, and Weinan E. How sgd selects the global minima in over-parameterized learning:
A dynamical stability perspective. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. In International Conference on
Learning Representations, 2021.

Hang Xu, Wenxuan Zhang, Jiawei Fei, Yuzhe Wu, Tingwen Xie, Jun Huang, Yuchen Xie, Mohamed
Elhoseiny, and Panos Kalnis. SLAMB: Accelerated large batch training with sparse communica-
tion. In Proceedings of the 40th International Conference on Machine Learning, 2023.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Imagenet training in
minutes. In Proceedings of the 47th International Conference on Parallel Processing, pp. 1–10,
2018.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learn-
ing: Training BERT in 76 minutes. In International Conference on Learning Representations,
2020.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 5693–5700, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017.

16

Published as a conference paper at ICLR 2024

Xiaohui Zhang, Jan Trmal, Daniel Povey, and Sanjeev Khudanpur. Improving deep neural network
acoustic models using generalized maxout networks. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 215–219, 2014. doi: 10.1109/ICASSP.
2014.6853589.

Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic gra-
dient descent algorithm for nonconvex optimization. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-18, pp. 3219–3227. International Joint
Conferences on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/447. URL
https://doi.org/10.24963/ijcai.2018/447.

Tongtian Zhu, Fengxiang He, Kaixuan Chen, Mingli Song, and Dacheng Tao. Decentralized SGD
and average-direction SAM are asymptotically equivalent. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 43005–43036. PMLR, 23–29 Jul 2023.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochastic
gradient descent: Its behavior of escaping from sharp minima and regularization effects. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
7654–7663. PMLR, 09–15 Jun 2019.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic gradient
descent. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (eds.), Advances
in Neural Information Processing Systems, volume 23. Curran Associates, Inc., 2010.

17

https://doi.org/10.24963/ijcai.2018/447

Published as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 Our Method: Quadratic Synchronization Rule 3

3 Theoretical Motivations of Quadratic Synchronization Rule 4

4 Experiments 6

4.1 QSR Improves Generalization . 7

4.2 QSR Reduces Wall-clock Time . 8

5 Discussions and Future Directions 9

A Additional Related Works 19

B PseudoCode 21

C Experimental Details 22

C.1 Training Details for ResNet-152 . 22

C.2 Training Details For ViT-B . 23

D Additional Experiments on ResNet-50 24

E Supplementary Materials for Section 3 25

E.1 Missing Definitions and Assumptions . 25

E.2 Proof for Theorem 3.1 . 26

F Details for Communication Time Measurement 32

G Discussion on More Aggressive Scalings 33

H Comparison with Local SGD/AdamW + SWAP 35

18

Published as a conference paper at ICLR 2024

A ADDITIONAL RELATED WORKS

Advances in local gradient methods. Local gradient methods are a class of communication-
efficient algorithms for distributed training. In this approach, workers update their models locally
and average the model parameters every time they finish H steps of updates. Dating back to Mann
et al. (2009) and Zinkevich et al. (2010), local gradient methods have been widely used to improve
communication efficiency in both datacenter distributed training Zhang et al. (2014); Povey et al.
(2014); Su & Chen (2015); Chen & Huo (2016) and Federated Learning (Kairouz et al., 2021;
McMahan et al., 2017; Li et al., 2019b; Konečnỳ et al., 2016). Many variants have been proposed to
facilitate the convergence speed. Examples include using control variates (Karimireddy et al., 2020),
adding proximal terms to local loss functions (Li et al., 2020b), and applying adaptivity on top of
each communication round (Wang et al., 2019; Reddi et al., 2020). Local gradient methods can
also be readily combined with orthogonal approaches like communication compression (Basu et al.,
2019) and asynchronous updates (Nadiradze et al., 2021) for further communication cost reduction.

Optimization perspectives on selecting H . Extensive prior research has been devoted to op-
timizing the selection of the synchronization period H from an optimization perspective. The
conventional approach sets H as a constant throughout training. In this setup, a series of studies
(e.g.,Khaled et al. (2020); Stich (2018); Haddadpour et al. (2019); Yu et al. (2019)) established con-
vergence bounds for the training loss, which typically degrade asH gets larger. leading to a trade-off
between communication efficiency and model accuracy. Drawing upon these theoretical results, H
should be set as the smallest value that reduces the communication cost to an acceptable level to
minimize the negative impact on optimization. To better trade-off between optimization and gen-
eralization, researchers introduced various adaptive communication strategies. Kamp et al. (2014)
designed a synchronization protocol controlled by the variance in model parameters. Haddadpour
et al. (2019) suggested linearly increasing H as the iteration goes on. Shen et al. (2021) introduced
a stagewise communication scheme that halves the learning rate η while doubles H every time the
training has finished a predefined stage. Aimed at optimizing the convergence of training loss with
respect to wall-clock time, Wang & Joshi (2019) proposed a strategy that starts with infrequent
communication and gradually decreases H as training progresses. Nonetheless, the effectiveness
of these adaptive communication strategies has only been empirically validated on linear models or
small-scale datasets like CIFAR-10/100.

Generalization perspectives on selecting H . While a larger H usually hurts optimization, it can
sometimes improve generalization. Apart from Lin et al. (2020) that has been discussed in detail
in Section 1, similar observations have been reported by Gupta et al. (2020) and Wortsman et al.
(2023). Specifically, Gupta et al. (2020) introduced the Stochastic Weight Averaging in Parallel
(SWAP) algorithm, which runs parallel SGD until a target training accuracy, then lets workers per-
form local updates with a final model averaging. Their empirical results validate SWAP’s superior
generalization performance over parallel SGD. When using LAMB (You et al., 2020) as the op-
timizer, Wortsman et al. (2023) find that complete local fine-tuning, followed by a single model
averaging in the end (equivalent to setting H as the total number of iterations), outperforms the
standard parallel LAMB in test accuracy under distribution shifts. Another relevant method is the
“model soup” (Wortsman et al., 2022), which averages multiple models fine-tuned with different
hyperparameters and turns out to beat the single model in test accuracy. Our paper focuses on
designing the synchronization scheme best for generalization.

Implicit bias of optimizers. The success of deep learning lies in its remarkable ability to general-
ize to unseen data, though it possesses the capacity to fit randomly labeled data (Zhang et al., 2017).
A significant contributing factor to this success is the implicit bias inherent in popular optimizers
like Gradient Descent (GD) and Stochastic Gradient Descent (SGD). Specifically, these optimizers
favor minima that exhibit good generalization, without explicitly encoding such bias into the train-
ing loss. A lot of studies have been devoted to characterizing this implicit bias, some through the
lens of margin maximization (Soudry et al., 2018b;a; Lyu & Li, 2020; Ji & Telgarsky, 2020; Chizat
& Bach, 2020; Nacson et al., 2019), and some others focus on the simplicity bias from small ini-
tialization (Li et al., 2018; Razin & Cohen, 2020; Arora et al., 2019; Li et al., 2021a; Lyu et al.,
2021; Razin et al., 2022; Stöger & Soltanolkotabi, 2021; Ge et al., 2021; Jin et al., 2023). The
line of work most closely related to our paper interprets the implicit bias via sharpness reduction.
The connection between flatter minima and better generalization is a commonly held belief that has

19

Published as a conference paper at ICLR 2024

been investigated both theoretically (Hochreiter & Schmidhuber, 1997; Neyshabur et al., 2017) and
empirically (Keskar et al., 2017a; Jiang et al., 2020). Drawing on this insight, Foret et al. (2021a)
introduced SAM optimizer, which delivers superior generalization performance by explicitly penal-
izing sharpness. Recent theoretical studies (Arora et al., 2022; Lyu et al., 2022; Damian et al., 2023;
Ma et al., 2022) elucidate that GD inherently biases towards flatter regions on the loss landscape.
Specifically, under some regularity conditions, they show that GD will eventually enter the “Edge
of Stability”(Cohen et al., 2020), where the maximum eigenvalue of the loss Hessian stays around
2/learning rate, and then constantly moves towards flatter minima. Going beyond GD, another line
of work studies how gradient noise in SGD helps reduce sharpness. Wu et al. (2018); Hu et al.
(2017); Ma & Ying (2021) showed that gradient noise can cause training instability around sharp
minima, and hence, the iterate can only settle around flat minima. Kleinberg et al. (2018); Zhu
et al. (2019); Xie et al. (2021); Ibayashi & Imaizumi (2021) analyzed the escaping behavior of SGD
from sharp minima. Motivated by recent empirical observations that low-loss solutions on the loss
landscape are path-connected (Garipov et al., 2018; Draxler et al., 2018; Frankle et al., 2020) rather
than isolated, Blanc et al. (2020); Damian et al. (2021); Li et al. (2021c) assume the existence of a
minimizer manifold and show that gradient noise provably drives the iterate towards flatter minima
on this manifold. Cowsik et al. (2022); Wang et al. (2023) discuss how momentum preserves or
strengthens this effect. Also through the lens of sharpness reduction, the recent work by Gu et al.
(2023) explains the generalization benefit of Local SGD, as discussed in Section 3. Zhu et al. (2023)
elucidate that a similar implicit bias also manifests in decentralized training by making connections
to certain variants of SAM.

20

Published as a conference paper at ICLR 2024

B PSEUDOCODE

We present the pseudocodes for standard data parallel methods and local gradient methods below.

Algorithm 1: Parallel OPT: Data Parallel Methods on K Workers

1 Input: loss function ℓ(θ; ξ), initial parameter θ(0)

2 Hyperparameters: total number of iterations T
3 Hyperparameters: learning rate schedule ηt, t ∈ {0, · · · , T}, local batch size Bloc

4 t← 0 ; // initialize the global iteration number

5 for t = 0, . . . , R− 1 do
6 for each worker k do in parallel
7 (ξ

(s)
k,t,1, . . . , ξ

(s)
k,t,Bloc

)← Sample() ; // sample a local batch

8 g
(t)
k ← 1

Bloc

∑Bloc

i=1 ∇ℓ(θ(t); ξ
(t)
k,i) ; // computing the local gradient

9 end
10 g(t) ← 1

K

∑K
k=1 g

(t)
k ; // All-Reduce aggregation of local gradients

11 θ(t+1) ← OPT(θ(t), ηt, g
(t)) ; // update the model with optimizer OPT

12 end

Algorithm 2: Local OPT: Local Gradient Methods on K Workers

1 Input: loss function ℓ(θ; ξ), initial parameter θ̄(0)

2 Hyperparameters: total number of rounds R
3 Hyperparameters: learning rate schedule ηt, t ∈ {0, · · · , T}, local batch size Bloc

4 t← 0 ; // initialize the global iteration number

5 for s = 0, . . . , R− 1 do
6 H(s) ← GetH(s) ; // get synchronization period for the current round

7 for each worker k do in parallel
8 θ

(s)
k,0 ← θ̄(0) ; // maintain a local copy of the global model parameter

9 for h = 0, . . . ,H(s) − 1 do
10 (ξ

(s)
k,h,1, . . . , ξ

(s)
k,h,Bloc

)← Sample() ; // sample a local batch

11 g
(s)
k,h ← 1

Bloc

∑Bloc

i=1 ∇ℓ(θ
(s)
k,h; ξ

(s)
k,h,i) ; // computing the local gradient

12 θ
(s)
k,h+1 ← OPT(θ(s)

k,h, ηt+h, g
(s)
k,h) ; // update the local model with optimizer OPT

13 end
14 end
15 θ̄(s+1) ← 1

K

∑K
k=1 θ

(s)

k,H(s) ; // All-Reduce aggregation of local model parameters

16 t← t+H(s) ; // update the global iteration number

17 end

Sampling local batches. In Algorithms 1 and 2, Sample() returns a local batch for each worker.
In our experiments, local batches are sampled without replacement at each epoch, which is standard
for distributed training (Goyal et al., 2017; Lin et al., 2020; Ortiz et al., 2021). More specifically,
at the beginning of each epoch, all the workers use the same random seed to draw a shared random
permutation of train data points, and partition the data points evenly among the K workers. Then at
each local step of each worker, Sample() sequentially takes samples from its own partition. Once
there are too few remaining samples to form a complete batch, a new permutation is sampled and
a new epoch starts. For our theoretical analysis, following Gu et al. (2023), we assume Sample()
takes samples with replacement, i.e., the K workers are taking i.i.d. samples from the globally
shared dataset/distribution. See Appendix B in Gu et al. (2023) for pseudocodes of sampling with
and without replacement.

21

Published as a conference paper at ICLR 2024

Setting synchronization periods. In Algorithm 2, GetH(s) is a function that returns the syn-
chronization period H(s) for the current round. Conventionally, H(s) is chosen as a fixed value, so
GetH(s) always returns a constant. In this paper, we study howH(s) should change as training goes
on, e.g., in QSR, GetH(s) works as specified in Section 2.

C EXPERIMENTAL DETAILS

0 100 200 300
Epochs

0.0000

0.0025

0.0050

0.0075

L
ea

rn
in

g
R

at
e

cosine decay

step decay

linear decay

Figure 4: A visualization of the learning rate
schedules we investigate.

This section lists the additional experimental details
omitted in the main text.

Software and platform. We use Pytorch Dis-
tributed with NCCL backend to support multinode
distributed training and use FFCV (Leclerc et al.,
2022) to accelerate data loading of ImageNet.

Sampling scheme. We employ the “sampling
without replacement” scheme, as described in Ap-
pendix B.

C.1 TRAINING DETAILS FOR RESNET-152

We generally follow the recipe in Foret et al. (2021b) to train ResNet-152. Specifically, we set the
momentum as 0.9 and the weight decay λ as 0.0001. For data augmentation, we employ random
resized crop and random horizontal flip. We additionally use label smoothing 0.1. We adopt a local
batch size Bloc = 256 through 8 gradient accumulations. Therefore, the batch size for BatchNorm
is 32. This choice stems from our observation that a smaller batch size for BatchNorm enhances the
test accuracy of parallel SGD. Since the BatchNorm statistics on each worker are estimated on the
local model parameter, we pass 100 batches, each of size 32, to estimate the BatchNorm statistics
on the global parameter before evaluation.

Training details for batch size 4096. We search the optimal peak learning rate ηmax of the cosine
learning rate schedule among {0.4, 0.8, 1.6} for all baseline algorithms, i.e., parallel SGD and Local
SGD with constant synchronization period H = 2 and H = 4. The learning rate yielding the
highest final test accuracy is selected. We find that ηmax = 0.8 is optimal for all the baseline
algorithms. For QSR with Hbase = 2 and Hbase = 4, we directly set ηmax = 0.8. We search α
among {0.2, 0.25, 0.3}, and choose α = 0.2 and 0.25 for QSR with Hbase = 2 and 4 respectively.
Regarding other communication strategies in Figure 1(a), we set the switching point at epoch 100
and employ H = 8 for Post-local SGD. For H = β/η, we search β among {0.6, 0.8, 1, 1.2}, finally
selecting β = 1.

Training details for batch size 16384. The hyperparameter tuning procedure for B = 16384 is
similar to that of B = 4096. We search ηmax among {0.8, 1.6, 3.2} for all baseline algorithms,
including SGD and Local SGD with constant synchronization period Hbase = 2 and Hbase = 4.
We find that ηmax = 3.2 yields the highest final test accuracy for all of them. However, for QSR,
we find that peak learning rate ηmax = 3.2 is excessively large, causing the dynamic scheduling to
be triggered too late in the training process. This late triggering leaves insufficient training time for
the training to fully leverage the generalization benefits introduced by local steps. Consequently, we
set ηmax = 1.6 for QSR with Hbase = 2 and 4. We search α among {0.2, 0.25, 0.3}, and choose
α = 0.2 for both QSR with Hbase = 2 and 4.

Training details for the step decay scheduler. In our experiments with step decay, we employ a
batch size of 4096. Given that our step decay scheduler is derived from the cosine decay, we only
need to specify the weight decay λ, and peak learning rate ηmax. These are set identically to the
values used in our cosine decay experiments. For QSR, we search the growth coefficient α among
{0.2, 0.3} and choose 0.2 for both Hbase = 2 and 4.

Training details for experiments in Appendix H. For Local SGD + SWAP experiments in Ap-
pendix H, we use the cosine learning rate schedule with peak learning rate ηmax = 0.8. We start
with Local SGD with a constant synchronization period H = 4 and explore the switching point t0
from {175, 180, 185, 190}.

22

Published as a conference paper at ICLR 2024

C.2 TRAINING DETAILS FOR VIT-B

0 100 200 300
Epochs

101

102

103

104

H
(l

og
sc

al
e)

H Schedule and Communcation Volume

Constant Period, 25%

QSR, 10.4%

Figure 5: A visualization of the H schedule for
Local AdamW with a constant synchronization
period H = 4 and with QSR Hbase = 4, α =
0.0175. The corresponding learning rate schedule
is cosine decay with a peak learning rate of 0.008.
Adopting QSR improves the top-1 validation ac-
curacy of Local AdamW on ViT-B from 79.32%
to 80.98%..

For training ViT-B, we primarily follow the 300-
epoch recipe proposed by Beyer et al. (2022).
Specifically, we replace the [cls] token of the orig-
inal ViT token with global average pooling and use
fixed 2D sin-cos position rather than learned po-
sitional embeddings. Our implementation of the
model architecture follows the high-starred reposi-
tory 2 by Phil Wang. Apart from random resized
crop and random horizontal flip, we employ Ran-
dAugment with parameters (2, 10) and MixUp with
a coefficient of 0.2 for data augmentation. Different
from Beyer et al. (2022), we use a larger batch size
(B = 4096 or 16384 as opposed to their 1024) and
use AdamW instead of Adam.

As for gradient clipping, we set it as 1 for standard
AdamW following Beyer et al. (2022); Dosovitskiy
et al. (2021) and Chen et al. (2021). However, for
Local AdamW, the smaller batch size locally leads
to larger gradient noise and, hence larger gradient
norm for local updates. This calls for an increase
in the gradient clipping threshold. We find that the
training process remains stable even when we remove gradient clipping (equivalent to setting the
clipping threshold to +∞) for most of the hyperparameter configurations we tested. For ease of
tuning, we choose to turn off gradient clipping for Local AdamW unless otherwise stated.

Training details for batch size 4096. We use 10k iterations for learning rate warmup following
(Beyer et al., 2022; Dosovitskiy et al., 2021; Chen et al., 2021). For parallel AdamW and Local
AdamW (H = 4), we explore combinations of ηmax and weight decay λ from the grid {0.05, 0.1}×
{0.004, 0.008, 0.016}. To optimize the final test accuracy, we select ηmax = 0.008, λ = 0.1 for
parallel AdamW and ηmax = 0.008, λ = 0.05 for Local AdamW (H = 4). For Local AdamW
(H = 8), keeping λ = 0.05, we conduct a grid search for ηmax among {0.004, 0.008, 0.016} and
choose ηmax = 0.008. For QSR withHbase = 4 and 8, we directly use ηmax = 0.008 and λ = 0.05.
To optimize α, we search among {0.015, 0.0175, 0.02} and find α = 0.0175 works best for both
QSR with Hbase = 4 and 8. Regarding the communication strategy of H = β/η in Figure 1(b), we
explore β among {0.025, 0.03, 0.035, 0.04}, settling on β = 0.03. In Figure 5, we also visualize the
H schedule for Local AdamW with a constant synchronization period and with QSR.

Training details for batch size 16384. To keep the same portion of the total budget for learn-
ing rate warmup as B = 4096, we set the warmup iterations to 2.5k. We set λ as 0.1 and 0.05
for parallel AdamW and Local AdamW, respectively. We search for the optimal ηmax among
{0.004, 0.008, 0.016} and select ηmax = 0.004 for parallel AdamW, ηmax = 0.016 for Local
AdamW withH = 4 and 8. We adopt the same λ and ηmax as Local AdamW for QSR. For QSR with
Hbase = 4, we search for the optimal α among {0.015, 0.0175, 0.02} and choose α = 0.0175. For
QSR with Hbase = 8, we search for the optimal α among {0.01, 0.0175}, finally picking α = 0.01.

Training details for linear and step decay schedulers. For both step and linear decay schedulers,
we employ a batch size of 4096. For the step decay scheduler, the peak learning rate ηmax and weight
decay λ are set identically to the values used in our cosine decay experiments. We search the growth
coefficient α for QSR among {0.015, 0.0175} and choose 0.015 for both Hbase = 4 and 8. For
linear decay, we use the same weight decay as our cosine decay experiments. We explore ηmax

values from {0.004, 0.008, 0.016} for baselines, finally picking ηmax = 0.008 for parallel AdamW
and ηmax = 0.016 for Local AdamW. For QSR, we adopt the same ηmax and α as in our cosine
decay experiments. Additionally, we add a gradient clipping threshold of 4 for Local AdamW with
a constant synchronization period to stabilize training.

2https://github.com/lucidrains/vit-pytorch

23

https://github.com/lucidrains/vit-pytorch

Published as a conference paper at ICLR 2024

Training details for experiments in Appendix G. For the experiments in Table 6, we employ
the same weight decay λ and peak learning rate ηmax as used in the cosine schedule. Specifically,
we set λ = 0.1, ηmax = 0.008 for parallel AdamW and λ = 0.05, ηmax = 0.008 for Local AdamW.
In Table 6(a), for the cubic rule, we search ρ among {0.0025, 0.005, 0075, 0.01} and opt for ρ =
0.0075, which gives the highest test accuracy. For QSR, we adopt the same α value, 0.0175, as
in our cosine decay experiments. In Table 6(b), we set ρ = 0.0075 and α = 0.0175 for the cubic
rule and QSR, respectively, which are optimal for the original cosine decay schedule, as indicated by
Figure 6. As mentioned in Section 2, the final synchronization period may be truncated. Specifically,
workers are forced to synchronize at the last iteration if the last synchronization period exceeds
the remaining iterations. However, the modified cosine schedule experiments seek to validate that
the cubic rule can produce an overly large H when the learning rate is constant. To prevent the
truncation from distorting the results, we present the test accuracy at the conclusion of the last full
synchronization period, which is not truncated, for both scalings.

Training details for experiments in Appendix H. For Local AdamW + SWAP experiments in
Figure 9(b), we use the cosine learning rate schedule with peak learning rate ηmax = 0.008 and
weight decay λ = 0.05. We start with Local AdamW with a constant synchronization period H = 4
and explore the switching point t0 from {220, 240, 260, 280}.

D ADDITIONAL EXPERIMENTS ON RESNET-50

Our paper primarily focuses on training relatively large models with long horizons and proposes
QSR to effectively improve the generalization while saving communication. However, on the flip
side, QSR may not always yield noticeable generalization benefits for smaller models trained with
shorter horizons. As shown in Table 5, for the 90-epoch training of ResNet-50 with cosine learning
rate decay, the generalization benefit of QSR over Local SGD with a constant communication period
is negligible. Nonetheless, training in this regime is not costly, either, making it less of a critical
concern. Specifically, completing this 90-epoch training of ResNet-50 requires only 6.6 hours on a
single machine equipped with 8 NVIDIA GeForce RTX 3090 GPUs. In comparison, the 300-epoch
training of ViT investigated in the main text necessitates over 50 hours on the same setup.

Table 5: QSR does not yield noticeable improvement in test accu-
racy for the 90-epoch training of ResNet-50.

Method Val. Acc. (%)

Parallel SGD 76.84

Local SGD (H = 2) 76.60
+QSR (Hbase = 2) 76.65

24

Published as a conference paper at ICLR 2024

E SUPPLEMENTARY MATERIALS FOR SECTION 3

E.1 MISSING DEFINITIONS AND ASSUMPTIONS

For a function F : Rd → Rd, we use ∂F (θ) to denote its Jacobian at θ and use ∂2F (θ) to denote
the second order derivative at θ. For any matrix M ∈ Rd×d, ∂2F (θ)[M] =

∑
i∈[d]⟨∂

2Fi

∂θ2 ,M⟩ei
where ei is the i-th vector of the standard basis. For convenience, we write ∂2(∇L)(θ)[M] as
∇3L(θ)[M].

Assumption E.1. Following Gu et al. (2023), we assume that L(θ) and Σ(θ)1/2 are C∞-smooth
on Rd. We also assume that ∥∇ℓ(θ; ξ)∥2 is uniformly bounded for all θ and ξ.

Assumption E.2. Γ is a C∞-smooth, (d −m)-dimensional compact submanifold of Rd such that
any ζ ∈ Γ is a local minimizer of L and rank(∇2L(ζ)) = m. Additionally, there exists an open
neighborhood U of Γ such that Γ = argminθ∈UL(θ).

Assumption E.2 is motivated by recent empirical observations that low-loss solutions on the loss
landscape are not isolated but path-connected (Garipov et al., 2018; Draxler et al., 2018; Frankle
et al., 2020). It is also adopted by Li et al. (2021c); Lyu et al. (2022); Gu et al. (2023).

Definition E.1 (Gradient Flow Projection). Fix θnull /∈ Γ. For x ∈ Rd, the gradient flow starting
from x is the solution to dx(t)

dt = −∇L(x(t)) with the initial conditionx(0) = x. The gradient flow
projection of x is defined as Φ(x) := limt→+∞ x(t) if the limit exists and belongs to Γ. Otherwise,
Φ(x) := θnull.

Definition E.2 (Slow SDE for SGD, formal). Given ζ0 ∈ Γ, define ζ(t) as the solution to the
following SDE with initial condition ζ(0) = ζ0:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion on Γ

− 1
2B∇3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸

(b) drift on Γ

)
. (6)

Here, for any ζ ∈ Γ, Pζ is a projection operator that maps any differential form AdWt + bdt
in Itô calculus to ∂Φ(ζ)AdWt +

(
∂Φ(ζ)b+ 1

2∂
2Φ(ζ)[AA⊤]

)
, which guarantees ζ to remain

on the manifold after taking such an infinitesimal step. B is the total batch size. Σ∥(ζ) :=
∂Φ(ζ)Σ(ζ)∂Φ(ζ) is the covariance matrix of gradient noise projected onto the tangent space of
ζ at Γ, and Σ̂♢(ζ) is the noise covariance in the rest, with coordinates rescaled in the eigenbasis
{(λi,vi)}di=1 of∇2L(ζ):

Σ̂♢(ζ) :=
∑
i,j:(λi ̸=0)∨(λj ̸=0)

1
λi+λj

〈
Σ(ζ)−Σ∥(ζ),viv

⊤
j

〉
viv

⊤
j .

Definition E.3 (Slow SDE for Local SGD with H ∼ η−1, formal). Consider the scaling H = β/η
for some constant β. Given ζ0 ∈ Γ, define ζ(t) as the solution to the following SDE with initial
condition ζ(0) = ζ0:

dζ(t) = Pζ

(
1√
B
Σ

1/2
∥ (ζ)dWt︸ ︷︷ ︸

(a) diffusion on Γ

− 1
2B∇3L(ζ)[Σ̂♢(ζ)]dt︸ ︷︷ ︸
(b) drift on Γ, same as SGD

−K−1
2B ∇3L(ζ)[Ψ̂(ζ;Hη)]dt︸ ︷︷ ︸

(c) an extra drift term on Γ

)
, (7)

where K is the number of workers, B,Σ∥(ζ) and Σ̂♢(ζ) are the same as in Definition 3.1. Here,
Ψ̂(ζ;β) is a PSD matrix depending on gradient noise and Hessian defined as follows:

Ψ̂(ζ) :=
∑
i,j:(λi ̸=0)∨(λj ̸=0)

ψ(ηH·(λi+λj))
λi+λj

〈
Σ♢(ζ),viv

⊤
j

〉
viv

⊤
j , (8)

where {vi}di=1 is a set of eigenvectors of ∇2L(ζ) that forms an orthonormal eigenbasis, and
λ1, . . . , λd are the corresponding eigenvalues. Additionally, ψ(x) := e−x−1+x

x for x ̸= 0 and
ψ(0) = 0.

Notice that ψ(x) monotonically increases in x and has the limit limx→0 ψ(x) = 0 and
limx→∞ ψ(x) = 1. Therefore, given ζ, Ψ̂(ζ;β) is a monotonically increasing function of β in
the eigenspace of the Hessian matrix∇2L(ζ).

25

Published as a conference paper at ICLR 2024

E.2 PROOF FOR THEOREM 3.1

We consider the asymptotics that η → 0, α → 0 and α = Ω(ηγ) for all γ > 0. We use big-O nota-
tion to hide constants independent of η, α, and use big-Õ notations to hides constants independent
of η, α and also polylog factors of η, α. We define ϕ(s) := Φ(θ̄(s)) and let Rtot := ⌊ T

Hη2 ⌋ = ⌊ Tα2 ⌋
be the total number of rounds.

Proof outline. The general framework of our proof follows (Li et al., 2019a) which demonstrates
the close tracking between SGD iterates and the conventional SDE by examining the moments of
parameter changes over a small observation interval η. However, their analysis is not directly appli-
cable to our case. Their SDE approximation is only valid for O(η−1) steps while our QSR involves
multiple communication rounds, each containing O(η−2) steps. To tackle this challenge, we treat
each round as a continuous-time observation interval of length α2, and then establish that the mo-
ments of changes in the manifold projection of Local SGD and the corresponding slow SDE (5),
specifically the moments of ϕ(s+1) − ϕ(s) and ζ((s+ 1)α2)− ζ(sα2), are closely aligned.

Notably, though the results in (Gu et al., 2023) serve as a building block to compute the moments
of ϕ(s+1) − ϕ(s) in Lemmas E.1 to E.3, their analysis is not trivially extendable to QSR. This is
because their analysis depends on the condition Hη = O(1), and many bounds therein explode as
Hη →∞, e.g., Theorem 3.3, Lemmas I.14 and I.16 therein. In the context of QSR, whereHη = α2

η

goes to infinity as η approaches 0, the condition Hη = O(1) is violated, rendering the analysis in
Gu et al. (2023) ineffective for QSR.

In the following lemma, we present equivalent forms of (3), (4) and (5) that are less intuitive but
more friendly to mathematical analysis.

Theorem E.1. Equations (3), (4), (5) can be rewritten as the following SDEs, respectively:

dζ(t) =
1√
B
∂Φ(ζ)Σ(ζ)1/2dWt +

1

2B
∂2Φ(ζ)[Σ(ζ)]dt, (9)

dζ(t) =
1√
B
∂Φ(ζ)Σ(ζ)1/2dWt +

1

2B
∂2Φ(ζ)[Σ(ζ) + (K − 1)Ψ(ζ)]dt, (10)

dζ(t) =
1√
B
∂Φ(ζ)Σ(ζ)1/2dWt +

K

2B
∂2Φ(ζ)[Σ(ζ)]dt. (11)

Proof. Directly apply Lemmas I.1 to I.5 of Gu et al. (2023), and we have this theorem.

Based on Gu et al. (2023)’s analysis, below we compute the moments of ϕ(s+1) − ϕ(s) through
a series of lemmas. Then, we follow Gu et al. (2023)’s method of moments to derive the SDE
approximation.

Lemma E.1. For any round s ≤ Rtot and any worker k ∈ [K], if ϕ(s) ∈ Γ, then it holds with
probability at least 1 − δ, where δ = O(poly(η)), that Φ(θ(s)

k,H) ∈ Γ and ∥θ(s)
k,H − Φ(θ

(s)
k,H)∥2 =

O(
√
η log 1

ηδ).

Proof. The key insight is that the dynamics of each worker before averaging in each round is just
the standard SGD with a smaller batch size, Bloc. Since the distance bound to Γ, Theorem 3.3 in Gu
et al. (2023), also applies to SGD by taking K ′ = 1 and H ′ = 1

η , we can apply this result to obtain

that ∥θ(s)
k,H − Φ(θ

(s)
k,H)∥2 = O(

√
η log 1

ηδ).

Before computing the moments of the change in manifold projection for each worker Φ(θ(s)
k,H) −

ϕ(s), we introduce Preliminary Lemmas E.1 and E.2. Specifically, the Itô-Taylor expansion
lemma E.1 is a straightforward application of Lemma B.7 of (Malladi et al., 2022) on a bounded
set. Preliminary Lemma E.2 is adapted from Lemma 26 of (Li et al., 2019a).

26

Published as a conference paper at ICLR 2024

Let X(t) be the solution to the SDE dX(t) = b(X(t))dt+ σ(X(t))dWt, where b(·) : Rd → Rd
is the drift function and σ(·) : Rd → Rd×d is the diffusion matrix. Both b(·) and σ(·) belong to
C4. Let S be a bounded invariant set of the SDE. That is, if X(0) ∈ S, for any t ≥ 0, X(t) ∈ S
almost surely. Let ηe be the “effective learning rate”, which can be viewed as the length of the
continuous-time observation interval for X(t). Then we have the following lemma.
Preliminary Lemma E.1 (Itô-Taylor expansion). Let g : Rd → R be any C4-smooth function.
Define

Ag(x) :=
∑
i∈[D]

bi(x)∂ig(x) +
1

2

∑
i,j∈[D]

∑
l∈[D]

σi,l(x)σl,j(x)

 ∂2i,jg(x). (12)

Given X(t) = x ∈ S, there exists a constant C independent of ηe such that

|E[g(X(t+ ηe))− g(x)− ηeAg(x)]| ≤ Cη2e

Proof. WLOG, we prove the case for t = 0. Due to the Markovian property of Itô processes, the
same proof can be done for any t > 0 by a time shift. Give X(0) = x ∈ S, by Itô’s lemma,

g(X(ηe)) = g(x) +

∫ ηe

0

Ag(X(s))ds+

∫ ηe

0

⟨Λg(X(s)),dWs⟩ ,

where Λ(x) := σ(x)⊤∇g(x).

Further apply Itô’s lemma to Ag(X(s)) and we have

g(X(ηe)) = g(x) +

∫ ηe

0

(
Ag(x) +

∫ s

0

A2g(X(r))dr +

∫ s

0

⟨ΛAg(X(r)),dWr⟩
)
ds

+

∫ ηe

0

⟨Λg(X(s)),dWs⟩

= g(x) + ηeAg(x) +
∫ ηe

0

∫ s

0

A2g(X(r))drds

+

∫ ηe

0

∫ s

0

⟨ΛAg(X(r)),dWr⟩ds+
∫ ηe

0

⟨Λg(X(s)),dWs⟩ .

Take expectation on both sides, and the last two terms become zero:

Eg(X(ηe)) = g(x) + ηeAg(x) +
∫ ηe

0

∫ s

0

A2g(X(r))drds.

Since X(s) belongs to the bounded set S, there exists a constant C independent of ηe such that
|A2g(y)| ≤ C for all y ∈ S. Therefore,

|E[g(X(ηe))− g(x)− ηeAg(x)]| ≤ Cη2e .
Preliminary Lemma E.2 (Adaptation of Lemma 26 in (Li et al., 2019a)). Given X(t) = x ∈ S ,
denote the change in X(s) over time interval ηe as ∆̃(x, t, ηe) := X(t + ηe) − x. Then, for all
x ∈ S and t ≥ 0, there exists a constant C ′ independent of ηe such that

E[
n+1∏
j=1

∣∣∣∆̃ij (x, t, ηe)
∣∣∣] ≤ C ′η

n+1
2

e , ∀1 ≤ i1, · · · , in+1 ≤ d,

where n ≥ 1.

Proof. WLOG, we prove the case for t = 0. Due to the Markovian property of Itô processes, the
same proof can be done for any t > 0 by a time shift. Denote ∆̃(x) := ∆̃(x, 0, ηe) for brevity. By
definition,

∆̃(x) =

∫ ηe

0

b(X(s))ds+

∫ ηe

0

σ(X(s))dWs.

27

Published as a conference paper at ICLR 2024

By triangle inequality, for all i ∈ [d],∣∣∣∆̃i(x)
∣∣∣ ≤ ∥∥∥∥∫ ηe

0

b(X(s))ds

∥∥∥∥
2

+

∥∥∥∥∫ ηe

0

σ(X(s))dWs

∥∥∥∥
2

.

Therefore,

E[
n+1∏
j=1

∣∣∣∆̃ij (x)
∣∣∣] ≤ (

E
∥∥∥∥∫ ηe

0

b(X(s))ds

∥∥∥∥
2

+ E
∥∥∥∥∫ ηe

0

σ(X(s))dWs

∥∥∥∥
2

)n+1

≤ 2n

E
∥∥∥∥∫ ηe

0

b(X(s))ds

∥∥∥∥
2︸ ︷︷ ︸

T1

n+1

+ 2n

E
∥∥∥∥∫ ηe

0

σ(X(s))dWs

∥∥∥∥
2︸ ︷︷ ︸

T2

n+1

.

By triangle inequality,

T1 ≤ E
[∫ ηe

0

∥b(X(s)∥2ds
]
.

By Cauchy-Schwarz inequality and Itô’s isometry,

T2 ≤
√
E
∥∥∥∥∫ ηe

0

σ(X(s))dWs

∥∥∥∥2
2

=

√
E
∫ ηe

0

tr[σ(X(s)⊤σ(X(s))]ds.

Since X(s) ∈ S almost surely and S is a bounded set, there exists constants C1 and C2 such that
T1 ≤ C1ηe, T2 ≤ C2η

0.5
e . Substituting the bounds for T1 and T2 back, we have the lemma.

Lemma E.2. For any round s ≤ Rtot and any worker k ∈ [K], given ϕ(s) ∈ Γ, then

E[Φ(θ(s)
k,H)− ϕ(s) | ϕ(s)] =

α2

2Bloc
∂2Φ(ϕ(s))[Σ(ϕ(s))] +O(α4), (13)

E
[
(Φ(θ

(s)
k,H)− ϕ(s))(Φ(θ

(s)
k,H)− ϕ(s))⊤ | ϕ(s)

]
=

α2

Bloc
Σ∥(ϕ

(s)) +O(α4), (14)

E
[
(Φ(θ

(s)
k,H)− ϕ(s))⊗3 | ϕ(s)

]
= O(α4), (15)

E
[
∥Φ(θ(s)

k,H)− ϕ(s)∥62 | ϕ(s)
]
= O(α6). (16)

Proof. Again, the key insight is that the dynamics of each worker before averaging in each round
is just the standard SGD with a smaller batch size, Bloc. Since the SDE approximation theorem for
Local SGD, Theorem 3.2 in Gu et al. (2023), also applies to SGD by taking K ′ = 1 and H ′ = 1

η ,
we can apply this result to obtain that, for any C4-smooth function g(θ), it holds for ζ defined in (9)
with the initial condition ζ(0) = ϕ(s) that

|E[g(Φ(θ(s)
k,H))]− E[g(ζ(T ′))]| = Õ(η0.25), (17)

where T ′ = α2 is the continuous-time observation interval.

To establish a connection between the moments of Φ(θ(s)
k,t) − ϕ(s) and those of ζ(T ′) − ϕ(s), we

can let the function g(θ) to take specific forms, each returning a single coordinate of θ − ϕ(s),
(θ − ϕ(s))(θ − ϕ(s))⊤, (θ − ϕ(s))⊗3 and ∥θ − ϕ(s)∥62. For example, to relate Φ(θ

(s)
k,H) − ϕ(s)

to ζ(T ′) − ϕ(s), let g(θ) = ⟨e1,θ⟩ where e1 = (1, 0, · · · , 0)⊤. Substitute g into (17), and we
get |

〈
e1,E[Φ(θ(s)

k,H)− ϕ(s)]− E[Φ(ζ(T ′))− ϕ(s)]
〉
| = Õ(η0.25). We can obtain the same results

for all coordinates by letting g(θ) = ⟨ei,θ⟩ for all i ∈ [D]. Therefore, |E[Φ(θ(s)
k,H) − ϕ(s)] −

E[ζ(T ′)−ϕ(s)]| = Õ(η0.25). Similarly, we can show that the LHS of (14) to (16) are only changed
by Õ(η0.25) = o(poly(α)) when replacing Φ(θ

(s)
k,H) with ζ(T ′).

28

Published as a conference paper at ICLR 2024

Then, it suffices to compute the moments for ζ(T ′) and verify that they match the RHS of (13)
to (16). Since Γ is compact and invariant for the SDE (11) (Lemma I.39 in (Gu et al., 2023)),
we can apply the Itô-Taylor expansion in Preliminary Lemma E.1 with ηe = α2, X(t) = ζ(t),

b(ζ) = K
2B∂

2Φ(ζ)[Σ(ζ)] and σ(ζ) =
√

1
2B∂Φ(ζ)Σ

1/2(ζ).

To obtain the first moment (13), let g(ζ) =
〈
e1, ζ − ϕ(s)

〉
and substitute it into (12). By Preliminary

Lemma E.1, we have ∣∣∣E[ζ1(T ′)]− b1(ϕ(s))
∣∣∣ = O(T ′2) = O(α4).

We can repeat this process for all coordinates of ζ(T ′) to obtain

E[ζ(T ′)− ϕ(s) | ϕ(s)] =
α2

2Bloc
∂2Φ(ϕ(s))[Σ(ϕ(s))] +O(α4), (18)

and thus (13).

For the second moment (14), define g(i,j)(ζ) =
〈
Mi,j , (ζ − ϕ(s))(ζ − ϕ(s))⊤

〉
, where Mi′,j′ ={

1, (i′, j′) = (i, j),

0, otherwise
. Since ∂i′g(i,j)(ζ) = 0 for all i′, the first term of Ag(i,j)(ζ) vanishes. It suf-

fices to compute the second term. When i = j, ∂2i′,j′g
(i,i)(ζ) =

{
2, (i′, j′) = (i, i)

0, otherwise
. Therefore,

Ag(i,i)(ζ) =
∑
l∈[D]

σi,l(ζ)σl,i(ζ), ∀i ∈ [D]. (19)

When i ̸= j, ∂2i′,j′g
(i,j)(ζ) =

{
1, (i′, j′) ∈ {(i, j), (j, i)}
0, otherwise

. Therefore,

Ag(i,j)(ζ) =
∑
l∈[D]

σi,l(ζ)σl,j(ζ), i ̸= j. (20)

Combining (19) and (20) and noticing that g(i,j)(ϕ(s)) = 0 for all i, j, we have

E[(ζ(T ′)− ϕ(s))(ζ(T ′)− ϕ(s))⊤ | ϕ(s)] =
α2

B
Σ∥(ϕ

(s)) +O(α4), (21)

and thus (14).

For the third moment (15), define g(i,j,l)(ζ) =
〈
ei ⊗ ej ⊗ el, (Φ(θ

(s)
k,H)− ϕ(s))⊗3

〉
. Noticing that

∂i′g
(i,j,l)(ϕ(s)) = 0 for all i′ and ∂2i′,j′g

(i,j,l)(ϕ(s)) = 0 for all (i′, j′), we have

E
[
(ζ(T ′)− ϕ(s))⊗3 | ϕ(s)

]
= O(α4), (22)

and thus (15).

Finally, by directly applying Preliminary Lemma E.2, we have

E
[
∥ζ(T ′)− ϕ(s)∥62 | ϕ(s)

]
= O(α6) (23)

and thus (16).

Now we are ready to compute the moments for ϕ(s+1) − ϕ(s) at each round:

Lemma E.3. For any round s ≤ Rtot, given ϕ(s) ∈ Γ, then

E[ϕ(s+1) − ϕ(s) | ϕ(s)] =
α2

2Bloc
∂2Φ(ϕ(s))[Σ(ϕ(s))] +O(α4), (24)

E
[
(ϕ(s+1) − ϕ(s))(ϕ(s+1) − ϕ(s))⊤ | ϕ(s)

]
=
α2

B
Σ∥(ϕ

(s)) +O(α4), (25)

E
[
∥ϕ(s+1) − ϕ(s)∥62 | ϕ(s)

]
= O(α6). (26)

29

Published as a conference paper at ICLR 2024

Proof. Let ∆1 := 1
K

∑K
k=1 Φ(θ

(s)
k,H)− ϕ(s). By Lemma E.2,

E[∆1] =
1

K

K∑
k=1

E[Φ(θ(s)
k,H)− ϕ(s)]

=
α2

2Bloc
∂2Φ(ϕ(s))[Σ(ϕ(s))] +O(α4),

E[∆1∆
⊤
1] =

1

K2

K∑
j=1

K∑
k=1

E
[
(Φ(θ

(s)
j,H)− ϕ(s))(Φ(θ

(s)
k,H)− ϕ(s))⊤

]
= K · α

2

B
Σ∥(ϕ

(s)) +O(α4) +K(K − 1) · O(α4)

=
α2

Bloc
Σ∥(ϕ

(s)) +O(α4).

Let ∆2 := 1
K

∑K
k=1 θ

(s)
k,H − ϕ(s). Then ∆2 = ∆1 + 1

K

∑K
k=1(θ

(s)
k,H − Φ(θ

(s)
k,H)). Finally, let

∆3 := Φ(1
K

∑K
k=1 θ

(s)
k,H) − ϕ(s). By Lemma E.1 it holds with probability at least 1 − δ that

∥θ(s)
k,H − Φ(θ

(s)
k,H)∥2 = O(

√
η log 1

η) and thus ∥∆2 −∆1∥2 = O(
√
η log 1

η). Let δ = η100. Since

∥∂Φ(·)∥2 is always bounded by O(1), we can always add an error of O(δ) to our bounds for the
moments and ignore the possibility that this event does not happen. To prove (24), we do Taylor
expansion of Φ at ϕ(s), then

E[∆3] = E[Φ(ϕ(s) +∆2)− ϕ(s)]

= E[Φ(ϕ(s) +∆1)− ϕ(s)] +O
(√

η log 1
η + δ

)
= E

[
∂Φ(ϕ(s))∆1 +O

(
∥∆1∥22

)]
+O

(√
η log 1

η + δ
)

=
α2

2Bloc
∂2Φ(ϕ(s))[Σ(ϕ(s))] +O(α4).

The last equation uses the fact that ∂Φ(ϕ), for ϕ ∈ Γ, is a projection matrix onto the tangent space
of Γ at θ (Lemma 4.3 of (Li et al., 2021c)).

To prove (25), again we do Taylor expansion of Φ at ϕ(s) to connect Φ(ϕ(s) +∆2) with Φ(ϕ(s) +
∆1) and obtain:

E[∆3∆
⊤
3] = E

[
(Φ(ϕ(s) +∆2)− ϕ(s))(Φ(ϕ(s) +∆2)− ϕ(s))⊤

]
= E

[
(Φ(ϕ(s) +∆1)− ϕ(s))(Φ(ϕ(s) +∆1)− ϕ(s))⊤

]
+O

(√
η log 1

η + δ
)
.

Applying the second-order Taylor expansion gives

E[∆3∆
⊤
3] = E

[(
∂Φ(ϕ(s))∆1

)(
∂Φ(ϕ(s))∆1

)⊤

+
(
∂2Φ(ϕ(s))[∆1,∆1]∂Φ(ϕ

(s))∆1 +∆⊤
1 ∂Φ(ϕ

(s))∂2Φ(ϕ(s))[∆1,∆1]
⊤
)

+O(∥∆1∥42)
]
+O

(√
η log 1

η + δ
)
.

By (15) and the fact that ∥∂2Φ(ϕ(s))∥2 is bounded, the above equation can be simplified to

E[∆3∆
⊤
3] = E

[
∂Φ(ϕ(s))∆1∆

⊤
1 ∂Φ(ϕ

(s))
]
+O(α4) +O(α4) +O

(√
η log 1

η + δ
)

=
α2

B
Σ∥(ϕ

(s)) +O(α4).

Finally, for (26), we can repeat the above process to bound E[∥∆1∥32], and then conclude that
E[∥∆3∥32] = O(α6).

30

Published as a conference paper at ICLR 2024

Now we are ready to prove our main theorem.

Proof for Theorem 3.1. Let ζ(t) be the solution of (11). Let r be some integer greater than s. If
ϕ(s) ∈ Γ, define ζ̂s,r as the random variable sampled from the distribution of ζ(α2r) conditioned
on ζ(α2s) = ϕ(s). If ϕ(s) = θnull /∈ Γ, define ζ̂s,r = 0.

If θ ∈ Γ, define u(θ, t1, t2) the expected value of g(ζ(t2)) conditioned on ζ(t1) = θ. If θ = θnull,
define u(θ, t1, t2) = 0. That is,

u(θ, t1, t2) :=

{
E[g(ζ(t2)) | ζ(t1) = θ], θ ∈ Γ,

0, θ /∈ Γ.

For all n ≤ Rtot, we have

|E[g(ϕ(n))]− E[g(ζ(nα2))]| = |E[g(ζ̂n,n)]− E[g(ζ̂0,n)]|

≤
n−1∑
s=0

|E[g(ζ̂s+1,n)]− E[g(ζ̂s,n)]|

=

n−1∑
s=0

∣∣∣∣∣∣∣∣E
[
E[g(ζ̂s+1,n) | ϕ(s+1)]

]
− E

[
E[g(ζ̂s,n) | ϕ(s)

]
︸ ︷︷ ︸

Ts

∣∣∣∣∣∣∣∣.
By the law of total expectation and the Markovian property of Itô process,

Ts = E
[
E[g(ζ(nα2)) | ζ(sα2) = ϕ(s)]

]
= E

{
E
[
E[g(ζ(nα2)) | ζ((s+ 1)α2)]

∣∣∣∣ζ(sα2) = ϕ(s)

]}
= E[u(ζ̂s,s+1, (s+ 1)α2, nα2)].

Therefore,

|E[g(ϕ(n))]− E[g(ζ(nα2))]| =
n−1∑
s=0

∣∣∣∣∣∣∣E[u(ϕ(s+1), (s+ 1)α2, nα2)]− E[u(ζ̂s,s+1, (s+ 1)α2, nα2)]︸ ︷︷ ︸
T ′
s

∣∣∣∣∣∣∣ .
By the law of total expectation,

|T ′
s | ≤ |E[u(ϕ(s+1), (s+ 1)α2, nα2)− u(ζ̂s,s+1, (s+ 1)α2, nα2) | ϕ(s),ϕ(s+1) ∈ Γ]︸ ︷︷ ︸

As

|

+ |u(0)|P(ϕ(s) /∈ Γ or ϕ(s+1) /∈ Γ),

where the latter term comes from the definition of u(θ, t1, t2) and ζ̂s,r. By Lemma I.11 in (Gu
et al., 2023), there exists a constant ϵ such that if minϕ∈Γ ∥θ−ϕ∥2 ≤ ϵ, then Φ(θ) ∈ Γ. Therefore,
substituting δ = η100 into Lemma E.1, we can conclude that the latter term is at most O(η100).
For As, notice that the two terms differ only in the first position. By Lemma E.3 and (18) to (23),
the moments of ϕ(s+1) − ϕ(s) and ζ̂s,s+1 − ϕ(s) are close to each other. Therefore, it suffices to
discuss the smoothness of u and perform Taylor expansion. By Proposition 25 of (Li et al., 2019a),
since g ∈ C4, u(ϕ, t1, t2) satisfies the compatibility condition for the Whitney Extension Theorem
for ϕ ∈ Γ. Therefore, there exists a function ũ(ϕ, t1, t2) that is C4 in ϕ for ϕ ∈ Rd and satisfies
ũ(ϕ, t1, t2) = u(ϕ, t1, t2) for all ϕ ∈ Γ. Denote ũ(ϕ, sα2, nα2) as ũs,n(ϕ) for brevity. Now, we
can safely substitute u in As with ũ and perform Taylor expansion:

As = E[ũ(ϕ(s) + (ϕ(s+1) − ϕ(s))), (s+ 1)α2, nα2) | ϕ(s),ϕ(s+1) ∈ Γ]︸ ︷︷ ︸
A′

s

− E[ũ(ϕ(s) + (ζ̂s,s+1 − ϕ(s))), (s+ 1)α2, nα2) | ϕ(s) ∈ Γ]︸ ︷︷ ︸
A′′

s

.

31

Published as a conference paper at ICLR 2024

A′
s = ũ(ϕ(s)) +

〈
∂ũs+1,n(ϕ

(s)),E[ϕ(s+1) − ϕ(s) | ϕ(s),ϕ(s+1) ∈ Γ]
〉

+
1

2

〈
∂2ũs+1,n(ϕ

(s)),E[(ϕ(s+1) − ϕ(s))(ϕ(s+1) − ϕ(s))⊤ | ϕ(s),ϕ(s+1) ∈ Γ]
〉

+O(E[∥ϕ(s+1) − ϕ(s)∥32 | ϕ(s),ϕ(s+1) ∈ Γ]).

A′′
s = ũ(ϕ(s)) +

〈
∂ũs+1,n(ϕ

(s)),E[ζ̂s,s+1 − ϕ(s) | ϕ(s) ∈ Γ]
〉

+
1

2

〈
∂2ũs+1,n(ϕ

(s)),E[(ζ̂s,s+1 − ϕ(s))(ζ̂s,s+1 − ϕ(s))⊤ | ϕ(s) ∈ Γ]
〉

+O(E[∥ζ̂s,s+1 − ϕ(s)∥32 | ϕ(s) ∈ Γ])

Substituting in δ = η100 into Lemma E.1, we can conclude that, given ϕ(s) ∈ Γ, the event {ϕ(s+1) ∈
Γ} happens with probability at least 1 − η100. We can replace the condition ϕ(s),ϕ(s+1) ∈ Γ with
ϕ(s) ∈ Γ in A′

s with an error of only O(η100). Therefore,

As =
〈
∂ũs+1,n(ϕ

(s)),E[(ϕ(s+1) − ϕ(s))− (ζ̂s,s+1 − ϕ(s)) | ϕ(s) ∈ Γ]
〉

+
1

2

〈
∂2ũs+1,n(ϕ

(s)),E[((ϕ(s) − ϕ(s))(ζ̂s,s+1 − ϕ(s))⊤

− (ζ̂s,s+1 − ϕ(s))(ζ̂s,s+1 − ϕ(s))⊤ | ϕ(s) ∈ Γ]

〉
+O(E[∥ϕ(s+1) − ϕ(s)∥32 | ϕ(s) ∈ Γ]) +O(E[∥ζ̂s,s+1 − ϕ(s)∥32 | ϕ(s) ∈ Γ]) +O(η100).

Since ϕ(s) ∈ Γ where Γ is a compact set, both ∥∂ũs+1,n(ϕ
(s))∥2 and ∥∂2ũs+1,n(ϕ

(s))∥2 are
bounded. Substituting Lemma E.3 and (18) to (23) to the expression of As, we have As = O(α4)
and thus |T ′

s | = O(α4). Summing |T ′
s | up, we have |E[g(ϕ(n))] − E[g(ζ(nα2))]| ≤ O(nα4) ≤

O(α2), which completes the proof.

F DETAILS FOR COMMUNICATION TIME MEASUREMENT

It is straightforward to measure the time duration for the entire training, but it is hard to directly
measure the communication time due to the asynchronous nature of CUDA computation. Hence, in
our experiments, we derive the communication time from the difference in total training time across
runs with various communication frequencies.

Specifically, let T tot
para, T

tot
H1

be the total time durations of data parallel approaches and local gradi-
ent methods with H = H1, respectively. Also let T comm

para , T comm
H1

be their communication times,
and T comp

para , T
comp
H1

be their computation time. Ideally, setting the synchronization period to H1 re-
duces the communication volume exactly by a factor of 1

H1
, so these variables satisfy the following

relationships:

T comp
H1

= T comp
para ,

T comm
H1

=
1

H1
T comm
para ,

T comm
H1

+ T comp
H1

= T tot
H1
,

T comm
para + T comp

para = T tot
para.

Then we can express the communication and computation times in terms of the total time duration
T tot
para and T tot

H1
:

T comm
para = H1T

comm
H1

=
H1

H1 − 1
(T tot

para − T tot
H1

),

T comp
para = T comp

H1
= T tot

para − T comm
para =

H1

H1 − 1
T tot
H1
− 1

H1 − 1
T tot
para.

32

Published as a conference paper at ICLR 2024

Therefore, we empirically measure the total time duration T̃ tot
para and T̃ tot

H1
for some H1, then use the

following formulas to obtain estimates of the communication and computation times:

T̃ comm
para =

H1

H1 − 1
(T̃ tot

para − T̃ tot
H1

), (27)

T̃ comp
para =

H1

H1 − 1
T̃ tot
H1
− 1

H1 − 1
T̃ tot
para. (28)

These estimates are very predictive for the total time duration of local gradient methods with a
different H . For example, when H = H2, we can predict the total time duration T tot

H2
as follows:

T comm
H2

≈ 1

H2
T̃ comm
para , (29)

T tot
H2
≈ 1

H2
T̃ comm
para + T̃ comp

para . (30)

We find that the relative error
|T̃ tot

H2
−T tot

H2
|

T̃ tot
H2

× 100%, where T tot
H2

denotes the measured total time, is

only ∼ 1% across all configurations in Table 4, where we set H1 = 2, H2 = 4 for ResNet-152
and H1 = 4, H2 = 8 for ViT-B. The small relative error suggests that our method offers a close
approximation to the actual time. For this reason, in Table 4, we report the communication time
estimated by (27) and (29) for data-parallel approaches and local gradient methods with a constant
synchronization period.

For QSR, since its communication volume relative to data parallel approaches, denoted as fQSR,
can be easily computed given the learning rate schedule, the growth coefficient α and the base
synchronization period Hbase, we can estimate its communication time T comm

QSR in a similar vein to
(27) and (29):

T comm
QSR ≈ fQSRT̃

comm
para . (31)

We report the communication time estimated by (31) in Table 4 for QSR.

G DISCUSSION ON MORE AGGRESSIVE SCALINGS

17.5 20.0 22.5 25.0
Communication Volume (%)

79.5

80.0

T
op

-1
V

al
.

A
cc

.
(%

)

(ρ = 0.1)

(ρ = 0.15)

(ρ = 0.2)

(ρ = 0.25)

(α = 0.2)

(α = 0.25)

(α = 0.3)

(α = 0.4)

100

(a) Local SGD on ResNet-152

5 10 15 20 25
Communication Volume (%)

79.5

80.0

80.5

81.0

T
op

-1
V

al
.

A
cc

.
(%

)

(ρ = 0.005)

(ρ = 0.0075)(ρ = 0.01)
(ρ = 0.0125)

(α = 0.01)
(α = 0.015)

(α = 0.0175)

(α = 0.02)

100

H = b(αη)2c
H = b(ρη)3c
H = 4

Parallel SGD/AdamW

(b) Local AdamW on ViT-B

Figure 6: The cubic rule H = ⌊(ρ
η
)3⌋ with a properly tuned ρ can either outperform or underperform the QSR

in test accuracy, depending on the training scenarios.

Apart from the scalings discussed in Section 3, one can consider more aggressive scalings, e.g.,H =
⌊(ρ/η)−3⌋. Compared with QSR H = ⌊(α/η)−2⌋ that uses the same amount of communication,
this cubic synchronization rule communicates more frequently at earlier stages but much less at
later stages. Our theory in Theorem 3.1 suggests that taking H ∼ η−3 blows up the approximation
error, but as shown in Figure 6, this cubic rule with a properly tuned ρ can either outperform or
underperform the QSR in test accuracy, depending on the training scenarios.

We argue that this is because our quasistatic view may break in the very late phase of cosine decay,
where the learning rate decays so fast that ηt sees significant decay within a single communication
round. As an example where the cubic rule performs better, we plot in Figure 8 the test accuracy

33

Published as a conference paper at ICLR 2024

Table 6: We validate that the higher test accuracy achieved by H ∼ η−3 relies on the rapid decaying learning
rate within a synchronization period via ablation studies on ViT-B. In Table 6(a), we replace the cosine decay
schedule with a variant of the step decay schedule in Smith et al. (2020). In Table 6(b), we run both scalings
with a modified cosine decay schedule that ceases to decay at some epoch t′′. QSR consistently outperforms
H ∼ η−3 in both cases.

(a) Local AdamW with step decay.

Method Val. Acc. (%) Comm. (%)

Parallel AdamW 78.51 100

Local AdamW (H=4) 78.70 25
+QSR (Hbase = 4) 80.99 13.2

+H ∼ η−3 (Hbase = 4) 80.86 14.4

(b) Local AdamW with modified cosine
decay. Both scalings use Hbase = 4.

Method t′′ Val. Acc. (%)

QSR 260 80.75
H ∼ η−3 260 80.51

QSR 250 80.34
H ∼ η−3 250 79.91

QSR 240 79.85
H ∼ η−3 240 79.72

curves of the QSR and cubic rule for training ViT-B with Local AdamW and batch size 4096. Same
as our experiment setup in Section 4, the learning rate peaks at the value 0.008 and then decays
to nearly zero (10−6) following a cosine decay schedule. Setting H = ⌊(0.0075/η)−3⌋ results in
consistently worse test accuracy than QSR (with the same communication volume) before epoch
265. However, during the final communication round, which spans from epoch 265 to 300, the
cubic rule catches up with QSR. During this period, the learning rate dramatically decreases from
3.5 × 10−4 to nearly zero, but our quasistatic view assumes that the learning rate ηt should remain
relatively constant for at least one communication round.

0 100 200 300
Epochs

0.000

0.002

0.004

0.006

0.008

L
ea

rn
in

g
R

at
e

cosine decay

step decay similar to Smith et al.(2020)

modified cosine decay

Figure 7: An illustration of the learning rate
schedules.

Based on the above observation, we argue that the cubic
rule offers benefits over QSR only for certain schedules
that have a rapid tail of learning rate decay near the end
of training. To validate this view, we replace the cosine
decay schedule with a variant of the step decay schedule
in Smith et al. (2020). In our step decay schedule, given
a total of 300 epochs, the learning rate remains at its peak
until epoch 150, after which it is divided by 2 every 30
epochs. See Figure 7 for an illustration. Unlike the cosine
schedule, this step decay schedule maintains a constant
learning rate for a significant amount of time. As shown
in Table 6(a), the cubic rule yields inferior generalization
performance compared with our QSR, even after careful
tuning of ρ. See Appendix C.2 for training details.

Another way to corroborate our view is to run both scal-
ings with a modified cosine learning rate schedule, which
ceases to decay after a specific epoch t′′ and remains con-
stant until training ends. See Figure 7 for an illustration of this modified cosine schedule. As shown
in Table 6(b), QSR consistently outperforms the cubic rule across various choices of t′′. Further
training details can be found in Appendix C.2. The probable reason is that when the learning rate is
held constant, the cubic rule results in an excessively large H , negatively impacting optimization.

Given these failure cases of the cubic rule, we generally recommend using the QSR and leave it to
future work to design a better rule to deal with schedules that have a rapid tail of learning rate decay.

34

Published as a conference paper at ICLR 2024

0 100 200 300
Epochs

55

60

65

70

75

80

T
op

-1
V

al
.

A
cc

.
(%

)

H Schedule and Communcation Volume

H ∼ η−3, 14.9% H ∼ η−2, 15.4%

200 250 300

79

80

81

Figure 8: Test accuracy curves for QSR (α = 0.01) and the cubic
rule (ρ = 0.0075). The cubic rule results in consistently worse test
accuracy than QSR (with the same communication volume) before
the last communication round.

H COMPARISON WITH LOCAL SGD/ADAMW + SWAP

In this section, we compare QSR with the modified Stochastic Weight Averaging in Parallel (SWAP)
algorithm, termed “Local SGD/AdamW + SWAP”. Specifically, the original SWAP proposed by
(Gupta et al., 2020) uses SGD for the majority of the training process and only switches to local
updates at some t0 near the end, thus saving less communication than QSR. To compare SWAP with
QSR at a similar level of communication volume, we experiment with the modified SWAP, which
starts with Local SGD/AdamW using a constant communication period Hbase and, after some time
t0, lets workers perform local updates with a final model averaging. As shown in Figure 9, QSR
outperforms Local SGD/AdamW SWAP though we have tuned t0 carefully for the latter.

17.5 20.0 22.5 25.0
Communication Volume (%)

79.0

79.5

80.0

T
op

-1
V

al
.

A
cc

.
(%

)

(α = 0.2)

(α = 0.25)
(α = 0.3)

(α = 0.4)

100

(a) Local SGD on ResNet-152

5 10 15 20 25
Communication Volume (%)

78

79

80

81

T
op

-1
V

al
.

A
cc

.
(%

)

(α = 0.01)

(α = 0.015)(α = 0.0175)

(α = 0.02)

(t0 = 220)

(t0 = 240)

(t0 = 260)

(t0 = 280)

100

H = b(αη)2c
H = 4 + SWAP with t0
H = 4

Parallel SGD/AdamW

(b) Local AdamW on ViT-B

Figure 9: QSR outperforms Local SGD/AdamW + SWAP on both models. See Appendix C for training
details.

35

	Introduction
	Our Method: Quadratic Synchronization Rule
	Theoretical Motivations of Quadratic Synchronization Rule
	Experiments
	QSR Improves Generalization
	QSR Reduces Wall-clock Time

	Discussions and Future Directions
	Additional Related Works
	PseudoCode
	Experimental Details
	Training Details for ResNet-152
	Training Details For ViT-B

	Additional Experiments on ResNet-50
	Supplementary Materials for Section 3
	Missing Definitions and Assumptions
	Proof for Theorem 3.1

	Details for Communication Time Measurement
	Discussion on More Aggressive Scalings
	Comparison with Local SGD/AdamW + SWAP

