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Abstract

Fast adversarial training (FAT) has been considered as one of the most effective
alternatives to the computationally-intensive adversarial training. Generally, FAT
methods pay equal attention to each sample of the target task. However, the
distance between each sample and the decision boundary is different, learning sam-
ples which are far from the decision boundary (i.e., less important to adversarial
robustness) brings additional training cost and leads to sub-optimal results. To
tackle this issue, we present vulnerable data-aware adversarial training (VDAT) in
this study. Specifically, we first propose a margin-based vulnerability calculation
method to measure the vulnerability of data samples. Moreover, we propose a
vulnerability-aware data filtering method to reduce the training data for adversarial
training thus improve the training efficiency. The experiments are conducted in
terms of adversarial training and robust neural architecture search on CIFAR-10,
CIFAR-100, and ImageNet-1K. The results demonstrate that VDAT is up to 76%
more efficient than state-of-the-art FAT methods, while achieving improvements
regarding the natural accuracy and adversarial accuracy in both scenarios. Further-
more, the visualizations and ablation studies show the effectiveness of both core
components designed in VDAT.

1 Introduction

Adversarial training has been demonstrated as one of the most effective techniques [35, 40] to enhance
the adversarial robustness of deep neural networks. However, standard adversarial training methods
are shown to be time-consuming due to the multi-step gradient calculation and backward propagation
for generating the adversarial examples [35, 56]. Regarding this problem, fast adversarial training
(FAT) methods [44, 48] are proposed to reduce the computational budget of standard adversarial
training. Currently, most of the FAT methods mainly focus on generating adversarial examples
more efficiently [39]. In particular, FAT methods often replace the multi-step adversarial example
generation with the single-step one, thus improve the efficiency of adversarial training on the
whole dataset. However, recent studies demonstrate that some data samples are not important to
adversarial robustness, and learning these samples increases the training time but contributes little to
the performance [20, 47]. As a result, the efficiency and efficacy of FAT methods is limited.

In order to reduce the scale of training data and further improve FAT methods, some studies have
proposed FAT methods based on data filtering [13, 3, 47]. These methods mainly adopt the batch-
wise filtering manner to select subsets of the training data. For example, some methods evaluate the
contribution of a batch of data based on the related adversarial and natural losses [3], the gradient
approximation error of subsets of data [13], or the filling degree of the corresponding input spaces
segments [47]. However, these methods do not take the vulnerability of each samples in one batch
into account, limiting the performance of adversarial training. Specifically, the distance between
different data samples and the decision boundary is different according to previous studies [57, 50].
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Figure 1: The core idea of VDAT and state-of-the-art FAT methods
based on data filtering.
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Figure 2: The performance
on ImageNet-1K.

Consequently, the vulnerability of data samples is different under the adversarial attack with the same
strength. An example is shown in the left part of Figure 1, where the gray, green, and blue samples are
less vulnerable than the yellow, red, and purple ones. Because the random allocation of batches, each
batch is likely to contain both vulnerable and non-vulnerable samples as shown in the upper right of
Figure 1. Suppose the first batch is considered to be less representative than the second batch by the
method, and then only the second batch will be learned because of the batch-wise filtering manner.
As a result, the vulnerable samples in the first batch are not learned, while the non-vulnerable ones in
the second batch are learned, thus hindering the overall performance and efficiency.

In this study, we introduce vulnerable data-aware adversarial training (VDAT) to tackle the above
issue of existing FAT methods based on data filtering. As shown in the lower right part of Figure 1,
the main idea of VDAT is to perform the sample-wise vulnerability evaluation, and then detect the
vulnerable samples and learn them in a targeted way. This goal is achieved by two core components
designed. First, we propose a margin-based vulnerability calculation method, so as to determine
the vulnerability of each sample in the given dataset. The vulnerability is directly measured by the
decision margin between the natural data and adversarial examples, thus the computational cost is low.
Second, we propose a vulnerability-aware data filtering strategy, to reduce the number of samples for
adversarial training while learn vulnerable samples more robustly. In this strategy, each data sample
is given a certain probability to be changed to adversarial example, and the probability is calculated
according to the vulnerability of this data sample. The more vulnerable data samples will have larger
probability to be changed into adversarial examples. As a result, the vulnerable samples are learned
robustly in the training process, thus the overall performance is improved while maintaining low
training cost as shown in Figure 2. The contributions of this work are summarized as follows:

• We bring a new perspective to FAT. Different from the mainstream perspective focusing
on the batch-wise data filtering, we mainly focus on the sample-wise data filtering to
adversarially learn the vulnerable data samples.

• We propose VDAT with the margin-based vulnerability calculation and the vulnerability-
aware data filtering, to improve the performance of FAT and lower the computational
cost.

• We show that VDAT achieves the state-of-the-art performance regarding both natural and
adversarial accuracy on CIFAR-10, CIFAR-100, and ImageNet-1K, while bringing up to
76% efficiency improvement. In addition, VDAT is also effective in improving performance
and efficiency in the scenario of robust neural architecture search (NAS).

2 Related Work

2.1 Fast Adversarial Training (FAT)

FAT is a kind of method designed to accelerate the time-consuming training process of the standard
adversarial training [44]. In general, most FAT methods mainly focus on the efficient generation
of adversarial examples [1, 25]. For example, Jia et al. [28] propose a input data-aware adversarial
example initialization method, to generate adversarial examples which are beneficial to both natural
accuracy and adversarial robustness in a single-step manner. Tong et al. [45] propose the taxonomy
driven FAT method to overcome the catastrophic overfitting [30] via optimizing learning objective,
loss function, and initialization manner jointly. Jia et al. [27] propose prior knowledge-guided
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adversarial example initialization method, to improve the quality of adversarial examples generated
and overcome the catastrophic overfitting. Although these methods have achieved decent performance,
they still need to train on the whole dataset with samples contributing little to the adversarial
robustness [47], thus limiting the efficiency. Therefore, we mainly focus on the perspective about
data filtering in this study, to further improve the efficiency of FAT.

2.2 Decision Boundary Analysis

The studies regarding decision boundary analysis mainly lie in three perspectives, i.e., enhancing the
adversarial training, improving the adversarial attacks, and interpreting the decision mechanism of
deep neural networks. In the first category, existing methods mainly focus on dynamically adjusting
the decision boundary during the training [11, 42, 50, 4], to improve both natural accuracy and
adversarial robustness of the model. In the second category, existing studies leverage the decision
boundary information to enhance both white-box and black-box attacks based on learning [9, 43], to
evaluate the adversarial robustness more accurately. In the third category, the mainstream direction is
to explore the relationship between the data, features, and the decision boundary during the adversarial
training [16, 37]. Then, the information about the features and decision boundary can be adopted to
interpret the shift of decision boundary of the neural network during adversarial training. Different
from these studies, we focus on data filtering from the decision boundary perspective in this work.
Specifically, we estimate the vulnerability of data samples to determine vulnerable ones based on
decision boundary analysis, to improve both efficiency and efficacy of FAT.

2.3 Robust Neural Architecture Search (NAS)

Robust NAS aims to automatically design robust neural architectures against adversarial at-
tacks [24, 14, 18]. Generally, most robust NAS methods are constructed based on differentiable NAS
methods [34, 5, 51], which need to optimize the trainable weights and architectures parameters in
a supernet. To ensure the adversarial robustness of the derived architectures, robust NAS methods
often adopt adversarial training techniques in the optimization of above variables. For instance,
Mok et al. [36] adopt adversarial training to obtain the input-loss landscape, and then update the
architecture parameters based on this indicator. Qian et al. [41] adopt adversarial training to update
trainable weights and architecture parameters, to reduce the non-robust feature distortion and enhance
the adversarial robustness of derived architectures. Ou et al. [38] propose a multi-objective search
strategy to balance the losses of natural training and adversarial training. In our experiments, we
replace the adversarial training in robust NAS with VDAT and other state-of-the-art FAT methods, to
evaluate the scalability of VDAT in terms of searching for adversarially robust neural architectures.

3 Preliminaries

According to the common practice of adversarial training [27], we define the target neural network
parameterized by θ as fθ: Rd → R. Given a data sample x ∈ X and the corresponding label
y ∈ {1, 2, . . . , k}, the network can be further denoted as fθ(x) = argmaxc∈{1,2,...,k} ϕ

c
θ(x), where

ϕc
θ(x) denotes the logit for class c. Based on this, the decision margin My

θ(x) of the data sample x
can be denoted as Equation (1) according to the previous study [50].

My
θ(x) = ϕy

θ(x)−max
y′ ̸=y

ϕy′

θ (x) (1)

The main goal of the proposed VDAT method is to detect the vulnerable data samples, i.e., data sam-
ples having relatively smaller decision margin between themselves and the corresponding adversarial
examples. Then, the data samples detected are collected to construct a subset of data for adversarial
training, thus reducing the computational budget and improving the overall performance.

4 Vulnerable Data-Aware Adversarial Training

The overall framework of VDAT is shown in Figure 3. As can be seen, the proposed VDAT method
works on the natural data samples, through adversarial perturbation, and two core components, i.e.,
the margin-based vulnerability calculation and the vulnerability-aware data filtering, then the data
samples for natural training and adversarial training are determined and adopted to train the neural
network. The details of both core components are presented in the following sections.
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Figure 3: The illustration about the overall framework of VDAT. After adding adversarial perturbations
to generate adversarial examples, the margin-based vulnerability calculation and the vulnerability-
aware data filtering are performed sequentially.

4.1 Margin-based Vulnerability Calculation

After generating adversarial examples X ′ in the first step of VDAT, the margin-based vulnerability
calculation will play the role in calculating the vulnerability of each sample in X . Specifically, the
vulnerability Vθ(xi) of xi is represented by the difference between the logit margins of both natural
sample xi ∈ X and the corresponding adversarial example x′

i ∈ X ′, as shown in Equation (2):

Vθ(xi) = − | My
θ(xi)−My

θ(x
′
i) | (2)

where y denotes the true label of the data sample xi. Besides, the physical significance of the
subtraction is the margin difference in the decision space between xi and x′

i. The larger absolute
value of that subtraction denotes the larger margin difference, indicating the natural data is harder to
be attacked and has lower vulnerability.

However, both My
θ(xi) and My

θ(x
′
i) are hard margins formulated by the maximum operator. In

this way, the logit margin is calculated only based on logits of the class y and the class with the
largest logit given by the model fθ. Unfortunately, there existing targeted adversarial attacks [35],
and the adversarial example xi can be misclassified into each possible class based on such kind of
attacks. Therefore, formulating the logit margin with only one class y′ ̸= y cannot well cover all
possible situations. To this end, we formulate the soft margin Sy

θ (xi, τ) and Sy
θ (x

′
i, τ) for both xi

and x′
i motivated by [50]. The detailed formulation is shown in Equations (3) and (4), where τ is a

pre-determined hyperparameter.

Sy
θ (xi) = ϕy

θ(xi)−
1

τ
log

∑
y′ ̸=y

exp(τϕy′

θ (xi)) (3)

Sy
θ (x

′
i) = ϕy

θ(x
′
i)−

1

τ
log

∑
y′ ̸=y

exp(τϕy′

θ (x′
i)) (4)

Based on the soft margins, the vulnerability of the data sample xi can be rewritten as Equation (5).

Vθ(xi) = − | Sy
θ (xi)− Sy

θ (x
′
i) | (5)

In the following, we discuss the motivation of adopting the margin difference instead of the pure
margin of the single data sample. The reason is that the pure margin only reflects the output situation
of the model and cannot represent the information of decision boundary [50]. In contrast, adopting
the margin difference can avoid the above problem, this is because the pure margin of adversarial
examples carries the decision boundary information [29]. Specifically, the decision boundary [33]
is characterized based on a certain data sample x̂, the true label ŷ of x̂, and another label y′ ̸= ŷ. If
this data sample satisfies ϕŷ

θ(x̂) = ϕy′

θ (x̂), then we assume that the data sample x̂ is on the decision
boundary between classes ŷ and y′. In practice, the problem is that the sample x̂ often cannot be
accurately found [50]. Fortunately, previous studies [9] state that the adversarial attack can push the
sample towards the decision boundary, thus the logit margin of adversarial examples can well reflect
the decision boundary information in some cases. Based on this, we adopt the margin difference to
calculate the vulnerability in this study.
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4.2 Vulnerability-Aware Data Filtering

Based on the vulnerability V = {Vθ(x1),Vθ(x2), . . . ,Vθ(xn)} calculated for the natural data samples
{x1, x2, . . . , xn}, the data samples are filtered for natural training and adversarial training accordingly.
Specifically, each sample xi is given a probability Pθ(xi) to be changed to the adversarial example
for adversarial training. The higher the vulnerability of xi is, the larger the probability Pθ(xi) is, in
order to help the model learn this vulnerable sample more robustly. The details of the calculation of
Pθ(xi) are presented as follows.

To build the connection between the vulnerability and the probability Pθ(xi), we normalized the
vulnerability Vθ(xi), for the convenience of determining the probability. In particular, the calculation
for the probability Pθ(xi) is formulated as Equation (6):

Pθ(xi) =
1

2

(
Vθ(xi)− Vθ(x1, x2, . . . , xn)

max{| Vθ(xi)− Vθ(xk) |}k=1,2,...,n
+ 1

)
(6)

where Vθ(x1, x2, . . . , xn) denotes the average value of the vulnerability in V . The range of Pθ(xi)
is narrowed from zero to one by calculating in this way.

After determining the probability for each data sample, the data filtering can be performed accordingly.
Specifically, the filtering process is described by Equation (7):

F(xi) =

{
xi + δ, R(0, 1) ≤ Pθ(xi)

xi, R(0, 1) > Pθ(xi)
(7)

where δ denotes the adversarial noise generated by the specific adversarial attack of adversarial
training, R(0, 1) denotes a uniform random value ranged from zero to one. In this way, the data
samples with the higher vulnerability are more likely changed to adversarial examples, to help the
target model learn them more robustly.

When the filtered data F(xi) is determined for all data samples in X = {x1, x2, . . . , xn}, the
datasets for natural training and adversarial training can be obtained. Supposing there are m data
samples filtered for adversarial training, we denote the datasets for natural and adversarial training as
Xadv = {x1, x2, . . . , xm} and Xnat = {xm+1, xm+2, . . . , xn}, then the overall training loss Ltrain is
formulated as Equation (8).

Ltrain = Lnat(Xnat, θ) + Ladv(Xadv, θ) (8)

Algorithm 1 VDAT
Input: Target dataset X , target model with param-
eter θ, training epoch N , and interval T .
Output: The trained model with parameter θ∗.

1: for i = 0 to N do
2: if i mod T == 0 then
3: Calculate Pθ(xi) for each sample in X
4: Perform data filtering in Equation (7)
5: Update datasets Xnat and Xadv
6: end if
7: Calculate Ltrain and update θ
8: end for
9: Return The trained model with θ∗

Based on this, we present the whole training
process of VDAT in Algorithm 1. As can be
seen, the data filtering is performed with a pre-
defined interval T in the whole training process
(line 2). During the data filtering, the probability
Pθ(xi) is calculated in the first step (line 3), and
then the data filtering and the update of Xnat and
Xadv are performed sequentially (lines 4 and 5).
Moreover, the network parameter θ is updated
based on calculating the training loss Ltrain in
each epoch (line 7). Finally, the trained model
can be obtained. It is worth noting that we intro-
duce a hyperparameter T indicating the interval
of data filtering. This is because the data filter-
ing introduces additional computational budget
in the training process due to the vulnerability calculation, and this hyperparameter can balance the
total training cost and the performance of the trained model. Detailed analysis of this hyperparameter
is presented in our experiments. Besides, additional details regarding the workflow of VDAT can be
found in Appendix A.

4.3 Time Complexity Analysis

In this section, we present the time complexity analysis of the proposed VDAT method. For the
margin-based vulnerability calculation, because we need to iterate over all n samples in the target
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dataset X , the time complexity for this process is O(n). Meanwhile, calculating the soft margin for
each sample needs to iterate the logits for all k classes. As a result, the time complexity for this
process is O(k), and the overall time complexity for the margin-based vulnerability calculation is
O(nk). For the vulnerability-aware data filtering, we also need to iterate all n data samples and
calculate the probability P of each data sample, and the time complexity for this process is O(n). In
summary, because the above two parts are performed serially, the overall time complexity is O(nk).

5 Experiments

5.1 Experimental Settings

In order to comprehensively demonstrate the effectiveness of VDAT, we adopt VDAT to train
baseline models, i.e., ResNet [23] and WideResNet [54], which are widely used in the community
of adversarial training to test the performance of adversarial training techniques [8, 27]. Besides,
the benchmark datasets for adversarial training or robust NAS are CIFAR-10, CIFAR-100 [31],
and ImageNet-1K [12], while the adversarial attacks for evaluations are FGSM [21], PGD [35],
C&W [2], and AutoAttack (AA) [10]. These choices also follow the conventions in the communities
of adversarial training and robust NAS [50, 27, 19]. Besides, the hyperparameter τ of VDAT is set
to five and the interval T is set to ten. The adversarial perturbation adopted before the vulnerability
calculation is generated by the FGSM attack. Moreover, because VDAT can be combined with
different types of adversarial perturbations for adversarial training, we adopt commonly used FGSM
and PGD adversarial perturbations. These two variants of VDAT are denoted as VDATFGSM and
VDATPGD in our experiments, respectively. More details regarding the experimental settings are in
Appendix B.

Table 1: Experimental results of the adversarial training on CIFAR-10 and CIFAR-100. The baseline
models are ResNet18 and WideResNet34-10. The best results are in bold and the second best results
are underlined.

Adversarial Attacks Training Cost

Models Methods Natural (%) FGSM (%) PGD20 (%) PGD50 (%) C&W (%) AA (%) (GPU Hours)
CIFAR-10

ResNet18

PGD-AT [35] 82.32 55.12 52.83 52.60 51.08 48.68 4.45
FGSM-SDI [28] 84.86 59.96 52.54 52.18 51.00 48.50 1.38
TDAT [45] 82.67 55.82 49.31 49.02 50.37 46.47 2.29
FGSM-PGK [27] 81.58 62.04 55.51 55.31 51.17 49.51 1.30
VDATPGD 82.96 62.26 56.08 56.07 52.85 53.89 1.96
VDATFGSM 86.32 62.94 56.30 56.23 51.31 53.23 1.04

WideResNet34-10

PGD-AT [35] 85.17 59.78 55.07 54.87 53.84 51.67 31.90
FGSM-SDI [28] 86.40 60.68 54.95 54.60 53.68 51.17 9.40
TDAT [45] 87.69 60.62 43.38 41.53 46.71 22.58 9.09
FGSM-PGK [27] 83.32 63.26 58.23 57.46 54.33 53.28 8.30
VDATPGD 88.10 64.40 60.36 60.26 55.70 54.99 9.77
VDATFGSM 92.34 65.08 59.49 58.30 55.42 54.49 3.41

CIFAR-100

ResNet18

PGD-AT [35] 57.50 30.95 29.00 28.90 27.60 25.48 4.73
FGSM-SDI [28] 58.54 37.19 27.99 27.67 25.85 23.27 1.65
TDAT [45] 57.32 40.29 33.17 33.06 28.47 26.61 2.29
FGSM-PGK [27] 56.27 37.40 32.85 29.92 28.39 26.86 1.30
VDATPGD 54.44 40.36 34.29 34.26 29.34 31.44 2.01
VDATFGSM 59.43 41.17 35.69 35.61 28.23 32.39 1.05

WideResNet34-10

PGD-AT [35] 60.63 31.39 26.21 25.92 23.96 21.41 31.90
FGSM-SDI [28] 63.49 40.94 30.80 25.58 13.71 22.29 9.40
TDAT [45] 63.07 40.51 29.04 27.77 29.16 25.15 9.25
FGSM-PGK [27] 64.22 40.54 30.04 29.73 27.82 26.11 8.30
VDATPGD 64.50 41.88 35.28 35.18 33.97 32.61 9.92
VDATFGSM 72.91 41.90 34.64 33.53 31.01 31.65 3.44

5.2 Overall Results for Adversarial Training

To demonstrate the efficiency and efficacy of VDAT, we compare VDAT with state-of-the-art FAT
methods focusing on 1) efficient generation of adversarial examples and 2) data filtering. Specifically,
we adopt different adversarial training methods to train baseline models, and then the natural accuracy,
adversarial accuracy under different adversarial attacks, and the training cost are reported. The
benchmark datasets for this set of experiments are CIFAR-10, CIFAR-100, and ImageNet-1K.
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As for the first category of FAT methods, the experimental results on CIFAR-10 and CIFAR-100
are presented in Table 1. As can be seen, both VDATFGSM and VDATPGD achieve state-of-the-art
natural accuracy and adversarial accuracy in most cases. Meanwhile, because VDAT only performs
adversarial training on the filtered subset, VDATFGSM is more efficient than the state-of-the-art
FGSM-based FAT methods, i.e., FGSM-SDI, TDAT, and FGSM-PGK. Moreover, VDATPGD is also
much more efficient than standard PGD-AT, and it does not increase much training cost compared
with FGSM-based FAT methods. Furthermore, the experimental results in Table 1 also show that
VDATFGSM performs better than VDATPGD on natural accuracy and weak adversarial attacks, while
VDATFGSM is not as good as VDATPGD on stronger attacks. Specifically, VDATFGSM outperforms
VDATPGD in terms of natural accuracy and adversarial accuracy under the FGSM adversarial attack.
As for the stronger adversarial attacks, i.e., C&W and AA, VDATPGD often performs better than
VDATFGSM. This is mainly because VDATPGD provides stronger adversarial examples, and learning
these adversarial examples can help the model achieve better accuracy under stronger adversarial
attacks. However, it is shown that stronger adversarial examples can lead to robust overfitting of the
strong adversarial perturbations [53]. As a result, the model suffers from the poor generalizability to
the clean data and weak adversarial examples, thus the natural accuracy and adversarial accuracy
under weak adversarial attacks become lower.

Beyond CIFAR-10 and CIFAR-100, we also conduct experiments on ImageNet-1K against state-of-
the-art FAT methods in the first category, to demonstrate effectiveness and efficiency of VDAT on the
large-scale dataset. As can be observed from Table 2, VDAT achieves the highest natural accuracy
and adversarial accuracy under both PGD10 and PGD50 adversarial attacks. Meanwhile, VDAT is at
least 9.6% more efficient than the state-of-the-art FGSM-based FAT methods. In conclusion, VDAT
demonstrates superior efficiency and efficacy compared with state-of-the-art FAT methods in the first
category.

Table 2: Experimental results of the adversarial
training on ImageNet-1K. The baseline model for
training is ResNet50.

Adversarial Attacks Training Cost

Methods Natural (%) PGD10 (%) PGD50 (%) (GPU Hours)
PGD-AT [35] 59.19 35.87 35.41 140.80
Free-AT [44] 63.42 33.22 33.08 85.13
FGSM-PGI [26] 64.32 36.24 34.93 42.47
FGSM-SDI [28] 59.62 37.50 36.63 44.53
FGSM-PGK [27] 66.24 37.13 35.70 42.47
VDATFGSM 67.47 39.48 38.69 38.41

Table 3: Comparisons between the state-of-
the-art data filtering-based FAT and VDAT on
CIFAR-10, CIFAR-100, and ImageNet-1K.

Models / Datasets Methods Natural (%) AA (%) Cost

WideResNet34-10 /
CIFAR-10

AdvGradMatch [13] 84.54 47.83 17.21
DFEAT [3] 85.66 52.77 10.30
VDATFGSM 92.34 54.49 3.41

WideResNet34-10 /
CIFAR-100

DFEAT [3] 66.51 30.68 14.33
VDATFGSM 72.91 31.65 3.44

ResNet50 /
ImageNet-1K

DFEAT [3] 64.76 36.10 53.72
VDATFGSM 67.47 36.98 38.41

Regarding the FAT methods falling into the second category, we choose the state-of-the-art methods,
i.e., AdvGradMatch [13] and DFEAT [3], and then directly report the experimental results presented
in their seminal papers. The experimental results are shown in Table 3. As can be seen, VDAT
demonstrates superior performance on all three datasets comparing with the FAT methods selected.
Meanwhile, the training cost of VDAT is significantly lower (≥ 28.5% lower) than that of AdvGrad-
Match and DFEAT on both medium scale datasets (CIFAR-10 and CIFAR-100) and the large-scale
dataset (ImageNet-1K), thus illustrating the superiority of VDAT.

5.3 Overall Results for Robust NAS

In order to evaluate the scalability of VDAT in different scenarios, we conduct experiments in
terms of robust NAS. Specifically, we directly replace the PGD-based adversarial training with
different FAT methods in the optimization of the supernet, to obtain robust neural architectures. Then,
the derived architectures are adversarially trained by the PGD7 adversarial training following the
conventions [38, 17]. The experimental results are shown in Table 4.

As can be seen from Table 4, the natural accuracy becomes higher when the robust NAS method is
combined with VDAT, and this accuracy is also higher than that in cases of FGSM-SDI and FGSM-
PDK. Meanwhile, the adversarial accuracy reaches the best in most cases after introducing VDATPGD
or VDATFGSM. Besides, the search cost becomes the lowest after introducing VDATFGSM, and the
search cost also becomes lower than that of vanilla robust NAS methods after introducing VDATPGD.
These experiments demonstrate the scalability of VDAT in the scenario of robust NAS. Furthermore,
it can be observed that VDATFGSM generally performs better than VDATPGD on both natural accuracy
and adversarial accuracy. This phenomenon is mainly caused by the overfitting phenomenon of the
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Table 4: Experimental results of VDAT on CIFAR-10 under white-box attacks. The adversarial
training methods are integrated into the corresponding robust NAS methods.

Adversarial Attacks Search Cost

Models Params Natural (%) FGSM (%) PGD20 (%) PGD100 (%) C&W (%) AA (%) (GPU Days)
DSRNA [24] 2.0M 80.93 54.49 49.11 48.89 38.92 44.87 0.80
+ FGSM-SDI [28] 1.9M 86.32 55.38 43.62 43.04 16.17 41.64 0.53
+ FGSM-PGK [27] 2.7M 85.98 59.40 50.65 50.13 52.64 48.05 0.43
+ VDATPGD 3.2M 87.21 62.24 53.29 53.13 52.98 48.16 0.65
+ VDATFGSM 3.4M 91.10 84.23 64.01 54.64 55.89 50.26 0.34
AdvRush [36] 4.2M 87.30 60.87 53.07 52.80 45.13 50.05 1.22
+ FGSM-SDI [28] 3.2M 86.42 59.66 50.78 50.24 28.06 47.89 0.74
+ FGSM-PGK [27] 3.7M 86.28 59.26 50.31 49.74 51.86 47.15 0.59
+ VDATPGD 3.5M 87.89 62.60 54.27 54.11 52.59 52.25 0.76
+ VDATFGSM 3.6M 88.05 63.35 55.32 54.84 46.42 54.38 0.47
RNAS [41] 3.5M 84.13 61.90 53.48 53.35 50.74 50.54 0.71
+ FGSM-SDI [28] 4.3M 84.55 58.32 49.38 48.97 54.08 45.65 0.42
+ FGSM-PGK [27] 3.3M 84.68 55.24 45.47 44.89 49.89 43.84 0.34
+ VDATPGD 4.1M 87.24 62.23 54.09 53.96 54.70 51.86 0.68
+ VDATFGSM 3.7M 87.18 62.99 55.43 55.13 54.61 53.54 0.27
ARNAS [38] 4.5M 85.92 62.45 55.87 55.43 28.14 52.66 2.95
+ FGSM-SDI [28] 5.0M 86.86 60.51 51.59 50.92 26.25 48.33 1.81
+ FGSM-PGK [27] 3.7M 87.11 60.74 52.92 52.45 25.31 50.43 1.44
+ VDATPGD 5.7M 88.88 63.88 56.85 56.43 38.24 54.73 2.22
+ VDATFGSM 5.0M 89.34 65.67 57.15 56.81 30.34 56.11 1.15

supernet. Specifically, VDATPGD will cause robust overfitting more easily than VDATFGSM during
the training process of the supernet [53]. As indicated in the previous study [55], the overfitting
can make the NAS algorithm add more parameter-free operations (e.g., skip connection) to the
derived architecture. As a result, the architectures searched with VDATPGD demonstrate lower natural
accuracy and adversarial accuracy than those searched with VDATFGSM. Please note that additional
experimental results regarding robust NAS can be found in Appendix C.

5.4 Visualizations of VDAT

Visualizations of the Training Process. Because the data filtering in VDAT changes the training data
for both natural training and adversarial training iteratively, we explore the convergence of VDAT
by visualizing the training process, in order to show the reliability of VDAT. As can be seen from
Figure 4, no matter which dataset or baseline model is adopted, the training of VDAT converges well.
Please note that the significant accuracy improvement at the 100-th training epoch is mainly caused
by the decay of the learning rate. This practice follows the convention of adversarial training [28].
Besides, because the data filtering method can change the training data iteratively, VDAT does not
suffer from the catastrophic overfitting [30] even though the FGSM-based adversarial training is
combined with VDAT.
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Figure 4: Visualizations of the training processes of VDATFGSM and VDATPGD on CIFAR-10 (C10)
and CIFAR-100 (C100).

Visualizations of the Vulnerability of Data Samples. To further show the effectiveness of VDAT
regarding learning vulnerable samples, we visualize the normalized margin difference before and
after training. A larger normalized margin difference indicates lower vulnerability. As shown in
Figure 5, the distribution shifts to right after training with VDAT on all three datasets, demonstrating
VDAT is indeed effective in learning vulnerable data samples robustly. Additional visualizations for
the training process and the normalized margin difference can be found in Appendix D.
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Figure 5: Visualizations of the normalized margin difference of data before and after training by
VDATFGSM. The baseline models are ResNet18 (CIFAR-10/100) and ResNet50 (ImageNet-1K).

5.5 Parameter Studies and Ablation Studies

Parameter Studies. We conduct parameter studies for the hyperparameter τ and the interval T .
As shown in Table 5, the performance raises when τ increases from 0.05 to five, and then slightly
decreases when τ increases from five to 500, illustrating the validity of setting τ to five. Moreover, as
shown in Table 6, both natural accuracy and adversarial accuracy decrease when T becomes larger,
but the training cost becomes lower. To balance the accuracy and training cost, we choose to set T to
10 as default.

Table 5: Parameter study for the hyperparameter τ
on CIFAR-10. The baseline model for adversarial
training is ResNet18.

τ Natural (%) PGD20 (%) PGD50 (%)
0.05 (×0.01) 85.88 48.53 48.41
0.5 (×0.1) 85.96 53.95 53.90
5 (Default) 86.32 56.30 56.23
50 (×10) 86.25 54.14 54.00
500 (×100) 86.32 53.27 53.12

Table 6: Parameter study for the interval T on
CIFAR-10. The training cost is measured in
GPU hours.

T Natural (%) PGD50 (%) Cost
2 (×0.2) 91.37 58.57 1.47
5 (×0.5) 88.39 54.74 1.20
10 (Default) 86.32 56.23 1.04
20 (×2) 82.94 44.95 0.69
50 (×5) 81.81 43.91 0.63

Ablation Studies. The ablation studies mainly focus on the filtering method, the kinds of adversarial
perturbation adopted before the vulnerability calculation, the soft margin along with the temperature
parameter τ adopted, and the different adversarial training frameworks.

As can be seen in Table 7, when our filtering method is removed or replaced by the random filtering,
both natural and adversarial accuracy drops, demonstrating the effectiveness of the filtering method
designed. Furthermore, as shown in Table 8, the natural accuracy and adversarial accuracy do not
show significant changes when changing the types of adversarial attacks, but the search cost increases
when changing FGSM to PGD. Therefore, we choose FGSM attack as default.

Table 7: Ablation study for the filtering method
on CIFAR-10. The baseline model for training is
ResNet18.

Filtering? Natural (%) PGD20 (%) PGD50 (%)
Without 73.81 41.55 41.26
Random 85.96 50.96 48.84
VDAT 86.32 56.30 56.23

Table 8: Ablation study for the kind of adver-
sarial perturbation adopted before the vulner-
ability calculation.

Perturbation Natural (%) PGD50 (%) Cost

PGD10 85.96 58.03 1.10
PGD20 85.96 58.50 1.34
FGSM 86.32 56.23 1.04

Moreover, we conduct ablation studies regarding the soft margin along with the temperature parameter
τ . The effectiveness of the above design is evaluated under the targeted attacks. Specifically, we
train ResNet18 on CIFAR-10 with two types of margins, i.e., the pure margin in Equation (2) and the
soft margin with different values of τ . For evaluation, the targeted adversarial attacks are variants of
the PGD adversarial attack, i.e., PGD (Random) and PGD (Least Likely). PGD (Random) indicates
that the target labels are chosen randomly. PGD (Least Likely) indicates that the target label is the
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Table 9: Experimental results of the ablation study regarding the soft margin and the temperature
parameter τ . The baseline model is ResNet18 and the benchmark dataset is CIFAR-10.

Random Least Likely

Methods Natural (%) PGD20 (%) PGD50 (%) PGD20 (%) PGD50 (%)
Pure Margin 84.53 56.21 56.04 75.45 75.24
Soft Margin (τ=0.05) 85.88 63.28 63.20 77.84 77.65
Soft Margin (τ=0.5) 85.96 69.32 68.86 82.07 81.94
Soft Margin (τ=1) 85.88 70.00 69.31 82.06 81.84
Soft Margin (τ=5) 86.32 72.75 72.35 83.31 83.28
Soft Margin (τ=50) 86.25 71.20 70.61 82.20 82.02
Soft Margin (τ=500) 86.32 69.55 69.53 80.75 80.44

label corresponding to the smallest output logit. Both attack strategies for selecting target labels are
designed following the convention [32]. As shown in Table 9, the adversarial accuracy under targeted
adversarial attacks increases when the pure margin is changed to the soft margin. Consequently,
the soft margin is shown to be effective to improve the adversarial accuracy under the targeted
adversarial attack. Furthermore, when the temperature parameter τ is set to five, the adversarial
accuracy becomes the highest, demonstrating the validity of setting τ to five as default.

Table 10: Experimental results of the ablation study in terms of different adversarial training frame-
works. The baseline model is ResNet18 and the benchmark dataset is CIFAR-10.

Adversarial Attacks Training Cost

Methods Natural (%) FGSM (%) PGD20 (%) PGD50 (%) (GPU Hours)
TRADES [56] 81.16 60.27 52.45 52.39 6.44
TRADES + VDAT 81.43 61.15 55.55 55.50 3.27
AWP [49] 81.97 58.47 53.98 53.91 7.15
AWP + VDAT 83.97 62.32 56.03 55.93 3.76

In addition, we perform ablation studies to demonstrate the flexibility of the proposed VDAT method.
In particular, we integrate VDAT into AWP [49] and TRADES [56] adversarial training frameworks.
In this set of experiments, the benchmark dataset is CIFAR-10 and the deep neural network for
training is ResNet18. The natural accuracy, adversarial accuracy, and training cost are reported in
Table 10. As can be seen, VDAT can improve the natural accuracy and adversarial accuracy of both
TRADES and AWP. Meanwhile, the training cost of both TRADES and AWP is decreased owing
to the integration of VDAT. In summary, VDAT is shown to enjoy the flexibility across different
adversarial training frameworks.

Please note that additional experimental results regarding the parameter study and ablation study can
be found in Appendix E.

6 Conclusion

In this paper, we mainly focus on filtering the vulnerable data in the adversarial training process. This
goal is achieved by the proposed VDAT method with two core components, i.e., the margin-based
vulnerability calculation and vulnerability-aware data filtering. The experimental results demonstrate
the effectiveness and scalability of VDAT. In addition, the validity of core components designed
in VDAT is shown by the ablation studies. In the future, we will put the effort into theoretically
analyzing the effectiveness of the proposed VDAT method.
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Appendix

The appendix contains contents from following aspects, in order to provide more insights about the
proposed VDAT method:

• Appendix A: This section presents additional details about the methodology of VDAT.

• Appendix B: This section contains additional details of experimental settings to facilitate
the reproducibility.

• Appendix C: This section presents experimental results regarding robust NAS, containing
the results of VDAT on CIFAR-100 and ImageNet-1K, the results in different search spaces,
the results under black-box attacks, and the visualizations of the search process.

• Appendix D: This section contains additional visualizations of VDAT, i.e., the visualizations
regarding the training process on ImageNet-1K and the normalized margin differences.

• Appendix E: This section presents additional results in terms of the parameter studies and
ablation studies.

A More Details about the Workflow of VDAT

To help readers better understand how VDAT is integrated into robust NAS methods, we present a
framework of robust NAS methods along with VDAT. The workflow is presented in Algorithm 2.

Algorithm 2 General Workflow of Robust NAS with VDAT
Input: Target dataset X = {x1, x2, . . . , xn}, the pre-determined nodes and operations, the number
of epochs N for search, and the interval T
Output: The derived robust neural architecture

1: Initialize the supernet based on the pre-determined nodes and operations
2: Initialize the trainable weights ω and architecture parameters α of the supernet
3: Divide X into two halves, i.e., X Train and XValid

4: for i = 0 to N do
5: if i mod T == 0 then
6: Calculate Pω,α(xi) for each sample in X Train and XValid

7: Perform data filtering and update corresponding subsets X Train
nat , X Train

adv , XValid
nat , and XValid

adv
8: end if
9: Calculate Ltrain = Ltrain

nat (X Train
nat , ω, α) + Ltrain

adv (X Train
adv , ω, α)

10: Keep the architecture parameter frozen, and update the trainable weights ω based on Ltrain
11: Keep the trainable weights ω frozen, update the architecture parameter α according to the

update strategy of this robust NAS method based on XValid
nat and XValid

adv
12: end for
13: Determine the searched architecture based on the architecture parameter α optimized
14: Return The derived robust neural architecture

As shown in Algorithm 2, given the target dataset X , along with the pre-determined nodes, operations,
the number N of search epoch, and the interval T , the robust neural architecture is derived finally.
There are four parts (lines 1-3, lines 5-8, lines 9-11, and line 13) in total in the search process. In
the fist part, the supernet along with the trainable weights ω and the architecture parameters α are
initialized (lines 1-2). Then, the target dataset X is equally divided into two parts, i.e., X Train and
XValid for updating ω and α, respectively (line 3). In the second part, the data filtering is performed
according to the interval T , and X Train and XValid are filtered respectively (lines 6-7). In the third
part, the trainable weights is updated based on the training loss Ltrain calculated (lines 9-10). Then,
the architecture parameters α is updated based on the update strategy of this robust NAS method
(line 11). In the fourth part, the robust neural architecture is determined based on the architecture
parameter α optimized (line 13).
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B More Details of Experimental Settings

In this section, we present additional details about the experimental settings. Specifically, the details
are mainly from three aspects, i.e., the experimental settings for the adversarial training, robust NAS,
and evaluations.

B.1 Experimental Settings for Adversarial Training

We determine the experimental settings by following the conventions in the FAT community [28, 27].
For the adversarial training on CIFAR-10 and CIFAR-100, the total epoch is set to 110. Meanwhile,
the batch size is set to 128, the learning rate is set to 0.1, the momentum is set to 0.9, and the weight
decay is set to 10−4. The learning rate is decayed by the factor 0.1 at the 100-th and 105-th epochs,
respectively. As for the adversarial training on ImageNet-1K, the total epoch is set to 60. Besides, the
batch size is set to 512, while the momentum, the weight decay, and the learning rate are set to the
same values as those on CIFAR-10 and CIFAR-100. The learning rate is decayed by the factor 0.1 at
the 20-th and 40-th epochs, respectively. Please note that all the experiments are performed on the
NVIDIA RTX 3090 GPU.

B.2 Experimental Settings for Robust NAS

The total number of epoch for search is set to 50 for all four robust NAS methods. As for the other
hyperparameters, we following the original settings of these robust NAS methods in their seminal
papers [36, 24, 41, 38].

B.3 Experimental Settings for Evaluations

The experimental setting for evaluations consists of two parts. The first part mainly focuses on the
adversarial training of neural architectures derived by robust NAS methods. The second part mainly
focuses on the settings of adversarial attacks for evaluations.

B.3.1 Settings for Training Architectures Searched

The experimental settings for the adversarial training follow the convention in the previous study [22,
17, 19]. The PGD adversarial training is adopted to train the derived architectures [35] on CIFAR-10,
CIFAR-100, and ImageNet-16-120 [7]. Besides, the FGSM-based FAT method [48] is adopted to
train neural architectures on ImageNet-1K. The detailed experimental settings for adversarial training
are presented in Table 11.

Table 11: The experimental settings for the adversarial training on CIFAR-10, CIFAR-100, ImageNet-
16-120, and ImageNet-1K.

Items CIFAR ImageNet-16-120 ImageNet-1K
Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Epochs 200 200 40
Learning Rate 0.1 0.1 0.1
Learning Rate Decay (100, 150) (100, 150) (20, 30)
Weight Decay 10−4 10−4 10−4

PGD Step 7 7 /
FGSM ϵ / / 4/255
PGD ϵ 8/255 8/255 /
PGD Step Size 0.01 0.01 /

B.3.2 Settings for Adversarial Attacks

Furthermore, the experimental settings for the adversarial attacks also follow the convention [41, 38].
The details for the adopted FGSM [21], PGD [35], C&W [2], and AutoAttack (AA) [10] adversarial
attacks are shown in Table 12.
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Table 12: The experimental settings for the adversarial attacks FGSM, PGD, C&W, and AA.

Items FGSM PGD C&W AA
Total Perturbation Scale ϵ 8/255 8/255 / 8/255
Step Size / 2/255 / /
Steps / 20, 50, 100 100 /
c / / 0.5 /

C Additional Experimental Results for Robust NAS

To further demonstrate the effectiveness of VDAT in the scenario of robust NAS, we conduct
experiments in terms of evaluations under white-box attacks, black-box attacks, different search
spaces, and visualizations of the search processes. These experimental results are presented in order
in the following sections.

C.1 Experiments under White-box Attacks

Beyond the experimental results under white-box attacks on CIFAR-10 (Table 4), we also conduct
experiments on CIFAR-100 and ImageNet-1K, to comprehensively evaluate the effectiveness of
VDAT on both medium-scale and large-scale datasets. The robust neural architectures are searched
and then adversarially trained for evaluations. The experimental results on CIFAR-100 and ImageNet-
1K are presented in Tables 13 and 14, respectively.

Table 13: Experimental results of VDAT on CIFAR-100 under white-box attacks. The adversarial
training methods are integrated into the corresponding robust NAS methods.

Adversarial Attacks Search Cost

Models Params Natural (%) FGSM (%) PGD20 (%) PGD100 (%) C&W (%) AA (%) (GPU Days)
DSRNA [24] 2.0M 57.44 35.03 28.11 27.97 21.52 25.20 0.80
+ FGSM-SDI [28] 2.0M 60.18 28.67 22.50 22.24 24.63 21.07 0.53
+ FGSM-PGK [27] 2.8M 60.35 31.26 26.54 26.38 27.99 24.25 0.43
+ VDATPGD 3.2M 63.82 38.79 31.32 30.89 24.22 28.48 0.65
+ VDATFGSM 3.5M 61.02 37.41 33.31 33.07 22.12 31.42 0.34
AdvRush [36] 4.2M 58.73 39.51 30.15 29.67 20.08 26.46 1.22
+ FGSM-SDI [28] 3.3M 59.09 34.03 29.18 28.80 34.98 25.96 0.74
+ FGSM-PGK [27] 3.7M 61.01 31.41 25.73 25.34 24.94 24.44 0.59
+ VDATPGD 3.5M 61.51 40.98 32.44 31.47 28.60 30.29 0.76
+ VDATFGSM 3.7M 61.91 41.40 31.04 30.81 20.87 29.13 0.47
RNAS [41] 3.5M 60.24 40.52 31.11 31.06 20.84 27.37 0.71
+ FGSM-SDI [28] 4.4M 59.60 30.83 24.99 24.63 24.80 23.07 0.42
+ FGSM-PGK [27] 3.4M 59.53 32.74 26.67 26.37 28.63 25.08 0.34
+ VDATPGD 4.1M 58.73 41.45 33.14 32.77 29.01 30.20 0.68
+ VDATFGSM 3.8M 61.07 43.21 34.60 34.37 21.62 30.82 0.27
ARNAS [38] 4.5M 58.18 32.60 29.54 29.30 19.51 25.76 2.95
+ FGSM-SDI [28] 5.0M 62.00 32.54 26.48 26.07 24.66 24.38 1.81
+ FGSM-PGK [27] 3.8M 63.40 32.45 26.30 26.06 20.54 25.35 1.44
+ VDATPGD 5.7M 62.78 33.54 31.44 30.96 26.95 29.62 2.22
+ VDATFGSM 5.0M 63.43 35.32 29.84 29.59 21.82 28.46 1.15

As can be seen from Table 13, VDATFGSM consistently achieves better natural accuracy compared
with state-of-the-art FAT methods and the baselines. Meanwhile, VDATPGD can achieve the state-of-
the-art natural accuracy in the cases of DSRNA and AdvRush. Moreover, after combining VDAT
with robust NAS methods selected, the adversarial accuracy reaches the highest in most cases.
Furthermore, VDATFGSM also consistently achieves the lowest search cost compared with the cases of
state-of-the-art FAT methods and vanilla robust NAS methods. In addition, the robust NAS methods
integrated with VDATPGD also demonstrates better efficiency than the original ones.

As shown in Table 14, both natural accuracy and adversarial accuracy are improved after introducing
VDATFGSM. These results demonstrate the effectiveness of VDAT in terms of the large-scale dataset
in the scenario of robust NAS.
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Table 14: The experimental results of VDAT on ImageNet-1K under white-box attacks. VDAT is
integrated into robust NAS methods.

Models Natural (%) FGSM (%) PGD20 (%) AA (%)
DSRNA [24] 43.32 13.04 7.88 6.49
+ VDATFGSM 53.72 20.16 12.20 10.55
AdvRush [36] 51.54 18.42 10.74 9.23
+ VDATFGSM 54.88 21.12 12.67 11.15
RNAS [41] 51.18 17.62 9.87 8.61
+ VDATFGSM 53.26 20.15 11.85 10.29
ARNAS [38] 54.69 20.60 11.27 11.13
+ VDATFGSM 57.05 22.68 13.14 12.90

C.2 Experiments under Black-box Attacks

To evaluate the architectures derived by robust NAS methods more comprehensively, we conduct
experiments under black-box adversarial attacks beyond white-box adversarial attacks. In this set of
experiments, we choose the commonly used transfer-based black-box attack [6] to further validate
the adversarial robustness of the searched architectures. Specifically, the adversarial examples are
generated based on the PGD20 adversarial attack, and then they are transferred to attack other models.
This practice follows the convention [36, 38]. The experimental results under the black-box attack
are presented in Table 15. As can be seen, when VDAT is integrated into robust NAS methods, the
adversarial accuracy under the black-box attack still improves, demonstrating its effectiveness under
the black-box attack.

Table 15: The experimental results under the transfer-based black-box attack on CIFAR-10 and
CIFAR-100. The highlighted data means that the source model and the target model are the same,
thus the experimental results are the same as those under the white-box attack.

Datasets Source
Target AdvRush RNAS ARNAS AdvRush

+ VDATFGSM

RNAS
+ VDATFGSM

ARNAS
+ VDATFGSM

CIFAR-10

AdvRush 53.07 68.08 71.46 74.03 73.76 75.95
RNAS 68.61 53.48 66.99 72.87 70.92 74.89

ARNAS 66.90 62.22 55.87 71.51 70.05 72.86
AdvRush + VDATFGSM 67.43 65.66 68.88 55.32 70.41 73.18

RNAS + VDATFGSM 68.40 64.65 68.52 71.69 55.43 73.42
ARNAS + VDATFGSM 66.90 62.22 55.86 71.55 70.00 57.15

CIFAR-100

AdvRush 30.15 36.55 39.27 43.37 43.72 46.24
RNAS 41.55 31.11 40.22 45.61 44.83 47.47

ARNAS 41.14 36.89 29.54 45.14 44.38 46.91
AdvRush + VDATFGSM 41.03 38.06 40.89 31.04 42.77 46.23

RNAS + VDATFGSM 46.50 42.16 45.16 47.86 34.60 49.18
ARNAS + VDATFGSM 41.17 36.91 29.61 45.04 44.41 29.84

C.3 Experiments in Different Search Spaces

The above experimental results are all performed in a classical search space in the NAS community,
i.e., the DARTS search space [34]. To further demonstrate the scalability of VDAT in the scenario
of robust NAS, we perform experiments on both NAS-Bench-101 [52] and NAS-Bench-201 [15]
search spaces. As can be seen in Table 16, VDAT can still bring improvements regarding both natural
accuracy and adversarial accuracy in most cases. Please note that the improvement on NAS-Bench-
201 is much more significant than that on NAS-Bench-101. This is because the search space of
NAS-Bench-201 is much smaller than NAS-Bench-101, so that the architecture parameter can overfit
the search data more easily. This will lead to the enrichment of the “skip connection” operation,
causing the performance collapse [46]. Fortunately, VDAT can mitigate such overfitting because
the data for training and search is changed iteratively during the search process, thus VDAT brings
significant improvements.
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Table 16: Experimental results of VDAT with robust NAS methods on NAS-Bench-101 and NAS-
Bench-201 benchmarks. The datasets are CIFAR-10, CIFAR-100, and ImageNet-16-120.

NAS-Bench-101
CIFAR-10 CIFAR-100 ImageNet-16-120

Models Nat. FGSM PGD20 AA Nat. FGSM PGD20 AA Nat. FGSM PGD20 AA
AdvRush [36] 82.93 51.19 40.14 41.41 55.45 25.33 20.27 20.36 17.55 5.90 4.77 3.57
+ VDATFGSM 85.03 56.24 47.07 46.28 58.23 30.17 25.86 24.53 17.28 7.25 6.52 3.60
RNAS [41] 83.28 50.93 39.41 41.14 55.19 26.28 21.64 21.30 17.52 5.75 4.45 3.52
+ VDATFGSM 85.05 56.61 47.50 46.82 59.33 28.75 23.81 22.81 17.62 7.15 6.43 3.48

ARNAS [38] 82.46 54.91 48.80 46.57 54.22 29.79 26.09 23.78 17.52 6.73 5.78 4.05
+ VDATFGSM 84.08 55.93 47.89 46.72 56.37 29.99 26.61 24.10 17.77 7.22 6.23 4.35

NAS-Bench-201
CIFAR-10 CIFAR-100 ImageNet-16-120

Models Nat. FGSM PGD20 AA Nat. FGSM PGD20 AA Nat. FGSM PGD20 AA
AdvRush [36] 59.31 35.58 33.26 30.94 30.17 15.52 14.71 12.65 9.58 5.30 5.13 3.47
+ VDATFGSM 85.06 59.43 51.75 50.10 58.41 30.67 26.20 24.72 16.42 8.78 8.50 2.75

RNAS [41] 73.29 45.81 41.32 40.13 40.13 20.66 19.20 16.95 13.20 6.55 6.02 4.17
+ VDATFGSM 82.68 56.90 49.63 47.81 55.33 28.68 24.82 23.12 17.13 8.37 7.68 4.12

ARNAS [38] 79.91 54.05 48.39 46.14 50.47 26.32 23.49 21.25 16.48 6.88 6.00 4.18
+ VDATFGSM 84.84 58.56 51.19 49.41 56.95 29.90 25.74 23.75 17.48 7.28 6.57 4.75

C.4 Visualizations of the Search Process

Because the data filtering method in VDAT changes the search data iteratively in the search process,
we also explore the convergence of the search to reveal the reliability of VDAT in the scenario of
robust NAS. Specifically, there are four indicators reported to show the convergence, i.e., the training
and validation accuracy for the data in X Train

nat , XValid
nat and the data in X Train

adv , XValid
adv . The experimental

results are shown in Figure 6. As can be seen, all four indicators converge effectively in the search
process, demonstrating that VDAT will not affect the convergence of the robust NAS methods. Please
note that the indicators drop at the 40-th epoch in Figure 6a. This is caused by the regularization in
AdvRush and in line with the phenomenon in its original paper.

0 10 20 30 40 50
epoch

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Natural Training Accuracy
Natural Validation Accuracy
Adversarial Training Accuracy
Adversarial Validation Accuracy

(a) AdvRush

0 10 20 30 40 50
epoch

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Natural Training Accuracy
Natural Validation Accuracy
Adversarial Training Accuracy
Adversarial Validation Accuracy

(b) DSRNA

0 10 20 30 40 50
epoch

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Natural Training Accuracy
Natural Validation Accuracy
Adversarial Training Accuracy
Adversarial Validation Accuracy

(c) RNAS

0 10 20 30 40 50
epoch

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Natural Training Accuracy
Natural Validation Accuracy
Adversarial Training Accuracy
Adversarial Validation Accuracy

(d) ARNAS

Figure 6: Visualization for the search process of robust NAS methods after introducing VDAT.

D Additional Visualizations for Adversarial Training

In this section, we present additional visualizations regarding the adversarial training. The visualiza-
tions come from two aspects which are same as those in the main text, i.e., the training process and
the vulnerability of data samples. The details are presented in the following sections.

D.1 Visualizations of the Training Process on ImageNet-1K

Beyond the visualizations of the training process on CIFAR-10 and CIFAR-100, we also visualize the
training process of VDATFGSM on ImageNet-1K in Figure 7. The natural accuracy and the adversarial
accuracy on the test set are visualized. The adversarial accuracy is evaluated by the PGD10 adversarial
attack. As can be seen from Figure 7, even though the data for natural training and adversarial training
changes during the whole training process, both natural accuracy and adversarial accuracy converge
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well in the training process. More importantly, the catastrophic overfitting phenomenon also does
not occur in the training process on ImageNet-1K. These observations indicate that VDAT enjoys
promising convergence on the large-scale dataset, i.e., ImageNet-1K. Meanwhile, VDAT also does not
suffer from the catastrophic overfitting on the large-scale dataset, demonstrating the decent reliability
of VDAT.
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Figure 7: Visualization of the training processes of VDATFGSM on ImageNet-1K.

D.2 Visualizations of the Vulnerability of Data Samples

In this part, we present additional visualizations of the vulnerability of data samples. Specifically, we
visualize the normalized margin difference (larger margin difference indicate lower vulnerability)
and the corresponding number of data samples on CIFAR-10 and CIFAR-100. The baseline model
correlated to these results is WideResNet34-10 and the training method is VDATFGSM. The visual-
izations are presented in Figure 8. As can be seen, the distribution shifts to right after the training
process of VDATFGSM on both CIFAR-10 and CIFAR-100. This phenomenon indicates VDATFGSM
can indeed lower the vulnerability of data samples when the baseline model is WideResNet34-10.
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(a) CIFAR-10
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(b) CIFAR-100

Figure 8: Visualizations of the normalized margin difference of data before and after training by
VDATFGSM. The baseline model is WideResNet34-10.

Besides, we also conduct the same kind of visualizations for the adversarial training method VDATPGD
in Figure 9. It is obvious that the visualizations in Figure 9 are similar to those in Figures 5 and
8. Therefore, it is illustrated that VDATPGD can also lower the vulnerability of data samples after
training, thus the effectiveness of VDAT is further demonstrated.

E Additional Parameter Studies and Ablation Studies

In this section, we present additional parameter studies and ablation studies to further demonstrate
the effectiveness of the designed components in VDAT. These results are divided into four parts, i.e.,
the parameter study and ablation study in the scenario of robust NAS, the ablation study regarding
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(b) WideResNet (C10)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized Margin Difference

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f S
am

pl
es

Before Training
After Training

(c) ResNet (C100)
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Figure 9: Visualizations of the normalized margin difference of data before and after training by
VDATPGD.

the adversarial loss Ladv and the natural loss Lnat, and the ablation study in terms of the vulnerability
assessment.

E.1 Parameter Study in the Scenario of Robust NAS

In this part, we conduct the hyperparameter study for the hyperparameter τ in the scenario of robust
NAS. The experimental results are shown in Table 17. As can be seen, no matter which value τ is set
to, the natural accuracy and adversarial accuracy are constantly improved compared with the baseline
robust NAS method DSRNA. When τ is set to five, both natural accuracy and adversarial accuracy
achieves the best. Therefore, the validity of our default setting of τ is demonstrated.

Table 17: The results of the parameter study of hyperparameter τ under robust NAS settings. The
benchmark dataset is CIFAR-10, and the backbone robust NAS method is DSRNA.

τ Params Natural (%) FGSM (%) PGD20 (%)
DSRNA 2.0M 80.93 54.49 49.11

0.05 (×0.01) 3.6M 87.69 60.33 51.67
0.5 (×0.1) 2.8M 87.49 60.73 51.71
5 (Default) 3.4M 91.10 84.23 64.01
50 (×10) 3.5M 87.51 61.42 52.62
500 (×100) 3.4M 87.94 60.59 50.53

E.2 Ablation Study in the Scenario of Robust NAS

To validate the effectiveness of data filtering under robust NAS settings, we validate three situations
in this set of experiments, the vanilla robust NAS (DSRNA), robust NAS with random filtering, and
the default vulnerability-aware data filtering in VDAT. As shown in Table 18, the random filtering
can bring improvements regarding the natural accuracy and adversarial robustness of the derived
architecture, but they are still inferior to the vulnerability-aware data filtering. These observations are
in line with those in Table 7. In summary, the effectiveness of the vulnerability-aware data filtering is
demonstrated.

Table 18: The ablation study under the robust NAS settings. The backbone robust NAS method is
DSRNA, and the benchmark dataset is CIFAR-10.

Adversarial Attacks

Methods Params Natural (%) FGSM (%) PGD20 (%) PGD100 (%) AA (%)
DSRNA (Without Filtering) 2.0M 80.93 54.49 49.11 48.89 44.87
+ VDAT (Random Filtering) 3.0M 87.52 60.66 51.68 50.90 47.45
+ VDAT 3.4M 91.10 84.23 64.01 54.64 50.26

E.3 Ablation Study of Ladv and Lnat

In order to validate the necessity of optimizing both Ladv and Lnat instead of single Ladv in Equa-
tion (8), we conduct the ablation study regarding Ladv and Lnat. In the situation of optimizing Ladv
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Table 19: Ablation study regarding the natural loss Ladv and the adversarial loss Lnat on CIFAR-10.
The baseline model is WideResNet34-10, and the adversarial perturbation for adversarial training is
generated by PGD adversarial attack.

Ladv Lnat Natural (%) PGD50 (%) Cost
✓ × 79.99 55.00 8.67
✓ ✓ 88.10 60.26 9.77

individually, we directly remove the data samples filtered for natural training, and only train the model
with samples filtered for adversarial training. The experimental results are shown in Table 19. As
can be seen, when optimizing Ladv individually, both natural accuracy and adversarial accuracy drop.
This is mainly because the useful features which are contained by data samples filtered for natural
training are removed, thus the overall performance is negatively affected. Moreover, the training
cost decreases slightly when removing Lnat, this is because the natural training process is removed.
However, because the natural training does not cost much computational budget, we still choose to
optimize Ladv and Lnat at the same time to ensure the promising natural accuracy and adversarial
accuracy.

E.4 Ablation Study of the Vulnerability Assessment

This set of experiments consists of two parts. First, we evaluate different types of margins for
vulnerability assessment under the non-targeted adversarial attacks. Second, we compare different
adversarial attacks for the vulnerability assessment.

In the first part, we evaluate the pure margin (shown in Equation (2)) and the soft margin under the
non-targeted adversarial attacks. The benchmark datasets are CIFAR-10 and CIFAR-100, and the
baseline model for adversarial training is ResNet18. As shown in Table 20, both natural accuracy and
adversarial accuracy decrease when changing the soft margin to the pure margin. Consequently, the
proposed margin-based vulnerability calculation method is shown to be effective under non-targeted
adversarial attacks.

Table 20: Ablation study regarding different types of margins for vulnerability assessment. The
adversarial attacks are non-targeted attacks.

Datasets Margins Natural (%) FGSM (%) PGD20 (%) PGD50 (%)
CIFAR-10 Pure Margin 84.53 58.61 52.30 52.16
CIFAR-10 Soft Margin 86.32 62.94 56.30 56.23
CIFAR-100 Pure Margin 58.36 37.74 27.58 27.46
CIFAR-100 Soft Margin 59.43 41.17 35.69 35.61

Table 21: Ablation study regarding different adversarial attacks for vulnerability assessment. The
loss for adversarial training is the PGD loss.

Perturbation Natural (%) PGD50 (%) Cost (GPU Hours)

PGD10 82.15 58.35 3.04
PGD20 81.99 58.80 3.75
FGSM 82.96 56.07 1.96

In the second part, we evaluate PGD10, PGD20, and FGSM adversarial attacks for vulnerability
assessment. Different from the FGSM training loss adopted in Table 8, this set of experiments
adopts PGD training loss for a comprehensive evaluation. As shown in Table 21, using stronger
attacks (i.e., PGD10 and PGD20) for vulnerability assessment can increase the adversarial accuracy.
However, this will also decrease the natural accuracy and training efficiency. Considering the balance
of natural accuracy, adversarial accuracy, and training cost, we choose FGSM as the default attack for
vulnerability assessment.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction indeed reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations mainly lie in the limited transferability in terms of LLMs.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed experimental settings are included.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The data and code will be publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The detailed experimental settings are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported the mean and standard deviation in our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources are reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research strictly follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This work provides novel perspectives for fast adversarial training.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper faces no threat of safety.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers of the datasets used are all properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: There is no new assets in this work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This is no crowdsourcing experiments or research with human subjects in this
paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not include study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]

28



Justification: No LLM usage in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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