
Model Inversion with Layer-Specific Modeling and
Alignment for Data-Free Continual Learning

Ruilin Tong1, Haodong Lu1, Yuhang Liu2, Dong Gong1∗
1 School of Computer Science and Engineering, University of New South Wales

2 Australian Institute for Machine Learning, The University of Adelaide
{ruilin.tong, haodong.lu, dong.gong}@unsw.edu.au

yuhang.liu01@adelaide.edu.au

Abstract

Continual learning (CL) aims to incrementally train a model to a sequence of
tasks while maintaining performance on previously seen ones. Despite mitigating
forgetting, data storage and replay are often infeasible due to privacy or secu-
rity constraints and are impractical for arbitrary pre-trained models. Data-free or
examplar-free CL aims to continually update models with new tasks without storing
previous data. In addition to regularizing updates, we employ model inversion
to synthesize data from the trained model, anchoring learned knowledge through
replay without retaining old data. However, model inversion in predictive models
faces two key challenges. First, generating inputs (e.g., images) solely from highly
compressed output labels (e.g., classes) often causes drift between synthetic and
real data. Replaying on such synthetic data can contaminate and erode knowledge
learned from real data, further degrading inversion quality over time. Second,
performing inversion is usually computationally expensive, as each iteration re-
quires backpropagation through the entire model and many steps are needed for
convergence. These problems are more severe with large pre-trained models such
as Contrastive Language-Image Pre-training (CLIP) models. To improve model in-
version efficiency, we propose Per-layer Model Inversion (PMI) approach inspired
by the faster convergence of single-layer optimization. The inputs optimized from
PMI provide strong initialization for full-model inversion, significantly reducing
the number of iterations required for convergence. To address feature distribution
shift, we model class-wise feature distribution using a Gaussian distribution and
preserve distributional information with a contrastive model. Sampling features for
inversion ensures alignment between synthetic and real feature distributions. Com-
bining PMI and feature modeling, we demonstrate the feasibility of incrementally
training models on new classes by generating data from pseudo image features
mapped through semantic-aware feature projection. Our method shows strong
effectiveness and compatibility across multiple CL settings. Code is available at
https://github.com/RuilinTong/PMI-CFS-DFCL.

1 Introduction

In real-world scenarios, intelligent agents are required to learn from evolving data presented as a
sequence of tasks. However, models often forget previously acquired knowledge when trained on
new tasks — a phenomenon known as catastrophic forgetting [28]. Continual learning (CL) aims
to address this challenge by enabling models to incrementally learn new tasks while preserving
knowledge from earlier tasks [36]. A common strategy to mitigate this is to store a subset of data

∗D. Gong is the corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/RuilinTong/PMI-CFS-DFCL

from previous tasks and replay it as memory during training to preserve learned knowledge [35, 7, 43].
However, storing previous data may be infeasible—particularly due to privacy or security constraints.
Data-free (or exemplar-free) CL [54, 29, 40, 38] aims to alleviate catastrophic forgetting without
storing previous data. Apart from regularizing updating [54, 22, 24, 29], model inversion is an
alternative that generates synthetic data by extracting knowledge from the trained model to anchor
the learned knowledge through replay [60, 39, 11], while learning new tasks.

Applying model inversion to CL presents two key challenges. First, generating images solely from
integer class labels and classification loss [39, 11] can lead to a distributional mismatch. Specifically,
there exist multiple feature representations that can yield low classification loss. As a result, the
features of synthetic data may deviate from those of real images, indicating the generated samples
contain information that differs from the real data. This sample information drift introduces incorrect
or mismatched knowledge, which can harm CL — the model may forget real image knowledge
after replaying low-quality (misaligned) synthetic data. Moreover, because model inversion relies on
knowledge encoded in the model itself, such forgetting further degrades the quality of future inversions
in subsequent tasks. CLIP models can substantially enhance CL performance due to their strong
zero-shot generalizability [16, 61, 27]. However, replaying synthetic data whose distribution differs
from real data can also weaken the pre-trained knowledge of CLIP models. Second, model inversion
is computationally expensive. The process involves iteratively updating input images so that the
model recognizes them as belonging to specific classes. Each update step requires backpropagating
gradients through the entire model, and many iteration steps are needed for convergence. Prior
works [60, 41, 13] primarily focus on CNN-based architectures, where the computational cost is
more manageable. Hu et al. [14] reduce this cost by selectively dropping patches during inversion.
However, a large number of iteration steps are still required for convergence. These problems become
more severe when applying model inversion to large pre-trained foundation models such as CLIP
models. Beyond generating replay data for previous tasks, model inversion guided by text prompts can
also synthesize images from CLIP by leveraging its rich pre-trained knowledge [19]. In CLIP-based
CL, this enables adaptation to new classes without collecting additional training data, by generating
synthetic samples based on corresponding text features.

To address the computational cost of model inversion, we propose Per-layer Model Inversion (PMI),
which reconstructs optimal layer inputs in a top-down, layer-by-layer manner. The key insight is that
the loss landscape of an individual layer is significantly simpler than that of the full model, allowing
the intermediate representations to converge more efficiently. The inputs obtained through PMI serve
as good initializations for full-model inversion, thereby reducing the number of update steps required
for convergence. To mitigate feature distribution shift, we propose to model the feature distribution
of each class and sample features as the targets for inversion such that the features of synthetic data
remain aligned with the distribution of real features. While a Gaussian distribution is commonly used
to approximate class-specific feature distributions, we further introduce a lightweight contrastive
model trained on real data features using a negative contrastive loss. This model better preserves the
underlying structure of the feature space. During inversion, features are sampled from the Gaussian
distribution and filtered by the contrastive model, leveraging the information it encodes to guide the
selection toward more realistic representations. Building on PMI and feature distribution modeling,
we propose to incrementally train the model on new classes without collecting real training data by
generating pseudo image features through semantic-aware feature projection, from which training
samples are synthesized via model inversion.

We summarize our contribution as follows:

• We address model inversion inefficiency by introducing PMI, which significantly reduces
the number of optimization steps. Our empirical results demonstrate both the efficiency of
PMI and its compatibility with various baseline methods.

• We address feature distribution shift between synthetic and real data by modeling class-wise
feature distributions using Gaussian and lightweight contrastive models, from which features
are sampled for inversion. Our approach consistently improves performance across different
models e.g., ResNet and CLIP model.

• We demonstrate the feasibility of training models on new classes without collecting addi-
tional training data, by generating synthetic samples of new classes from the CLIP model
using model inversion and semantic-aware feature projection. Experimental results validate
the effectiveness of our approach.

2

Figure 1: Overview of our model inversion method for data-free CL. Class-wise features are sampled
from Gaussian distributions and selected using the CFS strategy (Steps 1 and 2 , Section 3.3).
Based on the selected features, synthetic data is generated via our PMI + full-model inversion method
(Steps 3 and 4 , Section 3.2). In Step 5 , the model is trained on the new task using replay, and the
inversion model is updated after each task (Step 6).

2 Related work

Model inversion. Model inversion aims to recover training data from trained models and has
been widely applied in data-free knowledge transfer [63, 52, 44, 41], data-free CL [39, 11, 33, 1],
and meta-learning [13, 15, 56]. [19] use model inversion to analyze knowledge encoded in CLIP
models, while [55] apply it for open-vocabulary customization. Although effective, model inversion
is computationally expensive. Sparse-MI [14] reduces this cost by progressively dropping image
patches in ViT models, but still requires a large number of iterations to convergence.

Continual learning. Continual learning aims to incrementally train models to a sequence of tasks
while retaining performance on previously learned tasks, typically without access to prior task data.
Existing approaches include regularization-based methods [22, 64, 6, 37, 24, 30, 58], parameter-
isolation methods [59, 47, 66, 18, 31, 3, 48], and rehearsal-based methods [26, 35, 4, 5, 58, 43].
While rehearsal methods are effective, storing past data is often infeasible due to privacy or security
constraints. To address this, prior works [60, 39, 11, 33, 1] use model inversion to generate synthetic
data for data-free CL. However, label-based inversion guided by classification loss can lead to
distribution shift between synthetic and real features, degrading CL performance.

Continual learning on pre-trained models. Pre-trained vision transformers (ViTs) exhibit strong
generalization to unseen domains [62], and parameter-efficient methods [29, 40, 53, 54, 25, 48]
have successfully adapted ViTs for CL, significantly boosting performance. Vision-language models
(VLMs) such as CLIP [34] and Flamingo [2] demonstrate strong zero-shot capabilities and have been
applied in CL settings [42, 9]. To efficiently adapt CLIP for CL, recent methods adopt prompt-based
[20, 68, 50] or adapter-based [10, 65, 27] tuning strategies. Beyond tuning, the rich knowledge in
CLIP models can also be leveraged to synthesize training images via model inversion.

3 Model inversion for data-free CL

3.1 Preliminaries

Model inversion for data-free CL. Data-free (or exemplar-free) CL [38, 40, 29] aims to continually
train a model while preserving performance on previously learned tasks without storing previous data.
During training on task t, the model does not have access to data from previous tasks. We denote the
dataset and class set of task t as Dt and Ct, respectively, with no class overlap between different tasks.
Model inversion generates previous data for replay directly from the trained model, this is done by
fixing the model parameters and optimizing the input x, so that the model predicts a given target class
y. In this work, we consider a standard CL model composed of a backbone with totally L layers and
a classification head. We refer to the output of the backbone as feature in our work.

CLIP-based CL. CLIP models consist of an image encoder Fi and a text encoder Ft trained jointly
on millions of image-text pairs using a contrastive loss. For classification tasks, Fi serves as backbone
model, while the text features extracted by Ft function as the classification head. tc denotes the input
text for class c, composed of hand-crafted prompts combined with the class name.

3

Overview. We address the high computational cost of model inversion and propose PMI in Section 3.2,
which significantly reduces the number of update steps. In Section 3.3, we mitigate feature distribution
shift by modeling real feature distributions using both Gaussian distribution and contrastive models.
Features are sampled from these distributions as the targets for inversion, ensuring that the features
of synthetic data align with the distribution of real features. Finally, in Section 3.4, we explore the
potential of generating training samples for new classes from pseudo image features generated by
semantic-aware feature projection, leveraging the pre-trained knowledge of the CLIP model. Figure 1
presents an overview of our model inversion method for data-free CL. Detailed algorithms and loss
functions are provided in Appendix C.

3.2 Layer-wise alignment for efficient model inversion

In this section, we first formulate the model inversion objective using KL divergence and decompose
it into layer-wise constraints. Based on this formulation, we propose a layer-by-layer inversion
approach. We show that this decomposed objective is equivalent to prior model inversion objectives
without smoothness constraints in full-model inversion case. The key insight is that the loss landscape
of a single layer is significantly simpler than that of the full model, enabling faster convergence. The
synthetic input optimized by PMI serves as a strong initialization for full-model inversion, reducing
the number of iterations required for convergence.

VMI [49] formulates the model inversion objective using KL divergence, aiming to recover the
sampling distribution of real data. DeepInversion [60] proposed to further constrain the distribution
of intermediate layer outputs of synthetic data to match a prior distribution. Let ol denote the output
of the l-th layer, x the input and y the label and L the total number of layers in the backbone model.
Our goal is to recover the joint distribution over inputs and intermediate outputs, which we formulate
as a KL divergence objective:

p∗s (x) = argminps(x) DKL(ps(oL,oL−1, · · · ,x|y)||pr(oL,oL−1, · · · ,x|y)), (1)

where pr(·) denotes the probabilities computed on real data and ps(·) denotes the probabilities com-
puted on synthetic data. Assuming that the synthetic ol contains sufficient information to reconstruct
ol−1, · · · ,x and that the influence of ol+1, · · · , y can be neglected during this reconstruction, and
noting that o0 = x, the objective in Eq. (1) can be decomposed into layer-wise constraints as:

DKL(ps(oL,oL−1, · · · ,x|y)||pr(oL,oL−1, · · · ,x|y))

≈
∑L

l=1
Eps(ol+1|y)

[
Eps(ol|ol+1)DKL(ps(ol−1|ol)||pr(ol−1|ol))

]
+DKL(ps(oL|y)||pr(oL|y)).

(2)

Namely, minimizing objective in Eq. (1) is equivalent to minimizing input constraint at each layer.
The detailed derivation is provided in Appendix A.

However, the probabilities in the decomposed KL divergence are intractable in practice. To obtain a
tractable objective, we follow [49] and apply Bayes’ rule to transform each KL term as:

DKL(ps(ol−1|ol)||pr(ol−1|ol))

=DKL(ps(ol−1|ol)||pr(ol−1))− Eps(ol−1|ol) log pr(ol|ol−1) + log pr(ol),
(3)

The negative log-probability term −log pr(ol|ol−1) is approximated using mean squared error
(MSE). For final term DKL(ps(oL|y)||pr(oL|y)), the negative log-probability is approximated by
cross-entropy (CE) loss for classification tasks, and by MSE for regression tasks. For the prior
constraint DKL(ps(ol−1|ol)||pr(ol−1)), we follow ABD [39] and approximate both distributions as
Gaussians, allowing closed-form computation of the KL divergence. If ol is known, the expectation
over ps(ol+1|y)ps(ol|ol+1) can be approximated by average. To compute ol, we propose Per-layer
Model Inversion (PMI), which minimizes the layer-wise constraint from the output layer to the input
layer-by-layer, based on the formulation in Eq. (2) and the approximations discussed above. After
optimizing the input to the (l + 1)-th layer to convergence, the resulting synthetic input is used for
inverting the l-th layer. The resulting inversion loss for each layer is:

Eps(ol+1|y)
[
Eps(ol|ol+1)DKL(ps(ol−1|ol)||pr(ol−1|ol))

]
≈DKL(N (µ̂l−1, σ̂l−1)||N (µl−1,σl−1)) +

1

N

∑N

i=1
ℓMSE(ol−1,i,ol,i;θl),

(4)

4

where µl−1 and σl−1 denote the mean and standard deviation of ol−1 computed from real data,
while µ̂l−1 and σ̂l−1 are computed from synthetic features, and θl represents the parameters of the
l-th layer. Eq. (4) shows that optimizing the layer input aims to keep it within the prior distribution
while aligning the corresponding layer output to a given target. The overall inversion objective across
all layers is given by:

DKL(ps(oL,oL−1, · · · ,x|y)||pr(oL,oL−1, · · · ,x|y))

≈
∑L

l=1

(
DKL(N (µ̂l−1, σ̂l−1)||N (µl−1,σl−1)) +

1

N

∑N

i=1
ℓMSE(ol−1,i,ol,i;θl)

)
+DKL(N (µ̂L, σ̂L)||N (µL,σL)) +

1

N

∑N

i=1
ℓCE(oL,i, y;θL+1).

(5)

For the detailed derivation, please refer to Appendix B.

Algorithm 1: PMI+full-model inversion
Input: Trained model with parameter θ,
Class feature for inversion oL.
Output: Synthetic input x̂
for l = L to 1 do

Randomly initialize input of l-th layer
ôl−1;

Update ôl−1 with objective in Eq. (4);
Set ôl−1 as target output for layer l − 1;

x̂ = ô0;
Finetune x̂ with full-model inversion objective
in Eq. (5);

Performing model inversion on the full model
neglects the loss terms ℓMSE(ol−1,i,ol,i;θl) as
there is no target ol,i available for the output of
the (l − 1)-th layer, and each ol is computed
from x. Eq (5) is equivalent to the full-model
inversion objective proposed in ABD [39], ex-
cluding the smoothness constraint.

The key insight of PMI is that the loss land-
scape of a single layer is significantly simpler
than that of the full model, as shown in Ap-
pendix G, which allows convergence in fewer
update steps and yields low final loss during
single-layer inversion. Since each layer-wise in-
version converges with minimal error in Eq. (4),
the accumulated error across layers in Eq. (5) remains small, making the inputs optimized by PMI
close to optimal. To further correct accumulated approximation errors, we apply few fine-tuning steps
on the full model after completing PMI. As the inputs from PMI serve as a strong initialization, fewer
iterations are required for convergence during full-model inversion. We refer to this overall strategy
as PMI+full-model inversion.

For ResNets, each residual block is treated as a single layer, while for ViTs used in CLIP models, each
transformer block is considered one layer. Unlike ResNets, ViTs lack Batch Normalization layers
and thus do not store input statistics. To enable layer-wise distribution constraints in CLIP models,
we compute and store input statistics from real data for use in Eq. (4) and Eq. (5). Specifically, the
stored statistics consist of the mean and standard deviation of layer inputs. These values are highly
compressed and contain no identifiable information about the original data, ensuring that the method
remains both practical and fully compliant with the data-free setting.

3.3 Class-wise feature modeling and sampling for real-synthetic feature alignment

Algorithm 2: Contrastive feature selection.
Input: Gaussian distribution N (µc,σc) of

class c, contrastive model fcont(ϕ),
selection steps n

Output: Feature set for inversion Sfeat
Initialize Sfeat from N (µc,σc);
for i = 1 to n do

Sample m features from N (µc,σc);
Compute Lcont(oL,j ,Sfeat; fcont) for each
oL,j , j ∈ [1,m];

Select features with lowest
Lcont(oL,j ,Sfeat; fcont) and add into Sfeat;

In classification models, mapping a high-
dimensional vector oL to an integer label y dis-
cards a substantial amount of information en-
coded in oL. As a result, the rich semantic con-
tent in oL cannot be reliably recovered from
a single label and the CE loss alone. Specifi-
cally, multiple oL values drawn from different
distributions may yield low CE loss for the same
label y. Our experiments shown in Appendix E
demonstrate a distribution shift between syn-
thetic and real feature representations, suggest-
ing that the synthetic data may encode infor-
mation that differs from that of real data. In
data-free CL, replaying synthetic data serves to
remind the model of knowledge from previous
tasks. However, if the synthetic data encodes information that deviates from the real data, it may

5

cause the model to forget previously learned knowledge after replay. Moreover, since model in-
version relies on extracting knowledge from the model itself, this forgetting further degrades the
quality of model inversion in future stages. Since CLIP models encode rich semantics in the feature
space, feature difference between real and synthetic data indicates a substantial semantic change in
the synthetic data. Training on these misaligned samples—where labels no longer align with the
underlying semantics—can further degrade the pre-trained knowledge of CLIP models as discussed
in Appendix D.4.

To address this issue, we propose modeling the class-wise real feature distribution and sampling
features from it as the targets for inversion, ensuring that synthetic data features lie within the
distribution of real features. Specifically, PMI is initiated from the sampled feature representation
oL rather than the class label y, namely the CE loss term in Eq. (5) is removed, and the inversion
process aims to align the features of the generated input with the sampled oL. A simple yet effective
approach is to model the class-wise real feature distribution using a Gaussian distribution. However,
a Gaussian distribution captures only the mean and variance of real features, potentially neglecting
other important aspects of the feature distribution. To better preserve this distributional information,
we train a lightweight MLP, referred to as the contrastive model, on class-wise real features using a
negative contrastive loss

Lcont(oL,i,Sneg; fcont) = log EoL,j∈Sneg

[
ecos(fcont(oL,i),fcont(oL,j))

]
, oL,j ̸= oL,i, (6)

where cos(·, ·) denotes cosine similarity, Sneg is a subset of real features excluding the i-th feature
oL,i, and serves as a negative set in the contrastive loss. fcont represents the contrastive model.
Optimizing Eq. (6) aims to map all real features onto a hyper-sphere uniformly as discussed in [51].
Uniform mapping ensures that no feature is overly compressed, thereby preserving the maximum
amount of information from the original feature distribution. Previous works [51, 46] introduce a
temperature parameter in the contrastive loss to control the sharpness of the similarity distribution. In
our work, we omit this term due to its minimal effect, as discussed in detail in Appendix D.3.

To leverage the information encoded in the contrastive model, we aim to select a set of features that
can be mapped uniformly to a hypersphere by contrastive model, indicating maximally recovered
distributional information. To achieve this, we adopt a greedy incremental selection strategy, referred
to as Contrastive Feature Selection (CFS). Starting from an initial random set, we sample candidate
features from the Gaussian distribution and map both the selected and candidate features using the
contrastive model. At each step, we select the candidate feature that has the minimum average cosine
similarity with the currently selected features in the mapped space. Through multi-step selection, the
selected features can be mapped uniformly on the hypersphere, indicating that the selected features
capture the maximum information from the real feature distribution. Algorithms for refined model
inversion strategy and CFS are shown in Alg. 1 and Alg. 2 respectively.

3.4 Incrementally train model on new classes with synthetic training data

Building on PMI and feature distribution modeling, we explore the possibility of leveraging the rich
knowledge encoded in CLIP to generate training data from text features via model inversion through
the image encoder. This allows the model to learn new classes without requiring additional training
data. To preserve generalization, we generate data using the original pre-trained CLIP model rather
than its fine-tuned version, as fine-tuning may lead to overfitting and loss of pre-trained knowledge.

To obtain features for inversion, we propose semantic-aware feature projection. Specifically, we
first compute a projection function that transforms text features of an old class c to those of a new
class d, and then apply this projection to image features of c to produce pseudo image features for d.
Since CLIP models normalize both image and text features onto a unit hypersphere, we use a rotation
matrix as the projection function:

Ft(td) = Rc,d · Ft(tc), (7)

where Ft denotes the text encoder of the CLIP model, Rc,d is the rotation matrix, tc and td are
hand-crafted prompts combined with the class names classes c and d respectively. In the data-free CL
setting, where past data is unavailable, we model image feature distributions of previous classes and
sample from them for mapping. The pseudo image feature of class d is then obtained by

oL,d = Rc,d · oL,c, (8)

6

Table 1: Final average accuracies on CIFAR-100 and Tiny-ImageNet with a ResNet-32 backbone.
Numbers in parentheses indicate absolute improvements over the R-DFCIL baseline. Our method
consistently outperforms existing baselines, with CFS providing additional gains.

Method Model
Inversion

CIFAR-100 Tiny-ImageNet

5 task 10 task 20 task 5 task 10 task 20 task

Upper bound ✗ 70.59 70.59 70.59 55.25 55.25 55.25
DeepInversion ✓ 20.48 11.26 5.63 - - -
ABD ✓ 48.84 36.75 24.40 30.83 23.17 14.61
R-DFCIL ✓ 49.87 41.80 31.54 35.33 29.05 24.85

Ours w/o CFS ✓ 52.05 (+2.18) 43.23 (+1.43) 32.23 (+0.69) 37.65 (+2.32) 32.09 (+3.04) 25.51 (+0.66)

Ours ✓ 52.38 (+2.51) 43.90 (+2.10) 32.60 (+1.06) 37.90 (+2.57) 32.43 (+3.38) 25.67 (+0.82)

where oL,c and oL,d denotes the image features of classes c and d respectively. To prevent mapped
features from drifting into other class regions—potentially degrading the quality of the generated
data, we control feature variance by shifting them toward their corresponding text features by

o′
L,d = ((1− α)oL,d + αFt(td)) /||(1− α)oL,d + αFt(td)||2, (9)

where o′
L,d denotes the adjusted feature used for model inversion.

4 Experiments

4.1 Continual learning results

We evaluate our method on both ResNet- and CLIP-based CL settings under the challenging class-
incremental setting, where the model must classify all classes without access to task identity at
inference. In all experiments presented in this section, synthetic samples are generated using our
PMI+full-model inversion strategy. Detailed experimental settings are provided in Appendix I.

Model inversion for ResNet-based CL. To demonstrate the effectiveness and efficiency of our
proposed method, we conduct continual learning experiments on CIFAR-100 [23] and Tiny-ImageNet
[57], following the experimental setup of R-DFCIL [11] using a ResNet-32 [12] backbone. The
classes from each dataset are evenly divided into 5, 10, and 20 disjoint tasks.

We compare our method against competitive data-free baselines, including DeepInversion [60], ABD
[39], and R-DFCIL [11]. The variant w/o CFS refers to sampling features directly from the Gaussian
distribution. We use 50 update steps for PMI and 160 steps for full-model inversion. Final average
accuracy after training on all tasks is used as the evaluation metric, and results are averaged over
multiple runs with different random seeds, as shown in Table 1.

Our method consistently outperforms existing data-free CL baselines across varying task lengths
and datasets, demonstrating its effectiveness and robustness. Incorporating the contrastive model for
feature selection further improves performance, highlighting the importance of feature consistency
in model inversion and the effectiveness of CFS. A more comprehensive comparison, including
non-inversion data-free baselines, is provided in Appendix D.1.

Model inversion for CLIP-based CL. To further demonstrate the efficiency and compatibility of
our approach, we apply our model inversion method for CLIP-based CL settings on CIFAR-100,
ImageNet-R [8], and CUB-200 [45]. For each dataset, all classes are evenly divided into 10 disjoint
tasks. We follow the experimental setup of PROOF [67], and use the pre-trained CLIP model weights
provided by OpenAI [34] for all experiments.

We integrate our inversion method with VPT [17], CODA-Prompt [40], and MoE-Adapter [61],
generating 5 synthetic samples per class from previous tasks. For model inversion, we generate
samples using the model trained on the previous task, applying 200 steps for PMI and 600 steps
for full-model inversion. We also compare our method with rehearsal-based baselines, including
iCaRL [35], MEMO [66], PROOF [67], and CLIP4CLIP [16]. Table 2 reports both the final average
accuracy and the average accuracy across all incremental stages. Performance results for CLAP4CLP
and AttriCLIP [50] are referred from [16]. Empirically, we found that generating output features
from the first convolutional layer of the ViT backbone improves performance, and we adopt this
approach for all inversion-related experiments.

7

Table 2: CL performance on CIFAR-100, ImageNet-R, and CUB-200. Numbers in parentheses
indicate absolute improvements over the corresponding baselines. Our model inversion strategy
consistently enhances the performance of all baseline methods across all datasets.

Method No Real Image
Buffer

CIFAR-100 ImageNet-R CUB-200

Avg. Last Avg. Last Avg. Last

iCaRL ✗ 82.20 64.15 72.69 54.65 82.39 75.11
MEMO ✗ 85.31 75.24 80.39 74.19 77.72 65.95
PROOF ✗ 86.95 79.32 85.53 80.16 85.13 79.69
CLAP4CLIP ✗ 86.13 78.21 85.77 79.98 86.93 81.64

ZS-CLIP ✓ 76.71 66.25 83.00 77.25 66.81 53.52
AttriCLIP ✓ 79.31 68.45 83.09 76.53 65.26 52.12
VPT ✓ 83.98 74.34 85.56 79.67 68.22 55.51
CODA-P ✓ 83.64 75.80 81.92 74.37 73.05 61.83
MoE-Adapter ✓ 87.29 79.40 86.67 82.00 73.34 61.07

Ours + VPT ✓ 85.45 (+1.47) 76.91 (+2.57) 86.18 (+0.62) 80.97 (+1.30) 70.14 (+1.92) 57.04 (+1.53)

Ours + CODA-P ✓ 84.78 (+1.14) 76.23 (+0.43) 84.58 (+2.66) 76.93 (+2.56) 74.37 (+1.32) 64.63 (+2.80)

Ours + MoE-Adapter ✓ 88.35 (+1.06) 81.06 (+1.66) 87.90 (+1.23) 83.03 (+1.03) 78.98 (+5.64) 67.26 (+6.19)

Generating data using our method and replaying it consistently improves performance over data-free
settings, demonstrating the effectiveness of our approach. Our method enhances both prompt-based
and adapter-based continual learning methods, highlighting its broad compatibility. It also shows
robustness across different datasets and baseline methods. Furthermore, the experiments demonstrate
the scalability of our inversion technique to large pre-trained models beyond ResNets. Although
our method underperforms rehearsal-based baselines on the fine-grained classification dataset CUB-
200, it still provides substantial improvements over the non-rehearsal baselines. We also include
CLIP-based CL experiments with LAION-400M pre-trained weights in Appendix D.2, which further
demonstrate the effectiveness and robustness of our method.

Finetuning CLIP model on new classes with synthetic training data. To evaluate the effectiveness
of our semantic-aware feature projection in generating samples for new classes, we conduct experi-
ments on CIFAR-100 and ImageNet-R using MoE-Adapter [61], with training settings kept consistent
with CL experiments in Table 2. For this setup, the training data for the final task is unavailable,
and we generate 10 samples per new class via semantic-aware feature projection. As discussed in
Section 3.4, these samples are generated using the original pre-trained CLIP model.

old classes new classes all classes
60

65

70

75

80

A
cc

ur
ac

ie
s

66.58

63.3

66.25

81.41

68.3

80.1
81.48

69.7

80.3

zs w/o data w data

(a) CIFAR-100

old classes new classes all classes

76

78

80

82

84

A
cc

ur
ac

ie
s

77.11

78.58

77.25

82.88

82.04

82.882.99 83.07 83

zs w/o data w data

(b) ImageNet-R
Figure 2: Accuracies on old, new, and all classes evaluated
on the original CLIP model, the model after the 9th task, and
the model continually trained on synthetic data. Finetuning
the model with synthetic data further improves performance
on both new and overall classes.

We report accuracies on old classes,
new classes (classes of the last task),
and all classes in Figure 2. The la-
bels ’zs’, ’w/o data’, and ’w data’ re-
fer to evaluations on the original CLIP
model (zero-shot), the model trained
on the first 9 tasks (without data from
the last task), and the model contin-
ually trained with generated data for
the last task, respectively. After fine-
tuning the CLIP model on the first
9 tasks, the model performs signif-
icantly better on the last task, indi-
cating that it learns domain-specific
knowledge from the training data. Fur-
thermore, training with data generated
from the original CLIP model leads to
additional improvements on the last task and enhances overall accuracy across all tasks on both
datasets, demonstrating the effectiveness of our method.

4.2 Ablation study

Efficiency of applying PMI. To demonstrate the efficiency of our PMI method, we plot the inversion
loss curves during full-model inversion in Figure 3. The red curve represents input initialized using

8

PMI, while the orange curve uses randomly initialized inputs; all loss functions and optimization
hyperparameters are kept identical. For the ViT backbone, we perform 200 update steps during PMI,
while for the ResNet-32 backbone, we use 100 steps.

0 100 200 300 400 500 600

Iteration steps
0.00

0.03

0.06

0.09

0.12

In
ve

rs
io

n
lo

ss

PMI initialized
Random initialized

(a) ResNet-32

0 100 200 300 400 500 600

Iteration steps
0.00

0.03

0.06

0.09

0.12

In
ve

rs
io

n
lo

ss

PMI initialized
Random initialized

(b) ViT-B/16 (CLIP)

Figure 3: Inversion loss curves for PMI vs. random initial-
ization. PMI converges faster and achieves lower final loss,
confirming its efficiency.

As shown in Figure 3, input samples
initialized with PMI converge signif-
icantly faster than those with random
initialization and achieves a much
lower final loss. Even accounting for
the additional steps used in PMI, our
method reaches lower inversion loss
with substantially fewer total steps.
These results clearly demonstrate the
efficiency of our PMI approach and
showcase inputs optimized by PMI
serves as good initialization for full-
model inversion.

Compare with full-model inversion in CLIP-based CL. To further demonstrate the efficiency of
our PMI+full-model inversion strategy, we compare it with full-model inversion on CIFAR-100 in
the CLIP-based CL. For full-model inversion, we follow the setting of [19], inputs are randomly
initialized and are updated for 3400 steps, whereas our method requires only 600 steps. All other
settings are kept identical.

Table 3: CL performance using MoE-
Adapter with model inversion on the
CIFAR-100 dataset. CFS effectively
boosts performance, and PMI initializa-
tion further improves results while re-
quiring fewer update steps.
PMI CFS Avg. Acc. Final Acc.

No inversion 87.29 79.40

✗ ✗ 87.82 79.57
✗ ✓ 88.13 80.53

✓ ✓ 88.35 81.06

As shown in Table 3, our method outperforms full-model
inversion in CLIP-based CL while requiring significantly
fewer iteration steps. This demonstrates that our inversion
method can generate data with comparable information
content to full-model inversion, while requiring over four
times fewer update steps, demonstrating its effectiveness.
These results also highlight the efficiency of our approach.
Furthermore, we show that incorporating CFS also im-
proves performance in the full-model inversion setting,
demonstrating its robustness.

We further compare the time cost of our PMI+full-model
inversion strategy with full-model inversion and Sparse
Model Inversion [14] in CLIP-based CL experiments. As
shown in Appendix F.1, our method achieves better perfor-
mance with lower time cost. In addition, we compare our PMI+full-model inversion strategy with
generator-based methods on both ResNet-based and CLIP-based CL experiments (Appendix F.2).
Compared to generator-based approaches, our method attains higher performance with comparable
time cost in ResNet-based experiments, and achieves both higher performance and lower time cost in
CLIP-based experiments. Further discussion on the advantages of our method over generator-based
approaches is provided in Appendix F.2.

Ablation study on CFS. To evaluate the effectiveness of our CFS method, we conduct experiments
using CODA-Prompt and MoE-Adapter, both with and without CFS. All experimental settings and
evaluation metrics are kept consistent as Section 4.1. The results are presented in Table 4.

Applying CFS improves both final average accuracy and overall average accuracy across various
methods and datasets, demonstrating its effectiveness and robustness in CLIP-based CL. These results
also highlight the importance of maintaining feature distribution consistency in this setting.

Visualization of generated samples. To demonstrate that the inverted data captures key semantic
features of each class, we visualize the generated samples for both old and new classes on CIFAR-100
and ImageNet-R, using our PMI+full-model inversion strategy. The first row shows samples from
CIFAR-100, while the second row presents samples from ImageNet-R. For old classes, features are
sampled from class-wise Gaussian distributions and selected using CFS, then used to generate images.
For new classes, images are generated from features obtained via semantic-aware feature projection.

The visualization results in Figure 4 demonstrate that:1) features sampled from the modeled distri-
butions and obtained via semantic-aware feature projection retain key semantic characteristics of

9

Table 4: CL performance comparison with and without CFS. Applying CFS consistently improves
performance across both methods and all three datasets in nearly all cases.

Method CFS CIFAR-100 ImageNet-R CUB 200

Avg. Last Avg. Last Avg. Last

CODA-P+Inversion ✗ 84.93 76.04 84.32 76.63 73.32 63.91
MoE-Adapter+Inversion ✗ 88.23 80.40 87.07 82.68 78.61 66.71

CODA-P+Inversion ✓ 84.78 (-0.15) 76.23 (+0.19) 84.58 (+0.26) 76.93 (+0.30) 74.37 (+1.05) 64.63 (+0.72)

MoE-Adapter+Inversion ✓ 88.35 (+0.12) 81.06 (+0.66) 87.90 (+0.83) 83.03 (+0.35) 78.98 (+0.37) 67.26 (+0.55)

the target class; and 2) PMI+full model inversion strategy reliably reconstructs meaningful semantic
content from the input features.

5 Conclusion

Figure 4: Visualization of generated samples for
old and new classes from CIFAR-100 (top row) and
ImageNet-R (bottom row). Our method reliably
recovers the semantic information of each class.

In this work, we address the inefficiency of
model inversion by introducing PMI, which sig-
nificantly reduces the number of iterations re-
quired for convergence. Additionally, we tackle
the issue of feature distribution shift by model-
ing real feature distributions and sampling fea-
tures from them for inversion. Building on PMI
and feature distribution modeling, we demon-
strate the feasibility of generating training sam-
ples for new classes via semantic-aware feature
projection. Experimental results validate the
effectiveness of our approach. Our model in-
version method is also beneficial for other data-
free tasks, such as knowledge distillation, meta-
learning, and dataset distillation. Additionally,
our model inversion method can be used as an
efficient tool for interpreting and understanding
what the model has learned.

Limitations. Our current approach for generating samples of new classes from CLIP models can be
further enhanced by integrating more advanced techniques. For example, [32] uses class descriptions
generated by large language models to improve CLIP’s zero-shot performance. These descriptions
could also be leveraged to guide sample generation for new classes. Wei et al. [55] enhance the
diversity of synthetic data through style dictionary diversification while preserving consistency using
classification objective during inversion. We leave this direction for future work.

Another limitation of our work lies in the loss of scale information when mapping the output of
fcont onto a hypersphere. Uniformly projecting all selected features onto the hypersphere does not
ensure that their distribution precisely matches that of real features, as the scale information between
the two remains unaligned. In our approach, Gaussian distribution modeling and CFS provide
a lightweight and efficient means of preserving feature distribution information. The consistent
improvements achieved by CFS across different experimental settings support our insight that
maintaining feature consistency enhances continual learning performance. More advanced distribution
modeling techniques, such as VAEs [21] used in [9], could further improve performance.

10

Acknowledgements

This paper was partially supported by Australian Research Council (ARC) Discovery Early Career
Researcher Award (DECRA) project DE230101591 to D. Gong.

References
[1] S. Aich, J. Ruiz-Santaquiteria, Z. Lu, P. Garg, K. Joseph, A. F. Garcia, V. N. Balasubramanian, K. Kin,

C. Wan, N. C. Camgoz, et al. Data-free class-incremental hand gesture recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 20958–20967, 2023.

[2] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in neural
information processing systems, 35:23716–23736, 2022.

[3] R. Aljundi, E. Belilovsky, T. Tuytelaars, L. Charlin, M. Caccia, M. Lin, and L. Page-Caccia. Online
continual learning with maximal interfered retrieval. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 11849–11860. Curran Associates, Inc., 2019.

[4] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient based sample selection for online continual
learning. Advances in neural information processing systems, 32, 2019.

[5] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara. Dark experience for general continual
learning: a strong, simple baseline. In Advances in neural information processing systems, pages 15920–
15930, 2020.

[6] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr. Riemannian walk for incremental learning:
Understanding forgetting and intransigence. In Proceedings of the European conference on computer
vision (ECCV), pages 532–547, 2018.

[7] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ranzato. On tiny
episodic memories in continual learning. arXiv preprint arXiv:1902.10486, 2019.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee,
2009.

[9] E. Frascaroli, A. Panariello, P. Buzzega, L. Bonicelli, A. Porrello, and S. Calderara. Clip with generative
latent replay: a strong baseline for incremental learning. arXiv preprint arXiv:2407.15793, 2024.

[10] P. Gao, S. Geng, R. Zhang, T. Ma, R. Fang, Y. Zhang, H. Li, and Y. Qiao. Clip-adapter: Better vision-
language models with feature adapters. International Journal of Computer Vision, 132(2):581–595,
2024.

[11] Q. Gao, C. Zhao, B. Ghanem, and J. Zhang. R-dfcil: Relation-guided representation learning for data-free
class incremental learning. In European Conference on Computer Vision, pages 423–439. Springer, 2022.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[13] Z. Hu, L. Shen, Z. Wang, T. Liu, C. Yuan, and D. Tao. Architecture, dataset and model-scale agnostic
data-free meta-learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7736–7745, 2023.

[14] Z. Hu, Y. Wei, L. Shen, Z. Wang, L. Li, C. Yuan, and D. Tao. Sparse model inversion: efficient inversion of
vision transformers for data-free applications. In Forty-first International Conference on Machine Learning,
2024.

[15] Z. Hu, Y. Wei, L. Shen, C. Yuan, and D. Tao. Unlocking tuning-free few-shot adaptability in visual
foundation models by recycling pre-tuned loras. arXiv preprint arXiv:2412.02220, 2024.

[16] S. Jha, D. Gong, and L. Yao. Clap4clip: Continual learning with probabilistic finetuning for vision-language
models. Advances in neural information processing systems, 37:129146–129186, 2024.

[17] M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and S.-N. Lim. Visual prompt tuning.
In European conference on computer vision, pages 709–727. Springer, 2022.

11

[18] H. Jin, G.-h. Kim, C. Ahn, and E. Kim. Growing a brain with sparsity-inducing generation for continual
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 18961–
18970, 2023.

[19] H. Kazemi, A. Chegini, J. Geiping, S. Feizi, and T. Goldstein. What do we learn from inverting clip
models? arXiv preprint arXiv:2403.02580, 2024.

[20] M. U. Khattak, H. Rasheed, M. Maaz, S. Khan, and F. S. Khan. Maple: Multi-modal prompt learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 19113–19122,
2023.

[21] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[22] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ra-
malho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 114(13):3521–3526, 2017.

[23] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[24] Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947, 2017.

[25] Y.-S. Liang and W.-J. Li. Inflora: Interference-free low-rank adaptation for continual learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 23638–
23647, 2024.

[26] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. Advances in neural
information processing systems, 30:6467–6476, 2017.

[27] H. Lu, C. Zhao, J. Xue, L. Yao, K. Moore, and D. Gong. Adaptive rank, reduced forgetting: Knowledge
retention in continual learning vision-language models with dynamic rank-selective lora. arXiv preprint
arXiv:2412.01004, 2024.

[28] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pages 109–165. Elsevier, 1989.

[29] M. D. McDonnell, D. Gong, A. Parvaneh, E. Abbasnejad, and A. Van den Hengel. Ranpac: Random
projections and pre-trained models for continual learning. Advances in Neural Information Processing
Systems, 36:12022–12053, 2023.

[30] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner. Variational continual learning. arXiv preprint
arXiv:1710.10628, 2017.

[31] O. Ostapenko, P. Rodriguez, M. Caccia, and L. Charlin. Continual learning via local module composition.
Advances in Neural Information Processing Systems, 34:30298–30312, 2021.

[32] S. Pratt, I. Covert, R. Liu, and A. Farhadi. What does a platypus look like? generating customized prompts
for zero-shot image classification. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 15691–15701, 2023.

[33] Z. Qiu, Y. Xu, F. Meng, H. Li, L. Xu, and Q. Wu. Dual-consistency model inversion for non-exemplar
class incremental learning. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 24025–24035. IEEE Computer Society, 2024.

[34] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PmLR, 2021.

[35] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and representation
learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages
2001–2010, 2017.

[36] M. B. Ring. Child: A first step towards continual learning. Machine Learning, 28:77–104, 1997.

[37] H. Ritter, A. Botev, and D. Barber. Online structured laplace approximations for overcoming catastrophic
forgetting. Advances in Neural Information Processing Systems, 31, 2018.

[38] W. Shi and M. Ye. Prototype reminiscence and augmented asymmetric knowledge aggregation for
non-exemplar class-incremental learning. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 1772–1781, 2023.

12

[39] J. Smith, Y.-C. Hsu, J. Balloch, Y. Shen, H. Jin, and Z. Kira. Always be dreaming: A new approach
for data-free class-incremental learning. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 9374–9384, 2021.

[40] J. S. Smith, L. Karlinsky, V. Gutta, P. Cascante-Bonilla, D. Kim, A. Arbelle, R. Panda, R. Feris, and Z. Kira.
Coda-prompt: Continual decomposed attention-based prompting for rehearsal-free continual learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11909–11919,
2023.

[41] Z. Tang, Z. Lv, S. Zhang, Y. Zhou, X. Duan, F. Wu, and K. Kuang. Aug-kd: Anchor-based mixup
generation for out-of-domain knowledge distillation. arXiv preprint arXiv:2403.07030, 2024.

[42] V. Thengane, S. Khan, M. Hayat, and F. Khan. Clip model is an efficient continual learner. arXiv preprint
arXiv:2210.03114, 2022.

[43] R. Tong, Y. Liu, J. Q. Shi, and D. Gong. Coreset selection via reducible loss in continual learning. In The
Thirteenth International Conference on Learning Representations, 2025.

[44] M.-T. Tran, T. Le, X.-M. Le, M. Harandi, Q. H. Tran, and D. Phung. Nayer: Noisy layer data generation
for efficient and effective data-free knowledge distillation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 23860–23869, 2024.

[45] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
2011.

[46] F. Wang and H. Liu. Understanding the behaviour of contrastive loss. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 2495–2504, 2021.

[47] F.-Y. Wang, D.-W. Zhou, H.-J. Ye, and D.-C. Zhan. Foster: Feature boosting and compression for
class-incremental learning. In European conference on computer vision, pages 398–414. Springer, 2022.

[48] H. Wang, H. Lu, L. Yao, and D. Gong. Self-expansion of pre-trained models with mixture of adapters for
continual learning. arXiv preprint arXiv:2403.18886, 2024.

[49] K.-C. Wang, Y. Fu, K. Li, A. Khisti, R. Zemel, and A. Makhzani. Variational model inversion attacks.
Advances in Neural Information Processing Systems, 34:9706–9719, 2021.

[50] R. Wang, X. Duan, G. Kang, J. Liu, S. Lin, S. Xu, J. Lü, and B. Zhang. Attriclip: A non-incremental
learner for incremental knowledge learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3654–3663, 2023.

[51] T. Wang and P. Isola. Understanding contrastive representation learning through alignment and uniformity
on the hypersphere. In International conference on machine learning, pages 9929–9939. PMLR, 2020.

[52] Y. Wang, D. Yang, Z. Chen, Y. Liu, S. Liu, W. Zhang, L. Zhang, and L. Qi. De-confounded data-free
knowledge distillation for handling distribution shifts. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12615–12625, 2024.

[53] Z. Wang, Z. Zhang, S. Ebrahimi, R. Sun, H. Zhang, C.-Y. Lee, X. Ren, G. Su, V. Perot, J. Dy, et al.
Dualprompt: Complementary prompting for rehearsal-free continual learning. In European conference on
computer vision, pages 631–648. Springer, 2022.

[54] Z. Wang, Z. Zhang, C.-Y. Lee, H. Zhang, R. Sun, X. Ren, G. Su, V. Perot, J. Dy, and T. Pfister. Learning
to prompt for continual learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 139–149, 2022.

[55] Y. Wei, Z. Hu, L. Shen, Z. Wang, C. Yuan, and D. Tao. Open-vocabulary customization from clip via
data-free knowledge distillation. In The Thirteenth International Conference on Learning Representations,
2025.

[56] Y. Wei, Z. Hu, Z. Wang, L. Shen, C. Yuan, and D. Tao. Free: Faster and better data-free meta-learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 23273–
23282, 2024.

[57] J. Wu, Q. Zhang, and G. Xu. Tiny imagenet challenge. Technical report, 2017.

[58] Q. Yan, D. Gong, Y. Liu, A. Van Den Hengel, and J. Q. Shi. Learning bayesian sparse networks with full
experience replay for continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 109–118, 2022.

13

[59] S. Yan, J. Xie, and X. He. Der: Dynamically expandable representation for class incremental learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 3014–3023,
2021.

[60] H. Yin, P. Molchanov, J. M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N. K. Jha, and J. Kautz. Dreaming to
distill: Data-free knowledge transfer via deepinversion. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8715–8724, 2020.

[61] J. Yu, Y. Zhuge, L. Zhang, P. Hu, D. Wang, H. Lu, and Y. He. Boosting continual learning of vision-language
models via mixture-of-experts adapters. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 23219–23230, 2024.

[62] P. Yu, Y. Chen, Y. Jin, and Z. Liu. Improving vision transformers for incremental learning. arXiv preprint
arXiv:2112.06103, 2021.

[63] S. Yu, J. Chen, H. Han, and S. Jiang. Data-free knowledge distillation via feature exchange and activa-
tion region constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 24266–24275, 2023.

[64] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In International
Conference on Machine Learning, pages 3987–3995. PMLR, 2017.

[65] R. Zhang, W. Zhang, R. Fang, P. Gao, K. Li, J. Dai, Y. Qiao, and H. Li. Tip-adapter: Training-free adaption
of clip for few-shot classification. In European conference on computer vision, pages 493–510. Springer,
2022.

[66] D.-W. Zhou, Q.-W. Wang, H.-J. Ye, and D.-C. Zhan. A model or 603 exemplars: Towards memory-efficient
class-incremental learning. arXiv preprint arXiv:2205.13218, 2022.

[67] D.-W. Zhou, Y. Zhang, Y. Wang, J. Ning, H.-J. Ye, D.-C. Zhan, and Z. Liu. Learning without forgetting for
vision-language models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.

[68] K. Zhou, J. Yang, C. C. Loy, and Z. Liu. Learning to prompt for vision-language models. International
Journal of Computer Vision, 130(9):2337–2348, 2022.

[69] K. Zhu, W. Zhai, Y. Cao, J. Luo, and Z.-J. Zha. Self-sustaining representation expansion for non-exemplar
class-incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9296–9305, 2022.

14

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims made in the abstract includes motivation, method and contribution of
our work, and accurately reflect our contribution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

15

Justification: We have included limitations in Conclusion section, boosting CLIP models to
new classes can be combined with more sophisticated methods and we leave this part as our
future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have clearly claimed the assumption of conditional independence in Section
3.2, Appendix A and Appendix B. Other approximations like using MSE for CE loss to
approximate negative log-probability and using Gaussian distribution to approximate prior
distribution are common in machine learning works.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

16

Answer: [Yes]
Justification: Our experiments are based on open-sourced implementations, and we have
provided algorithms, method details and experiment setting details in Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets used in this work are publicly available. Our code is available in
https://github.com/RuilinTong/PMI-CFS-DFCL.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

17

https://github.com/RuilinTong/PMI-CFS-DFCL
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided method details and experiment setting details in Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars for the continual learning experiments in Table 5. For the
CLIP-based continual learning experiments, we follow prior works by using a fixed random
seed (1993) and therefore do not include error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]

18

Justification: We have provide computation resources and time cost in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work addresses the problem of model inversion in data-free continual
learning. It does not involve privacy concerns and does not aim to recover private information
from trained model.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have included discussion on potential societal impacts in Appendix J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

19

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work uses only publicly released pre-trained models and adapts them on
publicly available datasets; therefore, no such type of risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and code used in our work are publicly available. We have included
the corresponding URLs in Appendix K and comply with the terms of use specified in their
respective licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have released our code in https://github.com/RuilinTong/
PMI-CFS-DFCL and included comprehensive documentation and scripts to ensure repro-
ducibility.

Guidelines:

• The answer NA means that the paper does not release new assets.

20

paperswithcode.com/datasets
https://github.com/RuilinTong/PMI-CFS-DFCL
https://github.com/RuilinTong/PMI-CFS-DFCL

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are used for searching, editing and writing in our work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Appendix

A Decomposing model inversion objective into layer-wise constraint

VMI [49] proposed a model inversion objective based on KL divergence and reformulated it into
classification and prior terms. In addition to constraining the input prior distribution, DeepInversion
[60] introduced a constraint on the prior distribution of intermediate layer outputs. Let ol denote the
output of the l-th layer, L the total number of layers, x the input, and y the label, we formulate our
model inversion objective using KL divergence as:

p∗s (x) = arg min
ps(x)

DKL(ps(oL,oL−1, · · · ,x|y)||pr(oL,oL−1, · · · ,x|y)), (10)

here pr(·) denotes the distribution computed from real data, while ps(·) represents the distribution
from synthetic data. In the following, we show that this objective can be decomposed into a layer-wise
inversion formulation.

Based on the chain rule of probabilities

ps(oL,oL−1, · · · ,x|y) = ps(oL−1, · · · ,x|oL, y)ps(oL|y),
pr(oL,oL−1, · · · ,x|y) = pr(oL−1, · · · ,x|oL, y)pr(oL|y),

(11)

KL divergence in Eq. (10) can be decomposed by

DKL(ps(oL,oL−1, ··· ,x|y)||pr(oL,oL−1, ··· ,x|y))

=Eps(oL,oL−1,··· ,x|y) log
ps(oL,oL−1, ··· ,x|y)
pr(oL,oL−1, ··· ,x|y)

=Eps(oL−1,··· ,x|oL,y)ps(oL|y) log
ps(oL−1, ··· ,x|oL, y)ps(oL|y)
pr(oL−1, ··· ,x|oL, y)pr(oL|y)

=

∫
···
∫

ps(oL−1, ··· ,x|oL, y)ps(oL|y)
(
log

ps(oL−1, ··· ,x|oL, y)

pr(oL−1, ··· ,x|oL, y)
+ log

ps(oL|y)
pr(oL|y)

)
dx ··· doL

=

∫
ps(oL|y)

(∫
···
∫

ps(oL−1, ··· ,x|oL, y) log
ps(oL−1, ··· ,x|oL, y)

pr(oL−1, ··· ,x|oL, y)
dx ··· doL−1

)
doL

+

∫
···
∫

ps(oL−1, ··· ,x|oL, y)

(∫
ps(oL|y) log

ps(oL|y)
pr(oL|y)

doL

)
dx ··· doL−1

=Eps(oL|y)DKL(ps(oL−1, ··· ,x|oL, y)||pr(oL−1, ··· ,x|oL, y))

+ Eps(oL−1,··· ,x|oL,y)DKL(ps(oL|y)||pr(oL|y)).
(12)

The KL divergence in the second term of Eq. (12) is not included in the inte-
gration over oL−1, · · · ,x, and the expectation simplifies to the KL divergence itself:
Eps(oL−1,··· ,x|oL,y)DKL(ps(oL|y)||pr(oL|y)) = DKL(ps(oL|y)||pr(oL|y)). We further assume that
inversion through each layer retains essential information. Specifically, oL is assumed to contain all
information about the label y, and the representations x, · · ·oL−1 can be recovered from oL. This
assumption implies a conditional independence relationship, which can be formulated as:

ps(oL−1, ··· ,x|oL, y) ≈ ps(oL−1, ··· ,x|oL), pr(oL−1, ··· ,x|oL, y) ≈ pr(oL−1, ··· ,x|oL).
(13)

Therefore, the decomposed objective is:

DKL(ps(oL,oL−1, · · · ,x|y)||pr(oL,oL−1, · · · ,x|y))
=Eps(oL|y)DKL(ps(oL−1, · · · ,x|oL, y)||pr(oL−1, · · · ,x|oL, y))

+ Eps(oL−1,··· ,x|oL,y)DKL(ps(oL|y)||pr(oL|y))
≈Eps(oL|y)DKL(ps(oL−1, · · · ,x|oL)||pr(oL−1, · · · ,x|oL)) +DKL(ps(oL|y)||pr(oL|y)).

(14)

The expectation on KL divergence of the right hand side can be decomposed with the same method
as:

22

Eps(oL|y) [DKL(ps(oL−1, · · · ,x|oL)||pr(oL−1, · · · ,x|oL))]

≈Eps(oL|y)
[
Eps(oL−1|oL)DKL(ps(oL−2, · · · ,x|oL−1)||pr(oL−2, · · · ,x|oL−1))

]
+ Eps(oL|y)DKL(ps(oL−1|oL)||pr(oL−1|oL))

≈Eps(oL−1|y) [DKL(ps(oL−2, · · · ,x|oL−1)||pr(oL−2, · · · ,x|oL−1))]

+ Eps(oL|y)DKL(ps(oL−1|oL)||pr(oL−1|oL)).

(15)

The last line in Eq. (15) is based on conditional independence, namely

ps(oL−1|oL, y) ≈ ps(oL−1|oL)

ps(oL−1|, y) =
∫

ps(oL−1|oL, y)ps(oL|y)doL

≈
∫

ps(oL−1|oL)ps(oL|y)doL.

(16)

The first term in the right hand side of Eq. (15) can be decomposed in the same way as:

Eps(oL−1|y) [DKL(ps(oL−2, · · · ,x|oL−1)||pr(oL−2, · · · ,x|oL−1))]

≈Eps(oL−1|y)
[
Eps(oL−2|oL−1)DKL(ps(oL−3, · · · ,x|oL−2)||pr(oL−3, · · · ,x|oL−2))

]
+ Eps(oL−1|y)DKL(ps(oL−2|oL−1)||pr(oL−2|oL−1))

≈Eps(oL−2|y) [DKL(ps(oL−3, · · · ,x|oL−2)||pr(oL−3, · · · ,x|oL−2))]

+ Eps(oL−1|y)DKL(ps(oL−2|oL−1)||pr(oL−2|oL−1)).

(17)

Given o0 = x and oL+1 = y, decomposing inversion objective layer-by-layer recursively results in

DKL(ps(oL,oL−1, · · · ,x|y)||pr(oL,oL−1, · · · ,x|y))

≈
L∑

l=1

Eps(ol+1|y)
[
Eps(ol|ol+1)DKL(ps(ol−1|ol)||pr(ol−1|ol))

]
+DKL(ps(oL|y)||pr(oL|y)).

(18)

Eq. (18) shows that, under the conditional independence assumption, the input to each layer can be
inferred from its output. Summing the layer-wise KL divergences thus provides an approximation of
the total inversion objective in Eq. (10).

B Layer-wise and full-model inversion objective

The KL divergences in Eq. (18) are intractable in practice. Following [49], we reformulate them
using Bayes’ rule as:

DKL(ps(ol−1|ol)||pr(ol−1|ol))

=Eps(ol−1|ol) log
ps(ol−1|ol)

pr(ol−1|ol)

=Eps(ol−1|ol) log
ps(ol−1|ol)pr(ol)

pr(ol|ol−1)pr(ol−1)

=Eps(ol−1|ol) log
ps(ol−1|ol)

pr(ol−1)
− Eps(ol−1|ol) log pr(ol|ol−1) + log pr(ol)

=DKL(ps(ol−1|ol)||pr(ol−1))− Eps(ol−1|ol) log pr(ol|ol−1) + log pr(ol).

(19)

Since pr(ol) is computed from real data and is independent of the synthetic data, we treat it as a
constant. The negative log-probability term − log pr(ol|ol−1) is approximated using mean squared
error (MSE). For the KL divergence at the final layer DKL(ps(oL|y)||pr(oL|y)), the negative log-
probability − log pr(y|ol) can be approximated using cross-entropy (CE) loss for classification tasks,
and mean squared error (MSE) for regression tasks. In this work, we adopt the CE loss to construct
our final inversion objective. For the prior constraint DKL(ps(ol−1|ol)||pr(ol−1)), we follow ABD
[39] by approximating both distributions as Gaussians and computing the KL divergence in closed
form.

23

The expectation Eps(ol+1|y)
[
Eps(ol|ol+1)DKL(ps(ol−1|ol)||pr(ol−1|ol))

]
can be approximated by

averaging the KL divergences computed over a batch of ol if ol is known. Building on the layer-wise
constraint in Eq. (18) and the approximations above, oL can be optimized with given y using objective

DKL(ps(oL|y)||pr(oL|y))

≈DKL(N (µ̂L, σ̂L)||N (µL,σL)) +
1

N

N∑
i=1

ℓCE(oL,i, y;θL+1).
(20)

Therefore, we propose a top-down optimization strategy that optimize features layer-by-layer from
the output layer to the input. At each step, the optimized ol+1 is used as the target output to guide
the optimization of ol. In other words, ol is optimized before proceeding to ol−1. The layer-wise
inversion objective is

Eps(ol+1|y)
[
Eps(ol|ol+1)DKL(ps(ol−1|ol)||pr(ol−1|ol))

]
≈DKL(N (µ̂l−1, σ̂l−1)||N (µl−1,σl−1)) +

1

N

N∑
i=1

ℓMSE(ol−1,i,ol,i;θl),
(21)

where θl denotes the parameters of the l-th layer, µl−1 and σl−1 are the mean and standard deviation
computed from real data, and µ̂l−1 and σ̂l−1 are the corresponding statistics computed from synthetic
data. The model inversion objective over all layers is given as:

DKL(ps(oL,oL−1, · · · , x|y)||pr(oL,oL−1, · · · , x|y))

≈
L∑

l=1

(
DKL(N (µ̂l−1, σ̂l−1)||N (µl−1,σl−1)) +

1

N

N∑
i=1

ℓMSE(ol−1,i,ol,i;θl)

)

+DKL(N (µ̂L, σ̂L)||N (µL,σL)) +
1

N

N∑
i=1

ℓCE(oL,i, y;θL+1).

(22)

Performing model inversion on the full model omits the loss terms ℓMSE(ol−1,i,ol,i;θl), as there
is no available target ol,i for the output of the l-th layer. Equation (22) is equivalent to the model
inversion objective proposed in ABD [39], excluding the smoothness constraint. Since the loss
landscape of a single layer is much simpler than that of the full model, inversion at the layer level
requires significantly fewer update steps.

C Detailed algorithms

C.1 Implementation details on ResNets-based CL

Since ResNets are trained from scratch in CL, the feature representations of previous classes may
shift after learning new tasks. To account for this, we update the mean and standard deviation of
previous classes using synthetic data after each task. The contrastive models for each previous class
are then retrained accordingly. Once the class-wise statistics and contrastive models are updated, we
sample features for model inversion.

For CL with ResNets, we enhance the separability of features from new tasks by incorporating
classification layer fine-tuning, following ABD [39], and based on the replay loss from R-DFCIL
[11]. The loss function used during training on task t is:

LCL(θt) =
1

N

N∑
i=1

ℓlCE(xi, yi;θt) +
1

M

M∑
j=1

(λhkdLhkd(xj ;θt,θt−1) + λrkdLrkd(xj ;))

+ λft
1

M +N

M+N∑
k=1

Lft(xk, yk;θt),

(23)

where ℓlCE denotes the local cross-entropy loss, computed only over the classes of the current task.
Lft, proposed in [39], is a cross-entropy loss over all old and current classes, and is used exclusively
to update the classification layer. Lhkd and Lrkd refer to the hard knowledge distillation (HKD) loss

24

and the relational knowledge distillation (RKD) loss, respectively, both introduced in [11]. θt denotes
the parameters of the CL model at task t, and θt−1 represents the parameters after training on the
previous task. λhkd, λrkd, and λft are hyperparameters that weight their corresponding loss terms to
balance their contributions during optimization, and we apply the loss factor change scheme proposed
in R-DFCIL. Detailed algorithm is presented in Alg. 3, and analysis on the effect of Lft is provided in
Appendix D.1.

Algorithm 3: ResNet-Based CL
Input: Dataset sequence D1:T

Output: Trained CL model parameters θT

Initialize model parameter θ0;
for t = 1 to T do

if i > 1 then
Sample features for inversion;
PMI+full-model inversion to generate previous data;
Train model with replay;

else
Train model with CE loss;

Finetune classification layer;
Compute class-wise feature Gaussian distribution for new classes;
Update class-wise feature Gaussian distribution for old classes;
Train contrastive model for each old class;
Save model as teacher model;

C.2 Implementation details on CLIP-based CL

Algorithm 4: CLIP-based CL
Input: CLIP model Ft,0, Fi,0, task sequence

dataset D1:T

Output: Finetuned CLIP model Ft,T , Fi,T

for k = 1 to T do
if k > 1 then

Sample features for inversion;
PMI+full-model inversion to generate
previous data;

Train CLIP model with replay;
else

Train model with CE loss;
Compute class-wise feature Gaussian

distribution;
Train contrastive model for each new

class;
Update layer-wise input distribution;
Save model as teacher model;

Since CLIP models encode rich pre-trained
knowledge, their image features already contain
strong semantic information for classification.
We therefore assume that the features of previ-
ously learned classes do not drift significantly.
As a result, we do not update the feature statis-
tics or contrastive models for previous classes
in CLIP-based CL. For all our methods, classi-
fication is performed using local cross-entropy
loss, computed only on the current task classes.

We integrate our data generation method into
three baseline approaches: VPT [17], CODA-
Prompt [40], and MoE-Adapter [61]. VPT intro-
duces learnable prompts into the vision encoder
while keeping the text encoder frozen. CODA-
Prompt extends the learnable prompts in the im-
age encoder after each task and uses a learnable
classification head. For both methods, we apply
only the hard knowledge distillation (HKD) loss
on synthetic data during replay to mitigate for-
getting. MoE-Adapter incorporates a Mixture
of Experts (MoE) into both the image and text
encoders. To prevent forgetting on text encoder, we introduce a text knowledge distillation loss to
prevent forgetting in the text encoder by

Ltkd(tc;Ft,k−1, Ft,k) = ||Ft,k−1(tc)− Ft,k(tc)||1, (24)

where Ft,k denotes the text encoder during training on the k-th task, and Ft,k−1 refers to the text
encoder after training on the previous task. Additionally, we introduce a text encoder fine-tuning loss
to improve classification performance over all old classes, defined as:

Ltft(xc, tc;Fi, Ft) = LCE(Fi(xc), Ft(tc)). (25)

25

The text encoder fine-tuning loss is used exclusively to update the text encoder for improved classifi-
cation performance over all old classes. Loss factor changing scheme proposed in R-DFCIL is also
applied in our CLIP-based CL method. Detailed algorithm is shown in Alg. 4.

In practice, we found that performing model inversion through the first convolutional layer of the ViT
model significantly degrades CL performance. This is because the layer uses a kernel size of 16 and
a stride of 16, leading to substantial information loss from the input. Moreover, this layer remains
frozen during CL. To address this, we implement model inversion to generate the output features of
the first convolutional layer and apply this approach across all CLIP-based CL experiments.

C.3 Model inversion details

Based on the model inversion loss in Eq. (27), prior works [19, 60, 39] introduce a smoothness
constraint on the synthetic data. In our proposed PMI method, we omit this constraint, as enforcing
smoothness may result in the loss of important information in the feature maps.

For full-model inversion, we find that removing the smoothness constraint does not affect CL
performance in ResNet-based experiments. Therefore, we omit it in this setting. In CLIP-based CL
experiments, we perform model inversion to generate the output feature map of the first convolutional
layer. To emulate the smoothness constraint typically applied to input images, we apply a total
variation loss to this feature map, with a fixed weight of 5 × 10−3 for all CL experiments. For
visualization experiments, we follow the same setup and apply total variation loss with the same
weight, consistent with the setting in [19].

The prior distribution constraint in Eq. (21) requires layer-wise statistics of real data. Unlike ResNets,
the ViT backbone used in CLIP does not include batch normalization layers. To apply the prior
distribution constraint to the CLIP model, we compute the mean and standard deviation over real data
after training each task and maintain a moving average across all previously seen tasks. In practice,
we treat each residual block as a single layer in ResNet architectures, and each residual transformer
block as a single layer in the ViT backbone of the CLIP model.

In practice, we introduce a scaling factor for each loss term in both the PMI objective and the
full-model inversion objective to balance their relative contributions. Specifically, the layer-wise
inversion objective is given by:

Linv(ol−1;θl) = αlDKL(N (µ̂l−1, σ̂l−1)||N (µl−1,σl−1)) + βl
1

N

N∑
i=1

ℓMSE(ol−1,i,ol,i;θl), (26)

where αl and βl are the scaling factors for the prior distribution constraint and the output constraint
at layer l, respectively. The overall model inversion loss across all layers is then defined as:

Linv(x;θ) =

L∑
l=1

(
αlDKL(N (µ̂l−1, σ̂l−1)||N (µl−1,σl−1)) + βl

1

N

N∑
i=1

ℓMSE(ol−1,i,ol,i;θl)

)

+ αL+1DKL(N (µ̂L, σ̂L)||N (µL,σL)) + βL+1
1

N

N∑
i=1

ℓCE(oL,i, y;θL+1) + γLtv(x),

(27)

where Ltv denotes the total variation loss used to enforce smoothness, γ is its corresponding weighting
factor, and θl represents the parameters of the l-th layer.

D Additional experiment results
D.1 ResNet-based CL

To further demonstrate the effectiveness of our method, we include DCMI [33] as well as data-free
methods SSRE [69] and PRAKA [38], which do not rely on model inversion. The final average
accuracy is reported in Table 5. To specifically evaluate the impact of our PMI + full-model inversion
strategy and feature modeling approach, we additionally incorporate the classification head fine-
tuning loss into R-DFCIL and compare the results with our method in terms of final average accuracy
on CIFAR-100 dataset, as shown in Table 6. The variant R-DFCIL+ denotes R-DFCIL with the

26

Table 5: Final average accuracies on CIFAR-100 and Tiny-ImageNet using a ResNet-32 backbone,
including the DCMI baseline. Red and blue values indicate the best and second-best performance,
respectively. Our method consistently outperforms all existing baselines across all settings.

Method Model
inversion

CIFAR-100 Tiny-ImageNet

5 task 10 task 20 task 5 task 10 task 20 task

Upper bound ✗ 70.59±0.14 70.59±0.14 70.59±0.14 55.25±0.41 55.25±0.41 55.25±0.41

SSRE ✗ 30.39±0.04 17.77±0.14 10.97±0.48 26.22±0.32 18.58±0.43 10.09±0.34
PRAKA ✗ 37.74±0.48 26.72±0.38 16.32±0.66 31.69±0.20 22.37±0.14 13.62±0.42

DeepInversion ✓ 20.48±1.11 11.26±0.46 5.63±0.10 - - -
ABD ✓ 48.84±0.33 36.75±0.45 24.40±0.60 30.83±0.46 23.17±0.45 14.61±0.47
DCMI ✓ 41.05±0.67 27.70±1.07 18.09±0.85 35.78±0.37 25.89±0.17 17.03±0.08
R-DFCIL ✓ 49.87±0.45 41.80±0.24 31.54±0.54 35.33±0.02 29.05±0.28 24.85±0.16

Ours w/o CFS ✓ 52.05±0.02 43.23±0.28 32.23±0.42 37.65±0.24 32.09±0.20 25.51±0.56
Ours ✓ 52.38±0.53 43.90±0.35 32.60±0.29 37.90±0.10 32.43±0.09 25.67±0.71

Table 7: CLIP performance on CIFAR-100 and ImageNet-R using a CLIP model pre-trained on
LAION-400M. Numbers in parentheses indicate the absolute improvement over the corresponding
baseline methods. Our method consistently enhances the performance of all baselines on both
datasets.

Method No Real Image
Buffer

CIFAR-100 ImageNet-R

Avg. Last Avg. Last

iCaRL ✗ 79.91 63.94 72.22 54.38
MEMO ✗ 84.67 74.98 80.00 74.07
PROOF ✗ 86.70 79.05 85.34 80.10

ZS-CLIP ✓ 81.38 71.26 82.93 76.67
VPT ✓ 84.81 74.75 84.99 79.45
CODA-P ✓ 85.00 76.56 83.70 75.73
MoE-Adapter ✓ 88.01 79.97 85.75 80.83

Ours + VPT ✓ 86.24 (1.43) 76.13 (1.38) 85.87 (0.88) 80.18 (0.73)

Ours + CODA-P ✓ 85.84 (0.84) 77.66 (1.10) 84.82 (1.12) 76.15 (0.42)

Ours + MoE-Adapter ✓ 88.55 (0.54) 80.51 (0.54) 87.18 (1.43) 82.48 (1.65)

classification layer fine-tuning loss, i.e., the loss function is identical to that used in our method. All
experiments follow the same setup as described in Section 4.1.

As shown in Table 5, our method continues to outperform other baselines even after including DCMI
in the comparison, further demonstrating its effectiveness. The non-inversion baselines, SSRE and
PRAKA, generally underperform compared to the inversion-based methods ABD, DCMI, R-DFCIL,
and our approach, as they rely heavily on the knowledge learned from the first task. These results
highlight the effectiveness and robustness of model inversion in mitigating forgetting. In Table 6,
incorporating the classification head fine-tuning loss slightly improves the performance of R-DFCIL;
however, our method still surpasses the R-DFCIL+ variant. This suggests that the performance gain
primarily stems from our PMI+full-model inversion strategy and the proposed CFS method. These
results provide strong evidence of the effectiveness of our approach.

D.2 CLIP-based CL with LAION-400M pre-trained weight

To further demonstrate the robustness of our method, we conduct additional experiments using CLIP
models pre-trained on LAION-400M, evaluated on CIFAR-100 and ImageNet-R. Our method is
integrated with VPT [17], CODA-Prompt [40], and MoE-Adapter [61]. All hyperparameters are kept
consistent with those used in Section 4.1. The final average accuracy and the average accuracy across
all incremental stages are reported in Table 7. Our method consistently improves the performance
of all baseline methods on both datasets, further demonstrating its effectiveness, robustness, and
compatibility.

27

Table 8: Performance of MoE-Adapter combined with our method under different temperatures in
the contrastive loss. The results show that performance remains stable across temperature values.

Temperature Avg. Last

0.5 88.26 80.96
0.8 88.27 81.16
1.0 88.35 81.06
1.5 88.24 80.94

D.3 Consideration on temperature in contrastive loss

Table 6: Ablation study on classification head finetuning loss
on CIFAR-100 dataset.

Method 5 task 10 task 20 task

R-DFCIL 49.87±0.45 41.80±0.24 31.54±0.54
R-DFCIL+ 50.45±0.21 41.93±0.56 31.19±0.26

Ours w/o CFS 52.05±0.02 43.23±0.28 32.23±0.42
Ours 52.38±0.53 43.90±0.35 32.60±0.29

Following prior studies [51, 46], the
temperature parameter τ is used to
control the sharpness of the similarity
distribution in the contrastive loss. To
examine its effect in the negative con-
trastive loss, we incorporate tempera-
ture as shown in Eq. (28). A smaller τ
amplifies gradients for hard negatives,
encouraging fine-grained discrimina-
tion, whereas a larger τ smooths the
weighting across samples. In our setting, the goal is to separate all features within the mapped hyper-
sphere so that no information is compressed and the feature distribution information is maximally
preserved. Consequently, the choice of τ may influence the convergence behavior of training fcont.

Lcont(oL,i,Sneg; fcont) = log EoL,j∈Sneg

[
e

1
τ cos(fcont(oL,i),fcont(oL,j))

]
, oL,j ̸= oL,i, (28)

To assess the impact of temperature, we conduct experiments with different temperature values on the
CIFAR-100 dataset using the CLIP backbone and MoE-Adapter baseline, as shown in Table 8. Since
the contrastive model is lightweight and converges quickly, its output is stable across temperature
settings. Moreover, because the contrastive loss is used for feature similarity ranking, the temperature
scaling does not affect the relative ordering. As a result, the temperature has negligible impact on
performance, and we omit this term in our implementation.

D.4 Impact of real-synthetic feature distribution shift in CLIP model

As discussed in Section 3.3, generating inputs through model inversion solely from integer labels
cannot reliably recover the rich semantic content of the feature space. This is because multiple feature
representations can yield similarly low classification loss, given that the feature is the output of the
penultimate layer. Consequently, the feature distribution of the synthesized data may differ from that
of real data.

When synthetic features deviate from the real data distribution, this deviation reflects a shift in
semantic meaning. Since CLIP models encode rich semantics in the feature space, such feature
shifts correspond to substantial semantic changes in the synthetic data. Training on these misaligned
samples—where labels no longer align with the underlying semantics—can degrade both the pre-
trained knowledge of CLIP models and the task-specific knowledge learned from previous tasks,
leading to more severe forgetting and reduced zero-shot performance.

To assess the impact of performing model inversion based on classification loss, we conduct exper-
iments on the CIFAR-100 dataset using MoE-Adapter [61] as the baseline, with all experimental
settings consistent with Section 4.1. In this setup, model inversion updates the input to minimize the
classification loss of the target class, whereas our method performs inversion from image features
sampled from a Gaussian feature distribution and filtered by the contrastive model, as described
in Section 3.3. In addition to evaluating continual learning (CL) performance, we also assess the
zero-shot performance of the trained model on Tiny-ImageNet. The results, shown in Table 9, indicate
that inversion based on classification loss leads to degradation in both CL and zero-shot performance,
demonstrating that real-synthetic feature distribution shifts cause severe forgetting and harm the
pre-trained knowledge.

28

Table 9: CL and zero-shot performance of MoE-Adapter combined with our method and CE loss-
based model inversion. Using CE loss-based inversion degrades both continual learning and zero-shot
performance.

Model inversion method Avg. Last Zero-shot

Classification loss 86.92 77.84 54.89
Ours 88.35 81.06 57.17

E Feature visualization
Distribution shift between real data and synthetic data. Previous works [60, 39, 11] use cross-
entropy loss in the model inversion objective. In the experiment on the CIFAR-100 dataset with 10
tasks, experiment settings are kept the same as experiments in Section 4.1. We visualize the features
of real and synthetic data from the new classes after training each task using t-SNE, as shown in
Figure 5. The synthetic data is generated by method in R-DFCIL. In the plot, synthetic features are
represented by circular dots, while real data features are shown as translucent triangular dots.

Figure 5: t-SNE visualization of features computed from synthetic data (circular dots) and real data
(translucent triangular dots) from four classes in each of the first six tasks. A noticeable distribution
shift can be observed between the real and synthetic features.

As shown in Figure 5, an apparent distribution shift between real and synthetic features is observed
even on newly trained tasks. This shift suggests that the synthetic data may encode different
information than the real data.

Inversion from feature modeling. To demonstrate the effectiveness of our approach for sampling
features from class-wise distributions for model inversion, we additionally visualize feature t-SNE
under the same experimental setting in Section 4.1, using features sampled from class-wise Gaussian
distributions, as shown in Figure 6. The distributions of real and synthetic features are more consistent
across tasks, indicating that our method significantly mitigates the distribution shift problem.

To further demonstrate the effectiveness of CFS based on Gaussian distributions, we generate synthetic
samples using features sampled from Gaussian and Gaussian+CFS distributions, respectively, and
visualize the features of four classes from the last three tasks in Figure 7. The first row of Figure 7
corresponds to sampling from class-wise Gaussian distributions for model inversion, while the second
row shows results with class-wise Gaussian distributions combined with CFS. Real features are
represented by translucent triangular dots.

The synthetic features in the second row more closely align with the real class-wise features compared
to those in the first row, illustrating the effectiveness of our CFS method. We acknowledge that

29

Figure 6: t-SNE visualization of features computed from synthetic data (circular dots) and real
data (translucent triangular dots) from four classes in each of the first six tasks. The synthetic data
is generated using features sampled from class-wise Gaussian distributions. The resulting feature
distributions of synthetic and real data are more consistent.

Figure 7: t-SNE visualizations of synthetic features from classes in the last three tasks. The first row
shows features sampled from class-wise Gaussian distributions for model inversion, while the second
row incorporates class-wise Gaussian sampling with CFS. In both cases, the synthetic and real feature
distributions are more consistent, with the synthetic features in the second row more closely covering
the real feature distribution.

t-SNE visualizations may not fully reflect the impact of CFS due to the significant dimensionality
reduction involved. However, the results presented in Section 4.1 and Section 4.2 clearly demonstrate
the effectiveness of CFS in improving CL performance.

F Comparison with other model inversion methods
F.1 Noise-initialization-based methods

Noise-initialization methods start from random noise as input. DeepInversion [60] updates such
inputs through full-model inversion, while Sparse Model Inversion (SMI) [14] builds on this approach
by progressively pruning unimportant patches during inversion. In contrast, our method initializes

30

Table 10: CL performance and computational cost of different model inversion methods integrated
with MoE-Adapter on the CIFAR-100 dataset. Our method achieves the best performance while
incurring the lowest time cost.

Method Avg. Last Time cost Per-image time cost

Full-model+MoE-Adapter 88.13 80.53 17h 17m 23.15s
SMI+MoE-Adapter 88.16 80.46 7h 14m 13.35s
Ours+MoE-Adapter 88.35 81.06 6h 10m 7.42s

Table 11: CL performance of different model inversion methods integrated with MoE-Adapter on the
CIFAR-100 dataset under the same iteration budget. Our method achieves the best performance.

Method Avg. Last

Full-model+MoE-Adapter 88.06 80.09
SMI+MoE-Adapter 88.13 80.31
Ours+MoE-Adapter 88.35 81.06

inputs with PMI, thereby reducing the number of iterations required for full-model inversion. To
evaluate the effectiveness of our method, we implement full-model inversion and SMI [14] in a
CLIP-based CL setting and integrate them with MoE-Adapter [61].

Specifically, we compare our method against SMI and full-model inversion in terms of CL perfor-
mance and computational cost. All experimental settings are kept consistent with those in Section 4.1,
with CFS applied across all experiments. The results are presented in Table 10. To ensure fair
comparison, we use the recommended settings for each baseline. For full-model inversion, we follow
the settings of [19] and set the number of update steps to 3,400. For SMI, we adopt the original
configuration with 4,000 update steps and a pruning ratio of 76%. Our method applies 200 steps for
PMI and 600 steps for full-model inversion. All experiments are conducted on NVIDIA GeForce
RTX 3090 GPUs with 24 GB of memory, using an Intel(R) Core(TM) i9-12900K CPU.

Our PMI combined with full-model inversion consistently outperforms other model inversion methods
in CL performance while incurring the lowest time cost, demonstrating the effectiveness of our
approach. While SMI achieves comparable time efficiency, excessive patch pruning can lead to a
performance drop compared to full-model inversion. The time cost for generating a single sample
further highlights the efficiency of our method.

We also provide a comparison under the same inversion iteration budget in Table 11, where all
methods use 800 iterations. While the performance of baseline methods drops with the reduced
budget, our method consistently outperforms them, further demonstrating its effectiveness.

F.2 Generator-based methods

Generator-based methods train a generator via model inversion and then use it to produce samples for
replay. As noted in ABD [39] and R-DFCIL [11], these approaches are generally more efficient than
noise-initialization methods. To evaluate the effectiveness of our approach, we further compare our
method with generator-based methods in terms of performance, time cost, and GPU efficiency.

We first compare our method with generator-based approaches, including ABD, R-DFCIL, and DCMI
[33], on the CIFAR-100 dataset using a ResNet-32 backbone. The classes are evenly divided into 5
tasks, and all experimental settings follow those in Section 4.1. We report final average accuracy to
evaluate performance, and GPU memory usage and FLOPs during inversion to assess efficiency. The
results are presented in Table 12.

As shown in Table 12, our method achieves the best performance while requiring only slightly more
time than R-DFCIL. Because the samples are independent during model inversion, GPU parallelism
can be utilized more effectively. We therefore adopt a larger batch size for inversion, which results in
comparable time cost to R-DFCIL and faster execution than ABD, albeit with higher GPU memory
usage and FLOPs. We further note that the time cost of our method can be reduced by scaling to
multiple GPUs, where samples can be generated in parallel without synchronization overhead.

31

Table 12: Comparison with generator-based methods in terms of performance, time cost, and GPU
efficiency on the ResNet-32 backbone. Our method achieves higher performance while maintaining
comparable time cost and GPU efficiency.

Method Last Time FLOPs (1012) GPU memory (GB)

ABD 48.84±0.33 1h 33m 940.35 3.71
R-DFCIL 49.87±0.45 1h 07m 567.32 3.71
DCMI 41.05±0.67 1h 28m 887.59 6.05
Ours 52.38±0.53 1h 10m 1055.70 7.28

Table 13: Comparison with generator-based methods in terms of performance, time cost, and GPU
efficiency on the CLIP backbone. Our method achieves higher performance and greater GPU
efficiency.

Method Avg. Last Time FLOPs (1014) GPU memory (GB)

Generator-based 87.30 79.97 7h 25m 148.66 10.90
Ours 88.35 81.06 6h 10m 108.28 7.39

We further compare our method with generator-based approaches using the CLIP backbone on
CIFAR-100. For the generator-based method, we employ a larger generator with 3.3M parameters.
All inversion methods are combined with MoE-Adapter [61], and the experimental settings are
consistent with Section 4.1. The results, including performance, time cost, GPU FLOPs, and GPU
memory usage, are reported in Table 13.

As shown in Table 13, our method outperforms generator-based approaches and achieves superior
GPU efficiency. Compared to experiments with the ResNet-32 backbone, generating only a small
amount of synthetic data (5 samples per class in our setting) is sufficient to mitigate forgetting.
While generator-based methods are efficient with small backbones, they struggle to capture the rich
knowledge encoded in large pre-trained models. Even with a larger generator (containing more
parameters than in the ResNet-32 experiments) and 6,000 training steps, generator-based inversion
fails to deliver significant improvements over the baseline. These findings highlight the effectiveness
of our proposed method.

While generator-based methods are more efficient at generating samples after training, noise-
initialization methods offer two key advantages:

1. Since input samples are independent, they can be generated in parallel across multiple GPUs
without synchronization. This allows image-noise-based methods to scale more efficiently
with additional GPUs, further reducing the overall time cost.

2. When using knowledge distillation, teacher logits can be computed in a single forward
pass after sample generation for image-noise-based methods. In contrast, generator-based
methods generate a synthetic batch and compute teacher logits at each training step, requiring
an extra forward pass in every iteration.

Our PMI method reduces the number of iterations through better initialization, and can further
leverage these advantages.

G Loss landscape visualization

To support our claim that the inversion loss landscape of a single layer is simpler than that of the
full model, we implement our method on the image encoder (ViT-B/16) of the CLIP model and
visualize the inversion loss landscape of each layer and the full model near the optimal point, as
shown in Figure 8. The inversion loss landscapes of individual layers are significantly simpler and
flatter compared to that of the full model. As a result, performing inversion through a single layer
enables faster convergence and achieves lower inversion loss.

32

Figure 8: Inversion loss landscapes of full-model fine-tuning and individual layers. The loss landscape
of a single layer is significantly simpler than that of the full model.

Figure 9: Images generated from the prompt "A female mannequin dressed in a black leather jacket
and gold pleated skirt." during the model inversion process. The first row shows images generated
using our PMI + full-model inversion strategy, while the second row presents images generated by
the baseline method.

H Generating image from text using model inversion on CLIP model

To visually demonstrate the effectiveness of our PMI+full-model inversion strategy, we follow the
experimental setup of [19] and present images generated during the model inversion process. Figure 9
shows images generated from the prompt: "A female mannequin dressed in a black leather jacket and
gold pleated skirt." and Figure 10 shows images generated from the prompt: "A big dog chasing a
small kitten." In both figures, the first row displays results produced by our PMI+full-model inversion
strategy, while the second row shows results generated by the baseline method from [19]. The label
steps in each figure indicates the number of update steps during full-model inversion. Note that
images from our method are initialized using PMI.

In both examples, our method generates meaningful images with fewer update steps, highlighting the
effectiveness of the PMI+full-model inversion strategy. We note, however, that generating images
from text does not directly reflect CL performance. This visualization is intended to illustrate that our
method significantly reduces the number of update steps required during model inversion, while still
capturing key semantic features efficiently.

33

Figure 10: Images generated from the prompt "A big dog chasing a small kitten." during the model
inversion process. The first row shows images produced using our PMI + full-model inversion
strategy, while the second row displays images generated by the baseline method.

Table 14: Base and incremental samples on different settings in ResNet-based CL experiments.

5 task. 10 task 20 task

a 5,000 2,000 1,000
b 6,000 3,000 2,000

I Experiment details
I.1 ResNet-based CL
Continual training. The CIFAR-100 dataset contains 100 classes, which we evenly divide into 5, 10,
and 20 disjoint tasks. Similarly, the Tiny-ImageNet dataset, consisting of 200 classes, is split into
5, 10, and 20 disjoint tasks. The class order for CL follows the setting used in R-DFCIL [11], and
data augmentation includes random cropping and random horizontal flipping. The backbone model is
ResNet-32 following the settings of R-DFCIL.

Each task takes totally 120 epochs for training, and learning rate is set to 0.01 with 0.1 times
decreasing after 60 and 90 epochs, we use SGD optimizer for all the experiments. Loss factors for
hard knowledge distillation, relational knowledge distillation and classification head finetuning loss
are set to 0.15, 0.5 and 1.5 respectively.

Model inversion. We maintain an incremental buffer containing a · t+ b synthetic images, where t
denotes the task index, a is the number of new samples generated for each task, and b represents the
base samples. The configurations for different settings are provided in Table 14. Buffer samples are
generated prior to training each new task using the model trained on the previous task. The scaling
factors for the MSE loss and the distribution constraint are set to 1.0 and 0.25, respectively. For model
inversion, we use the Adam optimizer, with a learning rate of 0.8 for PMI and 0.4 for full-model
inversion. The number of update steps is set to 50 for PMI and 160 for full-model inversion.

Contrastive model. The contrastive model is a two-layer MLP, with each layer consisting of 64
neurons and Leaky ReLU as the activation function. It is trained for 200 epochs using the SGD
optimizer with a learning rate of 0.01. For CFS, we set the selection ratio to 0.5 and the number of
selection steps to 40.

I.2 CLIP-based CL
Continual training. In CLIP-based CL, we conduct experiments on CIFAR-100, ImageNet-R, and
CUB-200. Both ImageNet-R and CUB-200 contain 200 classes, and we evenly split all three datasets
into 10 disjoint tasks. Following the setting of PROOF [68], we use a fixed random seed (1993) to
generate the class order. The optimization parameters are summarized in Table 15. For all methods,
the loss weight for the hard knowledge distillation (HKD) loss is set to 0.1. For MoE-Adapter, we
additionally use a loss weight of 0.2 for the text knowledge distillation loss and 0.001 for the text

34

Table 15: Training hyper-parameters for CLIP-based CL, where LR denotes learning rate.

Method CIFAR-100 ImageNet-R CUB200

LR Epoch Optimizer LR Epoch Optimizer LR Epoch Optimizer

VPT 0.02 5 SGD 0.01 5 SGD 0.02 5 SGD
CODA-P 0.1 5 SGD 0.1 5 SGD 0.1 5 SGD
MoE-Adapter 0.001 3 AdamW 0.001 3 AdamW 0.001 10 AdamW

encoder fine-tuning loss on CIFAR-100 and ImageNet-R. For the fine-grained dataset CUB-200, we
set both the text knowledge distillation and text encoder fine-tuning loss weights to 0.1.

Model inversion. We maintain 5 synthetic samples for each old class. For model inversion, we use
200 update steps for PMI and 600 steps for full-model inversion. Following the setting in [19], we
use the Adam optimizer and set the learning rate to 0.1 for PMI and 0.01 for full-model inversion.

In experiments on CIFAR-100 and ImageNet-R, the loss weights for the MSE loss, distribution
constraint, and smoothness constraint are set to 1.0, 2× 10−3, and 5× 10−3, respectively. For the
fine-grained dataset CUB-200, the loss weights are set to 1.0 for the MSE loss, 0.2 for the distribution
constraint, and 5× 10−3 for the smoothness constraint.

Contrastive model. The contrastive model is implemented as a two-layer MLP, where each layer
contains 512 neurons and uses Leaky ReLU as the activation function. It is trained for 200 epochs
using the SGD optimizer with a learning rate of 0.01. For CFS, we use a selection ratio of 0.5 and
perform 5 selection steps.

I.3 Semantic-aware feature projection

For both the CIFAR-100 and ImageNet-R datasets, we apply feature projection using the top 5 most
similar classes, where similarity is measured by the cosine similarity between class text features. The
parameter α is set to 0.1 for both datasets.

J Broader impact

In real-world applications, data availability is a major concern when deploying machine learning
techniques. Model inversion addresses this issue effectively and is widely used in data-free scenarios,
including data-free knowledge transfer, data-free meta-learning, and data-free continual learning.
Additionally, model inversion can be employed to analyze what a model has learned, contributing to
the development of trustworthy AI systems.

Model inversion generates data by extracting knowledge from a trained model. Applying model
inversion to large pre-trained models allows for better utilization of the rich knowledge encoded in
these models. Our work improves the efficiency of model inversion on large pre-trained CLIP models
and demonstrates the potential for continually adapting models to new classes without requiring
additional data collection—by recovering data directly from the pre-trained models. Furthermore, our
method addresses the issue of feature distribution shift in model inversion-based continual learning,
which can help reduce forgetting and improve overall performance.

We acknowledge that model inversion may be potentially use for recovering data containing unex-
pected privacy appeared in training data, which could be a systematic issue of whole pipeline of data
collection, training, model deployment, and inversion. However, our method is designed to improve
the efficiency of model inversion and to better model class-wise feature distributions, rather than
to recover private information. Moreover, model inversion relies on the knowledge encoded in the
model; without privacy-related information being encoded, our method cannot recover any private
data.

K Computation resources and asset URLs

All experiments are conducted on a system with four NVIDIA GeForce RTX 3090 GPUs (24 GB
each) and an Intel(R) Core(TM) i9-12900K CPU with 64 GB of RAM.

35

Our experiments include the CIFAR-100, Tiny-ImageNet, ImageNet-R, and CUB-200 datasets. The
URLs for these datasets are:

• https://www.cs.toronto.edu/~kriz/cifar.html
• https://github.com/hendrycks/imagenet-r
• https://www.vision.caltech.edu/datasets/cub_200_2011/

Our ResNet-based CL experiments are implemented based on the open-source code of R-DFCIL [11]
and DCMI [33]. The URLs for these implementations are:

• https://github.com/jianzhangcs/R-DFCIL
• https://github.com/zihuanqiu/DCMI_CVPR24

Our CLIP-based CL experiments are implemented based on the open-source code of PROOF [68],
CODA-Prompt [40], and MoE-Adapter [61]. The URLs for these implementations are:

• https://github.com/LAMDA-CL/PROOF
• https://github.com/GT-RIPL/CODA-Prompt
• https://github.com/JiazuoYu/MoE-Adapters4CL

The implementation of CLIP model inversion is based on [19]. The code URL is:

• https://github.com/hamidkazemi22/CLIPInversion

We confirm that all assets used in our work, including datasets, code, and pre-trained models, are
used in accordance with their respective licenses.

36

https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/hendrycks/imagenet-r
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://github.com/jianzhangcs/R-DFCIL
https://github.com/zihuanqiu/DCMI_CVPR24
https://github.com/LAMDA-CL/PROOF
https://github.com/GT-RIPL/CODA-Prompt
https://github.com/JiazuoYu/MoE-Adapters4CL
https://github.com/hamidkazemi22/CLIPInversion

	Introduction
	Related work
	Model inversion for data-free CL
	Preliminaries
	Layer-wise alignment for efficient model inversion
	Class-wise feature modeling and sampling for real-synthetic feature alignment
	Incrementally train model on new classes with synthetic training data

	Experiments
	Continual learning results
	Ablation study

	Conclusion
	Decomposing model inversion objective into layer-wise constraint
	Layer-wise and full-model inversion objective
	Detailed algorithms
	Implementation details on ResNets-based CL
	Implementation details on CLIP-based CL
	Model inversion details

	Additional experiment results
	ResNet-based CL
	CLIP-based CL with LAION-400M pre-trained weight
	Consideration on temperature in contrastive loss
	Impact of real-synthetic feature distribution shift in CLIP model

	Feature visualization
	Comparison with other model inversion methods
	Noise-initialization-based methods
	Generator-based methods

	Loss landscape visualization
	Generating image from text using model inversion on CLIP model
	Experiment details
	ResNet-based CL
	CLIP-based CL
	Semantic-aware feature projection

	Broader impact
	Computation resources and asset URLs

