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Abstract

In this work, we provide a fine-grained analysis of the training dynamics of weight1

matrices with a large learning rate η, commonly used in machine learning practice2

for improved empirical performance. This regime is also known as the edge of3

stability, where sharpness hovers around 2/η, and the training loss oscillates yet4

decreases over long timescales. Within this regime, we observe an intriguing5

phenomenon: the oscillations in the training loss are artifacts of the oscillations of6

only a few leading singular values of the weight matrices within a small invariant7

subspace. Theoretically, we analyze this behavior based on a simplified deep matrix8

factorization problem, showing that this oscillation behavior closely follows that9

of its nonlinear counterparts. We provably show that for η within a specific range,10

the oscillations occur within a 2-period fixed orbit of the singular values, while the11

singular vectors remain invariant across all iterations. We extensively corroborate12

our theory with empirical justifications, namely in that (i) deep linear and nonlinear13

networks share many properties in their learning dynamics and (ii) our model14

captures the nuances that occur at the edge of stability which other models do not,15

providing deeper insights into this phenomenon.16

1 Introduction17

Deep neural networks have demonstrated remarkable performance across various applications [1].18

Despite being heavily overparameterized, deep learning models generalize effectively well in practice,19

seemingly contradicting traditional statistical learning theory [2, 3]. Over the past decade, there has20

been an abundance of research devoted to understanding this phenomenon, with a key revelation being21

the implicit bias inherent in the optimizer used to train the network towards “simple” solutions [4–7].22

For example, a line of work has shown that gradient descent (GD) learns simple functions [8, 9],23

while others suggest that GD exhibits a bias towards low-rank solutions [6, 10, 11].24

More recently, there has been increasing interest in understanding how the learning rate plays a role25

in the learning dynamics [12–17]. One important observation within this line of research is that large26

learning rates improve both training efficiency and generalization [12, 13]. From an optimization27

perspective, the effect of large learning rates can be categorized into two related behaviors: (i) “edge28

of stability”, where the sharpness of the network continually rises and then hovers just near 2/η,29

where η > 0 is the learning rate [16]; (ii) “benign oscillation”, where oscillations in the training loss30

have been shown to improve generalization compared to those with small learning rates [13]. The31

main hypothesis behind the benefits of large learning rates is that a large learning rate can potentially32

drive networks out of sharper minima to land in flatter minima within highly non-convex landscapes.33

It is a popular belief that among all possible minima, the flattest minima are directly correlated with34

better generalization [18–21]. Due to the profound implications of these phenomena, many works35

have been dedicated to understanding when and why they occur. However, many of the existing36
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Figure 1: Similarities in the learning behaviors between deep nonlinear and linear networks. Top
row: dynamics for the penultimate layer of a MLP. Bottow row: dynamics of the last layer of a DLN.
Both networks show that the oscillations in the training loss are a consequence of movements in the
dominant singular values, while the singular vectors remain approximately invariant across time.

works are often based on minimalistic examples such as scalar functions [22], which do not fully37

capture the complex behaviors exhibited by practical networks.38

On the other hand, while Cohen et al. [16] demonstrated the prevalence of the edge of stability in39

many different settings, there were a few caveats—for example, in shallow or wide networks, or on40

simple datasets, sharpness does not quite rise to 2/η [23]. Some existing works that analyze the edge41

of stability construct simpler functions to mimic the behaviors of progressive sharpening and the42

edge of stability, but fail to capture these subtle nuances. Thus, the current theoretical understanding43

of this phenomenon is still far from satisfactory.44

In this work, we analyze the effect of large learning rates for solving the deep matrix factorization45

problem. Interestingly, we observe that this problem captures both the nuances of the edge of stability46

while mimicking the behaviors of nonlinear networks when trained with large learning rates. We47

illustrate this claim in Figure 1, where we highlight a few similarities between deep linear and48

nonlinear networks. First, we observe that the oscillations in the training loss of both networks49

are heavily influenced by the magnitude of the dominant singular values of the weight matrices.50

Second, despite the oscillations, the consecutive weight updates seemingly occur only within invariant51

subspaces. These observations suggest that (i) the training dynamics of both networks largely occur52

within minimal subspaces and (ii) deep linear networks (DLNs) serve as viable surrogates for53

analyzing nonlinear networks, as previously done in the literature [24, 21, 11, 25, 6].54

Our Contributions. Through our analyses, we make the following key contributions:55

• Characterization of GD Dynamics within Invariant Subspaces. We precisely characterize the56

GD dynamics of each weight matrix of deep linear networks in contrast to existing works that use57

gradient flow [26, 25] or do not fully characterize the dynamics [10]. We show that, regardless of58

the magnitude of the learning rate, the singular vectors of the DLN remain invariant.59

• Benign Oscillations in Singular Values. Using our characterization of the dynamics, we60

rigorously show that within a range of learning rates η, oscillations in DLNs occur within the61

singular value space of a period-2 orbit fixed point, depending upon the magnitude of the target62

singular value. We also show that the remaining singular values stay constant from initialization63

throughout all iterations despite having large learning rates, explaining the behavior in Figure 1.64

We extensively support our analyses with empirical results and demonstrate the connection between65

DLNs and nonlinear networks at the edge of stability and its oscillations, offering deeper insights66

compared to existing works that have primarily focused on simpler functions.67

Related Works. We briefly survey a few related works to highlight their differences, and provide68

a detailed discussion in Appendix A. DLNs are often used as prototypes to study the behaviors of69
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nonlinear networks [27, 25, 24, 28]. The most relevant literature on DLNs are those by Yaras et70

al. [10, 29] and Kwon et al. [11], who reveal that the weight updates of deep networks occur within an71

invariant subspace. Our work differs from that of Yaras et al. [10] in that we fully capture the learning72

dynamics of DLNs throughout the entire GD process. While Kwon et al. [11] observe invariant73

weight updates, they use this observation for model compression and do not study the learning74

dynamics with large learning rates. Regarding the edge of stability, the most relevant works are those75

that analyze scalar functions to demonstrate that the edge of stability occurs on such functions, which76

have a non-zero third-order derivative and satisfy certain regularity conditions [23, 12, 22]. However,77

as mentioned previously, these works do not capture the more complicated models that we consider78

in this work.79

Notation and Organization. We denote vectors with bold lower-case letters (e.g., x) and matrices80

with bold upper-case letters (e.g., X). We use In to denote an identity matrix of size n ∈ N. We use81

[L] to denote the set {1, 2, . . . , L}. We use the notation σi(A) to denote the i-th singular value of the82

matrix A. This paper is organized as follows. In Section 2.1, we set the stage by presenting the deep83

matrix factorization problem. In Section 3, we discuss our theory related to simplicity biases in deep84

linear networks and their behaviors at the edge of stability. Lastly, we corroborate our results with85

experiments in Section 4.86

2 Background87

2.1 Deep Matrix Factorization88

We consider the deep matrix factorization problem, where the objective is to model a low-rank89

matrix M⋆ ∈ Rd×d with rank(M⋆) = r via a DLN parameterized by a set of parameters Θ =90 {
Wℓ ∈ Rd×d

}L
ℓ=1

, which can be estimated by solving91

argmin
Θ

f(Θ;M⋆) :=
1

2
∥WL · . . . ·W1︸ ︷︷ ︸

=:WL:1

−M⋆∥2F, (1)

where we adopt the abbreviation Wj:i = Wj · . . . ·Wi to denote the end-to-end DLN and is identity92

when j < i. We assume that each weight matrix has dimensions Wℓ ∈ Rd×d to observe the effects93

of overparameterization.94

To obtain the desired solution, for every iteration t ≥ 0, we update each weight matrix Wℓ ∈ Rd×d95

using GD with iterations given by96

Wℓ(t) = Wℓ(t− 1)− η · ∇Wℓ
f(Θ(t− 1)), ∀ℓ ∈ [L], (2)

where η > 0 is the learning rate and ∇Wℓ
f(Θ(t)) is the gradient of f(Θ) with respect to the l-th97

weight matrix at the t-th GD iterate. We consider a particular initialization for each weight matrix:98

WL(0) = 0, Wℓ(0) = αId, ∀ℓ ∈ [L− 1], (3)
where α ∈ [0, 1] is a small constant. This particular choice of initialization was also considered in the99

work by Varre et al. [30], albeit for two-layer networks. We observe that this initialization induces a100

particular simplicity bias over other initializations, which we discuss in the following sections.101

2.2 Edge of Stability and Benign Oscillation102

In this section, we briefly define the edge of stability and the benign oscillation phenomenon.103

Definition 1 (Sharpness). Given a loss function g(θ), the sharpness is defined to S(θ) := ∥∇2
θg(θ)∥2,104

which is the maximum eigenvalue of the Hessian of the loss.105

Classical optimization theory (descent lemma for GD) states that training via gradient descent is stable106

only when the sharpness is bounded by 2/η [17]. However, for overparameterized deep networks,107

the descent lemma does not predict optimization dynamics, giving rise to a phenomenon called the108

“edge of stability”, which we formally define below.109

Definition 2 (Edge of Stability [16]). During training, the sharpness of the loss S(θ) continues to110

grow until it reaches 2/η, and then it ceases to increase and hovers around 2/η. During this process,111

the training loss behaves non-monotonically over short timescales, yet consistently decreases over112

long timescales.113
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Figure 2: Illustrations of the singular vector and value evolution of the end-to-end DLN. The singular
vectors of the network remain static across all iterations, despite all weight parameters being updated.
The first two singular values undergo oscillations due to the large learning rate.

The increasing of the sharpness throughout training refers to a stage termed “progressive sharpening”.114

Once the sharpness is above 2/η, descent lemma suggests that the loss should no longer decrease.115

Despite this, the loss continues to decrease in deep networks, though non-monotonically.116

Definition 3 (Benign Oscillation at the Edge of Stability [13]). For a highly non-convex landscape,117

the implicit bias of GD at the edge of stability ensures that the sharpness achieved is upper bounded118

by 2/η. This property of GD helps escaping sharper basins in the loss, where S(θ) > 2/η through119

oscillations and settles for minima in which the sharpness is roughly 2/η.120

We term this oscillation as “benign” as it has the property to escape sharper landscapes as EOS121

upper-bounds the sharpness by 2/η. Since the sharpness is 2/η, for larger learning rates, we settle for122

flatter minima, which is seemingly believed to be beneficial for generalization.123

3 Theoretical Results124

In this section, we present our theoretical results discussing the simplicity biases inherent in GD for125

learning DLNs, as well as characterize the behavior of DLNs at the edge of stability.126

3.1 Simplicity Biases in Deep Linear Networks127

Our first result proves that, with the initialization stated in Equation (3), the weight matrices of128

the DLN possess low-dimensional structures, while their singular vectors remain static for all GD129

iterations t ≥ 1.130

Theorem 1 (Singular Vector Invariance). Let M⋆ ∈ Rd×d be a rank-r matrix with SVD M⋆ =131

U⋆Σ⋆V
⋆⊤. Suppose we run GD (2) with learning rate η and with the initialization in Equation (3).132

Then, each weight matrix Wℓ(t) ∈ Rd×d has the following decomposition for all t ≥ 1:133

WL(t) = U⋆

[
Σ̃L(t) 0
0 0

]
V⋆⊤, Wℓ(t) = V⋆

[
Σ̃(t) 0
0 αId−r

]
V⋆⊤, ∀ℓ ∈ [L− 1], (4)

where134

Σ̃L(t) = Σ̃L(t− 1)− η ·
(
Σ̃L(t− 1) · Σ̃L−1(t− 1)−Σ⋆

r

)
· Σ̃L−1(t− 1)

Σ̃(t) = Σ̃(t− 1) ·
(
Ir − η · Σ̃L(t− 1) ·

(
Σ̃L(t− 1) · Σ̃L−1(t− 1)−Σ⋆

r

)
· Σ̃L−3(t− 1)

)
,

where Σ̃L(t), Σ̃(t) ∈ Rr×r is a diagonal matrix with Σ̃L(1) = ηαL−1 ·Σ⋆
r and Σ̃(1) = αIr.135

Remarks. Due to space limitations, we defer the proof to Appendix C.1. By using this particular136

initialization, Theorem 1 proves that (i) the singular vectors of each weight matrix remain static137

throughout the course of learning and exactly align with those of the target matrix M⋆; and (ii)138

the residual singular values (i.e. the d − r singular values) remain constant throughout all GD139
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Figure 3: Depiction of the two phases of learning in the deep matrix factorization problem. Upon
escaping the first saddle point, we enter the edge of stability regime, where the sharpness hovers just
above 2/η.

iterations, regardless of the learning rate (upto divergence). Looping back to Figure 1, these points140

provide insights to why only a few singular values contribute to the oscillations – only a few singular141

subspaces are updated while the rest remain close to initialization (and are invariant). Interestingly,142

Theorem 1 also shows that despite being overparameterized, the end-to-end DLN is exactly a low-rank143

matrix. To see the point more clearly, notice that we can write the end-to-end DLN as144

WL:1(t) = U⋆

[
Σ̃L(t) 0
0 0

]
· . . . ·

[
Σ̃(t) 0
0 αId−r

]
V⋆⊤ = U⋆

[
Σ̃L(t) · Σ̃L−1(t) 0

0 0

]
V⋆⊤.

Thus, WL:1(t) is exactly a rank-r matrix, where r is the rank of M⋆. We empirically corroborate145

our theory in Figure 2, where we show that indeed the singular vectors immediately align with those146

of the target’s singular vectors.147

Furthermore, by the singular vector invariance property, notice that we can rewrite the loss as148

1

2
∥WL:1(t)−M⋆∥2F =

1

2
∥ Σ̃L(t) · Σ̃L−1(t)︸ ︷︷ ︸

=:ΣL:1(t)

−Σ⋆∥2F =
1

2

d∑
i=1

(σi(WL:1(t))− σ⋆
i )

2
, (5)

where we use the notation σ⋆
i = σi(M

⋆) for simplicity. Thus, we can simplify the loss in terms of149

the singular values alone. This loss is also separable – we can consider a single index i one at a time.150

This observation will become useful in the next section for analyzing the edge of stability.151

3.2 Edge of Stability in Deep Linear Networks152

Generally, the learning dynamics of deep networks with a large learning rate undergo two phases: (i)153

progressive sharpening and (ii) edge of stability. For DLNs, we observe the same two phases, which154

we describe in more detail below:155

1. (Saddle Escape & Progressive Sharpening). Recall that we use a small initialization scale156

α ∈ [0, 1] to initialize the weight matrices. This induces a saddle-to-saddle training dynamic [31],157

where the singular values are incrementally learned one at a time [11, 32, 25]. We observe that158

the escape of the first saddle point corresponds to the progressive sharpening stage, where the159

sharpness of the Hessian continually rises.160

2. (Edge of Stability). Upon escaping the first saddle point, we enter the edge of stability regime,161

where the sharpness hovers slightly above or below 2/η. Within this regime, the oscillations in162

the singular values begin to occur, which corresponds to oscillations in the training loss. We163

observe that the oscillations may occur within a 2-period fixed orbit.164

Both of these stages are depicted in Figure 3. Our objective is to rigorously analyze the behavior at165

the edge of stability. To do so, throughout the rest of this section, by Theorem 1, we will consider the166

following loss in terms of the singular values:167

L(θi) = 1

2

 L∏
j=1

wi
ℓ − σ⋆

i

2

, (6)
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α = 0.01 α = 0.10 α = 0.30

Figure 4: Observing the balancedness between the singular value initialized to 0 and a singular value
initialized to α. The scattered points are successive GD iterations (going left to right). For a larger
value of α, the initial gap between the two values is larger, but quickly gets closer over more GD
iterations.

where we denote wi
ℓ(t) = σi(Wℓ(t)) and θi =

{
wi

ℓ

}L
ℓ=1

. Equipped with L(·), we present a result168

stating the sharpness of the loss in terms of the singular values.169

Lemma 2 (Informal). Consider the objective function L(·) in Equation (6). Suppose we run GD170

in (2) with initialization wi
L(0) = 0 and wi

ℓ(0) = α, ∀ℓ ∈ [L− 1]. Then at convergence, the Hessian171

is a rank-1 matrix and the sharpness is given by L′′(θi) = 2σ
⋆(2− 2

L )
i .172

We prove this in Lemma 2 in Appendix C. Now, before we proceed, we will first state a conjecture173

that we use for the main result.174

Conjecture 1. Suppose we run GD in (2) with learning rate η = 1

σ
⋆(2− 2

L )
i

and the initialization in175

Equation (3). Then, as t → ∞,176

|wi
L(t)− wi

ℓ(t)| → 0 ∀i ∈ [r], ∀ℓ ∈ [L− 1].

Recall that by our initialization scheme, wi
L(0) = 0 and wi

ℓ(0) = α for all ℓ ∈ [L− 1]. Thus, except177

for wi
L(t), all of the other singular values across all weight matrices remain balanced throughout all178

iterations of GD.1 Conjecture 1 states that if we pick a learning rate roughly equal to 2 divided by179

the sharpness at the minima2, then throughout the course of learning, wi
L(t) becomes increasingly180

balanced and equal to the rest of the singular values {wi
ℓ(t)}. We provide evidence to support this181

conjecture in Figure 4 and note that this has been rigorously proved for two-layer scalar networks [33].182

Notice that at initialization, the gap is exactly α. Thus, in Figure 4, we observe that for larger values183

of α, the balancing quickly occurs, whereas for smaller values of α, the balancing is immediate.184

Theorem 2 (Periodic Orbit at the Edge of Stability). Consider the objective function L(·) in Equa-185

tion (6), where σ⋆
i is a singular value of a symmetric target matrix M⋆. Let GDη(·) denote one GD186

step with learning rate η:187

GDη(w
i
ℓ(t)) := wi

ℓ(t+ 1) = wi
ℓ(t)− η · ∇wi

ℓ
L(θi(t)),

and define s := σ
⋆ 1

L
i . Then, under Conjecture 1, for any ϵ > 0 and any point wi

ℓ(t) ∈ [s− ϵ, s], there188

exists a learning rate 2
L′′(s) < η < 2

L′′(s)−ϵL′′′(s) such that GDη(GDη(w
i
ℓ(t))) = wi

ℓ(t).189

Sketch of the Proof. We briefly outline the sketch of the proof here and defer the details to190

Appendix C. Since our goal is to demonstrate the edge of stability for deep matrix factorization, we191

first compute the Hessian of the simplified loss in Equation (6) via Lemma 2 in manuscript. Then, we192

establish the connection of the Hessian (as well as sharpness) between the simplified loss (6) and the193

original deep matrix factorization loss (Equation 1) through Lemma 1 in Appendix. Upon establishing194

this connection, in Lemma 2 in Appendix, we prove that GD achieves the smallest sharpness value195

amongst all minima (which is computed to be 2σ⋆2− 2
L

i ). Finally, we prove the occurrence of the edge196

of stability in the loss Equation (6) by proving existence of 2-period orbit oscillation in Theorem 2.197

1Based on the scalar loss, the derivative with respect to each singular value is the same. Hence, by starting
from the same initialization, they remain balanced.

2As opposed to quadratic loss for which using η = 2
∥∇2g(θ)∥ cause the iterates to diverge and blow up.
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Figure 5: Close-up representation of the oscillation in the singular value as a 2-period fixed orbit. For
a specific value of η, the singular value oscillates between only two values indicating a period-2 orbit.

Figure 6: Depiction of the singular values and singular vectors of the end-to-end matrix throughout
the course of learning for different learning rates η. For both learning rates, the singular vectors
remain static and align with those of the target matrix.

Remarks. Theorem 2 shows that for any wi
ℓ(t) within an ϵ-distance from the local minima s, there198

exists a learning rate such that the singular value is a fixed point under consecutive iterations of199

GD even when η > 2
L′′(s) . This theorem proves that the loss do not blow up for a η > 2

L′′(s) (as200

opposed to what descent lemma for GD predicts), but is oscillating in a 2-period orbit. Hence, this201

theorem shows that Edge of Stability is achieved for the loss equation 6 and hence also achieved202

in the original Deep matrix factorization loss equation 1 due to the equivalance of the Hessian. In203

Figure 5, we provide a closer look at the periodicity of the first singular value of the end-to-end DLN.204

To establish Theorem 2, we used two assumptions. The first comes from Conjecture 1 to consider205

that the unbalanced singular value at initialization will become balanced with the rest of them. The206

second assumption comes from the symmetric structure of M⋆, which was needed to connect the207

Hessian of the singular value loss to the overall loss, as outlined in the sketch proof. However, this is208

simply an artifact of the analysis—the results (including Theorem 1), as we consider non-symmetric209

matrices throughout all of our experiments.210

Furthermore, note that Theorem 2 establishes the periodicity of the oscillations for the loss function211

L(·), considering only a specific singular value σ⋆
i . If we pick a learning rate η that falls within the212

specified range for both, say σ⋆
1 and σ⋆

2 , we will observe periodic orbits for both singular values.213

However, if we select a learning rate to induce oscillations in σ⋆
3 , it may be too large for σ⋆

1 , potentially214

leading to chaos and causing the overall loss to diverge. In Figure 6 and Figure 14 (Appendix), note215

that weights with a larger value of sharpness will have a high amplitude in oscillations. Based on the216

computed sharpness value, this implies that larger singular values have higher sharpness values and,217

hence, have higher oscillations.218

Lastly, we briefly discuss the relationship between ours and existing results. There exists a large219

literature of work that focus on studying oscillations and chaos in dynamical systems [34–36]. For220

example, Chen et al. [37] analyzed the various phases of oscillation: catapult, periodic, and chaotic221

phases for GD in a quadratic regression problem with increasing learning rate. Chen et al. [23]222

analyzed the period-2 orbit for oscillations for a family of scalar functions. Our work focuses on orbits223

in deep linear networks, provided by the key insight in that the singular vectors remain invariant.224
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4 Experimental Results225

This section is organized as follows. Firstly, in Section 4.1, we present additional experimental results226

to support our theory on DLNs. Secondly, in Section 4.2, we present results on the edge of stability227

in nonlinear networks and their relationship to DLNs.228

4.1 Simplicity Biases and Oscillations in Deep Linear Networks229

Simplicity Bias. In this section, we present additional synthetic results on the simplicity biases230

inherent in GD for learning DLNs. Here, the objective is to showcase the validity of Theorem 1231

for both small and large learning rates. To this end, we generate a low-rank matrix M⋆ ∈ Rd×d,232

where d = 100 with rank r = 5 and consider the deep matrix factorization problem. We initialize233

with scale α = 0.01 and run GD on each of the factors with learning rates η = 75, 145. In Figure 6,234

we display the singular values throughout the course of learning and the angle between the target’s235

singular vectors and those of the end-to-end DLN for both learning rates. As stated in Theorem 1, the236

singular vectors in both cases exactly align with each other, despite the learning rates. Furthermore,237

the residual singular values are exactly 0 throughout the course of learning. For η = 145, we observe238

oscillations in the first singular value as we enter the edge of stability due to the large learning rate.239
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Figure 7: Range of oscillations of the
singular values of end-to-end DLN.

Edge of Stability. Within the edge of stability regime, we240

observe that the range of oscillations is highly on the learning241

rate η. To this end, we perform an experiment where we242

vary the learning rate η and compute the amplitude of the243

oscillations under the same experimental setup as above,244

but with a target matrix rank of r = 3. In Figure 7, we245

show that as η increases, the oscillation in the singular value246

starts increasing progressively. When η ∈ (145, 162), the247

range of oscillation increases only in the first singular value,248

while the other singular values do not show any oscillation.249

For η > 165, oscillations occur in the first two singular250

values and progressively increase with η, while the rest of251

the singular values remain constant. From Figure 6, we252

observe that as the oscillations occur for the singular values sequentially, while the singular vectors253

stay aligned throughout.254

Figure 8: Sharpness of the DLN over
GD iterations.

While the edge of stability phenomenon persists across255

a wide range of deep network architectures and datasets,256

there are specific cases in which this phenomenon does not257

quite occur. For example, Cohen et al. [16] state that one258

of these caveats is that for specific networks (shallow) or259

simple datasets, “the sharpness does not rise that much”.260

We observe that this is exactly the case for the DLN, which261

we demonstrate in Figure 8. In Figure 8, the dashed line262

represents 2/η, and clearly, the sharpness value plateaus263

far below this value, despite the training loss going to zero.264

At a high level, our theory predicts this phenomenon. By265

Lemma 2, it is given by 2σ
⋆(2− 2

L )
i , and so if this value is266

less than 2/η, the DLN will not enter the edge of stability. This result provides deeper insights into267

when the edge of stability occurs. For specific learning rates, the phenomenon is not invoked.268

4.2 Benign Oscillations in Deep Nonlinear Networks269

In this section, we bridge the connection between our observations in DLNs with deep neural networks270

with non-linear activation layers. To this end, we consider a four layer feed-forward neural network271

(i.e., MLP) with hidden layer size in each unit of 200 with ReLU activations. We use this deep272

network to classify images on 20k-subsampled CIFAR-10 [38] and MNIST [39] datasets. For the273
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MNIST Dataset with 4-Layer MLP CIFAR-10 Dataset with 4-Layer MLP

Figure 9: Prevalence of oscillatory behaviors and singular vector invariance in 4-layer networks with
ReLU activations.

loss function, we use the MSE loss3 by converting the ground-truth labels into one-hot vectors:274

L(W4,W3,W2,W1) = ∥Y −W4ρ(W3ρ(W2ρ(W1X)))∥2F, (7)

where ρ(·) is the ReLU function, X and Y are the data and labels stacked as matrices, respectively4.275

For both networks, we intentionally choose a large learning rate to provoke oscillations at edge276

of stability. For each experiment, we plot the training loss, the sharpness, the singular values of277

W3,W2,W1 and the subspace distance for the left singular vector for each layer across successive278

iterations, which is defined as:279

Subspace Distance = r − ∥Ur(W(t))⊤Ur(W(t+ 1))∥2F. (8)

The subspace distance characterizes the stationarity of the singular vectors with respect to time.280

In Figure 9, we observe that for both the MNIST and CIFAR-10 datasets, the training loss and281

accuracy demonstrate significant benign oscillatory behavior, and the sharpness value hovers around282

2/η. This indicates that gradient descent is operating at the edge of stability. Similar to DLNs,283

damped oscillations occur in the top 5 singular values, while the last 5 singular values remain the284

same as they were at initialization. Overall, these results suggest that the behavior of nonlinear285

networks at the edge of stability is well captured by linear networks, with two exceptions: (i) damped286

oscillations occur in the singular values for nonlinear networks, as opposed to free oscillations in287

linear networks; and (ii) the singular vector subspace shows momentary spiking in nonlinear networks,288

whereas it remains zero throughout in linear networks. The primary reason for these differences is289

the ReLU activation function, which nonetheless provides valuable insights into this phenomenon.290

5 Conclusion291

In this work, we unveiled an intriguing phenomenon: in the edge of stability regime, oscillations in292

the training loss are largely an artifact of oscillations occurring within a minimal invariant subspace.293

We analyze this phenomenon by focusing on the deep matrix factorization problem, demonstrating294

that deep linear networks exhibit very similar behaviors to their nonlinear counterparts. We showed295

that oscillations in linear networks may occur as a 2-period fixed orbit depending on the learning rate.296

We provided extensive empirical results corroborating our theory and connecting our results on linear297

networks to those on nonlinear networks.298

3Sharpness for cross entropy loss drops down to zero at the end of training [16].
4Here, we ignore the bias terms of the network for simplicity in exposition.
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440

Appendix441

442

This Appendix is organized as follows. In Section A, we survey, summarize, and highlight the differ-443

ences between our work and the related literature. In Section B, we provide additional experiments,444

namely (i) experiments with different initialization of the DLN; (ii) more experiments at the edge of445

stability in DLNs; (iii) more experiments at the edge of stability in MLPs. In Section C, we present446

the deferred proofs in detail. Lastly, in Section D, we provide additional results based on our theory,447

which may be of independent interest.448

For the experiments on nonlinear networks, we use an A40 NVIDIA GPU, and otherwise run449

experiments a MacBook Pro with M2 Pro Chip.450

A Related Work451

Implicit Bias at the Edge of Stability. Due to the important practical implications of the edge of452

stability, there has been an explosion of research dedicated to understanding this phenomenon and its453

implicit regularization properties. Here, we survey a few of these works. Damian et al. [17] explained454

edge of stability through a mechanism called “self-stabilization”, where they showed that during455

the momentary divergence of the iterates along the sharpest eigenvector direction of the Hessian,456

the iterates also move along the negative direction of the gradient of the curvature, which leads to457

stabilizing the sharpness to 2/η. Agarwala et al. [40] proved that second-order regression models (the458

simplest class of models after the linearized NTK model) demonstrate progressive sharpening of the459

NTK eigenvalue towards a slightly different value than 2/η. Arora et al. [41] mathematically analyzed460

the edge of stability, where they showed that the GD updates evolve along some deterministic flow461

on the manifold of the minima. Lyu et al. [42] showed that the normalization layers had an important462

role in the edge of stability – they showed that these layers encouraged GD to reduce the sharpness of463

the loss surface and enter the EOS regime. Ahn et al. [43] established the phenomenon in two-layer464

networks and find phase transitions for step-sizes in which networks fail to learn “threshold” neurons.465

Wang et al. [44] also analyze a two-layer network, but provide a theoretical proof for the change in466

sharpness across four different phases. [45] analyzed the edge of stability in diagonal linear networks467

and found that oscillations occur on the sparse support of the vectors. Lastly, Wu et al. [46] analyzed468

the convergence at the edge of stability for constant step size GD for logistic regression on linearly469

separable data.470

Edge of Stability in Toy Functions. To analyze the edge of stability in slightly simpler settings,471

many works have constructed scalar functions to analyze the prevalence of this phenomenon. For472

example, Chen et al. [23] studied a certain class of scalar functions and identified conditions in which473

the function enters the edge of stability through a two-step convergence analysis. Wang et al. [12]474

showed that the edge of stability occurs in specific scalar functions, which satisfies certain regularity475

conditions and developed a global convergence theory for a family of non-convex functions without476

globally Lipschitz continuous gradients. Lastly, Zhu et al. [22] analyzed local oscillatory behaviors477

for 4-layer scalar networks with balanced initialization. Overall, all of these works showed that the478

necessary condition for the edge of stability to occur is that the second derivative of the loss function479

is non-zero, even though they assumed simple scalar functions. Our work takes one step further to480

analyze the prevalence of the edge of stability in DLNs. Although our loss simplifies to a loss in481

terms of the singular values, they precisely characterize the dynamics of the DLNs for the deep matrix482

factorization problem.483

Deep Linear Networks. Over the past decade, many existing works have analyzed the learning484

dynamics of DLNs as a surrogate for deep nonlinear networks to study the effects of depth and485

implicit regularization [25, 21, 6, 47]. Generally, these works focus on unveiling the dynamics of a486

phenomenon called “incremental learning”, where small initialization scales induce a greedy singular487

value learning approach [11, 32, 25], analyzing the learning dynamics via gradient flow [25, 48, 6],488

or showing that the DLN is biased towards low-rank solution [29, 6, 11], amongst others. However,489

these works do not consider the occurence of the edge of stability in such networks. On the other490

hand, while works such as those by Yaras et al. [29] and Kwon et al. [11] have similar observations in491
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that the weight updates occur within an invariant subspace, they do not analyze the edge of stability492

regime.493

Difference with related works on GD oscillation Recently, [49] empirically found that in SGD,494

catapults occur in a low-dimensional subspace spanned by the top eigenvectors of the tangent kernel.495

In our paper, we theoretically analyze this oscillatory phenomenon for Gradient Descent in deep496

linear networks. Our theoretical analysis and empirical findings further justify the observations in497

their paper. [50] found that oscillations occur on groups of opposing signals in the training data,498

which constitute the loss. These opposing signals have features high in magnitude. Our work further499

supports and justifies this observation. We observe that features with large strengths (which are500

the singular values σ1 > σ2 > ...σr) demonstrate an increasing tendency for oscillations in their501

corresponding singular loss (Figure 14). This is because the sharpness achieved by GD on each502

singular value loss is σ2− 2
L

i , and higher sharpness demonstrates large oscillations for a fixed learning503

rate.504

B Additional Experiments505

In this section, we provide additional results to supplement those in the main paper.506

B.1 Choice of Initialization507

To analyze DLNs, we considered a particular initialization that was also similarly considered in the508

literature:509

WL(0) = 0, Wℓ(0) = αId, ∀ℓ ∈ [L− 1], (9)
where α ∈ [0, 1] is a small constant. In this section, we investigate the edge of stability regime, where510

we consider α-scaled orthogonal matrices instead:511

Wℓ = αPℓ ∈ Rd×d, where P⊤
ℓ Pℓ = Id.

To this end, we consider the deep matrix factorization problem with a target matrix M⋆ ∈ Rd×d,512

where d = 100, r = 5, and α = 0.01. We use GD with a large learning rate η = 160 to update513

the weight matrices. In Figure 10, we display plots of the singular values and vectors throughout514

the course of GD. Here, we observe that oscillations in both the singular values and vectors occur,515

whereas with the initialization we consider, oscillations only occur on the singular values. Thus, the516

analysis in this case becomes difficult, and does not directly align with the observations in Section 4.

Figure 10: Demonstrating the prevalence of the edge of stability and their oscillations in DLNs with
balanced orthogonal initialization. Here, we observe oscillations in both the singular values and
vectors.

517

Next, we investigate the possibility of extending our analysis to the case in which we initialize with518

one zero and the rest orthogonal matrices:519

WL(0) = 0, Wℓ(0) = αPℓ, ∀ℓ ∈ [L− 1]. (10)
For this case, we observe an interesting simplicity bias as well, where after some GD iteration T , the520

decomposition in Theorem 1 similarly holds, but with different singular vectors for the intermediate521

matrices. We formally present this as a conjecture in Conjecture 2.522
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Left Singular Vectors Right Singular Vectors

Figure 11: Empirically verifying Conjecture 2 by showing that after some GD iterations, the singular
vectors of the intermediate matrices align, displaying singular vector invariance.

Conjecture 2 (Invariance in Orthogonally Initialized DLNs.). Suppose M⋆ ∈ Rd×d be a rank-r523

matrix with SVD M⋆ = U⋆Σ⋆V⋆⊤. Let Wℓ(t) ∈ Rd×d denote the ℓ-th weight matrix at GD (2)524

iterate t. Then, after some t ≥ T , each weight matrix admits the following decomposition:525

WL(t) = U⋆

[
ΣL(t) 0
0 0

] [( 1∏
i=L−1

Pi

)
V⋆

]⊤
, (11)

Wℓ(t) =

[(
1∏

i=l

Pi

)
V⋆

] [
Σℓ(t) 0
0 αId−r

][( 1∏
i=l−1

Pi

)
V⋆

]⊤
, ∀ℓ ∈ [2, L− 1], (12)

W1(t) = P1V
⋆

[
Σ1(t) 0
0 αId−r

]
V⋆⊤, (13)

where WL(0) = 0 and Wℓ(0) = αPl, ∀ℓ ∈ [L− 1].526

We empirically verify Conjecture 2 in Figure 11, where we compute the distance between the predicted527

left and right singular vectors in Conjecture 2 and the singular vectors of the weight matrices across528

GD. We observe that while the distance is large at initialization, the distance quickly goes to zero529

after a few iterations, verifying the conjecture. Furthermore, we illustrate in Figures 12 and 13, that530

even for this initialization, the oscillations only occur in the singular value space. Thus, it is possible531

to relax our initialization assumptions, but this requires a slightly more delicate analysis.532

Figure 12: Demonstrating the edge of stability phenomenon, where the initialization is orthogonal
rather than identity with learning rate η = 160.

B.2 More Experiments on Deep Linear Networks533

In this section, we provide more experimental results on the edge of stability in DLNs. Specifically,534

in Figure 14, we provide plots on how the oscillations change as a function of the learning rate η. As535

we increase the learning rate, which corresponds to the columns from top to bottom, we can see that536

the oscillations occur in the top singular value, and then progressively occurs in the second singular537

value. For a learning rate of η = 92, we observe slight oscillations in the third singular value, but538

there is overall chaos in the learning dynamics. This is predicted by our analysis in Theorem 2 – the539

learning rate is out of the specified range and hence the orbit no longer occurs. These figures were540

15



Figure 13: Demonstrating the edge of stability phenomenon, where the initialization is orthogonal
rather than identity with learning rate η = 172.

generated using normal random initialization with scale α = 0.1 and a target matrix with size d = 50541

and rank r = 3. We use random initialization to demonstrate that our observations hold without542

making the assumptions on initialization.543
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Train Loss (η = 60) Layer 1 σi (η = 60) Layer 2 σi (η = 60) Layer 3 σi (η = 60)

Train Loss (η = 70) Layer 1 σi (η = 70) Layer 2 σi (η = 70) Layer 3 σi (η = 70)

Train Loss (η = 80) Layer 1 σi (η = 80) Layer 2 σi (η = 80) Layer 3 σi (η = 80)

Train Loss (η = 82) Layer 1 σi (η = 82) Layer 2 σi (η = 82) Layer 3 σi (η = 82)

Train Loss (η = 85) Layer 1 σi (η = 85) Layer 2 σi (η = 85) Layer 3 σi (η = 85)

Train Loss (η = 90) Layer 1 σi (η = 90) Layer 2 σi (η = 90) Layer 3 σi (η = 90)

Train Loss (η = 92) Layer 1 σi (η = 92) Layer 2 σi (η = 92) Layer 3 σi (η = 92)

Figure 14: Depiction of the edge of stability progressively occuring on each singular value depending
on the learning rate η.
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B.3 More Experiments on Deep Nonlinear Networks544

In this section, we consider a 4-layer MLP and demonstrate the prevalence of the edge of stability545

with subsets of the MNIST and CIFAR-10 datasets for varying values of η. The network architecture546

is the same as the one considered in the main text in Section 4.2.547

η = 0.1 η = 0.8

η = 1.0 η = 1.5

Figure 15: Oscillations in singular values of layers in 4 layer MLP with ReLU activations trained on
CIFAR-10 dataset (20k) at various learning rates.
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η = 0.1 η = 0.8

η = 1.0 η = 1.5

Figure 16: Oscillations in singular values of layers in 4 layer MLP with ReLU activations trained on
MNIST dataset (20k) at various learning rates.
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η = 0.1 η = 0.8

η = 1.0 η = 1.5

Figure 17: Oscillations in singular values of layers in 6 layer MLP with ReLU activations trained on
CIFAR-10 dataset (20k) at various learning rates.
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η = 0.1 η = 0.8

η = 1.0 η = 1.5

Figure 18: Oscillations in singular values of layers in 6 layer MLP with ReLU activations trained on
MNIST dataset (20k) at various learning rates.
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C Deferred Proofs548

In this section, we provide detailed proofs of the theory presented in the main paper. This section is549

split into two: (i) proofs for the simplicity biases in DLNs and (ii) proofs for the edge of stability.550

C.1 Simplicity Biases in Deep Linear Networks551

Theorem 1. Suppose M⋆ ∈ Rd×d be a rank-r matrix with SVD M⋆ = U⋆Σ⋆V⋆⊤. Let Wℓ(t) ∈552

Rd×d denote the ℓ-th weight matrix at GD iterate t. Then, each weight matrix has the following553

decomposition for all t ≥ 1:554

WL(t) = U⋆

[
Σ̃L(t) 0
0 0

]
V⋆⊤, Wℓ(t) = V⋆

[
Σ̃(t) 0
0 αId−r

]
V⋆⊤, ∀ℓ ∈ [L− 1], (14)

where555

Σ̃L(t) = Σ̃L(t− 1)− η ·
(
Σ̃L(t− 1) · Σ̃L−1(t− 1)−Σ⋆

r

)
· Σ̃L−1(t− 1)

Σ̃(t) = Σ̃(t− 1) ·
(
Ir − η · Σ̃L(t− 1) ·

(
Σ̃L(t− 1) · Σ̃L−1(t− 1)−Σ⋆

r

)
· Σ̃L−3(t− 1)

)
,

where Σ̃L(t), Σ̃(t) ∈ Rr×r is a diagonal matrix with Σ̃L(1) = ηαL−1 ·Σ⋆
r and Σ̃(1) = αIr.556

Proof. We will prove using mathematical induction.557

Base Case. For the base case, we will show that the decomposition holds for each weight matrix at558

t = 1. The gradient of f(Θ) with respect to Wℓ is559

∇Wℓ
f(Θ) = W⊤

L:ℓ+1 · (WL:1 −M⋆) ·W⊤
ℓ−1:1.

For WL(1), we have560

WL(1) = WL(0)− η · ∇WL
f(Θ(0))

= WL(0)− η · (WL:1(0)−M⋆) ·W⊤
L−1:1(0)

= ηαL−1M⋆

= U⋆ ·
(
ηαL−1 ·Σ⋆

)
·V⋆⊤

= U⋆

[
Σ̃L(1) 0

0 0

]
V⋆⊤.

Then, for each Wℓ(1) in ℓ ∈ [L− 1], we have561

Wℓ(1) = Wℓ(0)− η · ∇Wℓ
f(Θ(0))

= αId,

where the last equality follows from the fact that WL(0) = 0. Finally, we have562

Wℓ(1) = αV⋆V⋆⊤ = V⋆

[
Σ̃(1) 0
0 αId−r

]
V⋆⊤, ∀ℓ ∈ [L− 1].

Inductive Step. By the inductive hypothesis, suppose that the decomposition holds. Then, notice563

that we can simplify the end-to-end weight matrix to564

WL:1(t) = U⋆

[
Σ̃L(t) · Σ̃L−1(t) 0

0 0

]
V⋆⊤,

for which we can simplify the gradients to565

∇WL
f(Θ(t)) =

(
U⋆

[
Σ̃L(t) · Σ̃L−1(t)−Σ⋆

r 0
0 0

]
V⋆⊤

)
·V⋆

[
Σ̃L−1(t) 0

0 0

]
V⋆⊤

= U⋆

[(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆

r

)
· Σ̃L−1(t) 0

0 0

]
V⋆⊤,
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for the last layer matrix, and similarly,566

∇Wℓ
f(Θ(t)) = V⋆

[
Σ̃L(t) ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆

r

)
· Σ̃L−2(t) 0

0 0

]
V⋆⊤, ℓ ∈ [L− 1],

for all other layer matrices. Thus, for the next GD iteration, we have567

WL(t+ 1) = WL(t)− η · ∇WL
(Θ(t))

= U⋆

[
Σ̃L(t)− η ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆

r

)
· Σ̃L−1(t) 0

0 0

]
V⋆⊤

= U⋆

[
Σ̃L(t+ 1) 0

0 0

]
V⋆⊤.

Similarly, we have568

Wℓ(t+ 1) = Wℓ(t)− η · ∇Wℓ
(Θ(t))

= V⋆

[
Σ̃(t)− η · Σ̃L(t) ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆

r

)
· Σ̃L−2(t) 0

0 αId−r

]
V⋆⊤

= V⋆

[
Σ̃(t) ·

(
Ir − η · Σ̃L(t) ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆

r

)
· Σ̃L−3(t)

)
0

0 αId−r

]
V⋆⊤

= V⋆

[
Σ̃(t+ 1) 0

0 αId−r

]
V⋆⊤,

for all ℓ ∈ [L− 1]. This concludes the proof.569

570

C.2 Edge of Stability in Deep Linear Networks571

Throughout this section, for simplicity in notation, we denote σi = σ⋆
i , and this is clarified where572

necessary. Here, we give a brief overview of the proofs provided in this section.573

In Lemma 1, we establish the relation of the Hessian of the original deep matrix factorization loss574

and loss on the singular value. Our Lemma shows that the eigenvalues of the Hessian of the deep575

matrix factorization when trained with GD are given as 2σ2− 2
L

i and the rest N4L2 − r eigenvalues576

are zero. Here, we establish that under assumption that target matrix is symmetric, analyzing the577

eigenvalues of the Hessian of the singular values is sufficient. Then, in Lemma 2, we derive that the578

sharpness achieved by GD on the singular value loss is 2σ2− 2
L

i . This is in fact the minimum value579

of sharpness achieved among all global minima points. Finally, in Theorem 2, we prove that edge580

of stability can be observed in the singular value loss by showing the existence of a 2-period orbit581

oscillations for a learning rate occurring in the edge of stability.582

Lemma 1. Consider running GD on the loss defined in Equation (1) with a symmetric matrix583

M⋆ ∈ Rd×d. Then, the eigenvalues of the Hessian with respect to the end-to-end DLN of Equation (1)584

are equivalent to those of the loss given by585

L(θi) = 1

2

 L∏
j=1

wi
ℓ − σi

2

, ∀i ∈ [d].

586

Proof. We can express the objective function for deep matrix factorization in a vectorized form:587

f(Θ) :=
1

2
∥WL:1 −M⋆∥2F =

1

2
∥vec(WL:1)− vec(M⋆)∥22.

Then, each block of the Hessian ∇2
Θf(Θ) ∈ Rd2L×d2L is given as588 [

∇2
Θf(Θ)

]
ℓ,m

= ∇vec(Wℓ)f(Θ)∇⊤
vec(Wm)f(Θ) ∈ Rd2×d2

.
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By the vectorization trick, each vectorized layer matrix has an SVD of the form vec(Wℓ) =589

vec(UℓΣℓV
⊤
ℓ ) = (Vℓ ⊗Uℓ) · vec(Σℓ). Then, by Theorem 1, notice that we have590

∇vec(Wℓ)f(Θ(t)) = (Vℓ ⊗Uℓ) · ∇vec(Σℓ)f(Θ(t)).

Now, each block of the Hessian is given by591

∇vec(Wℓ)f(Θ)∇⊤
vec(Wm)f(Θ) = ∇⊤

vec(Wm) · (Vℓ ⊗Uℓ) · ∇vec(Σℓ)f(Θ)

= (Vℓ ⊗Uℓ) · ∇⊤
vec(Wm)f(Θ)∇vec(Σℓ)f(Θ)

= (Vℓ ⊗Uℓ) · ∇⊤
vec(Σm)∇vec(Σℓ)f(Θ) · (Vm ⊗Um)⊤,

where we applied the invariance property in the last line. Notice that the curvature of the Hessian of592

the loss with respect to the original weight matrices simply depend on the curvature of the loss with593

respect to the singular values.594

Now, let wi
ℓ denote the i-th singular value entry of Σℓ. Let us define wℓ ∈ Rd as a vector containing595

all of the diagonal elements of Σℓ,596

wℓ = [w1
ℓ w2

ℓ . . . wd
ℓ ]

⊤.

Note that Σℓ = diag(wℓ), so, ∇vec(Σℓ)f(Θ) = ∇wℓ
f(Θ) ⊗ e1. This is because vectorizing Σℓ597

pads additional d zeroes. So taking the second derivative, gives us the he relationship between598

∇⊤
vec(Σm)f(Θ)∇vec(Σℓ)f(Θ) and ∇⊤

wm
f(Θ)∇wℓ

f(Θ) which is given as:599

∇⊤
vec(Σm)f(Θ)∇vec(Σℓ)f(Θ)︸ ︷︷ ︸

Rd2×d2

= ∇⊤
wm

f(Θ)∇wℓ
f(Θ)︸ ︷︷ ︸

Rd×d

⊗(e1e
⊤
1 ),

where e1 ∈ Rd is the first elementary basis vector. This result also states that the non-zeros600

eigenvalues of ∇⊤
vec(Σm)f(Θ)∇vec(Σℓ)f(Θ) are the same as those of ∇⊤

wm
f(Θ)∇wℓ

f(Θ). Then,601

notice that ∇⊤
wm

f(Θ)∇wℓ
f(Θ) can be computed as602 [

∇⊤
wm

f(Θ)∇wℓ
f(Θ)

]
i,j

=
∂2L

∂wj
l ∂w

i
m

For i = j and i > r,603 (
∂2L

∂wj
l ∂w

i
m

)
=

∏
k ̸=l

wi
k

∏
k ̸=m

wi
k

+

(∏
k

wi
k − σi

) ∏
k ̸=l,k ̸=m

wk


So, if either l ̸= L and m ̸= L, then

(
∂2L

∂wj
l ∂w

i
m

)
= 0 since wi

L = 0, for all i. This makes604

∇⊤
wm

f(Θ)∇wℓ
f(Θ) to be a diagonal matrix with rank r. Hence, the overall Hessian for deep matrix605

factorization is given by606

∇2
Θf(Θ) =

[
∇vec(Wℓ)∇vec(Wm)⊤f(Θ)

]
l,m=1,2,...,L

=
[
(Vℓ ⊗Ul)∇vec(Σm)⊤∇vec(Σl)f(Θ(t))(Vm ⊗Um)⊤

]
l,m=1,2,...,L

=
[
(Vℓ ⊗Ul)

(
∇Wm

∇Wℓ
f(Θ(t))⊗ (e1e

⊤
1 )
)
(Vm ⊗Um)⊤

]
l,m=1,2,...,L

=

(Vℓ ⊗Ul)

( ∂2L
∂wj

l ∂w
i
m

)
i,j

⊗ (e1e
⊤
1 )

 (Vm ⊗Um)⊤


l,m=1,2,...,L

Now, since M is a symmetric matrix, we have Uℓ = Vℓ and Um = Vm, so the Hessian is simplified607

to:608

∇2
Θf(Θ) =

(Vℓ ⊗Vℓ)

( ∂2L
∂wj

l ∂w
i
m

)
i,j

⊗ (e1e
⊤
1 )

 (Vm ⊗Vm)⊤


l,m=1,2,...,L
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In Lemma 2, we calculated
(

∂2L
∂wi

l∂w
i
m

)
l,m

, which is a matrix representing the second-order partial609

derivatives of the loss function L with respect to the weights wi
l and wi

m.610

At convergence for gradient descent (GD), this matrix was found to be rank 1 with eigenvalue 2σ2− 2
L

i .611

This means that at convergence, the Hessian matrix
(

∂2L
∂wi

l∂w
i
m

)
l,m

has only one non-zero eigenvalue612

2σ
2− 2

L
i , indicating that it is a rank 1 matrix. Let us denote613

H1 =

( ∂2L
∂wi

l∂w
j
m

)
l,m=1,.,L


i,j=1,..,n

=





(
∂2L

∂w1
l ∂w

1
m

) (
∂2L

∂w1
l ∂w

2
m

) (
∂2L

∂w1
l ∂w

3
m

)
· · ·

(
∂2L

∂w1
l ∂w

n
m

)(
∂2L

∂w2
l ∂w

1
m

) (
∂2L

∂w2
l ∂w

2
m

) (
∂2L

∂w2
l ∂w

3
m

)
· · ·

(
∂2L

∂w2
l ∂w

N
m

)(
∂2L

∂w3
l ∂w

1
m

) (
∂2L

∂w3
l ∂w

2
m

) (
∂2L

∂w3
l ∂w

3
m

)
· · ·

(
∂2L

∂w3
l ∂w

n
m

)
...

...
...

. . .
...(

∂2L
∂wn

l ∂w1
m

) (
∂2L

∂wn
l ∂w2

m

) (
∂2L

∂wn
l ∂w3

m

)
· · ·

(
∂2L

∂wn
l ∂wn

m

)

=




H1(1, 1) H1(1, 2) H1(1, 3) · · · H1(1, L)
H1(2, 1) H1(2, 2) H1(2, 3) · · · H1(2, L)
H1(3, 1) H1(3, 2) H1(3, 3) · · · H1(3, L)

...
...

...
. . .

...
H2(L, 1) H2(L, 2) H2(L, 3) · · · H2(L,L)

and also denote614

H2 =

( ∂2L
∂wi

l∂w
j
m

)
i,j=1,..,n


l,m=1,.,L

=





(
∂2L

∂wi
1∂w

j
1

) (
∂2L

∂wi
1∂w

j
2

) (
∂2L

∂wi
1∂w

j
3

)
· · ·

(
∂2L

∂wi
1∂w

j
n

)(
∂2L

∂wi
2∂w

j
1

) (
∂2L

∂wi
2∂w

j
2

) (
∂2L

∂wi
2∂w

j
3

)
· · ·

(
∂2L

∂wi
2∂w

j
L

)
(

∂2L
∂wi

3∂w
j
1

) (
∂2L

∂wi
3∂w

j
2

) (
∂2L

∂wi
3∂w

j
3

)
· · ·

(
∂2L

∂wi
3∂w

j
n

)
...

...
...

. . .
...(

∂2L
∂wi

L∂wj
1

) (
∂2L

∂wi
L∂wj

2

) (
∂2L

∂wi
L∂wj

3

)
· · ·

(
∂2L

∂wi
L∂wj

L

)

=




H2(1, 1) H2(1, 2) H2(1, 3) · · · H2(1, L)
H2(2, 1) H2(2, 2) H2(2, 3) · · · H2(2, L)
H2(3, 1) H2(3, 2) H2(3, 3) · · · H2(3, L)

...
...

...
. . .

...
H2(L, 1) H2(L, 2) H2(L, 3) · · · H2(L,L)

Note that H1 and H2 are related by a permutation matrix, since the hessian is obtained in each case,615

are after rearranging the variables, the eigenvalues of H1 and H2 are the same.616

25



Next, in lemma-2, we obtained the diagonal blocks of H1 , i.e, H1(i, i) which was rank 1 and had617

eigenvalue to be 2s
2− 2

L
i . And the off-diagonal blocks H1(i, j) = 0.618

So, this makes, H1 to be a block diagonal matrix with eigenvalues ∥H1(1, 1)∥2 =619

2s
2− 2

L
1 , ∥H1(2, 2)∥2 = 2s

2− 2
L

2 , .., ∥H1(r, r)∥2 = 2s
2− 2

L
r (which are the only eigenvalue of each620

block).621

For H2, at convergence for GD, all the blocks are same, H2(1, 1) = H2(1, 2) = ...H2(L,L) and622

each such block is diagonal with rank r. So, the overall rank of the block matrix H2 is still r (as623

repitition of the block matrix merely increases the number of zero eigenvalues but keeps the non-zero624

eigenvalues the same).625

Now, establishing the connection between the block matrix whose eigenvalues we derived and the626

hessian of the original loss, we are left with the last step. The Hessian of the original loss:627

∇2
Θf(Θ) =

[
∇vec(Wℓ)∇vec(Wm)⊤f(Θ)

]
l,m=1,2,...,L

=

(Vℓ ⊗Vℓ)

( ∂2L
∂wj

l ∂w
i
m

)
i,j

⊗ (e1e
⊤
1 )

 (Vm ⊗Vm)⊤


l,m=1,2,...,L

=
[
(Vℓ ⊗Vℓ)

(
H2(i, j)⊗ (e1e

⊤
1 )
)
(Vm ⊗Vm)⊤

]
l,m=1,2,...,L

Since, we already showed that H2(i, j) is a rank r matrix with eigenvalues s2−
2
L

i , i− 1, 2, ...r. , note628

that H2(i, j)⊗ (e1e
⊤
1 ) also has the same eigenvalues and rank. Now, we observe that every block629

matrix in ∇2
Θf(Θ) has the same eigenvalues. This is because:630

1. Multiplication by orthogonal matrices (Vm ⊗Vm) and (Vℓ ⊗Vℓ) does not change the rank or631

the eigenvalues of the matrix.632

2. Each block has the same set of orthogonal matrices multiplied on both sides (due to the symmetric633

assumption). So, the eigenvalues and rank of ∇2
Θf(Θ) and H2 are the same.634

With this, we show that that the eigenvalues of the Hessian for GD for the deep matrix factorization635

loss at convergence are 2s
2− 2

L
i , i = 1, 2, ...r.636

Lemma 2. Consider the ith singular value loss on L variables L(wi
L, ..w

i
2, w

i
1) =

1
2 (w

i
L

∏L
l=2 w

i
ℓ−637

σi)
2, then for Gradient descent on the loss with initialization (wi

L(0), ..w
i
2(0), w

i
1(0)) =638

(0, α, α.., α), prior to GD oscillations would converge to a point where the sharpness achieved639

is given as ∥∇2L∥2 = 2s
2− 2

L
i . Furthermore, the sharpness of the final point achieved by Gradient640

Flow is larger provably.641

Proof. For sake of notation and easy proof writing, we will slightly alter the notation to wi
L = x,642

wi
L−1 = y1, wi

L−2 = y2,.., wi
1 = yN , σi = s and L = N + 1. Since, the loss is wrt N + 1 variables,643

we will start by calculating the Hessian matrix ∇2L which will be (N + 1)× (N + 1) symmetric644

matrix. So, given L(x, y1, .., yN ) = 1
2 (x

∏N
j=1 yj − s)2,645

First Derivatives:646

∂L

∂x
=

x

N∏
j=1

yj − s

 ·
N∏
i=1

yi,
∂L

∂yi
=

x

N∏
j=1

yj − s

 · x
N∏
j ̸=i

yj for all i = 1, 2.., N

Second Derivatives:647

∇2
xL =

(
N∏
i=1

yi

)2

, ∇2
yj
L =

x

N∏
i̸=j

yi

2

,
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∇x∇yi
L = ∇yi

∇xL =

x

N∏
j=1

yj − s

 N∏
j ̸=i

yj + x

N∏
j ̸=i

yj

N∏
i=1

yi for all i = 1, 2.., N

∇yi
∇yj

L = x2
N∏

k ̸=j

yk

N∏
k ̸=i

yk+x

x

N∏
j=1

yj − s

 ∏
k ̸=i,k ̸=j

yk for all i = 1, 2.., N and j = 1, 2.., N

Calculating the elementwise Hessian, the (N + 1) × (N + 1) can be written as a block matrix648

structure:649

∇2L(x, y1, .., yN ) =

[
∇2

xL ∇x∇yi
Li=1,2,..N

(∇x∇yiLi=1,2,..N )⊤ (∇yi∇yjL)i,j=1,2,..N

]
where (∇yi

∇yj
L)i,j=1,2,..N is an N ×N matrix with the ijth element being ∇yi

∇yj
L.650

∇x∇yi
L is a (1×N) vector with the ith element being ∇x∇yi

L.651

Putting the expressions for the second order derivatives at the minima (x
∏N

j=1 yj − s) = 0, we get:652

∇2L(x
∏N

j=1 yj=s)(x, y1, .., yN ) =

 (
∏N

i=1 yi)
2

[
x
∏N

j ̸=i yj
∏N

i=1 yi

]
j[

x
∏N

j ̸=i yj
∏N

i=1 yi

]
j

[
x2
∏N

k ̸=j yk
∏N

k ̸=i yk

]
i,j

 =: H

Since, due to same initiaization, all yi’s are same throughout. Note that due to repetition, the matrix653

H can be represented by sum of few rank-1 outer-products as follows:654

H = (

N∏
i=1

yi)
2e1e

⊤
1 +

x N∏
j ̸=i

yj

N∏
i=1

yi


j

e2e
⊤
1 +

x N∏
j ̸=i

yj

N∏
i=1

yi


j

e1e
⊤
2 + x2

N∏
k ̸=j

yk

N∏
k ̸=i

yke2e
⊤
2

where e1 = [1, 0, 0, ...0]⊤ and e2 = 1
N [0, 1, 1, ...1]⊤.655

So, it is easy to observe that the span of the eigenvector of H will be span(e1, e2). Say eigenvector v656

of H is written as v = ae1 + be2 with a2 + b2 = 1, since eigenvector has unit norm. Then we have:657

H(ae1 + be2) = (

N∏
i=1

yi)
2ae1 + ax

N∏
j ̸=i

yj

N∏
i=1

yie2 + bx

N∏
j ̸=i

yj

N∏
i=1

yie2 + bx2
N∏

k ̸=j

yk

N∏
k ̸=i

yke1

= ((

N∏
i=1

yi)
2a+ b

x N∏
j ̸=i

yj

N∏
i=1

yi

)e1 + (a

x N∏
j ̸=i

yj

N∏
i=1

yi

+ bx2
N∏

k ̸=j

yk

N∏
k ̸=i

yk)e2

which shows that H maps span(e1, e2) to itself. We used the fact that e⊤1 e2 = 0 and e⊤1 e1 =658

e⊤2 e2 = 1. Now, by definition of eigenvector:659

H(ae1 + be2) = λ(ae1 + be2)

So, using the above two equations, we get the linear system of equations as follows:660 [
(
∏N

i=1 yi)
2 − λ x

∏N
j ̸=i yj

∏N
i=1 yi

x
∏N

j ̸=i yj
∏N

i=1 yi x2
∏N

k ̸=j yk
∏N

k ̸=i yk − λ

] [
a
b

]
=

[
0
0

]
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Since, a2 + b2 = 1, we can’t have a = 0, b = 0, so it must hold that661

det

[
(
∏N

i=1 yi)
2 − λ x

∏N
j ̸=i yj

∏N
i=1 yi

x
∏N

j ̸=i yj
∏N

i=1 yi x2
∏N

k ̸=j yk
∏N

k ̸=i yk − λ

]
= 0

This gives us a quadratic equation on λ as follows:662

((

N∏
i=1

yi)
2 − λ)(x2

N∏
k ̸=j

yk

N∏
k ̸=i

yk − λ)− (x

N∏
j ̸=i

yj

N∏
i=1

yi)
2 = 0

=⇒ λ2 − λ((

N∏
i=1

yi)
2 + x2

N∏
k ̸=j

yk

N∏
k ̸=i

yk) + (x

N∏
j ̸=i

yj

N∏
i=1

yi)
2 − (x

N∏
j ̸=i

yj

N∏
i=1

yi)
2 = 0

=⇒ λ(λ− (

N∏
i=1

yi)
2 + x2

N∏
k ̸=j

yk

N∏
k ̸=i

yk) = 0

Since, the matrix is rank-1 by repetition of values, the largest eigenvalue corresponds to663

λ(x, y1, ..., yN ) = (

N∏
i=1

yi)
2 + x2

N∏
k ̸=j

yk

N∏
k ̸=i

yk

=⇒ λ(x, y1, ..., yN ) = (

N∏
i ̸=j

yi)
2(x2 + y2j )

The last line is due to the fact that yj = yi due to the same initialization.664

Now, to find the the solution (x, y1, ..., yN ) that gives the smallest value of λ subject to the constraint665

xyj
∏N

i ̸=j yi = s, we substitute yj from the constraint:666

λ(x, y1, ..., yN ) = (

N∏
i ̸=j

yi)
2(x2 +

s2

(
∏N

i ̸=j yi)
2x2

)

To make sure, that the minimum eigenvalue λ is reached for a choice of (x, y1, ..., yN ), we need to667

ensure that ∂λ
∂x and ∂λ

∂yi
for all i = 1, 2, ..N equates to 0. Furthermore, the second derivative ∂2λ

∂2x and668

∂2λ
∂2yi

for all i are strictly positive.669

∂λ

∂x
= (

N∏
i̸=j

yi)(2x− 2s2

(
∏N

i ̸=j yi)
2x3

) = 0

=⇒ x2
N∏
i̸=j

yi = s

This equality combined with constraint xyj
∏N

i ̸=j yi = x
∏N

i=1 yi = s, This relation gives us the670

solution for each of x = y1 = y2 = ... = yN = s
1

N+1 , as all of the yj are equivalent.671

Furthermore, we see that:672

28



∂2λ

∂2x
= (

N∏
i ̸=j

yi)(2 +
6s2

(
∏N

i ̸=j yi)
2x4

) > 0

Hence, x = y1 = y2 = ... = yN = s
1

N+1 is unique minima for λ(x, y1, ..., yN ).673

Note that in equation for λ and the constraint, x and yj are interchangable, implying that ∂λ
∂yj

= 0674

and ∂2λ
∂2yj

> 0 at that particular solution x = y1 = y2 = ... = yN = s
1

N+1 , i.e. it is a unique minima675

for all x and yj .676

From Conjecture 1, we showed that due to the balancing effect of GD, the solution found by GD with677

large step-size (just before oscillation) is x = y1 = y2 = .. = y = s
1

N+1 . So, GD indeed finds the678

flattest minima of the loss curve.679

Putting this solution into the value of λ, we obtain:680

λ(x̂, ŷ1, ..., ŷN ) = 2s
2N

N+1 = 2s2−
1

N+1

Reverting to the earlier notation, we obtain ∥∇2L∥ = 2s2−
2
L .681

682

Theorem 2 (Periodic Orbit at the Edge of Stability). Consider the objective function L(·) in Equa-683

tion (6), where σ⋆
i is a singular value for a PSD target matrix M⋆. Let GDη(·) denote one GD step684

with learning rate η:685

GDη(w
i
ℓf(Θ(t))) := wi

ℓ(t+ 1) = wi
ℓf(Θ(t))− η · ∇wi

ℓ
L(θi(t)),

and define s := σ
⋆ 1

L
i . Then, under Conjecture 1, for any ϵ > 0 and any point wi

ℓf(Θ(t)) ∈686

[s − ϵ, s], there exists a learning rate 2
L′′(s) < η < 2

L′′(s)−ϵL′′′(s) such that wi
ℓ(t + 2) =687

GDη(GDη(w
i
ℓf(Θ(t)))) = wi

ℓf(Θ(t)).688

Proof. Note that the loss on each singular value is (wi
Lw

i
L−1..w

i
1 − si)

2. Since due to balancedness689

property of GD, all the variables get coupled say to yL: We take L = N +1. Define the loss function690

as follows:691

f(y) = (yN+1 − s)2

First Derivative692

The first derivative of f with respect to y is:693

f ′(y) = 2(N + 1)yN (yN+1 − s)

Second Derivative694

The second derivative of f is given by:695

f ′′(y) = 2(N + 1)
[
Ny2N + (N + 1)y2N −NsyN

]
Evaluation at Local Minima696

At the local minimum ŷ = s
1

N+1 , the second derivative evaluates to:697

f ′′(ŷ) = 2(N + 1)2ŷ2N = 2(N + 1)2s
2N

N+1
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Third Derivative698

The third derivative of f is:699

f ′′′(y) = 2(N + 1)[3N(N + 1)y2N−1]

And evaluated at the local minimum ŷ:700

f ′′′(ŷ) = 6(N + 1)2Nŷ2N−1 = 6(N + 1)2Ns
2N−1
N+1

By inspection, we note that f
′′′
(ŷ) > 0 indicating that self-stabilization phenomenon may occur and701

iterates will not blow up even if h > 2
f ′′(y) . Let y0 = ŷ − ϵ (ϵ > 0) be a point close to the minima ŷ702

we want to prove that after two steps of gradient descent with learning rate h > 2
f ′′(ŷ) , it returns to the703

same point y0. We do this using local Taylor series approximation. The proof strategy is motivated704

from the work in [23].705

y0 = ŷ − ϵ,

f ′(y0) = f ′(ŷ)− f
′′
(ŷ)ϵ2 +

1

2
f3(ŷ)ϵ2 − 1

6
f4ϵ3 +O(ϵ4),

= −f
′′
ϵ+

1

2
f3ϵ2 − 1

6
f4ϵ3 +O(ϵ4),

y1 = y0 − hf
′
(y0) = ŷ − ϵ− h(−f

′′
ϵ+

1

2
f3ϵ2 − 1

6
f4ϵ3) +O(ϵ4),

f
′
(y1) = f

′′
(y1 − ŷ) +

1

2
f3(y1 − ŷ)2 +

1

6
f4(y1 − ŷ)3 +O(ϵ4),

y2 = y1 − hf
′
(y1),

y2 − y0
h

= −(−f
′′
ϵ+

1

2
f3ϵ2 − 1

6
f4ϵ3)− f

′′
(−ϵ− h(−f

′′
ϵ+

1

2
f3ϵ2 − 1

6
f4ϵ3))

− 1

2
f3(−f

′′
ϵ+

1

2
f3ϵ2 − 1

6
f4ϵ3)− 1

6
f4(−ϵ− h(−f

′′
ϵ))3 +O(ϵ4)

When h = 2
f ′′ , we observe that706

y2 − y0
h

= (
1

2
h(f (3))2 − 1

3
f4)ϵ3 +O(ϵ4)

which is positive if ( 12h(f
(3))2 − 1

3f
4) = 1

3f ′′ (3f (3))2 − f
′′
f (4)) > 0.707

Furthermore, when h = 2
f ′′ (ŷ)−ϵf ′′′ (ŷ)

, then hf
′′
= 2 + 2 f3

f ′′ ϵ+O(ϵ2), so708

y2 − y0
h

= −2f3ϵ2 +O(ϵ3),

which is negative since when ϵ is sufficiently small and we already have f3(ŷ) > 0.709

Note that the loss f is continous and (N + 1)-times differentiable, so y2 − y0 is also continous. Now,710

as y2 − y0 is positive for h = 2
f ′′ and negative for a larger learning rate h = 2

f ′′ (ŷ)−ϵf ′′′ (ŷ)
. So there711

must exist 2
f ′′ (ŷ)

< η < 2
f ′′ (ŷ)−ϵf ′′′ (ŷ)

, such that y2 = y0 by continuity.712

To complete the theorem, we need to prove that f3(ŷ) > 0 and (3f (3))2 − f
′′
f (4)) > 0 at y = ŷ.713

To avoid computing the fourth order derivative of the loss (f4), we will impose conditions on a714

reparaterized version of the loss.715

Let f(y) = (g(y)− s)2, then by definition we have716

f
′′
(y) = 2(g(y)− s)g

′′
(y) + 2(g

′
(y))2

f
′′′
(y) = 2(g(y)− s)g3(y) + 6g

′′
(y)g

′′
(y)

f4(y) = 2(g(y)− s)g(4)(y) + 6(g
′′
(y))2 + 8g

′
(y)g(3)(y)
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At minima, y = ŷ, g(ŷ) = s, where we have f
′′
(y) = 2(g′(y))2 , f (3)(y) = 6g

′′
(y)g

′
(y) and717

f (4)(y) = 6(g
′′
(y))2 + 8g

′
(y)g(3)(y). The earlier condition on f3(ŷ) ̸= 0 implies that g

′
(y) ̸= 0.718

And the condition which was (3(f (3))2 − f
′′
f (4)) > 0 would imply that719

108(g′′(y))2(g′(y))2 − 2(g′(y))2
(
6(g′′(y))2 + 8g′(y)g3(y)

)
> 0

=⇒ 6(g′′(y))2 > g′(y)g3(y)

For our case, g(y) = yN+1, so g(ŷ) ̸= 0 (fulfilling condition-1) and furthermore, g′(y) = (N+1)yN ,720

g′′(y) = N(N + 1)yN−1 and g′′′(y) = N(N + 1)(N − 1)yN−2. Putting the above expression in721

the condition before we get722

6(N(N + 1)yN−1)2 > (N + 1)yNN(N + 1)(N − 1)yN−2

=⇒ 6(N(N + 1))2 −N(N + 1)2(N − 1) > 0

=⇒ 5N + 1 > 0

which is indeed true for any N > 1. This means that we need L > 2, to observe period-2 orbit723

oscillation. This is because the second derivative of the loss is constant when L = 1, and any724

η > 2
f ′′(y) would make the loss blow up in that case. This completes the Lemma.725

D Auxiliary Results726

In this section, we provide an additional auxiliary result that we are able to prove using our theory727

on singular vector invariance. In the literature, there is a popular notion that there is a correlation728

between the flatness of a minima and generalization. Here, we present a preliminary result that this729

may also be the case for DLNs, where flatness is measured by the trace of the Hessian. To do so, we730

first compute the trace of the Hessian with respect to the deep matrix factorization loss in Lemma 1.731

Lemma 1. Let WL:1(t) ∈ Rd×d denote the end-to-end DLN at GD iterate t. Then, the trace of732

Hessian of Equation (1) with respect to WL:1(t) is given by733

tr
(
∇2

WL:1(t)
f(Θ(t))

)
=

L∑
ℓ=1

∥Wℓ−1:1(t)∥2F · ∥WL:ℓ+1(t)∥2F. (15)

Proof. We will use the following properties of the Kronecker product throughout this proof:734

(A⊗B)⊤ = A⊤ ⊗B⊤ (Transpose Property)
(A⊗B)(C⊗D) = AC⊗BD (Distributive Property)
tr(A⊗B) = tr(A) · tr(B) (Trace Property)

We can express the objective function for deep matrix factorization in a vectorized form:735

f(Θ) :=
1

2
∥WL:1 −M⋆∥2F =

1

2
∥vec(WL:1)− vec(M⋆)∥22. (16)

Then, notice that for any weight matrix Wℓ, we can write736

f(Θ) =
1

2
∥vec(WL:1)− vec(M⋆)∥22 =

1

2

∥∥(W⊤
L:ℓ+1 ⊗Wℓ−1:1) · vec(Wℓ)− vec(M⋆)

∥∥2
2

(17)

Let us define Z := (W⊤
L:ℓ+1⊗Wℓ−1:1). The gradient of Equation (17) with respect to the vectorized737

weight matrix Wℓ is738

∇Wℓ
f(Θ) = Z⊤Z · vec(Wℓ)− Z⊤ · vec(M⋆). (18)

Then, notice that for the trace of the Hessian, we only need to consider the diagonal elements of the739

Hessian, which involves taking the gradient of ∇Wℓ
f(Θ) with respect to the vectorized Wℓ:740 [

∇2f(Θ)
]
ℓ,ℓ

= Z⊤Z

= (W⊤
L:ℓ+1 ⊗Wℓ−1:1)

⊤(W⊤
L:ℓ+1 ⊗Wℓ−1:1)

= (WL:ℓ+1 ⊗W⊤
ℓ−1:1) · (W⊤

L:ℓ+1 ⊗Wℓ−1:1) (by Transpose Property)

= WL:ℓ+1W
⊤
L:ℓ+1 ⊗W⊤

ℓ−1:1Wℓ−1:1, (by Distributive Property)
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where we denoted
[
∇2f(Θ)

]
ℓ,ℓ

as the ℓ-th diagonal element of the Hessian. Finally, the trace of the741

Hessian is742

tr
(
∇2

WL:1(t)
f(Θ(t))

)
=

L∑
ℓ=1

tr
([

∇2f(Θ(t))
]
ℓ,ℓ

)
=

L∑
ℓ=1

tr
(
WL:ℓ+1(t)W

⊤
L:ℓ+1(t)⊗W⊤

ℓ−1:1(t)Wℓ−1:1(t)
)

=

L∑
ℓ=1

tr
(
WL:ℓ+1(t)W

⊤
L:ℓ+1(t)

)
· tr
(
W⊤

ℓ−1:1(t)Wℓ−1:1(t)
)

(by Trace Property)

=

L∑
ℓ=1

∥Wℓ−1:1(t)∥2F · ∥WL:ℓ+1(t)∥2F.

This concludes the proof.743

Then, suppose we solve the deep matrix factorization problem with initialization scale α. Notice that744

at GD iteration t, trace of the Hessian of the end-to-end DLN is given by745

tr
(
∇2

WL:1(t)
f(Θ(t))

)
= d

[
(d− r)α2(L−1) +

r∑
i=1

σ
2

(L−1)
L

i (t)

]
+ d

[
r∑

i=1

σ
2

(L−1)
L

i (t)

]
+

L−1∑
l=2

[
r∑

i=1

σ
2

(l−1)
L

i (t)

][
(d− r)α2(L−l−1) +

r∑
i=1

σ
2

(L−l−1)
L

i (t)

]
This also holds for any initialization of the DLN. Then, at convergence (i.e. when the gradient is746

zero), we can set σi(t) = σ⋆
i , and then the trace of the Hessian is only dependent on σ⋆

i and α. Then,747

for smaller values of α, the DLN has a smaller trace of the Hessian at convergence. This result hints748

at that there may exists a bias towards flat solutions as measured by the trace of the Hessian, when749

starting from a smaller initialization scale. We leave further investigation of this phenomenon for750

future work.751
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• The authors should consider possible harms that could arise when the technology is being958

used as intended and functioning correctly, harms that could arise when the technology is959

being used as intended but gives incorrect results, and harms following from (intentional or960

unintentional) misuse of the technology.961

• If there are negative societal impacts, the authors could also discuss possible mitigation962

strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms963

for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,964

improving the efficiency and accessibility of ML).965

11. Safeguards966

Question: Does the paper describe safeguards that have been put in place for responsible release967

of data or models that have a high risk for misuse (e.g., pretrained language models, image968

generators, or scraped datasets)?969

Answer: [NA]970

Justification: We do not believe that there are such risks.971

Guidelines:972

• The answer NA means that the paper poses no such risks.973

• Released models that have a high risk for misuse or dual-use should be released with necessary974

safeguards to allow for controlled use of the model, for example by requiring that users adhere975

to usage guidelines or restrictions to access the model or implementing safety filters.976

• Datasets that have been scraped from the Internet could pose safety risks. The authors should977

describe how they avoided releasing unsafe images.978

• We recognize that providing effective safeguards is challenging, and many papers do not979

require this, but we encourage authors to take this into account and make a best faith effort.980

12. Licenses for existing assets981

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the982

paper, properly credited and are the license and terms of use explicitly mentioned and properly983

respected?984

Answer: [Yes]985

Justification: Yes, we consider MLPs and DLNs which we construct. The datasets are properly986

cited.987

Guidelines:988

• The answer NA means that the paper does not use existing assets.989

• The authors should cite the original paper that produced the code package or dataset.990

• The authors should state which version of the asset is used and, if possible, include a URL.991

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.992

• For scraped data from a particular source (e.g., website), the copyright and terms of service993

of that source should be provided.994

• If assets are released, the license, copyright information, and terms of use in the package995

should be provided. For popular datasets, paperswithcode.com/datasets has curated996

licenses for some datasets. Their licensing guide can help determine the license of a dataset.997

• For existing datasets that are re-packaged, both the original license and the license of the998

derived asset (if it has changed) should be provided.999

• If this information is not available online, the authors are encouraged to reach out to the1000

asset’s creators.1001

13. New Assets1002

Question: Are new assets introduced in the paper well documented and is the documentation1003

provided alongside the assets?1004

Answer: [Yes]1005

Justification: We will release relevant code with documentation.1006

Guidelines:1007

• The answer NA means that the paper does not release new assets.1008
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• Researchers should communicate the details of the dataset/code/model as part of their sub-1009

missions via structured templates. This includes details about training, license, limitations,1010

etc.1011

• The paper should discuss whether and how consent was obtained from people whose asset is1012

used.1013

• At submission time, remember to anonymize your assets (if applicable). You can either create1014

an anonymized URL or include an anonymized zip file.1015

14. Crowdsourcing and Research with Human Subjects1016

Question: For crowdsourcing experiments and research with human subjects, does the paper1017

include the full text of instructions given to participants and screenshots, if applicable, as well as1018

details about compensation (if any)?1019

Answer: [NA]1020

Justification: We did not conduct experiments with human subjects nor croudsourcing.1021

Guidelines:1022

• The answer NA means that the paper does not involve crowdsourcing nor research with1023

human subjects.1024

• Including this information in the supplemental material is fine, but if the main contribution of1025

the paper involves human subjects, then as much detail as possible should be included in the1026

main paper.1027

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or1028

other labor should be paid at least the minimum wage in the country of the data collector.1029

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1030

Subjects1031

Question: Does the paper describe potential risks incurred by study participants, whether such1032

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or1033

an equivalent approval/review based on the requirements of your country or institution) were1034

obtained?1035

Answer: [NA]1036

Justification: We did not conduct experiments with human subjects nor croudsourcing.1037

Guidelines:1038

• The answer NA means that the paper does not involve crowdsourcing nor research with1039

human subjects.1040

• Depending on the country in which research is conducted, IRB approval (or equivalent) may1041

be required for any human subjects research. If you obtained IRB approval, you should1042

clearly state this in the paper.1043

• We recognize that the procedures for this may vary significantly between institutions and1044

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines1045

for their institution.1046

• For initial submissions, do not include any information that would break anonymity (if1047

applicable), such as the institution conducting the review.1048
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