
Under review as a conference paper at ICLR 2022

BLOCK CONTEXTUAL MDPS FOR
CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning (RL), when defining a Markov Decision Process (MDP),
the environment dynamics is implicitly assumed to be stationary. This assumption
of stationarity, while simplifying, can be unrealistic in many scenarios. In the
continual reinforcement learning scenario, the sequence of tasks is another source
of nonstationarity. In this work, we propose to examine this continual reinforcement
learning setting through the block contextual MDP (BC-MDP) framework, which
enables us to relax the assumption of stationarity. This framework challenges RL
algorithms to handle both nonstationarity and rich observation settings and, by
additionally leveraging smoothness properties, enables us to study generalization
bounds for this setting. Finally, we take inspiration from adaptive control to propose
a novel algorithm that addresses the challenges introduced by this more realistic
BC-MDP setting, allows for zero-shot adaptation at evaluation time, and achieves
strong performance on several nonstationary environments.

1 INTRODUCTION

In the standard reinforcement learning (RL) regime, many limiting assumptions are made to make the
problem setting tractable. A typical assumption is that the environment is stationary, i.e., the dynamics
and reward do not change over time. However, most real-world settings – from fluctuating traffic
patterns to evolving user behaviors in digital marketing to robots operating in the real world – do not
conform to this assumption. In the more extreme cases, even the observation and action space can
change over time. These setups are commonly grouped under the continual learning paradigm (Ring
et al., 1994; Thrun, 1998; Hadsell et al., 2020) and non-stationarity is incorporated as a change in the
task or environment distribution (that the agent is operating in). The ability to handle non-stationarity
is a fundamental building block for developing continual learning agents (Khetarpal et al., 2020).

Figure 1: Graphical model of
the BC-MDP setting.

Real life settings present an additional challenge: we can not rely
on access to (or knowledge of) an interpretable and compact (if not
minimal) state space. Often, we only have access to a rich and high-
dimensional observation space. For example, when driving a car on
a wet street, we only have access to the “view” around us and not the
friction coefficient between the car and the street. Hence, we must
assume that observation contains irrelevant information (that could
hinder generalization) and account for it when designing agents that
could successfully operate in the nonstationary environments.

We propose to model this more realistic, rich observation, nonstationary setting as a Block Contextual
MDP (BC-MDP) (shown in Fig. 1) by combining two common assumptions: (i) the block assump-
tion (Du et al., 2019) that addresses rich observations with irrelevant features and (ii) the contextual
MDP (Hallak et al., 2015) assumption - MDPs with different dynamics and rewards share a common
structure and a context that can describe the variation across tasks. We introduce the Lipschitz Block
Contextual MDP framework that leverages results connecting Lipschitz functions to generaliza-
tion (Xu & Mannor, 2012) and enables us to frame nonstationarity as a changing context over a family
of stationary MDPs (thus modelling it as a contextual MDP). We propose a representation learning
algorithm to enable the use of the current RL algorithms (that rely on the prototypical MDP setting)
in nonstationary environments. It works by constructing a context space that is Lipschitz with respect
to the changes in dynamics and reward of the nonstationary environment. We show, both theoretically

1

Under review as a conference paper at ICLR 2022

and empirically, that the trained agent generalizes well to unseen contexts. We also provide value
bounds based on this approximate abstraction which depend on some basic assumptions.

This works is inspired from adaptive control (Slotine & Li, 1991), a control method that continuously
performs parameter identification to adapt to nonstationary dynamics of the system. Adaptive control
generally considers the “known unknowns,” where the environment properties are known, but their
values are unknown. We focus on the “unknown unknowns” setting, where the agent neither knows
the environment property nor does it know its value in any task. Our setup is similar to meta-learning
methods that “learn to learn,” but meta-learning techniques generally require finetuning or updates
on the novel tasks (Finn et al., 2017; Rakelly et al., 2019). Our method does not need to perform
parameter updates on the new tasks and can adapt in a zero-shot manner. Since there are no parameter
updates, our model does not suffer from catastrophic forgetting (McCloskey & Cohen, 1989). This
property is especially critical when designing continual learning agents that operate in the real world.
Further, our model can be verified after training and is guaranteed to stay true to that verification
while also being capable of adapting zero-shot to new environments at test time. Intuitively, this
follows from the observation that the agent’s parameters are not updated when adapted to the unseen
environments. We do not perform this type of formal verification, as current verification methods on
neural networks only work for very small models, and are expensive to run (Katz et al., 2019). We
refer to our proposed method as Zero-shot adaptation to Unknown Systems (ZeUS).

Contributions. We 1) introduce the Lipschitz Block Contextual MDP framework for the continual
RL setting, 2) provide theoretical bounds on adaptation and generalization ability to unseen tasks
within this framework utilizing Lipschitz properties, 3) propose an algorithm (ZeUS) to perform
online inference of “unknown unknowns” to solve a family of tasks (without performing learning
updates at test time) and ensure the prior Lipschitz properties hold, and 4) empirically verify the
effectiveness of ZeUS on environments with nonstationary dynamics or reward functions.

2 RELATED WORK

Our work is related to four broad areas: (i) System Identification and Adaptive Control, (ii) Continual
RL, (iii) Context Modeling and (iv) Meta RL and Multitask RL.

System Identification and Adaptive Control (Zadeh, 1956; Åström & Bohlin, 1965; Swevers et al.,
1997; Bhat et al., 2002; Gevers et al., 2006; Ljung, 2010; Van Overschee & De Moor, 2012; Chiuso
& Pillonetto, 2019; Ajay et al., 2019; Yu et al., 2017; Zhu et al., 2017). In this setup, the goal is to
perform system identification of “known unknowns,” where the environment properties are known,
but their values are unknown. Continuing with the previous example of driving a car on a wet street,
in this setup, the agent knows that friction coefficient varies across tasks but does not know its value.
By inferring the value from observed data, the agent can condition its policy (on the inferred value) to
solve a given task. The conventional approaches alternate between system identification and control
policy optimization. One limitation of this approach is that a good initial policy and system identifier
are required for efficient training. We extend this setup to the “unknown unknowns” setting, where
the agent neither knows the environment property nor does it know its value in any task.

Our work is related to the Continual (or Lifelong) RL (Ring et al., 1994; Gama et al., 2014; Abel
et al., 2018; Kaplanis et al., 2018; Xu & Zhu, 2018; Aljundi et al., 2019; Javed & White, 2019; Hadsell
et al., 2020). In this setup, nonstationarity can manifest in two ways: (i) Active nonstationarity where
the agent’s actions may change the environment dynamics or action space (e.g., a cleaning robot
tripping over the carpet), (ii) Passive nonstationarity where the environment dynamics may change
irrespective of the agent’s behavior (e.g., driving a car on a snow-covered road) (Khetarpal et al.,
2020). Our work relates to the passive nonstationarity setup. Unlike Lopez-Paz & Ranzato (2017);
Chaudhry et al. (2019); Aljundi et al. (2019); Sodhani et al. (2020) which focus on challenges like
catastrophic forgetting (McCloskey & Cohen, 1989) 1, we focus on the ability to continually adapt
(the policy) to unseen tasks (Hadsell et al., 2020). Xie et al. (2020) proposed LILAC that uses a
probabilistic hierarchical latent variable model to learn a representation of the environment from
current and past experiences and perform off-policy learning. A key distinction of our work is that
we use task metrics to learn a context space and focus on generalization to unseen contexts.

1Since our model does not perform parameter updates when transferring to unseen tasks, it does not suffer
from catastrophic forgetting.

2

Under review as a conference paper at ICLR 2022

Several works have focused on modeling the environment context from high-level pixel obser-
vations (Pathak et al., 2017; Ebert et al., 2018; Chen et al., 2018; Xu et al., 2019). This context
(along with the observation) is fed as input to the policy to enable it to adapt to unseen dynamics (by
implicitly capturing the dynamics parameters). T environment’s context is encoded using a context
encoder using the history of interactions. These approaches learn a single, global dynamics model
conditioned on the output of the context encoder. Similar to these approaches, we also use a context
encoder but introduce an additional loss to learn a context space with Lipschitz properties with respect
to reward, and dynamics. Xian et al. (2021) proposed using HyperNetworks (Ha et al., 2016; Chang
et al., 2019; Klocek et al., 2019; Meyerson & Miikkulainen, 2019) that use the context to generate
the weights of the expert dynamics model.

Other works on structured MDPs, that leverage the Lipschitz properties, include Modi et al. (2018)
that assumes that the given contextual MDP is smooth and that the distance metric and Lipschitz
constants are known. In contrast, we propose a method that constructs a new smooth contextual
MDP, with bounds on downstream behavior based on the approximate-ness of the new contextual
MDP. Modi & Tewari (2020) propose RL algorithms with lower bounds on regret but assume that
the context is known and linear with respect to the MDP parameters. In contrast, we do not assume
access to the context at train or test time or linearity with respect to MDP parameters.

Meta-reinforcement learning aims to “meta-learn” how to solve new tasks efficiently (Finn et al.,
2017; Clavera et al., 2019; Rakelly et al., 2019; Zhao et al., 2020). Optimization-based meta-
RL methods (Finn et al., 2017; Mishra et al., 2017; Zintgraf et al., 2019) require updating model
parameters for each task and therefore suffer from catastrophic forgetting in the continual learning
setting. Context-based meta-RL methods perform online adaptation given a context representation
(generally modeled as the hidden representations of a RNN (Nagabandi et al., 2019)). The hope is
that the model would (i) adapt to the given context and (ii) correctly infer the next state. However,
follow-up work (Lee et al., 2020) suggests that it is better to disentangle the two tasks by learning
a context encoder (for adaption) and a context-conditioned dynamics model (for inferring the next
state). Lee et al. (2020) also introduced additional loss terms when training the agent. However, their
objective is to encourage the context encoding to be useful for predicting both forward (next state)
and backward (previous state) dynamics while being temporally consistent, while our objective is to
learn a context space with Lipschitz properties with respect to reward and dynamics. Other works
have proposed modeling meta-RL as task inference Humplik et al. (2019); Kamienny et al. (2020) but
these works generally assume access to some privileged information (like task-id) during training.

Our work is also related to the general problem of training a policy on Partially Observable Markov
Decision Processes (POMDPs) (Kaelbling et al., 1998; Igl et al., 2018; Zhang et al., 2019; Han
et al., 2019; Hafner et al., 2019) that capture both nonstationarity and rich observation settings. Our
experiments are performed in the POMDP setup where we train the agent using pixel observations
and do not have access to a compact state-space representation. However, we focus on a specific
class of POMDPs — the contextual MDP with hidden context, which enables us to obtain strong
generalization performance to new environments. Finally, we discuss additional related works in
multi-task RL, transfer learning, and MDP metrics in Appendix A.

3 BACKGROUND & NOTATION

A Markov Decision Process (MDP) (Bellman, 1957; Puterman, 1995) is defined by a tuple
〈S,A, R, T, γ〉, where S is the set of states, A is the set of actions, R : S × A → R is the re-
ward function, T : S × A → Dist(S) is the environment transition probability function, and
γ ∈ [0, 1) is the discount factor. At each time step, the learning agent perceives a state st ∈ S , takes
an action at ∈ A drawn from a policy π : S ×A → [0, 1], and with probability T (st+1|st, at) enters
next state st+1, receiving a numerical reward Rt+1 from the environment. The value function of
policy π is defined as: Vπ(s) = Eπ[

∑∞
t=0 γ

tRt+1|S0 = s]. The optimal value function V ∗ is the
maximum value function over the class of stationary policies.

Contextual Markov Decision Processes were first proposed by Hallak et al. (2015) as an augmented
form of Markov Decision Processes that utilize side information as a form of context, similar to
contextual bandits. For example, the friction coefficient of a surface for a robot sliding objects across
a table is a form of context variable that affects the environment dynamics, or user information like
age and gender are context variables that influence their movie preferences.

3

Under review as a conference paper at ICLR 2022

Definition 1 (Contextual Markov Decision Process). A contextual Markov decision process (CMDP)
is defined by tuple 〈C,S,A,M〉 where C is the context space, S is the state space, A is the action
space.M is a function which maps a context c ∈ C to MDP parametersM(c) = {Rc, T c}.

However, in the real world, we typically operate in a “rich observation” setting where we do not
have access to a compressed state representation and the learning agent has to learn a mapping from
the observation to the state. This additional relaxation of the original CMDP definition as a form of
Block MDP (Du et al., 2019) was previously introduced in Sodhani et al. (2021b) for the multi-task
setting where the agent focuses on a subset of the whole space for a specific task, which we again
present here for clarity:
Definition 2 (Block Contextual Markov Decision Process (Sodhani et al., 2021b)). A block contextual
Markov decision process (BC-MDP) (Fig. 1) is defined by tuple 〈C,S,O,A,M〉where C is the context
space, S is the state space, O is the observation space, A is the action space.M is a function which
maps a context c ∈ C to MDP parameters and observation spaceM(c) = {Rc, T c,Oc}.

Consider a robot moving around in a warehouse and performing different tasks. Rather than specifying
an observation space that covers the robot’s lifelong trajectory, it is much more practical to have the
observation space change as its location and attention change, as it would with an attached camera.
We can still keep the assumption of full observability because the robot can have full information
required to solve the current task, e.g. with frame stacking to capture velocity and acceleration
information. The continual learning setting differs from sequential multi-task learning as there is
no delineation of tasks when c changes, causing nonstationarity in the environment. We make an
additional assumption that the change in c is smooth over time and the BC-MDP itself is smooth, as
shown in Definition 3. We now define a Lipschitz MDP for the MDP family we are concerned with.
Definition 3 (Lipschitz Block Contextual MDP). Given a BC-MDP 〈C,S,O,A,M〉 and a distance
metric d(·, ·) over context space, if for any two contexts c1, c2 ∈ C, we have the following constraints,

∀(s, a),W (T c1(s, a), T c2(s, a)) ≤ Lpd(c1, c2),

∀(s, a), ‖Rc1(s, a)−Rc2(s, a)‖ ≤ Lrd(c1, c2),

then the BC-MDP is referred to as a Lipschitz BC-MDP with smoothness parameters Lp and Lr.

Here W denotes the Wasserstein distance. Note that Definition 3 is not a limiting assumption because
we do not assume access to the context variables c1 and c2, and they can therefore be chosen so that
the Lipschitz condition is always satisfied. In this work, we focus on a method for learning a context
space that satisfies the above property.

4 GENERALIZATION PROPERTIES OF LIPSCHITZ BC-MDPS

The key idea behind the proposed method (presented in full in Section 5) is to construct a context
space C with Lipschitz properties with respect to dynamics and reward, and therefore, optimal value
functions across tasks. In this section, we show how this Lipschitz property aids generalization. The
following results hold true for any given observation (or state) space and are not unique to Block
MDPs, so we use notation with respect to states s ∈ S without loss of generality. Since we do not
have access to the true context space, in Section 5, we describe how to learn a context space with the
desired characteristics.

In order to construct a context space that is Lipschitz with respect to tasks, notably the optimal value
functions across tasks, we turn to metrics based on state abstractions. Based on established results on
distance metrics over states (see Appendix D), we can define a task distance metric for the continual
RL setting.
Definition 4 (Task Metric). Given two tasks sampled from a BC-MDP, identified by contexts ci & cj ,

dtask(ci, cj) := max
s,a∈{S,A}

[∣∣Rci(s, a)−Rcj (s, a)
∣∣+W (dtask)

(
T ci(s, a), T cj (s, a)

)]
, (1)

where W (dtask) is the Wasserstein distance between transition probability distributions.

We can now show that the dynamics, reward, and optimal value function are all also Lipschitz with
respect to dtask. The first two are clear results from Definition 4.

4

Under review as a conference paper at ICLR 2022

Theorem 1 (V ∗c is Lipschitz with respect to dtask). Let V ∗ be the optimal, universal value function
for a given discount factor γ and context space C. Then V ∗ is Lipschitz continuous with respect to
dtask with Lipschitz constant 1

1−γ for any s ∈ S,

|V ∗(s, c)− V ∗(s, c′)| ≤ 1

1− γ dtask(c, c
′).

The proof can be found in Appendix E. Applying Theorem 1 to a continual RL setting requires the
context be identifiable from a limited number of interactions with the environment. This warrants the
following assumption:
Assumption 1 (Identifiability). Let k be some constant number of steps the agent takes in a new
environment with context c. There exists an εc > 0 such that a context encoder ψ can take those
transition tuples (si, ai, s

′
i, ri), i ∈ {1, ..., k} and output a predicted context ĉ that is εc-close to c.

There are two key assumptions wrapped up in Assumption 1. The first is that the new environment is
uniquely identifiable from k transitions, and the second is that we have a context encoder that can
approximately infer that context. In practice, we use neural networks for modeling ψ and verify that
neural networks can indeed learn to infer the context, as shown in Table 1 in Appendix B.2.

Why do we care about the Lipschitz property? Xu & Mannor (2012) established that Lipschitz
continuous functions are robust, i.e. the gap between test and training error is bounded. This result is
only useful when the problem space is Lipschitz, which is often not the case in RL. However, we
have shown that any BC-MDP is Lipschitz continuous with respect to metric dtask. We now define
a general supervised learning setup to bound the error of learning dynamics and reward models.
The following result requires that the data-collecting policy is ergodic, i.e. a Doeblin Markovian
chain (Doob, 1953; Meyn & Tweedie, 1993), defined as follows.
Definition 5 (Doeblin chain). A Markov chain {si}∞i=1 on a state space S is a Doeblin chain (with
α and t) if there exists a probability measure ρ on S, α > 0, an integer t ≥ 1 such that

P (st ∈ H|s0 = s) ≥ αρ(H); ∀ measurable H ⊆ S;∀s ∈ S.

Let L̂(·) denote expected error and Lemp(·) denote training error of an algorithm A on training data
s = {s1, ..., sn} and evaluated on points z ∈ Z sampled from distribution µ:

L̂(·) := Ez∼µL(As, z); Lemp(·) :=
1

n

∑
si∈s
L(As, si).

Here, As denotes the instantiation of the learned algorithm trained on data s whereas A refers to
the general learning algorithm. We can now bound the generalization gap, the difference between
expected and training error using a result from Xu & Mannor (2012).
Theorem 2 (Generalization via Lipschitz Continuity (Xu & Mannor, 2012)). If a learning algorithm
A is 1

1−γ -Lipschitz and the training data s = {s1, ..., sn} are the first n outputs of a Doeblin chain
with constants α, T , then for any δ > 0 with probability at least 1− δ,∣∣L̂(As)− Lemp(As)

∣∣ ≤ ε

1− γ +M

(
8t2(K ln 2 + ln(1/δ))

α2n

)1/4

.

K denotes the ε-covering number of the state space. ε controls the granularity at which we discretize,
or partition, that space. If ε is larger, K is smaller. M is a scalar that uniformly upper-bounds
the loss L. Once we learn a smooth context space, this result bounds the generalization error of
supervised learning problems like learned dynamics and reward models. These learned models allow
us to construct a new MDP that is εR, εT , εc-close to the original. We can now show how this error
propagates when learning a policy.
Theorem 3 (Generalization Bound). Without loss of generality we assume all tasks in a given
BC-MDP family have reward bounded in [0, 1]. Given two tasksMci andMcj , we can bound the
difference inQπ between the two MDPs for a given policy π learned under an εR, εT , εci -approximate
abstraction ofMci and applied toMcj ,∥∥Q∗Mcj

− [Q∗M̄ĉi
]Mcj

∥∥
∞ ≤ εR + γ

(
εT + εci + ‖ci − cj‖1

) 1

2(1− γ)
.

5

Under review as a conference paper at ICLR 2022

Proof in Appendix E. Theorem 3 shows that if we learn an ε-optimal context-conditioned policy
for task with context ci and encounter a new context cj at evaluation time where cj is close to ci,
then the context-conditioned policy will be ε-optimal for the new task by leveraging the Lipschitz
property. While these results clearly do not scale well with the dimensionality of the state space and
discount factor γ, it shows that representation learning is a viable approach to developing robust
world models (Theorem 2), which translates to tighter bounds on the suboptimality of learned Q
functions (Theorem 3).

5 ZERO-SHOT ADAPTATION TO UNKNOWN SYSTEMS

Based on the findings in Section 4, we can improve generalization by constructing a context space
that is Lipschitz with respect to the changes in dynamics and reward of the nonstationary environment.
In practice, computing the maximum Wasserstein distance over the entire state-action space is
computationally infeasible. We relax this requirement by taking the expectation over Wasserstein
distance with respect to the marginal state distribution of the behavior policy. This leads us to a
representation learning objective that leverages this relaxed version of the task metric in Definition 4:

L(φ, ψ, T,R) = MSE

(∣∣∣∣∣∣ψ(H1)− ψ(H2)
∣∣∣∣∣∣

2
, d(c1, c2)

)
︸ ︷︷ ︸

context loss

+MSE

(
T (φ(oc1t), ac1t , ψ(H1)), φ(oc1t+1)

)
︸ ︷︷ ︸

Dynamics loss

+MSE

(
R(φ(oc1t), ac1t , ψ(H1)), rc1t+1

)
︸ ︷︷ ︸

Reward loss

. (2)

where red indicates stopped gradients. H1 := {oc1t , at, rt, oc1t+1, ...} and H2 := {oc2t , at, rt, oc2t+1, ...}
are transition sequences from two environments with contexts c1 and c2 respectively. During training,
the transitions are uniformly sampled from a replay buffer. We do not require access to the true
context for computing d(c1, c2) (in Equation (2)) as we can approximate d(c1, c2) using Definition 3.
Specifically, we train a transition dynamics model and a reward model (via supervised learning) and
use their output to approximate d(c1, c2). In practice, we scale the context learning error, our task
metric loss, using a scalar value denoted as αψ .

We describe the architecture of ZeUS in Figure 2. We have an observation encoder φ that encodes
the pixel-observations into real-valued vectors. A buffer of interaction-history is maintained for
computing the context. The context encoder first encodes the individual state-action transition pairs
and then aggregates the representations using standard operations: sum, mean, concate, product, min
and max 2. All the components are instantiated using feedforward networks. During inference,
assume that the agent is operating in some environment denoted by (latent) context c1. At time t, the
agent gets an observation oc1t which is encoded into sc1t := φ(oc1t)3. The context encoder ψ encodes
the last k interactions (denoted as H1) into a context encoding c1 := ψ(H1)4. The observation and
context encodings are concatenated and fed to the policy to get the action.

During training, we sample a batch of interaction sequences from the buffer. For sake of exposition,
we assume that we sample only 2 sequencesH1 andH2. Similar to the inference pipeline, we compute
φ(oc1t), ψ(H1), φ(oc2t) and ψ(H2) and the loss (Equation (2)). We highlight that the algorithm does
not know if the two (sampled) interactions correspond to the same context or not. Hence, in a small
percentage of cases, H1 and H2 could correspond to the same context and the context loss will be
equal to 0. For implementing the loss in equation Equation (2), we do not need access to the true
context as the distance between the contexts can be approximated using the learned transition and
reward models using Definition 3. The pseudo-code is provided in Algorithm 1 (Appendix B). Since
ZeUS is a representation learning algorithm, it must be paired with a policy optimization algorithm
for end-to-end training. In the scope of this work, we use Soft Actor-Critic with auto-encoder loss
(SAC-AE, Yarats et al. (2019)), though ZeUS can be used with any policy optimization algorithm.

2We experiment with these aggregation operators for all the baselines and not just ZeUS.
3We overload notation here since the true state space is latent.
4We again overload notation here since the true context space is also latent.

6

Under review as a conference paper at ICLR 2022

Env

Env

Dynamics
Model

Context
Encoder

Context
Encoder

Reward
Model

Reward
Model

Interaction History

sc2
t+1

<latexit sha1_base64="RZInjDfPf/MeGOHurRI5fOb+sRY=">AAAB9HicbVBNS8NAEN3Ur1q/qh69LBZBEEpSKnosevFYwX5AG8Nmu2mXbjZxd1IoIb/DiwdFvPpjvPlv3LY5aOuDgcd7M8zM82PBNdj2t1VYW9/Y3Cpul3Z29/YPyodHbR0lirIWjUSkuj7RTHDJWsBBsG6sGAl9wTr++HbmdyZMaR7JB5jGzA3JUPKAUwJGcvVjSr1a5qVw4WReuWJX7TnwKnFyUkE5ml75qz+IaBIyCVQQrXuOHYObEgWcCpaV+olmMaFjMmQ9QyUJmXbT+dEZPjPKAAeRMiUBz9XfEykJtZ6GvukMCYz0sjcT//N6CQTXbsplnACTdLEoSASGCM8SwAOuGAUxNYRQxc2tmI6IIhRMTiUTgrP88ipp16pOvXp5X680bvI4iugEnaJz5KAr1EB3qIlaiKIn9Ixe0Zs1sV6sd+tj0Vqw8plj9AfW5w924ZHo</latexit>

sc2
t

<latexit sha1_base64="HnSTOTqTp1sxpmkLnRoLNkM6O+o=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqeyWih6LXjxWsB/Srks2zbahSXZJZoWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5YSK4Adf9dgpr6xubW8Xt0s7u3v5B+fCobeJUU9aisYh1NySGCa5YCzgI1k00IzIUrBOOb2Z+54lpw2N1D5OE+ZIMFY84JWClBxPAY0aD2jQoV9yqOwdeJV5OKihHMyh/9QcxTSVTQAUxpue5CfgZ0cCpYNNSPzUsIXRMhqxnqSKSGT+bHzzFZ1YZ4CjWthTgufp7IiPSmIkMbackMDLL3kz8z+ulEF35GVdJCkzRxaIoFRhiPPseD7hmFMTEEkI1t7diOiKaULAZlWwI3vLLq6Rdq3r16sVdvdK4zuMoohN0is6Rhy5RA92iJmohiiR6Rq/ozdHOi/PufCxaC04+c4z+wPn8Ac+nkGw=</latexit>

sc1
t

<latexit sha1_base64="1W7Ea7UbATaCtkwMYeDJ/Xtaywc=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9kPaGDbbbbt0swm7E6GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvTKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuh9RwKRRvoEDJ24nmNAolb4Wjm6nfeuLaiFjd4zjhfkQHSvQFo2ilBxPgY8YCbxKUK27VnYEsEy8nFchRD8pf3V7M0ogrZJIa0/HcBP2MahRM8kmpmxqeUDaiA96xVNGIGz+bHTwhJ1bpkX6sbSkkM/X3REYjY8ZRaDsjikOz6E3F/7xOiv0rPxMqSZErNl/UTyXBmEy/Jz2hOUM5toQyLeythA2ppgxtRiUbgrf48jJpnlW98+rF3Xmldp3HUYQjOIZT8OASanALdWgAgwie4RXeHO28OO/Ox7y14OQzh/AHzucPziKQaw==</latexit>

sc1
t+1

<latexit sha1_base64="E4m46sL11QOXzNFuGN/gJN9nRtI=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBAEIexKxBwDXjxGMA9I1mV2MpsMmX040xsIS77DiwdFvPox3vwbJ8keNLGgoajqprvLT6TQaNvf1tr6xubWdmGnuLu3f3BYOjpu6ThVjDdZLGPV8anmUkS8iQIl7ySK09CXvO2Pbmd+e8yVFnH0gJOEuyEdRCIQjKKRXO1leOlMHzPmOVOvVLYr9hxklTg5KUOOhlf66vVjloY8Qiap1l3HTtDNqELBJJ8We6nmCWUjOuBdQyMacu1m86On5NwofRLEylSEZK7+nshoqPUk9E1nSHGol72Z+J/XTTGouZmIkhR5xBaLglQSjMksAdIXijOUE0MoU8LcStiQKsrQ5FQ0ITjLL6+S1lXFqVau76vlei2PowCncAYX4MAN1OEOGtAEBk/wDK/wZo2tF+vd+li0rln5zAn8gfX5A3GIkd0=</latexit>

<latexit sha1_base64="XjQmoJ72BEWH9U9hvIycewZsZ84=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKYo8FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemAhurOd9o9LG5tb2Tnm3srd/cHhUPT7pmDjVlLVpLGLdC4lhgivWttwK1ks0IzIUrBtO73K/+8S04bF6tLOEBZKMFY84JTaXBonhw2rNq3sL4HXiF6QGBVrD6tdgFNNUMmWpIMb0fS+xQUa05VSweWWQGpYQOiVj1ndUEclMkC1uneMLp4xwFGtXyuKF+nsiI9KYmQxdpyR2Yla9XPzP66c2agQZV0lqmaLLRVEqsI1x/jgecc2oFTNHCNXc3YrphGhCrYun4kLwV19eJ52run9dv3m4rjUbRRxlOINzuAQfbqEJ99CCNlCYwDO8whuS6AW9o49lawkVM6fwB+jzByPVjkg=</latexit>

<latexit sha1_base64="XjQmoJ72BEWH9U9hvIycewZsZ84=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKYo8FLx4r2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemAhurOd9o9LG5tb2Tnm3srd/cHhUPT7pmDjVlLVpLGLdC4lhgivWttwK1ks0IzIUrBtO73K/+8S04bF6tLOEBZKMFY84JTaXBonhw2rNq3sL4HXiF6QGBVrD6tdgFNNUMmWpIMb0fS+xQUa05VSweWWQGpYQOiVj1ndUEclMkC1uneMLp4xwFGtXyuKF+nsiI9KYmQxdpyR2Yla9XPzP66c2agQZV0lqmaLLRVEqsI1x/jgecc2oFTNHCNXc3YrphGhCrYun4kLwV19eJ52run9dv3m4rjUbRRxlOINzuAQfbqEJ99CCNlCYwDO8whuS6AW9o49lawkVM6fwB+jzByPVjkg=</latexit>

Observation
Encoder�

<latexit sha1_base64="WV2LGFCcRvR8Imu9OisNuCQHmXQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48VTFtoQ9lsp+3SzSbsboQS+hu8eFDEqz/Im//GTZuDtj4YeLw3w8y8MBFcG9f9dkobm1vbO+Xdyt7+weFR9fikreNUMfRZLGLVDalGwSX6hhuB3UQhjUKBnXB6l/udJ1Sax/LRzBIMIjqWfMQZNVby+8mEVwbVmlt3FyDrxCtIDQq0BtWv/jBmaYTSMEG17nluYoKMKsOZwHmln2pMKJvSMfYslTRCHWSLY+fkwipDMoqVLWnIQv09kdFI61kU2s6Imole9XLxP6+XmlEjyLhMUoOSLReNUkFMTPLPyZArZEbMLKFMcXsrYROqKDM2nzwEb/XlddK+qnvX9ZuH61qzUcRRhjM4h0vw4BaacA8t8IEBh2d4hTdHOi/Ou/OxbC05xcwp/IHz+QNIzY5R</latexit>

Interaction History

c1

<latexit sha1_base64="pEKryJykqmMI2JzE1qc0BsRAbGQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYo8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2zgDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk/ZV1atVr+9rlUY9j6MIZ3AOl+DBDTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP+s5jYk=</latexit>

c1

<latexit sha1_base64="pEKryJykqmMI2JzE1qc0BsRAbGQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYo8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2zgDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk/ZV1atVr+9rlUY9j6MIZ3AOl+DBDTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP+s5jYk=</latexit>

c2

<latexit sha1_base64="sZ/DFFkB+ixw6JnCupgeJuQ2mCM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKxR4LXjxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZn7j09cGxGrB5wm3I/oSIlQMIpWumeD2qBccavuAmSdeDmpQI7WoPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDBt+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOunUql69enVXrzQbeRxFOINzuAQPrqEJt9CCNjAYwTO8wpsjnRfn3flYthacfOYU/sD5/AHsvY2K</latexit>

c2

<latexit sha1_base64="sZ/DFFkB+ixw6JnCupgeJuQ2mCM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKxR4LXjxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZn7j09cGxGrB5wm3I/oSIlQMIpWumeD2qBccavuAmSdeDmpQI7WoPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDBt+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOunUql69enVXrzQbeRxFOINzuAQPrqEJt9CCNjAYwTO8wpsjnRfn3flYthacfOYU/sD5/AHsvY2K</latexit>

T

<latexit sha1_base64="TsK1u5NZ1knvtqSTz+yF3k67EiQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKxBwDXjwmkBckS5iddJIxs7PLzKwQlnyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXEAuujet+O7mt7Z3dvfx+4eDw6PikeHrW1lGiGLZYJCLVDahGwSW2DDcCu7FCGgYCO8H0fuF3nlBpHsmmmcXoh3Qs+YgzaqzUaA6KJbfsLkE2iZeREmSoD4pf/WHEkhClYYJq3fPc2PgpVYYzgfNCP9EYUzalY+xZKmmI2k+Xh87JlVWGZBQpW9KQpfp7IqWh1rMwsJ0hNRO97i3E/7xeYkZVP+UyTgxKtlo0SgQxEVl8TYZcITNiZgllittbCZtQRZmx2RRsCN76y5ukfVP2KuXbRqVUq2Zx5OECLuEaPLiDGjxAHVrAAOEZXuHNeXRenHfnY9Wac7KZc/gD5/MHrz+M1g==</latexit>

R

<latexit sha1_base64="ywRE3HvdEHp0UBm0Am9hanFreYQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo4kXjyCkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzCRBP6JDyUPOqLFS475fLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldlr1K+blRKtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AKw3jNQ=</latexit>

R

<latexit sha1_base64="ywRE3HvdEHp0UBm0Am9hanFreYQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo4kXjyCkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzCRBP6JDyUPOqLFS475fLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldlr1K+blRKtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AKw3jNQ=</latexit>

L(�, , T, R)

<latexit sha1_base64="mN8r0nyqv7YPPph7LMsGTJi0uFw=">AAACBHicbVC7SgNBFJ31GeNr1TLNYBAihLArEVMGbCwsouQF2SXMTibJkNnZYWZWCEsKG3/FxkIRWz/Czr9xNtlCEw9cOJxzL/feEwhGlXacb2ttfWNzazu3k9/d2z84tI+O2yqKJSYtHLFIdgOkCKOctDTVjHSFJCgMGOkEk+vU7zwQqWjEm3oqiB+iEadDipE2Ut8ueCHSY4xYcjsreWJMy9ATipab5fvzvl10Ks4ccJW4GSmCDI2+/eUNIhyHhGvMkFI91xHaT5DUFDMyy3uxIgLhCRqRnqEchUT5yfyJGTwzygAOI2mKazhXf08kKFRqGgamMz1ZLXup+J/Xi/Ww5ieUi1gTjheLhjGDOoJpInBAJcGaTQ1BWFJzK8RjJBHWJre8CcFdfnmVtC8qbrVyeVct1mtZHDlQAKegBFxwBergBjRAC2DwCJ7BK3iznqwX6936WLSuWdnMCfgD6/MHHEmXEQ==</latexit>

Figure 2: Proposed ZeUS algorithm. The components shown in green (i.e. observation encoder, con-
text encoder, dynamics model and reward model) are shared across tasks. Components/representations
in red or blue belong to separate tasks.

6 EXPERIMENTS

We design our experiments to answer the following questions:

1. How well does ZeUS perform when training over a family of tasks with varying dynamics?
(see Figure 8 in Appendix)

2. Can ZeUS adapt and generalize to unseen environments (with novel dynamics or reward)
without performing any gradient updates? (see Figure 3 and Figure 4)

3. Can ZeUS learning meaningful context representations when training over a family of tasks
with varying dynamics? (see Figure 5)

6.1 SETUP

Similar to the setups from Zhou et al. (2019); Lee et al. (2020); Zhang et al. (2021b), we start with
standard RL environments and extend them by modifying parameters that affect the dynamics (e.g.
the friction coefficient between the agent and the ground) or the reward (e.g. target velocity) such
that they exhibit the challenging nonstationarity and rich-observation conditions of our BC-MDP
setting. For varying the transition dynamics, we use the following Mujoco (Todorov et al., 2012)5

based environments from the DM Control Suite (Tassa et al., 2018): Cheetah-Run-v0 (vary the length
of the torso of the cheetah), Walker-Walk-v0 (vary the friction coefficient between the walker and the
ground), Walker-Walk-v1 (vary the length of the foot of the walker) and Finger-Spin-v0 task (vary
the size of the finger). For environments with varying reward function, we use the Cheetah-Run-v1
environment (vary the target velocity that the agent has to reach) and Sawyer-Peg-v0 environment
(vary the goal position for inserting the per) from Zhao et al. (2020). For environments with varying
reward function, we assume access to the reward function, as done in Zhao et al. (2020).

For all environments, we pre-define a range of parameters to train and evaluate on. For environments
with nonstationary transition dynamics, we create two set of parameters for evaluation interpolation
(and extrapolation) where the parameters are sampled from a range that lies within (and outside)
the range of parameters used for training. For the environments with varying reward function, we
sample the parameters for the test environments from the same range as the training environments.
For additional details refer to Appendix B.2. We report the evaluation performance of the best
performing hyper-parameters for all algorithms (measured in terms of the training performance). All
the experiments are run with 10 seeds and we report both the mean and the standard error (denoted
by the shaded area on the plots). For additional implementation details refer to Appendix B.

6.2 BASELINES

We select representative baselines from different areas of related work (Section 2): UP-OSI (Yu
et al., 2017) is a system identification approach that infers the true parameters (of the system) and
conditioning the policy on the inferred parameters. Context-aware Dynamics Model , CaDM (Lee

5License related information available at: https://www.roboti.us/license.html

7

Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

100

200

300

400

500

600

Ep
iso

di
c

Re
tu

rn

CaDM
Hyperdynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(a) Cheetah-Run-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(b) Finger-Spin-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

200

400

600

800

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(c) Walker-Walk-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

100

200

300

400

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(d) Walker-Walk-v1

Figure 3: We compare the performance of the proposed ZeUS algorithm with CaDM, UP-OSI, Hy-
perDynamics and ZeUS-no-context-loss algorithms on the heldout evaluation environments (extrapo-
lation) for four families of tasks with different dynamics parameters.

et al., 2020) is a context modelling based approach that is shown to outperform Gradient and
Recurrence-based meta learning approaches (Nagabandi et al., 2018). HyperDynamics(Xian et al.,
2021) generates the weights of the dynamics model (for each environment) by conditioning on
a context vector and is shown to outperform both ensemble of experts and meta-learning based
approaches (Nagabandi et al., 2018). We also consider a Context-conditioned Policy where the
context encoder is trained using the one-step forward dynamics loss. This approach can be seen as an
ablation of the ZeUS algorithm without the context learning error (from Equation (2)). We refer to it
as Zeus-no-context-loss.

6.3 ADAPTING AND GENERALIZING TO UNSEEN ENVIRONMENTS

In Figure 3, we compare ZeUS’s performance on the heldout extrapolation evaluation environments
which the agent has not seen during training. The transition dynamics varies across these tasks. Hy-
perDynamics performs well on some environments but requires more resources to train (given that it
generates the weights of dynamics models for each transition in the training batch). UP-OSI uses
privileged information (in terms of the extra supervision). Both CaDM and ZeUS are reasonably
straightforward to implement (and train) though ZeUS outperforms the other baselines. The context
loss (Equation (2)) is an important ingredient for the generalization performance as observed by
the performance of Zeus-no-context-loss. The corresponding plots for performance on the training
environments and heldout interpolation evaluation environments are given in Figure 8 and Figure 9
(in Appendix) respectively. For additional ablation results for these environments, refer to C.3.

0 1 2 3 4 5
Environment Steps (×105)

−110

−108

−106

−104

−102

−100

−98

−96

−94

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
ZeUS-no-context-loss

ZeUS
Meld

(a) Cheetah-Run-v1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps (×105)

−20

−15

−10

−5

0

5

10

15

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
ZeUS-no-context-loss

ZeUS
Meld

(b) Sawyer-Peg-v0 (c) Sawyer-Peg-v0

Figure 4: (a), (b): We compare the performance of the proposed ZeUS algorithm with CaDM, Hyper-
Dynamics, ZeUS-no-bisim and Meld algorithms on environments with different reward functions. (c):
Illustration of the Sawyer-Peg-V0 task.

0 1 2 3 4 5 6 7

Task Index (in increasing
 order of length)

0

1

2

3

4

5

6

7

Ta
sk

 In
de

x
(in

 in
cr

ea
sin

g
 o

rd
er

 o
f l

en
gt

h)

0.00 0.73 0.81 0.83 0.88 0.94 0.94 0.77

0.73 0.00 0.40 0.47 0.49 0.52 0.75 0.71

0.81 0.40 0.00 0.31 0.38 0.41 0.70 0.72

0.83 0.47 0.31 0.00 0.25 0.26 0.73 0.64

0.88 0.49 0.39 0.25 0.00 0.24 1.02 0.64

0.94 0.52 0.41 0.26 0.24 0.00 0.31 0.44

0.94 0.75 0.70 0.73 1.02 0.31 0.00 0.11

0.77 0.71 0.72 0.64 0.64 0.44 0.11 0.00
0.0

0.2

0.4

0.6

0.8

1.0
0 1 2 3 4 5 6 7

Task Index (in increasing
 order of length)

0

1

2

3

4

5

6

7

Ta
sk

 In
de

x
(in

 in
cr

ea
sin

g
 o

rd
er

 o
f l

en
gt

h)

0.00 2.75 3.29 3.50 2.84 1.39 1.62 2.25

2.75 0.00 3.41 3.15 1.76 2.45 2.81 3.21

3.29 3.41 0.00 1.21 1.82 3.73 4.10 1.82

3.50 3.15 1.21 0.00 1.68 3.97 4.45 2.57

2.84 1.76 1.82 1.68 0.00 2.99 3.36 2.20

1.39 2.45 3.73 3.97 2.99 0.00 0.95 2.58

1.62 2.81 4.10 4.45 3.36 0.95 0.00 2.78

2.25 3.21 1.82 2.57 2.20 2.58 2.78 0.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Norm
 of

 difference of the contexts

Figure 5: Norm of pairwise differences of contexts for different
tasks for Cheetah-Run-v0 setup when trained with context loss (left)
and without context loss (right).

In Figure 4, we compare
ZeUS’s performance with the
baselines when the reward
function varies across tasks.
Since all the models have ac-
cess to the reward (i.e. reward
is concatenated as part of his-
tory), we do not compare with
UP-OSI which is trained to in-
fer the reward. Instead we in-
clude an additional baseline,

8

Under review as a conference paper at ICLR 2022

Meld (Zhu et al., 2020), a meta-RL approach that performs inference in a latent state model to
adapt to a new task. Like before, ZeUS outperforms the other baselines.

6.4 LEARNING A MEANINGFUL CONTEXT REPRESENTATION

We want to evaluate if the context representation constructed by ZeUS contains meaningful infor-
mation about the true context of the BC-MDP. We compute the norm of pairwise difference of the
learned contexts (corresponding to different tasks) for the Cheetah-Run-v0 setup (where the torso of
the cheetah varies across the tasks) when it is trained with and without the context loss (Equation (2)).
As shown in Figure 5 (left), when training with the context loss, tasks that are closer in terms of torso
length are also consistently closer in the context space and pairs of tasks with larger differences of
torso length are also consistently further apart. We also compute the Spearman’s rank correlation
coefficient between the ranking (of distance) between the learned contexts and the ground truth
context. The coefficient is much higher (0.60) when trained with the context loss than training
without the context loss (0.23), showing that the context loss is useful for training representations
that capture the relationship across tasks of the true underlying context variable without privileged
information of task ids or the true context.

7 LIMITATIONS

3.4 3.6 3.8 4.0 4.2 4.4 4.6
Target Velocity

−110

−100

−90

−80

−70

−60

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
ZeUS
ZeUs-no-context-loss
Meld

Figure 6: The performance of all the al-
gorithms (on Cheetah-Run-v1) degrades
as we move away from the training dis-
tribution.

A theoretical limitation of this work is the inability to
provide guarantees based on the likelihood of the model
learning the correct causal dynamics. By structuring the
context space to be Lipschitz, we can give guarantees only
for those dynamics and reward where the context is close
to the contexts seen at training time. While this result flows
directly from Theorem 3, it is important to be aware of
this limitation when using ZeUS in practice, namely that it
may have poor performance when the distance between the
contexts (corresponding to the training and the evaluation
tasks) is high. We demonstrate an example in Figure 6,
where we plot the performance of the agent for different
values of target velocities (for Cheetah-Run-v1). While
ZeUS outperforms the other methods, its performance also
degrades as we move away from the training distribution.

8 DISCUSSION

In this work, we propose to use the Block Contextual MDP framework (Sodhani et al., 2021b)
to model the nonstationary, rich observation, RL setting. This allows classical RL methods that
typically rely on a stationarity assumption to be used in continual learning, and we show that our
adaptive approach can zero-shot generalize to new, unseen environments. We provide theoretical
bounds on adaptation and generalization ability to unseen tasks within this framework and propose a
representation learning algorithm (ZeUS) for performing online inference of “unknown unknowns”.
We empirically verify the effectiveness of the proposed algorithm on environments with nonstationary
dynamics and reward functions and show that a crucial component of ZeUS is the context loss
that ensures smoothness in the context space. This context loss successfully captures meaningful
information about the true context, as verified in Section 6.4.

There are a few interesting directions for further research. One way to improve the generalization
performance and tighten the generalization bounds is by constraining the neural networks used
in ZeUS to have smaller Lipschitz constants. This is known to be able to improve generalization
bounds (Neyshabur et al., 2015). We can also consider improving the algorithm to infer the underlying
causal structure of the dynamics, as discussed in Section 7. This is a much harder problem than
constructing a context space and inferring context in new environments. A second direction is
to extend ZeUS to account for active nonstationarity, where the agent’s actions can affect the
environment. ZeUS would work for this setting, but there is clearly additional structure that can be
leveraged for improved performance. There are connections to existing work in multi-agent RL.

9

Under review as a conference paper at ICLR 2022

9 REPRODUCIBILITY STATEMENT

We provide implementation related details in Appendix B. The pseudocode for the main algorithm and
the the context loss update are provided in Algorithm 1 and Algorithm 2 respectively. Appendix B.2
contains details related to the compute resources/time, Appendix B.3 contains the information related
to the different tasks and Appendix B.4 contains the information related to software stack and licenses.
Hyper-parameters, for the different experiments, are enlisted in Appendix B.5. All the experiments
are run with 10 seeds and we report both the mean and the standard error (denoted by the shaded area
on the plots) Section 6.1. We will be open-sourcing the code and including a link for the same in the
camera-ready version.

REFERENCES

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and value
transfer in lifelong reinforcement learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 20–29. PMLR, 10–15 Jul 2018. URL http://proceedings.mlr.
press/v80/abel18b.html.

Anurag Ajay, Maria Bauza, Jiajun Wu, Nima Fazeli, Joshua B Tenenbaum, Alberto Rodriguez, and
Leslie P Kaelbling. Combining physical simulators and object-based networks for control. In 2019
International Conference on Robotics and Automation (ICRA), pp. 3217–3223. IEEE, 2019.

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and
Tinne Tuytelaars. Online continual learning with maximally interfered retrieval. arXiv preprint
arXiv:1908.04742, 2019.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In International Conference on Machine Learning, pp. 166–175. PMLR, 2017.

Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based re-
inforcement learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 264–273, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/asadi18a.html.

Ershad Banijamali, Rui Shu, Hung Bui, Ali Ghodsi, et al. Robust locally-linear controllable embed-
ding. In International Conference on Artificial Intelligence and Statistics, pp. 1751–1759. PMLR,
2018.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado Van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. arXiv preprint
arXiv:1606.05312, 2016.

Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edition,
1957.

Kiran S Bhat, Steven M Seitz, Jovan Popović, and Pradeep K Khosla. Computing the physical
parameters of rigid-body motion from video. In European Conference on Computer Vision, pp.
551–565. Springer, 2002.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Oscar Chang, Lampros Flokas, and Hod Lipson. Principled weight initialization for hypernetworks.
In International Conference on Learning Representations, 2019.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Tao Chen, Adithyavairavan Murali, and Abhinav Gupta. Hardware conditioned policies for multi-
robot transfer learning. arXiv preprint arXiv:1811.09864, 2018.

10

http://proceedings.mlr.press/v80/abel18b.html
http://proceedings.mlr.press/v80/abel18b.html
http://proceedings.mlr.press/v80/asadi18a.html

Under review as a conference paper at ICLR 2022

Alessandro Chiuso and Gianluigi Pillonetto. System identification: A machine learning perspective.
Annual Review of Control, Robotics, and Autonomous Systems, 2:281–304, 2019.

Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=HyztsoC5Y7.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 2169–2176. IEEE, 2017.

J. L. Doob. Stochastic processes. John Wiley & Sons, New York, 1953. MR 15,445b. Zbl 0053.26802.

Finale Doshi-Velez and George Konidaris. Hidden Parameter Markov Decision Processes: A Semi-
parametric Regression Approach for Discovering Latent Task Parametrizations. arXiv:1308.3513
[cs], August 2013. arXiv: 1308.3513.

Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato. Multiple model-based
reinforcement learning. Neural computation, 14(6):1347–1369, 2002.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.
Provably efficient RL with rich observations via latent state decoding. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 1665–1674. PMLR,
09–15 Jun 2019.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control. arXiv
preprint arXiv:1812.00568, 2018.

Fernando Fernández and Manuela Veloso. Probabilistic policy reuse in a reinforcement learning agent.
In Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems, pp. 720–727, 2006.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes. In
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, pp. 162–169,
Arlington, Virginia, United States, 2004. AUAI Press. ISBN 0-9749039-0-6.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous markov
decision processes. SIAM J. Comput., 40(6):1662–1714, December 2011. ISSN 0097-5397. doi:
10.1137/10080484X.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual predictive
models of physics for playing billiards. arXiv preprint arXiv:1511.07404, 2015.

João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Comput. Surv., 46(4), March 2014. ISSN
0360-0300. doi: 10.1145/2523813. URL https://doi.org/10.1145/2523813.

Michel Gevers et al. System identification without lennart ljung: what would have been different?
Forever Ljung in System Identification, Studentlitteratur AB, Norrtalje, 2, 2006.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in Cognitive Sciences, 2020.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019.

11

https://openreview.net/forum?id=HyztsoC5Y7
https://openreview.net/forum?id=HyztsoC5Y7
https://doi.org/10.1145/2523813

Under review as a conference paper at ICLR 2022

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes, 2015.

Dongqi Han, Kenji Doya, and Jun Tani. Variational recurrent models for solving partially observable
control tasks. arXiv preprint arXiv:1912.10703, 2019.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424,
2019.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for pomdps. In International Conference on Machine Learning, pp. 2117–
2126. PMLR, 2018.

Maximilian Igl, Andrew Gambardella, Jinke He, Nantas Nardelli, N. Siddharth, Wendelin Böhmer,
and Shimon Whiteson. Multitask soft option learning, 2020. URL https://openreview.
net/forum?id=BkeDGJBKvB.

Khurram Javed and Martha White. Meta-learning representations for continual learning. arXiv
preprint arXiv:1905.12588, 2019.

Nan Jiang, Alex Kulesza, and Satinder Singh. Abstraction selection in model-based reinforcement
learning. In International Conference on Machine Learning, pp. 179–188, 2015.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Pierre-Alexandre Kamienny, Matteo Pirotta, Alessandro Lazaric, Thibault Lavril, Nicolas Usunier,
and Ludovic Denoyer. Learning adaptive exploration strategies in dynamic environments through
informed policy regularization. arXiv preprint arXiv:2005.02934, 2020.

Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Continual reinforcement learning with
complex synapses. In International Conference on Machine Learning, pp. 2497–2506. PMLR,
2018.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al. The marabou framework for
verification and analysis of deep neural networks. In International Conference on Computer Aided
Verification, pp. 443–452. Springer, 2019.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement
learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

Sylwester Klocek, Łukasz Maziarka, Maciej Wołczyk, Jacek Tabor, Jakub Nowak, and Marek Śmieja.
Hypernetwork functional image representation. In International Conference on Artificial Neural
Networks, pp. 496–510. Springer, 2019.

Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-,
and high-level vision using diverse datasets and limited memory. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 6129–6138, 2017.

Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware dynamics
model for generalization in model-based reinforcement learning. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pp. 5757–5766. PMLR, 13–18 Jul 2020. URL
http://proceedings.mlr.press/v119/lee20g.html.

Lennart Ljung. Perspectives on system identification. Annual Reviews in Control, 34(1):1–12,
2010. ISSN 1367-5788. doi: https://doi.org/10.1016/j.arcontrol.2009.12.001. URL https:
//www.sciencedirect.com/science/article/pii/S1367578810000027.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
arXiv preprint arXiv:1706.08840, 2017.

12

https://openreview.net/forum?id=BkeDGJBKvB
https://openreview.net/forum?id=BkeDGJBKvB
http://proceedings.mlr.press/v119/lee20g.html
https://www.sciencedirect.com/science/article/pii/S1367578810000027
https://www.sciencedirect.com/science/article/pii/S1367578810000027

Under review as a conference paper at ICLR 2022

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Elliot Meyerson and Risto Miikkulainen. Modular universal reparameterization: Deep multi-task
learning across diverse domains. arXiv preprint arXiv:1906.00097, 2019.

S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag, London,
1993. URL /brokenurl#probability.ca/MT.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. arXiv preprint arXiv:1707.03141, 2017.

Aditya Modi and Ambuj Tewari. No-regret exploration in contextual reinforcement learning. In
Conference on Uncertainty in Artificial Intelligence, pp. 829–838. PMLR, 2020.

Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with
continuous side information. In Algorithmic Learning Theory, pp. 597–618. PMLR, 2018.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018.

Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-learning: Con-
tinual adaptation for model-based RL. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=HyxAfnA5tm.

Gerhard Neumann, Wolfgang Maass, and Jan Peters. Learning complex motions by sequencing
simpler motion templates. In Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 753–760, 2009.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Peter Grünwald, Elad Hazan, and Satyen Kale (eds.), Proceedings of The 28th
Conference on Learning Theory, volume 40 of Proceedings of Machine Learning Research, pp.
1376–1401, Paris, France, 03–06 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v40/Neyshabur15.html.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pp. 2778–2787.
PMLR, 2017.

Xue Bin Peng, Glen Berseth, and Michiel Van de Panne. Terrain-adaptive locomotion skills using
deep reinforcement learning. ACM Transactions on Graphics (TOG), 35(4):1–12, 2016.

Christian Perez, Felipe Petroski Such, and Theofanis Karaletsos. Generalized Hidden Parameter
MDPs:Transferable Model-Based RL in a Handful of Trials. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(04):5403–5411, April 2020. doi: 10.1609/aaai.v34i04.5989. URL
https://ojs.aaai.org/index.php/AAAI/article/view/5989.

Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming. Journal
of the Operational Research Society, 1995.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
robust neural network policies using model ensembles. arXiv preprint arXiv:1610.01283, 2016.

13

/brokenurl#probability.ca/MT
https://openreview.net/forum?id=HyxAfnA5tm
https://proceedings.mlr.press/v40/Neyshabur15.html
https://proceedings.mlr.press/v40/Neyshabur15.html
https://ojs.aaai.org/index.php/AAAI/article/view/5989

Under review as a conference paper at ICLR 2022

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97, pp. 5331–5340, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Mark Bishop Ring et al. Continual learning in reinforcement environments. PhD thesis, University
of Texas at Austin Austin, Texas 78712, 1994.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

J.J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991. ISBN 978-0-13-040890-7.
URL https://books.google.com/books?id=cwpRAAAAMAAJ.

Shagun Sodhani, Sarath Chandar, and Yoshua Bengio. Toward Training Recurrent Neural Networks
for Lifelong Learning. Neural Computation, 32(1):1–35, 01 2020. ISSN 0899-7667. doi:
10.1162/neco_a_01246. URL https://doi.org/10.1162/neco_a_01246.

Shagun Sodhani, Ludovic Denoyer, Pierre-Alexandre Kamienny, and Olivier Delalleau. MTEnv
- environment interface for multi-task reinforcement learning. Github, 2021a. URL https:
//github.com/facebookresearch/mtenv.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning (ICML), 2021b.

Jan Swevers, Chris Ganseman, D Bilgin Tukel, Joris De Schutter, and Hendrik Van Brussel. Optimal
robot excitation and identification. IEEE transactions on robotics and automation, 13(5):730–740,
1997.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
DeepMind control suite. Technical report, DeepMind, January 2018.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 4496–4506, 2017.

Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pp. 181–209. Springer, 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Peter Van Overschee and BL De Moor. Subspace identification for linear systems: The-
ory—Implementation—Applications. Springer Science & Business Media, 2012.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. arXiv preprint
arXiv:1506.07365, 2015.

Zhou Xian, Shamit Lal, Hsiao-Yu Tung, Emmanouil Antonios Platanios, and Katerina Fragkiadaki.
Hyperdynamics: Generating expert dynamics models by observation. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
pHXfe1cOmA.

Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning amidst lifelong non-
stationarity, 2020.

14

https://books.google.com/books?id=cwpRAAAAMAAJ
https://doi.org/10.1162/neco_a_01246
https://github.com/facebookresearch/mtenv
https://github.com/facebookresearch/mtenv
https://openreview.net/forum?id=pHXfe1cOmA
https://openreview.net/forum?id=pHXfe1cOmA

Under review as a conference paper at ICLR 2022

Huan Xu and Shie Mannor. Robustness and generalization. Mach. Learn., 86(3):391–423, March
2012. ISSN 0885-6125. doi: 10.1007/s10994-011-5268-1. URL https://doi.org/10.
1007/s10994-011-5268-1.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. arXiv preprint arXiv:1805.12369, 2018.

Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B Tenenbaum, and Shuran Song. Densephysnet:
Learning dense physical object representations via multi-step dynamic interactions. arXiv preprint
arXiv:1906.03853, 2019.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving
sample efficiency in model-free reinforcement learning from images. 2019.

Haiyan Yin and Sinno Pan. Knowledge transfer for deep reinforcement learning with hierarchical
experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. Preparing for the unknown: Learning a universal
policy with online system identification. In Robotics: Science and Systems, 2017.

L Zadeh. On the identification problem. IRE Transactions on Circuit Theory, 3(4):277–281, 1956.

Amy Zhang, Zachary C. Lipton, Luis Pineda, Kamyar Azizzadenesheli, Anima Anandkumar, Laurent
Itti, Joelle Pineau, and Tommaso Furlanello. Learning causal state representations of partially
observable environments. The Multi-disciplinary Conference on Reinforcement Learning and
Decision Making, 2019.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Invari-
ant representations for reinforcement learning without reconstruction. In International Confer-
ence on Learning Representations, 2021a. URL https://openreview.net/forum?id=
-2FCwDKRREu.

Amy Zhang, Shagun Sodhani, Khimya Khetarpal, and Joelle Pineau. Learning robust state abstrac-
tions for hidden-parameter block MDPs. In International Conference on Learning Representations,
2021b. URL https://openreview.net/forum?id=fmOOI2a3tQP.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark detection by deep
multi-task learning. In European conference on computer vision, pp. 94–108. Springer, 2014.

Tony Z. Zhao, Anusha Nagabandi, Kate Rakelly, Chelsea Finn, and Sergey Levine. Latent state
models for meta-reinforcement learning from images. In 4th Annual Conference on Robot Learning,
CoRL 2020, Proceedings, Proceedings of Machine Learning Research. PMLR, 2020.

Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environment probing interaction policies. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ryl8-3AcFX.

Shaojun Zhu, Andrew Kimmel, Kostas E Bekris, and Abdeslam Boularias. Fast model identification
via physics engines for data-efficient policy search. arXiv preprint arXiv:1710.08893, 2017.

Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforcement learning: A
survey. arXiv preprint arXiv:2009.07888, 2020.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, pp. 7693–7702.
PMLR, 2019.

Karl Johan Åström and Torsten Bohlin. Numerical identification of linear dynamic systems from
normal operating records. In Proc. IFAC Conference on Self-Adaptive Control Systems, 1965.

15

https://doi.org/10.1007/s10994-011-5268-1
https://doi.org/10.1007/s10994-011-5268-1
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=fmOOI2a3tQP
https://openreview.net/forum?id=ryl8-3AcFX
https://openreview.net/forum?id=ryl8-3AcFX

Under review as a conference paper at ICLR 2022

A ADDITIONAL RELATED WORK

This section extends the discussion on the related works from Section 2.

Some prior works train a single fixed dynamics model but introduce additional constraints that
ensure the latent dynamics are locally linear (Watter et al., 2015; Banijamali et al., 2018) or that the
learned dynamics model is invariant to translation dynamics (Fragkiadaki et al., 2015). However,
such approaches fail when the parameters of the underlying dynamics model change. In theory, one
could learn a new expert dynamics model per task, but that is computationally expensive and requires
access to the unseen environments. Xian et al. (2021) generates the weights of an expert dynamics
model by using the environment context as an input. Specifically, they proposed an algorithm called
HyperDynamics where they use a HyperNetwork (Ha et al., 2016; Chang et al., 2019; Klocek et al.,
2019; Meyerson & Miikkulainen, 2019) to generate the weights of the dynamics model.Similar to our
work, Lee et al. (2020) also introduced additional loss terms when training the agent. However, their
objective is to encourage the context encoding to be useful for predicting both forward (next state) and
backward (previous state) dynamics while being temporally consistent. Asadi et al. (2018) present
results when bounding the model class to Lipschitz functions but assume that the given MDP is
Lipschitz. We instead show that this constraint can be placed on the representation learning objective
for better results in the continual learning setting, even when the original BC-MDP is not Lipschitz.

Our work is related to the broad area of multitask RL and transfer learning (Caruana, 1997; Zhang
et al., 2014; Kokkinos, 2017; Radford et al., 2019; Rajeswaran et al., 2016). Previous works have
looked at multi-task and transfer learning from the perspective of policy transfer (Rusu et al., 2015;
Yin & Pan, 2017), policy reuse (Fernández & Veloso, 2006; Barreto et al., 2016), representation
transfer (Rusu et al., 2016; Devin et al., 2017; Andreas et al., 2017; Sodhani et al., 2021b) etc. One
unifying theme in these works is that the agent is finetuned on the new environment while we focus
on setup where there are no gradient updates when evaluating on the unseen environment. Zhang et al.
(2021b) also uses task metrics to learn a context space, but focus on the rich observation version of the
Hidden-Parameter MDP (HiP-MDP) setting (Doshi-Velez & Konidaris, 2013) with access to task ids.
Similarly, Perez et al. (2020) also treats the multi-task setting as a HiP-MDP by explicitly designing
latent variable models to model the latent parameters, but require knowledge of the structure upfront,
whereas our approach does not make any such assumptions.

Several works proposed a mixture-of-experts based approach to adaptation where an expert model
is learned for each task (Doya et al., 2002; Neumann et al., 2009; Peng et al., 2016) or experts are
shared across tasks (Igl et al., 2020; Sodhani et al., 2021b). Teh et al. (2017) additionally proposed
to distill these experts in a single model that should work well across multiple tasks. While these
systems perform reasonably well on the training tasks, they do not generalize well to unseen tasks.

B IMPLEMENTATION DETAILS

We provide additional details of the main algorithm, environment setup, compute used, baselines, and
hyperparameter information.

B.1 ALGORITHM

We provide pseudocode for the main algorithm in Algorithm 1 and the context loss update in
Algorithm 2.

Algorithm 2 Update Using Context Loss
Require: Batches of data sampled from the Replay Buffer D, Dynamics Model T , Reward Model

R, Observation Encoder φ, Context Encoder ψ, Learning rates αψ , αT and αR.
1: for each batch do
2: Compute L(φ, ψ, T,R)) using Equation (2)
3: ψ ← ψ − αψ∇θ

∑
i L

4: T ← T − αT∇θ
∑
i L

5: R← R− αR∇θ
∑
i L

6: end for

16

Under review as a conference paper at ICLR 2022

Algorithm 1 Training ZeUS algorithm.
Require: Actor, Critic, Dynamics Model T , Reward Model R, Observation Encoder φ, Context

Encoder ψ, Replay Buffer D.
1: for each timestep t = 1..T do
2: for each Ei do
3: ait ∼ πi(·|sit)
4: s′it ∼ pi(·|sit, ait)
5: D ← D ∪ (sit, a

i
t, r(s

i
t, a

i
t), s

′i
t)

6: UPDATE_CRITIC(D)
7: UPDATE_ACTOR(D)
8: UPDATE_USING_CONTEXT_LOSS(D)
9: end for

10: end for

B.2 SETUP

Environments For tasks with varying dynamics, we use the Finger, Cheetah and Walker envi-
ronments. These are Mujoco (Todorov et al., 2012)6 based tasks that are available as part of the
DMControl Suite Tassa et al. (2018)7. We use MTEnv Sodhani et al. (2021a)8 to interface with the
environments. In the Finger Spin task, the agent has to manipulate (continually rotate) a planar finger.
We vary the size across different tasks and the specific values (for each mode) are listed in Table 2.
In the Cheetah Run task, a planar bipedal cheetah has to run as fast as possible (up to a maximum
velocity). In the Walker Walk tasks, a planar walker has to learn to walk. We consider two cases here:
(i) varying the friction coefficient between the walker and the ground, and (ii) the length of the foot
of the walker.

For tasks with varying reward function, we use the Cheetah and the Sawyer Peg environments
from Zhao et al. (2020)9. We highlight some challenges in the evaluation: In the cheetah environment,
the reward depends on the difference in the magnitude of the agent’s velocity and the target velocity.
In each run of the algorithm, the target velocities are randomly sampled. We noticed that the cheetah
can easily match the target velocity when the target velocity is small and makes a larger error when
the target velocity is large. In practice, the performance of the cheetah (as measured in terms of
episodic rewards) can vary a lot depending on the sampled target velocities. To make the comparison
fair across the different baselines, we fix the values of the target velocities (for train and for eval)
instead of sampling them. In the Peg-Insertion task, the reward has an extra “offset” term as shown in
the implementation but this does not match the description in Zhao et al. (2020). We use the version
of reward function without the offset, as described in Zhao et al. (2020).

All the algorithms are implemented using PyTorch (Paszke et al., 2017)10. We use the MTRL
codebase11 as the starting codebase.

Compute Resources Unless specified otherwise, all the experiments are run using Volta GPUs
with 16 GB memory. Each experiment uses 1 GPU and 10 CPUs (to parallelize the execution in the
environments). The experiments with HyperDynamics model are run with Volta GPUs with 32 GB
Memory. For the Cheetah-Run-v0, Finger-Spin-v0, Walker-Walk-v0 and Walker-Walk-v1, training
CADM and ZeUS takes about 44 hours, training HyperDynamics takes about 62 hours and training
UP-OSI takes 24 hours (all for 1.2 M steps). For Cheetah-Run-v1 and Sawyer-Peg-v1, training
CADM and ZeUS takes about 25 hours while HyperDynamics takes about 32.5 hours (all for 300K
steps). These times include the time for training and evaluation.

6https://www.roboti.us
7https://github.com/deepmind/dm_control
8https://github.com/facebookresearch/mtenv/commit/7fdec15f7e842bce4c17f4f3328d9d6fdc79d7fc
9https://github.com/tonyzhaozh/meld

10https://pytorch.org/
11https://github.com/facebookresearch/mtrl/commit/eea3c99cc116e0fadc41815d0e7823349fcc0bf4

17

https://github.com/tonyzhaozh/meld/blob/271cd6d6a002a6c1a637a908a6e3c06c8349fcbd/meld/environments/envs/reacher/sawyer_reacher.py#L179
https://www.roboti.us
https://github.com/tonyzhaozh/meld
https://pytorch.org/

Under review as a conference paper at ICLR 2022

In Table 1, we show that a two-layer feedforward network can be trained to infer the context value
from last 5 observation-action tuples. The setup is modeled as a regression problem where the
observation-action transition tuples are obtained from a random policy.

Table 1: Loss when training the model to infer the context

Environment Name Loss

Cheetah-Run-v0 5.12× 10−5

Finger-Spin-v0 7.45× 10−5

Walker-Walk-v0 7.22× 10−5

Walker-Walk-v1 6.41× 10−5

B.2.1 BASELINES

We provide additional implementation related details for the baselines. For a summary of the baselines,
refer Section 6.2.

1. Context-aware Dynamics Model (CaDM): Lee et al. (2020) proposed a two stage pipeline:
(a) use a context encoder to obtain a context vector given the recent interactions and (ii)
perform online adaption by conditioning the forward dynamics model on the context vector.
CaDM is shown to outperform vanilla dynamics models which do not use the interaction
history, stacked dynamics models which use the interaction history as an input, and Gradient
and Recurrence-based meta learning approaches (Nagabandi et al., 2018).

2. UP-OSI: Yu et al. (2017) proposed learning two components: (i) Universal Policy (UP) and
(ii) On-line System Identification model (OSI). The universal policy is trained over a wide
range of dynamics parameters so that it can operate in a previously unseen environment
(given access to the parameters of the dynamics model). It is modeled as a function of the
dynamic parameters µ, such that at = πµ(st) and is trained offline, in simulation, without
requiring access to the real-world samples. The goal of the universal policy is to generalize
to the space of the dynamics models. The on-line system identification model is trained
to identify the parameters of the dynamics model conditioned on the last k state-action
transition tuples i.e. µ = φ((si, ai, s

′
i, ri),∀i ∈ {1, ..., k}), where φ is the OSI module. φ

is trained using a supervised learning loss by assuming access to true parameters of the
dynamics model. During evaluation (in an unseen environment), the OSI module predicts
the dynamic parameters at every timestep. The universal policy uses these inferred dynamics
parameters to predicts the next action.The system identification module is trained to identify
a model that is good enough to predict a policy’s value function that is similar to the current
optimal policy. Following the suggestion by (Yu et al., 2017), we initially train the OSI
using the data collected by UP (when using true model parameters) and then switch to the
data collected using inferred parameters. Specifically, the paper suggested using first 3-5
iterations (out of 500 iterations) for training with the ground truth parameters. We scaled the
number of these warmup iterations to match the number of updates in our implementation
and report the results using the same. During evaluation, we report the performance of UP
using the inferred parameters (UP-inferred), as recommended in the paper.

3. HyperDynamics: Xian et al. (2021) proposed learning three components: (i) an encoding
module that encodes the agent-environment interactions, (ii) a hypernetwork that generates
the weight for a dynamics model at the current timestep, and (iii) a (target) dynamics model
that uses the weights generated by the hypernetwork. All the components (and the policy)
are trained jointly in an end-to-end manner. HyperDynamics is shown to ourperform both
ensemble of experts and meta-learning based approaches (Nagabandi et al., 2018).

4. Context-conditioned Policy: We train a context encoder that encoders the interaction history
into latent context that is passed to the policy and the dynamics. This approach can be
thought of as an ablation of the ZeUS algorithm with αψ = 0, or without the context learning
error (from Equation (2)). We label this baseline as Zeus-no-context-loss.

We note that when training on the environments with varying reward dynamics, we concatenate the
reward along with the environment observation (as done in Zhao et al. (2020)).

18

Under review as a conference paper at ICLR 2022

B.3 ENVIRONMENT DETAILS

Table 2: Parameter values for different modes for the Finger environments (Finger-Spin-v0) when
varying the size of the finger across the tasks.

Mode Values

Train / Eval [0.05, 0.0625, 0.075, 0.0875, 0.15, 0.1625, 0.175, 0.1875]
Eval Interpolation [0.1, 0.1125, 0.125, 0.1375]
Eval Extrapolation [0.01, 0.0125, 0.025, 0.0375, 0.2, 0.2125, 0.35, 0.5]

Table 3: Parameter values for different modes for the Cheetah environments (Cheetah-Run-v0) when
varying the length of cheetah’s torso across the tasks.

Mode Values

Train / Eval [0.6, 0.65, 0.7, 0.75, 1, 1.05, 1.1, 1.15, 1.25, 1.4, 1.5]
Eval Interpolation [0.8, 0.85, 0.9, 0.95]
Eval Extrapolation [0.3, 0.4, 0.5, 0.55, 1.2, 1.25, 1.4, 1.5]

Table 4: Parameter values for different modes for the Walker environments (Walker-Walk-v0) when
varying the friction coefficient between the walker and the ground.

Mode Values

Train / Eval [0.8, 0.85, 0.9, 0.95, 1.2, 1.25, 1.3, 1.35]
Eval Interpolation [1.0, 1.05, 1.1, 1.15]
Eval Extrapolation [0.3, 0.5, 0.7, 0.75, 1.4, 1.45, 1.7, 1.9]

Table 5: Parameter values for different modes for the Walker environments (Walker-Walk-v1) when
varying the length of walker’s foot.

Mode Values

Train / Eval [0.09, 0.095, 0.1, 0.105, 0.13, 0.135, 0.14, 0.145]
Eval Interpolation [0.11, 0.115, 0.12, 0.125]
Eval Extrapolation [0.03, 0.06, 0.08, 0.085, 0.15, 0.155, 0.18, 0.21]

Table 6: Values for the target velocity for the Cheetah environments (Cheetah-Run-v1).

Mode Values

Train [0., 0.43, 0.86, 1.29, 1.71, 2.14, 2.57, 3.0]
Eval [0.4, 0.78, 1.11, 1.47, 1.83, 2.18, 2.55, 2.9]

Table 7: Range for sampling the values for the Sawyer-Peg environments (Sawyer-Peg-v0)

Mode Values

x_range_1 (0.44, 0.45)
x_range_2 (0.6, 0.61)
y_range_1 (-0.08, -0.07)
y_range_2 (0.07, 0.08)

B.4 LICENSE

1. Mujoco: Commercial (with Trial Version) https://www.roboti.us/license.html

19

https://www.roboti.us/license.html

Under review as a conference paper at ICLR 2022

2. DeepMind Suite: Apache https://github.com/deepmind/dm_control/blob/master/LICENSE

3. MTEnv: MIT License https://github.com/facebookresearch/mtenv/blob/main/LICENSE

4. Meld Codebase: https://github.com/tonyzhaozh/meld

5. PyTorch: https://github.com/pytorch/pytorch/blob/master/LICENSE

6. MTRL: MIT License https://github.com/facebookresearch/mtrl/blob/main/LICENSE

7. Hydra: MIT License https://github.com/facebookresearch/hydra/blob/master/LICENSE

B.5 HYPERPARAMETER DETAILS

Figure 7: Variation in
Cheetah-Run-v0 tasks.

In this section, we provide hyper-parameter values for each of the
methods in our experimental evaluation. We also describe the search
space for each hyperparameter. In Table 9 and Table 8 , we provide
the hyperparameter values that are common across all the methods.

Table 8: Hyperparameter values that are common across all the methods for Cheetah-Run-v0, Finger-
Spin-v0, Walker-Walk-v0 and Walker-Walk-v1 (envs with varying dynamics)

Hyperparameter Hyperparameter values

batch size (per task) 128
network architecture feedforward network
non-linearity ReLU
policy initialization standard Gaussian
exploration parameters run a uniform exploration policy 1500 steps
of samples / # of train
steps per iteration

1 env step / 1 training step

policy learning rate 3e-4
Q function learning rate 3e-4
Critic update frequency 2
optimizer Adam
beta for Adam optimizer
for policy

(0.9, 0.999)

Q function learning rate 3e-4
beta for Adam optimizer
for Q function

(0.9, 0.999)

Discount .99
Episode length (horizon) 500
Reward scale 1.0
actor update frequency 2
actor log stddev bounds [−10, 2]
number of layers in ac-
tor/critic

2

actor/critic hidden dimen-
sion

1024

number layers in dynamics
model

1

dynamics hidden dimen-
sion

512

number of encoder layers 4
number of filters in en-
coder

32

Replay buffer capacity 400000
Temperature Adam’s β1 0.9
Init temperature 0.1
Context Length 5

20

https://github.com/deepmind/dm_control/blob/master/LICENSE
https://github.com/facebookresearch/mtenv/blob/main/LICENSE
https://github.com/tonyzhaozh/meld
https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/facebookresearch/mtrl/blob/main/LICENSE
https://github.com/facebookresearch/hydra/blob/master/LICENSE

Under review as a conference paper at ICLR 2022

Table 9: Hyperparameter values that are common across all the methods for Cheetah-Run-v1 and
Sawyer-Peg-v0 (envs with varying reward functions)

Hyperparameter Hyperparameter values

batch size (per task) 128
network architecture feedforward network
non-linearity ReLU
policy initialization standard Gaussian
exploration parameters run a uniform exploration policy 10000 steps
of samples / # of train
steps per iteration

1 env step / 1 training step

policy learning rate 3e-4
Q function learning rate 3e-4
Critic update frequency 2
optimizer Adam
beta for Adam optimizer
for policy

(0.5, 0.999)

Q function learning rate 3e-4
beta for Adam optimizer
for Q function

(0.5, 0.999)

Discount .99
Episode length (horizon) 40
Reward scale 1.0
actor update frequency 2
actor log stddev bounds [−10, 2]
number of layers in ac-
tor/critic

2

actor/critic hidden dimen-
sion

1024

number layers in dynamics
model

1

dynamics hidden dimen-
sion

512

number of encoder layers 4
number of filters in en-
coder

32

Replay buffer capacity 400000
Temperature Adam’s β1 0.5
Init temperature 0.1
Context Length 5

Table 10: Hyperparameter values for Context Aware Dynamics Model

Hyperparameter Hyperparameter values Environment

β 0.5 Cheetah-Run-v0
β 0.5 Finger-Spin-v0
β 0.5 Walker-Walk-v0
β 0.5 Walker-Walk-v1
β 0.5 Cheetah-Run-v1
β 0.5 Sawyer-Peg-v0

Table 11: Hyperparameter values for ZeUS

Hyperparameter Hyperparameter values Environment

αψ 1.0 Cheetah-Run-v0
αψ 0.5 Finger-Spin-v0
αψ 2.0 Walker-Walk-v0
αψ 0.1 Walker-Walk-v1
αψ 1.0 Cheetah-Run-v1
αψ 1.0 Sawyer-Peg-v0

21

Under review as a conference paper at ICLR 2022

C ADDITIONAL RESULTS

We present additional results not in the main paper.

C.1 HANDLING NONSTATIONARITY IN THE TRAINING ENVIRONMENTS

In Figure 8 we show performance on ZeUS and baselines on the training environments.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

100

200

300

400

500

600

700

Ep
iso

di
c

Re
tu

rn

CaDM
Hyperdynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(a) Cheetah-Run-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(b) Finger-Spin-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

200

400

600

800

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(c) Walker-Walk-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(d) Walker-Walk-v1

Figure 8: We compare the performance of the proposed ZeUS algorithm with CaDM, UP-OSI, Hy-
perDynamics and ZeUS-no-context-loss algorithms on the training environments for four families of
tasks with different dynamics parameters.

C.2 HANDLING NONSTATIONARITY IN THE INTERPOLATION ENVIRONMENTS

In Figure 9 we show performance on ZeUS and baselines on evaluation environments that are
interpolated from the train environments.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

100

200

300

400

500

600

700

Ep
iso

di
c

Re
tu

rn

CaDM
Hyperdynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(a) Cheetah-Run-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(b) Finger-Spin-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(c) Walker-Walk-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

200

400

600

800

Ep
iso

di
c

Re
tu

rn

CaDM
HyperDynamics
UP-OSI

ZeUS
ZeUS-no-context-loss

(d) Walker-Walk-v1

Figure 9: We compare the performance of the proposed ZeUS algorithm with CaDM, UP-OSI, Hy-
perDynamics and ZeUS-no-context-loss algorithms on the evaluation environments (interpolation)
for four families of tasks with different dynamics parameters.

C.3 ADAPTING AND GENERALIZING TO ENVIRONMENTS WITH VARYING REWARD FUNCTIONS

In Figure 10 we show performance of ZeUS over a hyperparameter sweep for different values of
aggregation operator and values of αψ for the Cheetah-run-v0 setup.

22

Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

100

200

300

400

500

600

Ep
iso

di
c

Re
tu

rn

concat
max
mean
min
product
sum

(a) Varying the aggregation operator in the context
encoder

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps (×106)

0

100

200

300

400

500

600

Ep
iso

di
c

Re
tu

rn

1.0
0.5
0.1
0.01
0.05
0.0

(b) Varying values of αψ

Figure 10: Performance of ZeUS on Cheetah-run-v0 task with varying values of the aggregation
operator in the context enocder (in (a)) and varying values of αψ in (b).

D ADDITIONAL THEORETICAL BACKGROUND

Bisimulation is a strict form of state abstraction, where two states are bisimilar if they are behaviorally
equivalent. Bisimulation metrics (Ferns et al., 2011) define a distance between states as follows:

Definition 6 (Bisimulation Metric (Theorem 2.6 in Ferns et al. (2011))). Let (S,A, T, r) be a finite
MDP and met the space of bounded pseudometrics on S equipped with the metric induced by the
uniform norm. Define F : met 7→ met by

F (d)(s, s′) = max
a∈A

(|r(s, a)− r(s′, a)|+ γW (d)(T as , T
a
s′)),

where W (d) is the Wasserstein distance between transition probability distributions. Then F has a
unique fixed point d̃ which is the bisimulation metric.

A nice property of this metric d̃ is that difference in optimal value between two states is bounded
by their distance as defined by this metric. Zhang et al. (2021a) use bisimulation metrics to learn a
representation space that is Lipschitz with respect to the MDP dynamics in the single task setting.

Why is the bisimulation metric useful? It turns out that the optimal value function has the nice
property of being smooth with respect to this metric.

Lemma 1 (V ∗ is Lipschitz with respect to d̃ (Ferns et al., 2004)). Let V ∗ be the optimal value
function for a given discount factor γ. Then V ∗ is Lipschitz continuous with respect to d̃ with
Lipschitz constant 1

1−γ ,

|V ∗(s)− V ∗(s′)| ≤ 1

1− γ d̃(s, s′).

Proof in (Ferns et al., 2004). Therefore, we see that bisimulation metrics give us a Lipschitz value
function with respect to d̃ with a Lipschitz constant 1

1−γ .

E ADDITIONAL THEORETICAL RESULTS AND PROOFS

Theorem 1. Let V ∗ be the optimal, universal value function for a given discount factor γ and context
space C. Then V ∗ is Lipschitz continuous with respect to dtask with Lipschitz constant 1

1−γ for any
s ∈ S,

|V ∗(s, c)− V ∗(s, c′)| ≤ 1

1− γ dtask(c, c
′).

23

Under review as a conference paper at ICLR 2022

Proof. We construct a super-MDPM′ by concatenating context and state spaces into a new state
space S ′ : C × S. We can apply Lemma 1 toM′ for any s ∈ S, c, c′ ∈ C:

|V ∗M′((s, c))− V ∗M′((s, c′))| ≤ 1

1− γ d̃M′((s, c), (s, c′)). (3)

By Definition 6 and Definition 4 we know that

d̃M′((s, c), (s, c′)) ≤ dtask(c, c′).

So we can substitute the right hand side into Equation (3),

|V ∗M′((s, c))− V ∗M′((s, c′))| ≤ 1

1− γ dtask(c, c′).

Which is equivalent to the following statement:

|V ∗(s, c)− V ∗(s, c′)| ≤ 1

1− γ dtask(c, c′).

E.1 VALUE AND TRANSFER BOUNDS

In this section, we provide value bounds and sample complexity analysis of the ZeUS approach. This
analysis is similar to the one done in Zhang et al. (2021b), which focused on a multi-environment
setting with different dynamics but same task. We first define three additional error terms associated
with learning a εR, εT , εc-bisimulation abstraction,

εR := sup
a∈A,

o1,o2∈O,φ(o1)=φ(o2)

∣∣R(o1, a)−R(o2, a)
∣∣,

εT := sup
a∈A,

o1,o2∈O,φ(o1)=φ(o2)

∥∥ΦT (o1, a)− ΦT (o2, a)
∥∥

1
,

εc := ‖ĉ− c‖1.
εR and εT are intra-context constants and εc is an inter-context constant. ΦT denotes the lifted version
of T , where we take the next-step transition distribution from observation space O and lift it to latent
space S. We can think of εR, εT as describing a new MDP which is close – but not necessarily the
same, if εR, εT > 0 – to the original MDP. These two error terms can be computed empirically over
all training environments and are therefore not task-specific. εc, on the other hand, is measured as a
per-task error. Similar methods are used in Jiang et al. (2015) to bound the loss of a single abstraction,
which we extend to the BC-MDP setting with a family of tasks.

Value Bounds. We first look at the single, fixed context setting, which can be thought of as the
single-task version of the BC-MDP. We can compute approximate error bounds in this setting by
denoting φ an (εR, εT)-approximate bisimulation abstraction, where

εR := sup
a∈A,

o1,o2∈O,φ(o1)=φ(o2)

∣∣R(o1, a)−R(o2, a)
∣∣,

εT := sup
a∈A,

o1,o2∈O,φ(o1)=φ(o2)

∥∥ΦT (o1, a)− ΦT (o2, a)
∥∥

1
,

εc := ‖ĉ− c‖1.
ΦT denotes the lifted version of T , where we take the next-step transition distribution from observa-
tion space O and lift it to latent space S.
Lemma 2. Given an MDP M̄ built on a (εR, εT)-approximate bisimulation abstraction of Block
MDPM, we denote the evaluation of the optimal Q function of M̄ onM as [Q∗M̄]M. The value
difference with respect to the optimal Q∗M is upper bounded by∥∥Q∗M − [Q∗M̄]M

∥∥
∞ ≤ εR + γεT

Rmax

2(1− γ)
.

24

Under review as a conference paper at ICLR 2022

Proof. From Lemma 3 in Jiang et al. (2015).

We now evaluate how the error in c prediction and the learned bisimulation representation affect the
optimal Q∗M̄ĉ

of the learned MDP, by first bounding its distance from the optimal Q∗ of the true
MDP for a single-task.
Lemma 3 (Q error). Given an MDP M̄ĉ built on a (εR, εT , εc)-approximate bisimulation abstraction
of an instance of a HiP-BMDPMc, we denote the evaluation of the optimal Q function of M̄ĉ on
M as [Q∗M̄ĉ

]Mc . The value difference with respect to the optimal Q∗M is upper bounded by∥∥Q∗Mc
− [Q∗M̄ĉ

]Mc

∥∥
∞ ≤ εR + γ(εT + εc)

Rmax

2(1− γ)
.

Proof. In the BC-MDP setting, we have a global encoder φ over all tasks, but the different transition
distributions and reward functions condition on the context c. We now must incorporate difference in
dynamics in εT and reward in εR. Assuming we have two environments with hidden parameters ci, cj ,
we can compute εci,cjT and εci,cjR across those two environments by joining them into a super-MDP.:
For εci,cjT :

ε
ci,cj
T = sup

a∈A,
o1,o2∈O,φ(o1)=φ(o2)

∥∥ΦTci(o1, a)− ΦTcj (o2, a)
∥∥

1

≤ sup
a∈A,

o1,o2∈O,φ(o1)=φ(o2)

(∥∥ΦTci(o1, a)− ΦTci(o2, a)
∥∥

1
+
∥∥ΦTci(o2, a)− ΦTcj (o2, a)

∥∥
1

)
≤ sup

a∈A,
o1,o2∈O,φ(o1)=φ(o2)

∥∥ΦTci(o1, a)− ΦTci(o2, a)
∥∥

1
+ sup

a∈A,
o1,o2∈O,φ(o1)=φ(o2)

∥∥ΦTci(o2, a)− ΦTcj (o2, a)
∥∥

1

For εci,cjR it is much the same:

ε
ci,cj
R = sup

a∈A,
o1,o2∈O,φ(o1)=φ(o2)

∣∣Rci(o1, a)−Rcj (o2, a)
∣∣

≤ sup
a∈A,

o1,o2∈O,φ(o1)=φ(o2)

(∣∣Rci(o1, a)−Rci(o2, a)
∣∣+
∣∣Rci(o2, a)−Rcj (o2, a)

∣∣)
≤ sup

a∈A,
o1,o2∈O,φ(o1)=φ(o2)

∣∣Rci(o1, a)−Rci(o2, a)
∣∣+ sup

a∈A,
o1,o2∈O,φ(o1)=φ(o2)

∣∣Rci(o2, a)−Rcj (o2, a)
∣∣

Putting these together we get:

ε
ci,cj
T + ε

ci,cj
R ≤ εT + εR + ‖ci − cj‖1

This result is intuitive in that with a shared encoder learning a per-task bisimulation relation, the
distance between bisimilar states from another task depends on the change in transition distribution
between those two tasks. We can now extend the single-task bisimulation bound (Lemma 2) to the
BC-BMDP setting by denoting approximation error of c as ‖c− ĉ‖1 < εc.

We can measure the generalization capability of a specific policy π learned on one task to another,
now taking into account error from the learned representation.
Theorem 3. Given two MDPsMci andMcj , we can bound the difference in Qπ between the two
MDPs for a given policy π learned under an εR, εT , εci -approximate abstraction ofMci and applied
to ∥∥Q∗Mcj

− [Q∗M̄ĉi
]Mcj

∥∥
∞ ≤ εR + γ

(
εT + εci + ‖ci − cj‖1

) Rmax

2(1− γ)
.

This result clearly follows directly from Lemma 3. Given a policy learned for task i, Theorem 3 gives
a bound on how far from optimal that policy is when applied to task j. Intuitively, the more similar in
behavior tasks i and j are, as denoted by ‖ci − cj‖1, the better π performs on task j.

25

	Introduction
	Related Work
	Background & Notation
	Generalization Properties of Lipschitz BC-MDPs
	Zero-shot Adaptation to Unknown Systems
	Experiments
	Setup
	Baselines
	Adapting and generalizing to unseen environments
	Learning a Meaningful Context Representation

	Limitations
	Discussion
	Reproducibility Statement
	Additional Related Work
	Implementation Details
	Algorithm
	Setup
	Baselines

	Environment Details
	License
	Hyperparameter Details

	Additional Results
	Handling nonstationarity in the training environments
	Handling nonstationarity in the Interpolation environments
	Adapting and generalizing to environments with varying reward functions

	Additional Theoretical Background
	Additional Theoretical Results and Proofs
	Value and Transfer Bounds

