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ABSTRACT

To address the needs of modeling uncertainty in sensitive machine learning ap-
plications, the setup of distributionally robust optimization (DRO) seeks good
performance uniformly across a variety of tasks. The recent multi-distribution
learning (MDL) framework Awasthi et al. (2023) tackles this objective in a dy-
namic interaction with the environment, where the learner has sampling access to
each target distribution. Drawing inspiration from the field of pure-exploration
multi-armed bandits, we provide distribution-dependent guarantees in the MDL
regime, that scale with suboptimality gaps and result in superior dependence on
the sample size when compared to the existing distribution-independent analyses.
We investigate two non-adaptive strategies, uniform and non-uniform exploration,
and present non-asymptotic regret bounds using novel tools from empirical pro-
cess theory. Furthermore, we devise an adaptive optimistic algorithm, LCB-DR,
that showcases enhanced dependence on the gaps, mirroring the contrast between
uniform and optimistic allocation in the multi-armed bandit literature.

1 INTRODUCTION

Classical statistical learning operates under the assumption that data comes from a single source
Hastie et al. (2009). However, the growing use of machine learning in safety-critical applications has
brought forth the demand for more robust models that address stochastic heterogeneity. One well-
established paradigm is distributionally robust optimization (DRO) Rahimian & Mehrotra (2022),
which seeks good performance uniformly across a collection of distributions. Concretely, let A and
X be decision and data spaces, respectively, and suppose that data is sampled from a distribution
within some uncertainty set U ⊂ P (X ). Under a target reward function r : A × X → R and
distribution Q ∈ U , an action a ∈ A yields expected reward µ (a;Q) := EXQ∼Q [r (a,XQ)]. DRO
then focuses on the problem

max
a∈A

{
µDR (a) := min

Q∈U
µ (a;Q)

}
(DR)

Recent works Blum et al. (2017); Sagawa* et al. (2020); Haghtalab et al. (2022) have studied the
setting of finite U and tackle it via interactive dynamics with the environment. More precisely,
the emergent multi-distribution learning (MDL) framework Awasthi et al. (2023) assumes sampling
access to U , where a learning agent sequentially selects which distributions to sample from given a
fixed sampling budget.

The current literature is populated with distribution-independent rates; i.e., bounds that are indepen-
dent of problem parameters. While broad in its applicability, this approach falls short in capturing
the nuances of the underlying environment. Oftentimes, it is more intuitive to analyze the learner’s
performance in a fixed setting, as opposed to considering a worst-case instance for each sample size.
When domain knowledge is available, a “one-size-fits-all” rate does not provide any insight on how
to take advantage of this information.

To address these drawbacks, in this work, we study distribution-dependent guarantees for the MDL
problem. Motivated by its close ties to the well-studied pure exploration multi-armed bandits (PE-
MAB) Bubeck et al. (2011) paradigm, we analyze the simple strategies of uniform and non-uniform
exploration, as well as their optimistic counterpart, ensuring regret guarantees that scale with sub-
optimality gaps and decay much faster with the sampling budget.
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1.1 MAIN RESULTS

We place MDL algorithms into one of two categories: non-adaptive and adaptive. In the former,
data is collected without any interaction with the environment and, in the latter, the learner sequen-
tially selects distributions based on previously acquired samples. We introduce two strategies of the
non-adaptive type: uniform (UE) and non-uniform (NUE) exploration (Section 3). As the names
suggest, UE gathers the same number of samples from each distribution, while NUE can benefit
from varied sample sizes. Using tools from empirical process theory, we provide non-asymptotic
regret guarantees that scale with the suboptimality gaps of the problem and decay exponentially
with the sampling budget T (Section 3.1). This stands in contrast to the distribution-independent
rates found in the recent literature, which hold under a worst-case environment and, thus, only scale
with O

(
1√
T

)
. From a novel Bernstein-type concentration inequality, we then show how NUE can

exploit distributional variability to allocate samples more effectively (Section 3.2).

While the non-adaptive methods already display exponentially decreasing regret, adaptivity can fur-
ther improve the dependence on instance-specific variables. Motivated by the enhancements of
UCB-E Audibert et al. (2010) over uniform exploration in the PE-MAB literature, we introduce
the analogous LCB-DR algorithm (Section 4) and showcase how optimism can result in superior
dependence on the suboptimality gaps when compared to UE (Section 4.1).

Let ∆DR (a) := maxa′∈A µDR (a′) − µDR (a) be the suboptimality gap of an action from a finite
set A. Given an algorithm, we denote its output after T sampling rounds by Ao

T . In short, we make
the following contributions: assuming bounded rewards r ∈ [0, 1] for (i) and (iii),

(i) With n ∈ N samples from each distribution, we show in Section 3.1 that UE has a simple
regret decay of order

E [∆DR (Ao
T )] ≤

∑
a∈A:∆DR(a)>0

∆DR (a) exp
(
−n∆2

DR (a)
)

Moreover, we present the distribution-independent rate E [∆DR (Ao
T )] ≲

√
|U| log(|U||A|)

T .

(ii) With nQ ∈ N samples from distribution Q ∈ U over real-valued data and bounded reward
r ∈ [0,M ], we show in Section 3.2 that NUE attains the rate

E [∆DR (Ao
T )] ≤

∑
a∈A:∆DR(a)>0

∆DR (a) exp

− ∆2
DR (a)

σ2
T +Σ2

T + VT + M ∆DR(a)
minQ∈U nQ


where σ2

T ,Σ
2
T and VT are empirical process variance quantities that scale with the variances

of each Q ∈ U and decrease with the nQ.
(iii) Appealing to the principle of optimism, we devise the LCB-DR algorithm that, in a pre-

specified permutation of the arms
(
a1, a2, . . . , a|A|

)
, for j = 1, . . . , |A|, sequentially per-

forms a modified version of UCB-E, for Tj rounds, on “losses” {µ (aj , Q)}Q∈U as a means
of identifying the worst-case distribution for aj . In Section 4, we show that this guarantees
an error probability of

P (∆DR (Ao
T ) > 0) ≤

|A|∑
j=1

exp

−

(
C2

aj
∧ 1
)(

Tj + T̃j − |Uj |
)

Hj


This bound, which may be of independent interest, results from an analysis of UCB-E un-
der a learner with previously acquired data (see Appendix D). Since the learner has already
accumulated samples from previous iterations in each UCB-E batch, some “arms” can be
identified as suboptimal a priori. We show that the algorithm essentially operates on a sub-
set Uj ⊂ U of the arms, whose total number T̃j of pre-collected samples contributes to the
regret decay. Furthermore, while the standard analysis scales with the sum of the recipro-
cals of all suboptimality gaps, in this case, the quantity Hj sum only over the smaller set
Uj . The quantity Ca is a newly introduced complexity measure that captures the differ-
ence in difficulty between the two tasks we face: identifying a as suboptimal and finding
its worst-case distribution. Drawing parallels with the MAB literature, we compare this
bound to that of UE, showing that the contrast is characterized by Ca.
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(iv) In Section 5, we briefly discuss how the results can be extended to infinite decision sets,
assuming the availability of a suitable cover.

For ease of exposition, we removed constants and terms decreasing with T inside the exponential, as
well as any quantities outside of it. The formal statements are deferred to the corresponding sections.

1.2 RELATED WORK

The predominance of machine learning in society has highlighted the need for robust models that
maintain high-quality performance in a multitude of scenarios. Given the inherent uncertainty in
identifying the environment, much attention has been given to the problem of learning under distri-
bution shifts Ben-David et al. (2009); Mansour et al. (2009), where training data may not necessarily
be sampled from the target distribution. To tackle this, several works Volpi et al. (2018); Zhang et al.
(2021); Sutter et al. (2021) have applied the framework of DRO Scarf (1958); Delage & Ye (2010);
Ben-Tal et al. (2013) by assuming that the shift occurs within a neighborhood U of some nominal
distribution, typically generating data, and solving (DR). There are many ways to construct U and
optimize the objective, and we refer to Shapiro et al. (2021); Rahimian & Mehrotra (2022) for a
thorough review.

A more recent line of work has specialized to finite and unstructured U = {Q1, . . . , Qk}, under sam-
pling access to each distribution. Agnostic federated learning Mohri et al. (2019) solves (DR) under
mixtures of U , providing high-probability bounds on the generalization gap of non-uniform explo-
ration and an algorithm with empirical optimization guarantees. Collaborative PAC learning Blum
et al. (2017) focuses on binary classification, with the aim of guaranteeing P (∆DR (Ao

T ) ≤ ϵ) ≥
1 − δ under a minimal number of samples T . The original work of Blum et al. (2017) assumes
realizability and subsequent studies Chen et al. (2018); Nguyen & Zakynthinou (2018); Carmon &
Hausler (2022); Haghtalab et al. (2022) extended results to the agnostic case and gave improved
rates, along with sample-complexity lower bounds. Awasthi et al. (2023) later solidified the theory
and posed several open problems, some of which were recently addressed in Peng (2024); Zhang
et al. (2024) via optimal algorithms.

In this work, we turn our attention to the simple regret E [∆DR (Ao
T )]. For finite decision

sets A, an integration of the tails reveals that the regret achieved by Haghtalab et al. (2022) is

O

(√
log|A|+k log k

T

)
. When A ⊂ Rd has Euclidean diameter at most B > 0 and, for each x ∈ X ,

the function r (·, x) is both convex and Lipschitz, several studies have proposed comparable rates

using game dynamics. Group DRO Sagawa* et al. (2020) ensures a rate of O
(
k
√

B2+log k
T

)
and,

in the fairness context, Abernethy et al. (2022) obtains O
(

B√
T

)
plus a term that uniformly bounds

the generalization gap with high-probability. Subsequently, Soma et al. (2022) was able to attain

O

(√
B2+k

T

)
, showing a matching lower bound, and Zhang et al. (2023) devised strategies with

O

(√
B2+k log k

T

)
regret and additionally studied the setting with distribution-specific sampling

budget constraints.

Since the learner does not incur any costs when gathering data, MDL closely resembles PE-MAB
Bubeck et al. (2011) under the fixed budget regime, where distributions represent the arms. It is
standard in the MAB literature to distinguish between distribution-dependent and independent rates.
The former typically depends on the suboptimality gaps and scales much faster with T . In contrast,
the latter holds for worst-case environments for each T , resulting in slower regret decay. See (Lat-
timore & Szepesvari, 2020, Ch. 33) for an in-depth discussion. In PE-MAB, Audibert et al. (2010)
introduced the UCB-E strategy, which improves performance relative to the gaps when compared
to uniform exploration. Motivated by these results, we demonstrate analogous faster distribution-
dependent rates in the MDL setting and explore a similar contrast between UE and LCB-DR.
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2 PRELIMINARIES

Notation. We frequently use the notation [k] := {1, . . . , k}, where k ∈ N. For a measurable space
X (we will omit the σ-algebras), we let P (X ) denote the set of all distributions over it. For two
real-valued functions f and g, we let f ≲ g and f ≳ g denote inequalities up to universal constants.
Given values a, b ∈ R, we define a ∨ b := max {a, b} and a ∧ b := min {a, b}.

2.1 MULTI-DISTRIBUTION LEARNING

Let X be the space where our data lives in and A the space where we make decisions. Given
data XQ ∼ Q ∈ P (X ), statistical learning aims to maximize the stochastic objective µ (a;Q) =
E [r (a,XQ)] with respect to a ∈ A, where r : A×X → R is an underlying reward function. In the
MDL paradigm, we capture distributional uncertainty by assuming that the distributions come from
some uncertainty set U ⊂ P (X ) and instead aim to solve the distributionally robust problem (DR),
where our goal is to maximize µDR (a) = minQ∈U µ (a;Q). We measure the performance of a deci-
sion a ∈ A via its suboptimality gap ∆DR (a) := µ*

DR −µDR (a), where µ*
DR := maxa∈A µDR (a)

is the optimal objective value. Throughout this work, we operate under the following assumptions.
Assumption 1 (Finite decision/uncertainty sets). |A| = l and |U| = k, where 2 ≤ l, k < ∞.
Assumption 2 (Bounded rewards). The reward function r is bounded in [0, 1] for ease of presenta-
tion. This assumption will be relaxed in Section 3.2.

To solve (DR), we interact with the environment for a total of T ∈ N rounds. In each round
t ∈ [T ], we (i) select a distribution Qt ∈ U and (ii) receive independent data point Xt ∼ Qt.
After the T rounds, we output a decision Ao

T ∈ A with the goal of minimizing the simple regret
E [∆DR (Ao

T )] or error probability P (∆DR (Ao
T ) > 0). The strategies described in this work are of

the form Ao
T = argmaxa∈A µo

T (a) for an appropriately constructed proxy µo
T : A → R.

Remark 1 (Simple regret v.s. error probability). Note that both performance measures are closely
related: since r ∈ [0, 1], we have that ∆DR ∈ [0, 1] and, thus,

∆DR,min P (∆DR (Ao
T ) > 0) ≤ E [∆DR (Ao

T )] ≤ P (∆DR (Ao
T ) > 0)

where ∆DR,min is the minimal positive gap (see Section 2.2).

2.2 COMPLEXITY MEASURES

For each decision a ∈ A, we define its worst performing distribution Q∗
a := argminQ∈U µ (a;Q)

and the suboptimality gaps ∆a (Q) := µ (a;Q) − µDR (a). Much of the analysis that follows is
characterized by the minimal positive gaps

∆DR,min := min {∆DR (a) > 0 : a ∈ A} and ∆a,min := min {∆a (Q) > 0 : Q ∈ U}
These quantities are additionally used to define complexity measures

Ha :=
∑

Q∈U :∆a(Q)>0

∆−2
a (Q) and Ca :=


∆DR (a)

∆a,min
a ̸= a∗

∆DR,min

∆a∗,min
a = a∗

for each a ∈ A. In pure exploration bandits, Ha is commonly used to characterize the complexity
of identifying the optimal arm (e.g., Audibert et al. (2010)), which in our setting translates to iden-
tifying Q∗

a. The intuition behind Ca is that it compares the difficulty of the two tasks we face: when
Ca ≤ 1 for some a ̸= a∗, or ∆DR (a) ≤ ∆a,min, it is more challenging to rule out a as suboptimal
than it is to identify Q∗

a.

2.3 ALGORITHMIC TOOLS

For each distribution Q ∈ U , let XQ,
{
X

(i)
Q

}∞

i=1

iid∼ Q be a sequence of independent data points.

For each (t, a,Q) ∈ N×A× U , we define the empirical mean

µ̂t (a;Q) :=
1

t

t∑
i=1

r
(
a,X

(i)
Q

)

4
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Under a fixed sampling algorithm, let nt (Q) :=
∑t

s=1 I {Qs = Q} denote the number of times that
Q is played up to time t. The data received is then given by Xt = X

(nt(Qt))
Qt

.

3 NON-ADAPTIVE STRATEGIES

We begin by describing two simple non-adaptive strategies. In essence, both sample a fixed number
times from each distribution in U and construct a proxy µo

T that is the natural empirical version of
µDR. Proofs of the results are deferred to Appendix C.

3.1 UNIFORM EXPLORATION (UE)

The most straight-forward strategy is the idea of uniform exploration (UE) (Algorithm 1). As the
name suggests, we sample the same number n ∈ N of times from each distribution, for a total of
T = nk samples, and form the empirical proxy

µo
T (a) = min

Q∈U
µ̂n (a;Q)

Algorithm 1 Uniform exploration (UE)
Input: Number of samples n ∈ N

1: Sample n times from each distribution Q ∈ U
2: Construct µo

T (a) = minQ∈U µ̂n (a;Q)
Output: Ao

T = argmaxa∈A µo
T (a)

Theorem 1 (UE regret). Suppose that n ≥
(

8
∆DR,min

)2
log k. Then, the UE algorithm attains the

following simple regret bound:

E [∆DR (Ao
T )] ≤

∑
a∈A:∆DR(a)>0

∆DR (a) exp

−n

2

[
∆DR (a)− 8

√
log k

n

]2
Since our empirical proxy µo

T is not an unbiased estimate of µDR, we end up with an approximation

error bounded by
√

log k
n . The lower bound on n is then required to apply tail bounds by ensuring

that ∆DR (a)− 8
√

log k
n ≥ 0 for all a ∈ A (see Appendix C.1).

Remark 2 (Small gaps). When ∆DR,min is really small, the lower bound condition on n may be
difficult to attain. This may be counterintuitive, for example, when all gaps are small, as we expect
the problem to be easy. In such situations, an alternative guarantee is

E [∆DR (Ao
T )] ≤ ∆+

∑
a∈A:∆DR(a)>∆

∆DR (a) exp

−n

2

[
∆DR (a)− 8

√
log k

n

]2
for any ∆ > 0, provided that n ≥

(
8
∆

)2
log k.

With some further manipulation, we can additionally obtain a distribution-independent regret bound.

Corollary 1 (UE distribution-independent regret). Suppose that n ≥
(

8
∆DR,min

)2
log k. Then, the

UE algorithm attains the following distribution-independent simple regret bound:

E [∆DR (Ao
T )] ≲

√
k log (kl)

T

3.2 NON-UNIFORM EXPLORATION (NUE)

A natural extension of the UE strategy is to sample a different number of times from each distribu-
tion. To address this, non-uniform exploration (NUE) (Algorithm 2) samples nQ ∈ N times from

5
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each distribution Q ∈ U , for a total of T =
∑

Q∈U nQ samples. Similarly, we define the proxy

µo
T (a) = min

Q∈U
µ̂nQ

(a;Q)

Here, we consider real-valued data in X ⊂ R and define mean µQ := E [XQ] and variance σ2
Q :=

Var (XQ) for each Q ∈ U . We relax the boundedness assumption to rewards r ∈ [0,M ], for some
M > 0. Additionally, let us sort the sample sizes in increasing order as follows: 0 =: n(0) ≤ n(1) ≤
· · · ≤ n(k) and let Q(j) denote the corresponding distribution in the jth position: nQ(j)

= n(j). The
regret bound presented will rely on the following variance quantities:

VT :=

k∑
j=1

(
n(j) − n(j−1)

)
E

[
max

r∈{j,...,k}

1

n2
(r)

[
XQ(r)

− µQ(r)

]2]

Σ2
T := E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

(
X

(i)
Q − µQ

)2]

σ2
T := max

Q∈U

σ2
Q

nQ

Lastly, we make use of the quantity GT := 8M
(

4 log k
minQ∈U nQ

+ LσT

√
2 log k

)
, which we note de-

creases with the {nQ}.

Algorithm 2 Non-uniform exploration (NUE)
Input: Number of samples {nQ}Q∈U ⊂ N allocated to each distribution

1: Sample nQ times from each distribution Q ∈ U
2: Construct µo

T (a) = minQ∈U µ̂nQ
(a;Q)

Output: Ao
T = argmaxa∈A µo

T (a)

Theorem 2 (NUE regret). Suppose that r (a, ·) : X → [0,M ] is L-Lipschitz for each a ∈ A, and
that ∆DR,min ≥ GT . Then, the NUE algorithm attains the following simple regret bound:

E [∆DR (Ao
T )]

≤
∑

a∈A:∆DR(a)>0

∆DR (a) exp

− [∆DR (a)−GT ]
2

16L2 (2σ2
T +Σ2

T + 6VT ) +
2
√
6M

minQ∈U nQ
[∆DR (a)−GT ]


As intuition suggests, the definitions imply that sampling more from distributions with higher vari-
ance yields better rates. On the other hand, due to the presence of minQ∈U nQ in the bound, it
may also be favorable to balance this principle with ensuring that no distribution is significantly
undersampled.

3.3 UNIFORM V.S. NON-UNIFORM EXPLORATION

Consider bounded rewards r ∈ [0,M ], where M > 0. We can more generally express the probabil-
ity of selecting a suboptimal arm a ∈ A for UE and NUE as follows (see Appendix C):

exp
(
− n

M2
[∆DR (a)−Bn]

2
)

︸ ︷︷ ︸
UE

v.s. exp

(
− [∆DR (a)−Bn]

2

σ2
T +Σ2

T + VT + M
minQ nQ

[∆DR (a)−Bn]

)
︸ ︷︷ ︸

NUE

where we have omitted constants. Here, Bn is a quantity that decreases with the sample size. To
mirror the standard Hoeffding v.s. Bernstein discussion, consider a small-sample regime where
∆DR (a) ≈ Bn. The comparison then reduces to M2

n (for UE) v.s. σ2
T +Σ2

T +VT (for NUE), where
the smaller term is better. Note that M captures the range of the reward function r, while σ2

T ,Σ
2
T

and VT capture the variance of the distributions in U . This shows that NUE can be better for two
reasons:

6
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(i) If the reward can take very large values but the data concentrates in a small region, then the
variances can be much smaller compared to M2.

(ii) If the learner allocates more samples to distributions with higher variance, then the decay
can be much faster.

3.4 BOUNDS ON VARIANCE QUANTITIES

While the variance quantities introduced seem hard to control and lack interpretability, here we
highlight some strategies and examples to mitigate this issue. Proofs of all results shown here are
deferred to Appendix G.

3.4.1 CRUDE BOUND

Note the variance hierarchy σ2
T ≤ Σ2

T ≤ VT . To unify them, we can bound the max with a sum to

get VT ≤
∑

Q∈U
σ2
Q

nQ
, which we can then substitute all three terms with. However, this results in a

linear dependence on k that we aim to avoid.

3.4.2 BOUNDING Σ2
T

Suppose that our data is bounded: XQ ∈ [0, 1] for each Q ∈ U . Then we can establish the following
upper bound:

Σ2
T ≲

√
log k

minQ∈U n3
Q

+ σ2
T

Since the first term on the right-hand side decays faster than O
(

1
minQ∈U nQ

)
, we can focus our

attention on σ2
T , which is a more interpretable quantity.

3.4.3 BOUNDING VT

The most formidable quantity is VT , but we can readily relate it to Σ2
T :

VT ≤ min

{
max
Q∈U

nQ, k

}
Σ2

T

In a setting where k is not too large, this result shows that control over Σ2
T , also ensures control over

VT .

For a more concrete example, suppose that U = {Q1, . . . , Qk}, where Q1, . . . , Qk−1 share a com-
mon small variance σ2 and Qk has a much larger variance ν2 ≫ σ2. In addition, suppose that
Q1, . . . , Qk−1 are supported in [0, 1]. Consider the NUE procedure with n samples from each
Q1, . . . , Qk−1 and m = T − n (k − 1) ≥ n samples (where T ≥ nk is the total number of sam-
ples) from Qk. Intuitively, we would like for m ≫ n since Qk is harder to learn (i.e., has more
variability). This can be reflected in the strong variance:

VT ≲

√
log k + σ2

n
+

ν2

T − nk

The comparison with UE then becomes (we ignore σ2
T and Σ2

T since VT is the dominating term)

M2k

T︸ ︷︷ ︸
UE

v.s.
√
log k + σ2

n
+

ν2

T − nk︸ ︷︷ ︸
NUE

again with the smaller term being better. This shows that the NUE decay can be much smaller when
ν2,M2, k and T are large relative to σ2 and n. For example, consider σ2 = n = 1, ν2 = M2 =
k = C > 1 and T = C + 49; that is, 1 sample is allocated to Q1, . . . , Qk−1 and 50 samples to
Qk. Then, up to constants, the comparison becomes C2 (for UE) v.s.

√
logC +C (for NUE). As C

grows, the UE bound becomes arbitrarily larger.
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4 OPTIMISM

As opposed to the non-adaptive strategies covered thus far, the next algorithm we present makes
sampling decisions as it interacts with the environment. For this analysis, we additionally operate
under the following uniqueness assumption.
Assumption 3 (Unique optima). a∗ and Q∗

a are the unique optimal decision and the unique worst-
case distribution for a ∈ A, respectively.

As is standard in UCB-style algorithms, for some choice of parameter ϵ > 0, we define index

LCBt (Q; a, ϵ) := µ̂nt(Q) (a;Q)−
√

ϵ

nt (Q)
∀ (t, a,Q) ∈ N×A× U

which represents a lower confidence bound (LCB) on the true mean µ (a;Q). At a high-level, the
LCB-DR strategy (Algorithm 3) iterates through each decision a ∈ A and performs a modified
version of UCB-E Audibert et al. (2010) to identify Q∗

a. The modification takes advantage of the
fact that data sampled in a previous round can be reused for the current one. In essence, we analyze
UCB-E when each distribution starts the game with a certain number of pulls. Intuitively, if some
distribution has already been played sufficiently many times, it will not be played again in this round,
yielding an improved sample complexity.

For completeness, we initiate the procedure by sampling from each distribution once; that is,
nk (Q) := 1 for each Q ∈ U . As a result, we define T0 := T̄0 := k to be the total number of
samples gathered before the game starts. The inputs to the algorithm are a permutation (a1, . . . , al)
of A, dictating the order in which decisions are iterated through, and index parameters (ϵ1, . . . , ϵl)
satisfying

ϵj ≥
25

36
∆2

aj ,min (uj−1 − 1) (1)

where

u0 := k and uj := k (j + 1) +
72

25

j∑
r=1

ϵrHar

The procedure then works as follows: at each round j ∈ [l],

1. Since we reuse samples from previous rounds, some distributions may already have enough
samples by the start of the current round and, thus, may not be sampled from at all. We
define the following set as a proxy for the arms that will be played in this round:

Uj :=

{
Q ∈ U\

{
Q∗

aj

}
: nT̄j−1

(Q) <
36

25
ϵj∆

−2
aj

(Q)

}
∪
{
Q∗

aj
: nT̄j−1

(
Q∗

aj

)
<

36

25
ϵj∆

−2
aj ,min

}
Additionally, define

kj := |Uj | I
{
Q∗

aj
∈ Uj

}
, T̃j :=

∑
Q∈Uj

nT̄j−1
(Q)

Hj := ∆−2
aj ,minI

{
Q∗

aj
∈ Uj

}
+

∑
Q∈Uj\

{
Q∗

aj

}∆−2
aj

(Q)

2. Allocate

Tj :=
36

25
ϵjHj − T̃j + kj

samples to this round and let T̄j :=
∑j

r=0 Tr denote the total number of samples obtained
up to and including round j ∈ [l].

3. For each t = T̄j−1 + 1, . . . , T̄j , sample

Xt ∼ Qt := argmin
Q∈U

LCBt−1 (Q; aj , ϵj)

In essence, we play the modified UCB-E for Tj rounds on expected rewards
{µ (aj ;Q)}Q∈U .
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4. Define

Q̂j := argmin
Q∈U

µ̂nT̄j
(Q) (aj ;Q) and µo

T (aj) := µ̂nT̄j
(Q̂j)

(
aj ; Q̂j

)
Intuitively, Q̂j and µo

T are proxies for Q∗
aj

and µDR, respectively.

Finally, after gathering T :=
∑l

j=0 Tj total samples, we maximize the proxy objective: Ao
T :=

argmaxa∈A µo
T (a). By analyzing the optimiality of the modified UCB-E algorithm (see Ap-

pendix D), we can then reach the following conclusion.

Algorithm 3 LCB-DR
Input: Initial number of samples T0 = T̄0 = k, permutation (a1, . . . , al) of A and index parameters

(ϵ1, . . . , ϵl).
1: for j = 1, . . . , l do
2: Define proxy set Uj and quantities kj , T̃j and Hj .
3: Allocate Tj samples to this round.
4: for t = T̄j−1 + 1, . . . , T̄j do
5: Sample data point Xt ∼ Qt.
6: end for
7: Define proxies Q̂j and µo

T (aj).
8: end for

Output: Ao
T = argmaxa∈A µo

T (a)

Theorem 3 (LCB-DR error probability). Under Assumption 3 and the parameter lower bound (1),
the LCB-DR algorithm attains the following error probability:

P (Ao
T ̸= a∗) ≤ 2k

l∑
j=1

uj exp

−
2
(
C2

aj
∧ 1
)
ϵj

25



Note that ϵj = 25
36

Tj+T̃j−kj

Hj
, so that the decay scales with O

((
C2

aj
∧1

)
(Tj+T̃j−kj)
Hj

)
. Intuitively, at

each round j ∈ [l], the sample complexity depends on the difficulty of identifying the worst-case
distribution Q∗

aj
, which, as in PE-MAB, is controlled by the suboptimality gaps

{
∆aj (Q)

}
Q∈U .

Remark 3 (Improvement over UCB-E). We highlight the importance of using samples obtained in
previous rounds: as opposed to the standard UCB-E analysis, we have the additional T̃j contribution,
we only offset by kj ≤ k, and the complexity measure Hj improves upon Haj

by only summing
over a subset of U .
Remark 4 (Unknown quantities). Note that the choice of Tj requires knowledge of unknown quanti-
ties, such as Uj and Q∗

aj
. However, as shown in the statement of Theorem D.1, optimality is ensured

provided that Tj ≥ 36
25ϵjHj − T̃j + kj , but the concentration bound in Appendix E.1 requires addi-

tional manipulation when substituting ϵj into Hoeffding’s.

In addition, we emphasize that ϵj and the decisions Qt do not require knowledge of Uj : the
former relies on a lower bound and the latter optimizes over all of U .

4.1 COMPARISON WITH UE

Focusing on the dominating terms, the probability of selecting a suboptimal arm aj ∈ A, that is

in the jth permutation position for LCB-DR, is approximately ≈ exp
(
−T∆2

DR(aj)
k

)
for UE and

≈ exp

(
−

(
C2

aj
∧1

)
(Tj+T̃j)

Hj

)
for LCB-DR. Extracting the quantity inside the exponential, we break

it down into two cases:

9
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• ∆DR (aj) ≤ ∆aj ,min (or Caj
≤ 1): intuitively, this means that it is more difficult to rule

out aj as suboptimal than to identify Q∗
aj

. Then, the comparison reduces to T
k∆−2

aj,min
(for

UE) v.s. Tj+T̃j

Hj
(for LCB-DR).

• ∆aj ,min ≤ ∆DR (aj) (or Caj ≥ 1): intuitively, this means that it is more difficult to identify
Q∗

aj
than to rule out aj as suboptimal. Then, the comparison is between T

k∆−2
DR (aj)

(for UE)

v.s. Tj+T̃j

Hj
(for LCB-DR).

Putting these together results in

T

kmin
{
∆−2

aj ,min,∆
−2
DR (aj)

}
︸ ︷︷ ︸

UE

v.s.
Tj + T̃j

Hj︸ ︷︷ ︸
LCB-DR

where the larger term yields the better rate. When sample sizes are large relative to l, so that T ≈
Tj + T̃j , optimism is favorable when Hj ≤ kmin

{
∆−2

aj ,min,∆
−2
DR (aj)

}
. As in MAB, this is always

the case when ∆−2
aj ,min is the smaller term; otherwise, it depends on the problem instance. Note that

Hj can be much smaller when |Uj | ≪ k.

5 EXTENDING TO INFINITE DECISION SETS

While the results discussed thus far only apply to finite decision sets A, it is possible to extend to
larger (possibly infinite) sets via standard covering arguments. Let Q̄ := 1

k

∑
Q∈U Q be the uniform

mixture and suppose that we have access to a finite ϵ
k -cover Aϵ of

(
{r (a, ·)}a∈A , L2

(
Q̄
))

in the
following sense: for all a ∈ A, there exists a ϕa ∈ Aϵ such that

∥r (a, ·)− r (ϕa, ·)∥L2(Q̄) :=

√
EX∼Q̄

[
(r (a,X)− r (ϕa, X))

2
]
≤ ϵ

k

The idea is that the regret under the finite set Aϵ is close to the regret under A, so that a learner can
play the game dynamics on the former.
Lemma 1 (Controlling regret using a cover). Let ∆DR (a;Aϵ) := maxa∗∈Aϵ

µDR (a∗) − µDR (a)
denote the suboptimality gap with respect to Aϵ. Then, ∆DR (a) ≤ ∆DR (a;Aϵ) + ϵ for all a ∈ A.

This result admits a straightforward proof, which we defer to Appendix F. In addition, in Ap-
pendix F.1, we specialize this result to the binary classification setting and present a distribution-
independent bound for classes of finite VC dimension.

6 DISCUSSION

In this work, we delve into the problem of DRO within the MDL framework, an area of grow-
ing popularity in high-stakes machine learning applications. Rooted in empirical process theory
and inspired by the PE-MAB literature, we offer novel insight into the key strategies of uniform and
non-uniform exploration via distribution-dependent bounds. By scaling with instance-specific quan-
tities, our proposed bounds decay much faster, with respect to sample sizes, than existing ones. We
additionally devise an optimistic method, LCB-DR, that shows improvements over its non-adaptive
counterparts, paralleling classical findings in the MAB setting.

While LCB-DR exhibits favorable rates, we reiterate that tuning certain parameters involves esti-
mating unknown quantities. This raises the question of whether there exists a more astute way to
select such quantities with minimal prior information. Moreover, the procedure requires specifying
the order to play the actions in. Although the absence of any problem knowledge might preclude
exploiting this sequence effectively, perhaps some preliminary understanding of the distributions
allows potential advantages (e.g., start with actions that explore as much as possible, so that Uj is
small in future iterations).
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A EXPECTATION OF EMPIRICAL PROCESS MAXIMUM

Let U ⊂ P (X ) be a finite set of distributions over a data space X , with 2 ≤ k := |U| < ∞. For
each distribution Q ∈ U , we have an associated sample size nQ ∈ N and define T :=

∑
Q∈U nQ.

When X ⊂ R, we additionally denote the variance of each distribution by σ2
Q := Var (Q) and define

σT := maxQ∈U
σQ√
nQ

.

In the development that follows, we will work with independent X -valued random variables
(XQ)Q∈U , X :=

(
X

(i)
Q

)
Q∈U,i∈[nQ]

, where XQ,
(
X

(i)
Q

)
i∈[nQ]

iid∼ Q for each Q ∈ U . For a col-

lection of functions {fQ : X → [−1, 1]}Q∈U , such that each fQ (XQ) is centered, our primary goal
will be to bound the following quantity:

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

fQ

(
X

(i)
Q

)∣∣∣∣∣
]

In particular, we will show the following bounds.
Theorem A.1. Let {fQ : X → [−1, 1]}Q∈U be a collection of functions such that E [fQ (XQ)] = 0

for each Q ∈ U . Then,

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

fQ

(
X

(i)
Q

)∣∣∣∣∣
]
≤ 4

√
log k

minQ∈U nQ

Moreover, if X ⊂ R and each function fQ is L-Lipschitz, then

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

fQ

(
X

(i)
Q

)∣∣∣∣∣
]
≤ 16 log k

minQ∈U nQ
+ 4LσT

√
2 log k

We note that the first bound can be directly obtained by a high-probability bound via Hoeffding’s
inequality, along with a union bound, and a subsequent integration of the tails. The second bound
(Theorem A.3) requires a more careful analysis and, in the process of deriving it, we additionally
show the first result (Corollary A.2).

The proof will follow in two parts: first, in Section A.1, we use symmetrization to bound the quan-
tity of interest with a notion of Rademacher complexity, and subsequently derive bounds on this
complexity in Section A.2.
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A.1 SYMMETRIZATION

A standard approach to bound empirical process maxima is via symmetrization. We begin by defin-
ing the Rademacher complexity variant of a class of functions {hQ : X → R}Q∈U :

RT

(
{hQ}Q∈U

)
:= E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

ϵihQ

(
X

(i)
Q

)∣∣∣∣∣
]

where ϵ1, . . . , ϵmaxQ∈U nQ

iid∼ Rad (i.e., they are each uniform on {−1, 1}) are independent from X .
Note that we place no assumptions on hQ (XQ) being centered. We begin by stating an auxiliary
lemma.
Lemma A.1. For random variable Z ∈ Z and function class F ⊂ RZ , we have that

sup
f∈F

|E [f (Z)]| ≤ E

[
sup
f∈F

|f (Z)|

]

Proof. For any f ∈ F ,

|E [f (Z)]| ≤ E [|f (Z)|] ≤ E
[
sup
g∈F

|g (Z)|
]

The claim then follows by taking the supremum over f ∈ F on the left-hand side. ■

The proof of the following result is virtually the same as that of (Wainwright, 2019, Theorem 4.10),
with minor modifications, and we present it here for completeness.
Theorem A.2 (Symmetrization). For any collection of functions {hQ : X → R}Q∈U , we have that

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

{
hQ

(
X

(i)
Q

)
− E [hQ (XQ)]

}∣∣∣∣∣
]
≤ 2RT

(
{hQ}Q∈U

)

Proof. Let Y :=
(
Y

(i)
Q

)
Q∈U,i∈[nQ]

be an independent copy of X and let P denote their common

distribution. Then,

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

{
hQ

(
X

(i)
Q

)
− E [hQ (XQ)]

}∣∣∣∣∣
]
= E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

{
hQ

(
X

(i)
Q

)
− E

[
hQ

(
Y

(i)
Q

)]}∣∣∣∣∣
]

=

∫
XT

max
Q∈U

∣∣∣∣∣E
[

1

nQ

nQ∑
i=1

[
hQ

(
xi
Q

)
− hQ

(
Y

(i)
Q

)]]∣∣∣∣∣ dP (x)

=: (∗1)
Here, we view x :=

(
xi
Q

)
Q∈U,i∈[nQ]

∈ X T as a T -dimensional vector. For each such vector, define
function class

Fx :=

{
y 7→ 1

nQ

nQ∑
i=1

[
hQ

(
xi
Q

)
− hQ

(
yiQ
)]

: Q ∈ U

}
⊂
{
X T → R

}
We can then apply Lemma A.1 to obtain

(∗1) =
∫
XT

max
f∈Fx

|E [f (Y )]| dP (x)

≤
∫
XT

E
[
max
f∈Fx

|f (Y )|
]
dP (x) Lem. A.1

=

∫
XT

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

[
hQ

(
xi
Q

)
− hQ

(
Y

(i)
Q

)]∣∣∣∣∣
]
dP (x)

= E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

[
hQ

(
X

(i)
Q

)
− hQ

(
Y

(i)
Q

)]∣∣∣∣∣
]

=: (∗2)
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Next, define n := maxQ∈U nQ and let ϵ̃1, . . . , ϵ̃n ∈ {−1, 1} be fixed quantities. From symmetry
and independence, we have that(

hQ

(
X

(i)
Q

)
− hQ

(
Y

(i)
Q

))
Q∈U,i∈[nQ]

d
=
(
ϵ̃i

[
hQ

(
X

(i)
Q

)
− hQ

(
Y

(i)
Q

)])
Q∈U,i∈[nQ]

Hence, if we define Rademacher variables ϵn iid∼ Rad that are independent from X and Y , we can
conclude that

(∗2) =
1

2n

∑
ϵ̃n∈{−1,1}n

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

ϵ̃i

[
hQ

(
X

(i)
Q

)
− hQ

(
Y

(i)
Q

)]∣∣∣∣∣
]

= E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

ϵi

[
hQ

(
X

(i)
Q

)
− hQ

(
Y

(i)
Q

)]∣∣∣∣∣
]

≤ E

[
max
Q∈U

{∣∣∣∣∣ 1

nQ

nQ∑
i=1

ϵihQ

(
X

(i)
Q

)∣∣∣∣∣+
∣∣∣∣∣ 1

nQ

nQ∑
i=1

ϵihQ

(
Y

(i)
Q

)∣∣∣∣∣
}]

≤ E

[
max
Q∈U

{∣∣∣∣∣ 1

nQ

nQ∑
i=1

ϵihQ

(
X

(i)
Q

)∣∣∣∣∣
}

+max
Q∈U

{∣∣∣∣∣ 1

nQ

nQ∑
i=1

ϵihQ

(
Y

(i)
Q

)∣∣∣∣∣
}]

= 2E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

ϵihQ

(
X

(i)
Q

)∣∣∣∣∣
]

= 2RT

(
{hQ}Q∈U

)
■

A.2 BOUNDS ON THE RADEMACHER COMPLEXITY

For the symmetrization trick to be useful, we need to bound RT

(
{hQ}Q∈U

)
. To this end, we begin

by defining the Rademacher complexity of a set Θ ⊂ Rn:

R̂ (Θ) := E
[
sup
θ∈Θ

|⟨ϵn, θ⟩|
]

where ϵn = (ϵ1, . . . , ϵn)
iid∼ Rad. The process {⟨ϵn, θ⟩}θ∈Θ is sub-Gaussian and, for finite Θ, the

Rademacher complexity admits a particularly simple bound, shown next. For a deeper dive into the
field, see, e.g., (Wainwright, 2019, Chapter 5).

Lemma A.2 (Bounding the Rademacher complexity of a finite set). Let Θ ⊂ Rn satisfy 2 ≤ |Θ| <
∞. Then,

R̂ (Θ) ≤ 2DΘ

√
log |Θ|

where DΘ := maxθ∈Θ ∥θ∥2.

Proof. Note that since each ϵi is 1-sub-Gaussian,

E
[
eλ⟨ϵ

n,θ⟩
]
=

n∏
i=1

E
[
eλϵiθi

]
≤

n∏
i=1

e
λ2θ2i

2 = e
λ2∥θ∥22

2 ≤ e
λ2D2

Θ
2

for any θ ∈ Θ and λ ∈ R. That is, ⟨ϵn, θ⟩ is a centered DΘ-sub-Gaussian variable and we can, thus,
apply the standard maximal inequality (e.g., (Boucheron et al., 2013 - 2013, Theorem 2.5)) to obtain
the claim. ■

We can relate both notions of Rademacher complexity introduced thus far to conclude the following
result.
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Corollary A.1. For a collection of functions {hQ : X → R}Q∈U , define the random variable

D
(
{hQ}Q∈U

)
:= max

Q∈U

√√√√√ nQ∑
i=1

hQ

(
X

(i)
Q

)
nQ

2

Then, we have that

RT

(
{hQ}Q∈U

)
≤ 2
√
log kE

[
D
(
{hQ}Q∈U

)]
Proof. Fix x :=

(
xi
Q

)
Q∈U,i∈[nQ]

∈ X T . Let n := maxQ∈U nQ and define vectors θxQ ∈ Rn by

[
θxQ
]
i
:=

{
hQ(xi

Q)
nQ

i ≤ nQ

0 otherwise
∀i ∈ [n] , Q ∈ U

and define the set of all such vectors Θx :=
{
θxQ : Q ∈ U

}
, so that |Θx| = k ≥ 2. Then, note that

R̂ (Θx) = E
[
max
θ∈Θx

|⟨ϵn, θ⟩|
]
= E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

ϵihQ

(
xi
Q

)∣∣∣∣∣
]

Moreover, since DΘx = maxQ∈U

√∑nQ

i=1

(
hQ(xi

Q)
nQ

)2

, Lemma A.2 yields

RT

(
{hQ}Q∈U

)
= E

[
R̂
(
ΘX
)]

≤ E
[
2DΘX

√
log |ΘX |

]
= 2
√

log kE
[
D
(
{hQ}Q∈U

)]
■

We can then readily obtain the first bound of interest.
Corollary A.2. Let {fQ : X → [−1, 1]}Q∈U be a collection of functions such that E [fQ (XQ)] = 0

for each Q ∈ U . Then,

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

fQ

(
X

(i)
Q

)∣∣∣∣∣
]
≤ 4

√
log k

minQ∈U nQ

Proof. Since each fQ ∈ [−1, 1], we have that

D
(
{fQ}Q∈U

)
≤

√
max
Q∈U

1

nQ
=

√
1

minQ∈U nQ

Hence, combining Theorem A.2 and Corollary A.1 yields

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

fQ

(
X

(i)
Q

)∣∣∣∣∣
]
≤ 2RT

(
{fQ}Q∈U

)
≤ 4
√
log kE

[
D
(
{fQ}Q∈U

)]
≤ 4

√
log k

minQ∈U nQ

■

To obtain the second bound, we require a more refined analysis. We begin by introducing two simple
auxiliary lemmas.
Lemma A.3. Let b, c > 0 and suppose that x2 ≤ bx+ c. Then, x ≤ b+

√
c.

Proof. Define quadratic p (z) := z2 − bz − c, so that p (x) ≤ 0. Since p (0) = −c < 0, consider its
roots r1 < 0 < r2. Then, p is positive on (r2,∞) and, thus,

x ≤ r2 =
b+

√
b2 + 4c

2
≤ b+

√
c

■
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Lemma A.4 (Variance of Lipschitz functions). Let Z ∈ Z ⊂ R be a random variable, and suppose
that f : Z → R is L-Lipschitz. Then,

Var (f (Z)) ≤ 2L2 Var (Z)

Proof. Let Z ′ be an independent copy of Z. Then,

Var (f (Z)) = E
[
(f (Z)− E [f (Z ′)])

2
]

= E
[
E [f (Z)− f (Z ′)|Z]

2
]

≤ E
[
(f (Z)− f (Z ′))

2
]

Jensen’s

≤ L2E
[
(Z − Z ′)

2
]

Lipschitzness

= 2L2 {Var (Z) + E [(Z − E [Z]) (E [Z]− Z ′)]} Z
(d)
= Z ′

= 2L2 Var (Z) Z ⊥⊥ Z ′

■

Borrowing ideas from (Giné & Nickl, 2021, Corollary 3.5.7), we then conclude the second target
bound.

Theorem A.3. Suppose that X ⊂ R. Let {fQ : X → [−1, 1]}Q∈U be a collection of functions such
that E [fQ (XQ)] = 0 and fQ is L-Lipschitz for each Q ∈ U . Then,

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

fQ

(
X

(i)
Q

)∣∣∣∣∣
]
≤ 16 log k

minQ∈U nQ
+ 4LσT

√
2 log k

Proof. We begin with the following observation: from Jensen’s, we obtain

C :=
√
log kE

[
D
(
{fQ}Q∈U

)]
≤

√
(log k)E

[
D
(
{fQ}Q∈U

)2]
Next, we bound the expectation on the right-hand side:

E
[
D
(
{fQ}Q∈U

)2]
= E

max
Q∈U

nQ∑
i=1

fQ

(
X

(i)
Q

)
nQ

2


= E

max
Q∈U

nQ∑
i=1


fQ

(
X

(i)
Q

)
nQ

2

− E

[(
fQ (XQ)

nQ

)2
]
+ E

[(
fQ (XQ)

nQ

)2
]


≤ max
Q∈U

{
E
[
f2
Q (XQ)

]
nQ

}
︸ ︷︷ ︸

=:(∗1)

+E

max
Q∈U

∣∣∣∣∣∣ 1

nQ

nQ∑
i=1

f2
Q

(
X

(i)
Q

)
nQ

− E

[
f2
Q (XQ)

nQ

]
∣∣∣∣∣∣


︸ ︷︷ ︸
=:(∗2)

From Lemma A.4 and the fact that E [fQ (XQ)] = 0, we know that

(∗1) = max
Q∈U

Var (fQ (XQ))

nQ
≤ 2L2 max

Q∈U

σ2
Q

nQ
= 2L2σ2

T
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As for (∗2), we can apply Theorem A.2 on functions hQ (x) :=
f2
Q(x)

nQ
to conclude that

(∗2) ≤ 2RT

(
{hQ}Q∈U

)
Thm. A.2

≤ 4
√

log kE
[
D
(
{hQ}Q∈U

)]
Cor. A.1

= 4
√

log kE

max
Q∈U

√√√√√ nQ∑
i=1

fQ

(
X

(i)
Q

)
nQ

4


≤ 4
√
log kE

max
Q∈U


1

nQ

√√√√√ nQ∑
i=1

fQ

(
X

(i)
Q

)
nQ

2

 f4

Q ≤ f2
Q

≤ 4
√
log kmax

Q∈U

{
1

nQ

}
E
[
D
(
{fQ}Q∈U

)]
=

4

minQ∈U nQ
C

In other words, we have that

C2 ≤ (log k)E
[
D
(
{fQ}Q∈U

)2]
≤ 4 log k

minQ∈U nQ
C + 2L2σ2

T log k

Then, Lemma A.3 implies that

C ≤ 4 log k

minQ∈U nQ
+ LσT

√
2 log k

Combining this with Theorem A.2 and Corollary A.1, we conclude that

E

[
max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

fQ

(
X

(i)
Q

)∣∣∣∣∣
]
≤ 2RT

(
{fQ}Q∈U

)
≤ 4C ≤ 16 log k

minQ∈U nQ
+ 4LσT

√
2 log k

■

B EMPIRICAL PROCESS CONCENTRATION INEQUALITIES

Again, suppose that U ⊂ P (X ) is a collection of k distributions, and define independent variables
X :=

(
X

(i)
Q

)
Q∈U,i∈[nQ]

, where nQ ∈ N and
(
X

(i)
Q

)
i∈[nQ]

iid∼ Q for each Q ∈ U . Our object of

interest in this section is the random variable

Zf := min
Q∈U

1

nQ

nQ∑
i=1

f
(
X

(i)
Q

)
for a function f : X → R. As will become clear later, our primary goal will be to obtain concentra-
tion inequalities on Zf,g := Zf − Zg .

B.1 MCDIARMID

To obtain the UE regret bound, we will apply a very simple concentration inequality, called Mc-
Diarmid’s inequality (e.g., see (Boucheron et al., 2013 - 2013, Theorem 6.2)). Here, we specialize
to

Zf = min
Q∈U

1

n

n∑
i=1

f
(
X

(i)
Q

)
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Let us define the function Φf :
(
X k
)n → [0, 1] by Φf (x1, . . . ,xn) := minQ∈U

1
n

∑n
i=1 f

(
xi
Q

)
,

where each xi =
(
xi
Q

)
Q∈U ∈ X k. Then, we can write Zf = Φf (X), where we view X as n

vectors of dimension k. Next, we show that Φf satisfies the bounded differences property when f is
bounded.

Proposition B.1 (Bounded differences). Suppose that f : X → [0, 1]. Then,

max
i∈[n]

sup
x1,...,xn,y∈Xk

|Φf (x1, . . . ,xn)− Φf (x1, . . . ,xi−1,y,xi+1, . . . ,xn)| ≤
1

n

Proof. Let us begin with a simple observation: for real-valued functions g, h : Z → R, where Z is
any domain, we have that

inf
z′∈Z

g (z′)− inf
z∈Z

h (z) = sup
z∈Z

{
inf
z′∈Z

g (z′)− h (z)

}
≤ sup

z∈Z
{g (z)− h (z)} ≤ sup

z∈Z
|g (z)− h (z)|

By symmetry, it then follows that |infz′∈Z g (z′)− infz∈Z h (z)| ≤ supz∈Z |g (z)− h (z)|. Next,
fix any index i ∈ [n] and inputs x1, . . . ,xn,y := (yQ)Q∈U ∈ X k, and define vectors x :=

(x1, . . . ,xn) and x′ := (x1, . . . ,xi−1,y,xi+1, . . . ,xn). Then, from our initial observation, we
know that

|Φf (x)− Φf (x
′)| = 1

n

∣∣∣∣∣∣min
Q′∈U


n∑

j=1

f
(
xj
Q′

)− min
Q∈U

f (yQ) +
∑

j∈[n]:j ̸=i

f
(
xj
Q

)
∣∣∣∣∣∣

≤ 1

n
max
Q∈U

∣∣∣∣∣∣
n∑

j=1

f
(
xj
Q

)
−

f (yQ) +
∑

j∈[n]:j ̸=i

f
(
xj
Q

)∣∣∣∣∣∣
≤ 1

n
max
Q∈U

∣∣f (xi
Q

)
− f (yQ)

∣∣
≤ 1

n

■

When the inequality in Proposition B.1 holds, we say that Φf satisfies the bounded differences
property with constant parameter 1

n . This immediately implies the next claim.

Corollary B.1. For any two functions f, g : X → [0, 1], the function Φf −Φg satisfies the bounded
differences property with constant parameter 2

n .

Proof. Using the same variables x and x′ as in the proof of Proposition B.1, we obtain

|[Φf (x)− Φg (x)]− [Φf (x
′)− Φg (x

′)]| ≤ |Φf (x)− Φf (x
′)|+ |Φg (x)− Φg (x

′)| ≤ 2

n

■

Via McDiarmid’s, this property then directly yields the following concentration result.

Corollary B.2. Let f, g : X → [0, 1]. Then,

P (Zf,g − E [Zf,g] ≥ t) ≤ exp

(
−nt2

2

)
∀t ≥ 0

Proof. Since Zf,g = (Φf − Φg) (X) and X has independent components, we simply apply Corol-
lary B.1 and McDiarmid’s. ■
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B.2 BERNSTEIN

In contrast to McDiarmid’s inequality, our next goal is to derive a more involved bound that addition-
ally scales with the variance. To this end, we sort the sample sizes: 0 =: n(0) ≤ n(1) ≤ · · · ≤ n(k)

and let Q(j) ∈ U be such that nQ(j)
= n(j). Our analysis then relies on the following:

VT :=

k∑
j=1

(
n(j) − n(j−1)

)
E

[
max

r∈{j,...,k}

1

n2
(r)

[
XQ(r)

− µQ(r)

]2]

Σ2
T := E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

(
X

(i)
Q − µQ

)2]

σ2
T := max

Q∈U

σ2
Q

nQ

Theorem B.1. Suppose that X ⊂ R and f, g : X → [0,M ] are L-Lipschitz. Then,

P (Zf,g − E [Zf,g] ≥ t) ≤ exp

− t2

16L2 (2σ2
T +Σ2

T + 6VT ) +
2
√
6Mt

minQ∈U nQ

 ∀t ≥ 0

B.2.1 PRELIMINARIES

To prove Theorem B.1, we must first state some standard results and definitions from the theory of
concentration of measure. We do not prove most results stated, and refer to Boucheron et al. (2013
- 2013) for further reference.

We say that a random variable X ∈ R is sub-gamma on the right tail with parameters ν, c > 0 if

logE
[
eλ(X−E[X])

]
≤ ν2λ2

2 (1− cλ)
∀λ ∈

[
0,

1

c

)
We denote the class of such variables by Γ+ (ν, c). Due to the decaying tail, we get the following
concentration bound.

Proposition B.2 (Sub-gamma concentration). Let X ∈ Γ+ (ν, c). Then,

P (X − E [X] ≥ t) ≤ exp

(
− t2

2 (ν2 + ct)

)
∀t ≥ 0

Proof. See (Boucheron et al., 2013 - 2013, Section 2.4). ■

Next, we introduce the notion of self-bounding functions: we say that a nonnegative function f :
Xn → R+ has the self-bounding property if there exists functions

{
fi : Xn−1 → R

}
i∈[n]

such that

f (x)− fi
(
x\i
)
∈ [0, 1] and

n∑
i=1

[
f (x)− fi

(
x\i
)]

≤ f (x)

for all i ∈ [n] and x ∈ Xn, where we define x\i := (x1, . . . , xi−1, xi+1, . . . , xn). A simple
observation about such functions is that they are closed under convex combinations.

Lemma B.1 (Convex combination of self-bounding functions). Suppose that f and g satisfy the
self-bounding property and let α ∈ [0, 1]. Then, αf + (1− α) g also satisfies the self-bounding
property.

Proof. Let {fi} and {gi} be the functions satisfying the self-bounding property, and define h :=
αf + (1− α) g and hi := αfi + (1− α) gi. Then, for any i ∈ [n] and x ∈ Xn,

h (x)− hi

(
x\i
)
= α

[
f (x)− fi

(
x\i
)]

+ (1− α)
[
g (x)− gi

(
x\i
)]

∈ [0, 1]
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and
n∑

i=1

[
h (x)− hi

(
x\i
)]

= α

n∑
i=1

[
f (x)− fi

(
x\i
)]

+ (1− α)

n∑
i=1

[
g (x)− gi

(
x\i
)]

≤ αf (x) + (1− α) g (x)

= h (x)

■

The reason for introducing such functions is that they possess a favorable bound on their cumulant-
generating function (cgf).

Proposition B.3 (Cgf of self-bounding functions). Suppose that f : Xn → R+ has the self-
bounding property and let Xn = (X1, . . . , Xn) be independent random variables. Then,

logE
[
eλf(X

n)
]
≤
(
eλ − 1

)
E [f (Xn)] ∀λ ∈ R

Proof. See (Boucheron et al., 2013 - 2013, Theorem 6.12). ■

The last tool we need employs symmetrization once again. For the next result and the development
that follows, we omit the parentheses in a2+ := (a+)

2; that is, we take the positive part before
squaring.

Proposition B.4 (Exponential Efron-Stein). Suppose that Xn = (X1, . . . , Xn) are independent
random variables and let Wn = (W1, . . . ,Wn) be independent copies of them. Given a nonnegative
function f : Xn → R+, define variables Z := f (Xn) and its symmetrized counterpart

Z ′
i := f (X1, . . . , Xi−1,Wi, Xi+1, . . . , Xn) ∀i ∈ [n]

Additionally, let

V + :=

n∑
i=1

E
[
(Z − Z ′

i)
2
+

∣∣∣Xn
]

Then, we have that

logE
[
eλ(Z−E[Z])

]
≤ θλ

1− θλ
logE

[
e

λV +

θ

]
for any θ, λ > 0 such that θλ < 1.

Proof. See (Boucheron et al., 2013 - 2013, Theorem 6.16). ■

Proof of Theorem B.1. To conclude our main result, we begin with a more general setup: let X :=(
X

(i)
Q

)
Q∈U,i∈[n]

, where n ∈ N, be a collection of independent X -valued random variables, and let

X(i) :=
(
X

(i)
Q

)
Q∈U

for each i ∈ [n]. We de not impose any assumptions on their distributions. Our

random variables of interest will be

Zf := min
Q∈U

n∑
i=1

fQ

(
X

(i)
Q

)
and Zf,g := Zf − Zg

for collections of functions f =
{
fQ : X →

[
0, b√

6

]}
Q∈U

and g =
{
gQ : X →

[
0, b√

6

]}
Q∈U

,

where b > 0. Define

µf,i,Q := E
[
fQ

(
X

(i)
Q

)]
and σ2

f,i,Q := Var
(
fQ

(
X

(i)
Q

))
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Similarly, consider the variance variants:

Vf :=

n∑
i=1

E
[
max
Q∈U

[
fQ

(
X

(i)
Q

)
− µf,i,Q

]2]

Σ2
f := E

[
max
Q∈U

n∑
i=1

[
fQ

(
X

(i)
Q

)
− µf,i,Q

]2]

σ2
f := max

Q∈U

n∑
i=1

σ2
f,i,Q

Following the analysis of (Boucheron et al., 2013 - 2013, Theorem 12.2), we will use the tools
provided and proceed in 5 steps:

1. Upper bound V +.

2. Apply exponential Efron-Stein along with the bound on V +.

3. Show the self-boundedness of certain functions and apply the cgf bound.

4. Show that Zf,g is sub-gamma and apply the tail bound.

5. Specialize the analysis to the original setting.

B.2.2 BOUNDING V +

For each pair (i, Q) ∈ [n] × U , let W (i)
Q be an independent copy of X

(i)
Q and define W (i) :=(

W
(i)
Q

)
Q∈U

. Moreover, define

Yi :=
(
X(1), . . . , X(i−1),W (i), X(i+1), . . . , X(n)

)
∀i ∈ [n]

and function Φf,g :
(
X k
)n → R by

Φf,g (x1, . . . ,xn) := min
Q∈U

n∑
i=1

fQ
(
xi
Q

)
− min

Q′∈U

n∑
i=1

gQ′
(
xi
Q′

)
where xi =

(
xi
Q

)
Q∈U ∈ X k for each i ∈ [n]. In what follows, we will use the more compact

notation x = (x1, . . . ,xn). Note that Zf,g = Φf,g (X) and

Z ′
i := Φf,g (Yi)

= min
Q∈U

fQ

(
W

(i)
Q

)
+

∑
j∈[n]:j ̸=i

fQ

(
X

(j)
Q

)− min
Q′∈U

gQ′

(
W

(i)
Q′

)
+

∑
j∈[n]:j ̸=i

gQ′

(
X

(j)
Q′

)
Given functions h = {hQ : X → R}Q∈U , define minimizer Q̂h :

(
X k
)n → U by

Q̂h (x) := argmin
Q∈U

n∑
i=1

hQ

(
xi
Q

)
so that

Φf,g (x) =

n∑
i=1

fQ̂f (x)

(
xi
Q̂f (x)

)
−

n∑
i=1

gQ̂g(x)

(
xi
Q̂g(x)

)
and

n∑
i=1

fQ̂f (x)

(
xi
Q̂f (x)

)
−

n∑
i=1

gQ
(
xi
Q

)
≤ Φf,g (x) ≤

n∑
i=1

fQ′
(
xi
Q′

)
−

n∑
i=1

gQ̂g(x)

(
xi
Q̂g(x)

)
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for any x ∈
(
X k
)n

and Q,Q′ ∈ U . Choosing Q = Q̂g (X) and Q′ = Q̂f (Yi) below then yields

Zf,g − Z ′
i = Φf,g (X)− Φf,g (Yi)

≤
n∑

j=1

fQ̂f (Yi)

(
X

(j)

Q̂f (Yi)

)
−

n∑
j=1

gQ̂g(X)

(
X

(j)

Q̂g(X)

)

−

fQ̂f (Yi)

(
W

(i)

Q̂f (Yi)

)
+

∑
j∈[n]:j ̸=i

fQ̂f (Yi)

(
X

(j)

Q̂f (Yi)

)
+

gQ̂g(X)

(
W

(i)

Q̂g(X)

)
+

∑
j∈[n]:j ̸=i

gQ̂g(X)

(
X

(j)

Q̂g(X)

)
= fQ̂f (Yi)

(
X

(i)

Q̂f (Yi)

)
− fQ̂f (Yi)

(
W

(i)

Q̂f (Yi)

)
+ gQ̂g(X)

(
W

(i)

Q̂g(X)

)
− gQ̂g(X)

(
X

(i)

Q̂g(X)

)
Then,

(Zf,g − Z ′
i)

2

+

≤
[
fQ̂f (Yi)

(
X

(i)

Q̂f (Yi)

)
− fQ̂f (Yi)

(
W

(i)

Q̂f (Yi)

)
+ gQ̂g(X)

(
W

(i)

Q̂g(X)

)
− gQ̂g(X)

(
X

(i)

Q̂g(X)

)]2
≤ 2

[
fQ̂f (Yi)

(
X

(i)

Q̂f (Yi)

)
− fQ̂f (Yi)

(
W

(i)

Q̂f (Yi)

)]2
+ 2

[
gQ̂g(X)

(
X

(i)

Q̂g(X)

)
− gQ̂g(X)

(
W

(i)

Q̂g(X)

)]2
(B.1)

Recall that our goal is to bound V + =
∑n

i=1 E
[
(Zf,g − Z ′

i)
2
+

∣∣∣X]. We begin with the second term:
by adding and subtracting µg,i,Q̂g(X), expanding the square and noting that the cross term is 0 under
the conditional expectation, we get that
n∑

i=1

E
[[
gQ̂g(X)

(
X

(i)

Q̂g(X)

)
− gQ̂g(X)

(
W

(i)

Q̂g(X)

)]2∣∣∣∣X]

=

n∑
i=1

{[
gQ̂g(X)

(
X

(i)

Q̂g(X)

)
− µg,i,Q̂g(X)

]2
+ E

[[
gQ̂g(X)

(
W

(i)

Q̂g(X)

)
− µg,i,Q̂g(X)

]2∣∣∣∣X]}

≤ max
Q∈U

{
n∑

i=1

[
gQ

(
X

(i)
Q

)
− µg,i,Q

]2}
︸ ︷︷ ︸

=:Γg

+max
Q∈U

{
n∑

i=1

E
[[
gQ

(
W

(i)
Q

)
− µg,i,Q

]2]}
︸ ︷︷ ︸

=σ2
g

Note that we were able to upper bound via a maximization outside of the sum since the Q indices
were fixed w.r.t. i. The first term in (B.1) is not so readily bounded due to the dependence of Yi on
i. Hence, we rely on a weaker approach: for each i ∈ [n], we have that[
fQ̂f (Yi)

(
X

(i)

Q̂f (Yi)

)
− fQ̂f (Yi)

(
W

(i)

Q̂f (Yi)

)]2
≤ 2

[
fQ̂f (Yi)

(
X

(i)

Q̂f (Yi)

)
− µf,i,Q̂f (Yi)

]2
+ 2

[
fQ̂f (Yi)

(
W

(i)

Q̂f (Yi)

)
− µf,i,Q̂f (Yi)

]2
≤ 2max

Q∈U

{[
fQ

(
X

(i)
Q

)
− µf,i,Q

]2}
+ 2max

Q∈U

{[
fQ

(
W

(i)
Q

)
− µf,i,Q

]2}
Summing and taking conditional expectations then yields
n∑

i=1

E
[[
fQ̂f (Yi)

(
X

(i)

Q̂f (Yi)

)
− fQ̂f (Yi)

(
W

(i)

Q̂f (Yi)

)]2∣∣∣∣X]

≤ 2

n∑
i=1

max
Q∈U

{[
fQ

(
X

(i)
Q

)
− µf,i,Q

]2}
︸ ︷︷ ︸

=:Tf

+2

n∑
i=1

E
[
max
Q∈U

{[
fQ

(
W

(i)
Q

)
− µf,i,Q

]2}]
︸ ︷︷ ︸

=Vf
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Finally, by putting everything together, we can obtain the upper bound

V + ≤ 2
(
Γg + σ2

g

)
+ 4 (Tf + Vf )

where E [Γg] = Σ2
g and E [Tf ] = Vf .

B.2.3 EFRON-STEIN

Next, we apply exponential Efron-Stein (Proposition B.4): for λ ∈
[
0, b−1

)
, we have that

logE
[
eλ(Zf,g−E[Zf,g])

]
≤ bλ

1− bλ
logE

[
eλb

−1V +
]

≤ bλ

1− bλ
logE

[
eλb

−1[2(Γg+σ2
g)+4(Tf+Vf )]

]
=

bλ

1− bλ

{
logE

[
ebλ[

1
3 (6b

−2Γg)+ 2
3 (6b

−2Tf)]
]
+ λb−1

(
2σ2

g + 4Vf

)}
(B.2)

B.2.4 SELF-BOUNDEDNESS

To bound the cgf of 1
3

(
6b−2Γg

)
+ 2

3

(
6b−2Tf

)
, we will show the self-boundedness of

h(1) (x) := 6b−2 max
Q∈U

n∑
i=1

[
gQ
(
xi
Q

)
− µg,i,Q

]2
and h(2) (x) := 6b−2

n∑
i=1

max
Q∈U

[
fQ
(
xi
Q

)
− µf,i,Q

]2
so that the function 1

3h
(1)+ 2

3h
(2) is also self-bounded by Lemma B.1 and we can thus bound the cgf

of
(
1
3h

(1) + 2
3h

(2)
)
(X) = 1

3

(
6b−2Γg

)
+ 2

3

(
6b−2Tf

)
using Proposition B.3. We begin by showing

that h(1) is self-bounded: let

h
(1)
i

(
x\i
)
:= 6b−2 max

Q∈U

∑
j∈[n]:j ̸=i

[
gQ

(
xj
Q

)
− µg,j,Q

]2
∀i ∈ [n]

and define the maximizing distribution in h(1):

Q̃ (x) := argmax
Q∈U

n∑
i=1

[
gQ
(
xi
Q

)
− µg,i,Q

]2
Fix some x ∈

(
X k
)n

and i ∈ [n]. Clearly, we have that h(1) (x) ≥ h
(1)
i

(
x\i
)
. Moreover,

h(1) (x)− h
(1)
i

(
x\i
)
= 6b−2

 n∑
j=1

[
gQ̃(x)

(
xj

Q̃(x)

)
− µg,i,Q̃(x)

]2
−max

Q∈U

 ∑
j∈[n]:j ̸=i

[
gQ

(
xj
Q

)
− µg,j,Q

]2


≤ 6b−2
[
gQ̃(x)

(
xi
Q̃(x)

)
− µg,i,Q̃(x)

]2
≤ 1

where the last line follows from our assumption that gQ ∈
[
0, b√

6

]
. We can add up the bounds to

get
n∑

i=1

[
h(1) (x)− h

(1)
i

(
x\i
)]

≤ 6b−2
n∑

i=1

[
gQ̃(x)

(
xi
Q̃(x)

)
− µg,i,Q̃(x)

]2
= h(1) (x)

Together, these show that h(1) is self-bounded. To show the same for h(2), consider the functions

h
(2)
i

(
x\i
)
:= 6b−2

∑
j∈[n]:j ̸=i

max
Q∈U

[
fQ

(
xj
Q

)
− µf,j,Q

]2
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Again, we have that h(2) (x) ≥ h
(2)
i

(
x\i
)

and

h(2) (x)− h
(2)
i

(
x\i
)
= 6b−2 max

Q∈U

[
fQ
(
xi
Q

)
− µf,i,Q

]2 ≤ 1

n∑
i=1

[
h(2) (x)− h

(2)
i

(
x\i
)]

= h(2) (x)

That is, h(2) is also self-bounded. As a result, Proposition B.3 implies that

logE
[
ebλ[

1
3 (6b

−2Γg)+ 2
3 (6b

−2Tf)]
]
≤
(
ebλ − 1

)
E
[
1

3

(
6b−2Γg

)
+

2

3

(
6b−2Tf

)]
=
(
ebλ − 1

)
b−2

(
2Σ2

g + 4Vf

)
≤ λb−1

(
4Σ2

g + 8Vf

)
(B.3)

provided that λ ∈
[
0, b−1

)
, where in the last line we have used the inequality ex ≤ 1+2x for x ≤ 1.

B.2.5 SUB-GAMMA TAIL

Finally, we can combine Equations (B.2) and (B.3) to get that

logE
[
eλ(Zf,g−E[Zf,g])

]
≤ λ2

1− bλ

(
2σ2

g + 4Σ2
g + 12Vf

)
=

(
4σ2

g + 8Σ2
g + 24Vf

)
λ2

2 (1− bλ)

for all λ ∈
[
0, b−1

)
. That is, Zf,g ∈ Γ+

(√
4σ2

g + 8Σ2
g + 24Vf , b

)
, which we know from Proposi-

tion B.2 yields the tail bound

P (Zf,g − E [Zf,g] ≥ t) ≤ exp

(
− t2

2
(
4σ2

g + 8Σ2
g + 24Vf + bt

)) ∀t ≥ 0 (B.4)

B.2.6 ORIGINAL SETTING

Recall that our original variables of interest live in some set X0 ⊂ R, and that sample sizes nQ may
vary. Let n := maxQ∈U nQ and consider the space X = X0 ∪ {x0} for the setup of this proof,

where x0 ̸∈ X0. Suppose that
(
X

(i)
Q

)
i∈[nQ]

iid∼ Q and X
(nQ+1)
Q = · · · = X

(n)
Q = x0 almost surely.

Let f : X0 → R be the L-Lipschitz function from the statement of Theorem B.1, and consider its
extension f̃ : X → R given by

f̃ (x) :=

{
f (x) x ∈ X0

0 x = x0

We apply the analysis above to the functions fQ := f̃
nQ

, ensuring that

Zf = min
Q∈U

1

nQ

nQ∑
i=1

f
(
X

(i)
Q

)
where the variables follow the appropriate distributions, as in the original goal. Note that fQ ∈[
0, M

nQ

]
, so that we can set b =

√
6M

minQ∈U nQ
. We analogously define everything for g. Next, we apply

Lemma A.4 under the Lipschitzness assumption to obtain

σ2
g = max

Q∈U

{
nQ Var

(
g (XQ)

nQ

)}
≤ 2L2 max

Q∈U

σ2
Q

nQ
= 2L2σ2

T
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For each Q ∈ U , let XQ ∼ Q be independent from
(
X

(i)
Q

)
i∈[nQ]

. Then,

Σ2
g = E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

[
g
(
X

(i)
Q

)
− E [g (XQ)]

]2]

= E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

E
[
g
(
X

(i)
Q

)
− g (XQ)

∣∣∣X(i)
Q

]2]

≤ L2E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

E
[(

X
(i)
Q −XQ

)2∣∣∣∣X(i)
Q

]]
Lipschitzness + Jensen’s

= L2E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

[(
X

(i)
Q − µQ

)2
+ σ2

Q

]]
E
[(

X
(i)
Q − µQ

)
(µQ −XQ)

∣∣∣X(i)
Q

]
= 0

≤ L2

{
E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

(
X

(i)
Q − µQ

)2]
+max

Q∈U

σ2
Q

nQ

}
= L2

(
Σ2

T + σ2
T

)
It remains to bound Vf : recall that 0 = n(0) ≤ n(1) ≤ · · · ≤ n(k) and n(j) = nQ(j)

, so that

Vf =

n∑
i=1

E
[
max
Q∈U

[
fQ

(
X

(i)
Q

)
− µf,i,Q

]2]

=

k∑
j=1

(
n(j) − n(j−1)

)
E

[
max

r∈{j,...,k}

1

n2
(r)

[
f
(
XQ(r)

)
− E

[
f
(
XQ(r)

)]]2]
With a similar symmetrization trick, we can further bound each expectation in the sum: let X ′

Q be
an independent copy of XQ. Then,

E

[
max

r∈{j,...,k}

1

n2
(r)

[
f
(
XQ(r)

)
− E

[
f
(
XQ(r)

)]]2]
= E

[
max

r∈{j,...,k}

1

n2
(r)

E
[
f
(
XQ(r)

)
− f

(
X ′

Q(r)

)∣∣∣XQ(r)

]2]
(1)

≤ L2E

[
max

r∈{j,...,k}

1

n2
(r)

E
[(

XQ(r)
−X ′

Q(r)

)2∣∣∣∣XQ(r)

]]
(2)

≤ L2E

[
max

r∈{j,...,k}

1

n2
(r)

{[
XQ(r)

− µQ(r)

]2
+ σ2

Q(r)

}]

≤ 2L2E

[
max

r∈{j,...,k}

1

n2
(r)

[
XQ(r)

− µQ(r)

]2]
where, in (1), we have applied Lipschitzness and Jensen’s and, in (2), we note again that the cross
term cancels when expanding the square. Hence, we get that

Vf ≤ 2L2
k∑

j=1

(
n(j) − n(j−1)

)
E

[
max

r∈{j,...,k}

1

n2
(r)

[
XQ(r)

− µQ(r)

]2]
= 2L2VT

Plugging these values back into the bound (B.4) then yields the claim.

■

C PROOFS OF SECTION 3

Recall our non-adaptive proxy objective

µo
T (a) = min

Q∈U

1

nQ

nQ∑
i=1

r
(
a,X

(i)
Q

)
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where, for UE, nQ = n for all Q ∈ U . For a ∈ A, define generalization gaps

Da := µDR (a)− µo
T (a) = min

Q∈U
µ (a;Q)− min

Q′∈U
µ̂nQ′ (a;Q

′)

Using the same argument as in the proof of Proposition B.1, we note that

|Da| ≤ max
Q∈U

∣∣µ (a;Q)− µ̂nQ
(a;Q)

∣∣ = max
Q∈U

∣∣∣∣∣ 1

nQ

nQ∑
i=1

[
E [r (a,XQ)]− r

(
a,X

(i)
Q

)]∣∣∣∣∣ =: Ua

Then from the theory of Appendix A, we can conclude the following bounds.

Theorem C.1. For rewards bounded in [0, 1], we have that for any a ∈ A,

E [Ua] ≤ 4

√
log k

minQ∈U nQ

Additionally, when X ⊂ R and r (a, ·) is L-Lipschitz for each a ∈ A, it follows that

E [Ua] ≤
16 log k

minQ∈U nQ
+ 4LσT

√
2 log k

Proof. We apply Theorem A.1 on functions fQ (x) := E [r (a,XQ)] − r (a, x). Note that fQ ∈
[−1, 1] since r ∈ [0, 1]. Moreover, if r (a, ·) is L-Lipschitz, then so is fQ, as we only add a constant
to it. ■

Let E [Ua] ≤ B be any of the bounds from Theorem C.1. Then, we get that

E [µo
T (a∗)− µo

T (a)] = ∆DR (a) + E [µDR (a)− µo
T (a)]− E

[
µ*
DR −µo

T (a∗)
]

= ∆DR (a) + E [Da]− E [Da∗ ]

≥ ∆DR (a)− |E [Da]| − |E [Da∗ ]|
≥ ∆DR (a)− E [|Da|]− E [|Da∗ |]
≥ ∆DR (a)− 2E [Ua]

≥ ∆DR (a)− 2B

for all a ∈ A. Hence,

P (Ao
T = a) ≤ P (µo

T (a) ≥ µo
T (a∗))

= P (µo
T (a)− µo

T (a∗)− E [µo
T (a)− µo

T (a∗)] ≥ E [µo
T (a∗)− µo

T (a)])

≤ P (µo
T (a)− µo

T (a∗)− E [µo
T (a)− µo

T (a∗)] ≥ ∆DR (a)− 2B) (C.1)

What remains is to apply the concentration inequalities of Appendix B.

C.1 PROOF OF THEOREM 1

Here, we use the UE proxy µo
T (a) = minQ∈U

1
n

∑n
i=1 r

(
a,X

(i)
Q

)
. We can then obtain the follow-

ing concentration inequality.

Corollary C.1 (UE concentration inequality). We have that

P (µo
T (a)− µo

T (a′)− E [µo
T (a)− µo

T (a′)] ≥ t) ≤ exp

(
−nt2

2

)
for all t ≥ 0 and a, a′ ∈ A.

Proof. Note that in the notation of Appendix B.1, Zr(a,·) = µo
T (a). Since r (a, ·) ∈ [0, 1] for each

a ∈ A, the claim follows by applying Corollary B.2. ■
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Next, note that under the assumption n ≥
(

8
∆DR,min

)2
log k, we get that ∆DR (a) ≥ 8

√
log k
n for

all a ∈ A with a positive gap. Hence, for all such a, plugging in the bound B = 4
√

log k
n into

Equation (C.1) yields

P (Ao
T = a) ≤ P

(
µo
T (a)− µo

T (a∗)− E [µo
T (a)− µo

T (a∗)] ≥ ∆DR (a)− 8

√
log k

n

)
Eq. (C.1)

≤ exp

−n

2

[
∆DR (a)− 8

√
log k

n

]2 Cor. C.1

This directly yields the desired regret bound:

E [∆DR (Ao
T )] =

∑
a∈A:∆DR(a)>0

∆DR (a)P (Ao
T = a)

≤
∑

a∈A:∆DR(a)>0

∆DR (a) exp

−n

2

[
∆DR (a)− 8

√
log k

n

]2
Note that we can scale the rewards to instead operate under r ∈ [0,M ]. This in turn yields the bound

E [∆DR (Ao
T )] ≤

∑
a∈A:∆DR(a)>0

∆DR (a) exp

− n

2M2

[
∆DR (a)− 8M

√
log k

n

]2
C.2 PROOF OF COROLLARY 1

An alternative way of writing the UE regret bound is as follows:

E [∆DR (Ao
T )] =

∑
a∈A:∆DR(a)≤∆

∆DR (a)P (Ao
T = a) +

∑
a∈A:∆DR(a)>∆

∆DR (a)P (Ao
T = a)

≤ ∆+
∑

a∈A:∆DR(a)>∆

∆DR (a) exp

−n

2

[
∆DR (a)− 8

√
log k

n

]2
for any ∆ ≥ 0. In other words,

E [∆DR (Ao
T )] ≤ inf

∆≥0

∆+
∑

a∈A:∆DR(a)>∆

∆DR (a) exp

−n

2

[
∆DR (a)− 8

√
log k

n

]2
(C.2)

Next, we introduce a simple technical lemma.

Lemma C.1. Let α, β > 0. Then, the function f (x) := x exp
(
−α (x− β)

2
)

is decreasing for

x ≥ 1
2

(
β +

√
β2 + 2

α

)
.

Proof. Notice that

f ′ (x) = exp
(
−α (x− β)

2
)
− 2αx (x− β) exp

(
−α (x− β)

2
)

= [1− 2αx (x− β)] exp
(
−α (x− β)

2
)

Now, note that the function x 7→ 2αx (x− β) − 1 is quadratic, convex and has roots
1
2

(
β +

√
β2 + 2

α

)
and 1

2

(
β −

√
β2 + 2

α

)
. Since the former is larger, it follows that the quadratic

is nonnegative for larger values. In other words, f ′ (x) ≤ 0 whenever x ≥ 1
2

(
β +

√
β2 + 2

α

)
. ■
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As a result, we can show the following inequality.

Lemma C.2. Provided that l ≥ 2 and ∆DR (a) ≥ 8
√
log k+

√
2 log l√

n
, we have that

∆DR (a) exp

−n

2

[
∆DR (a)− 8

√
log k

n

]2 ≤ 8
√
log k +

√
2 log l

l
√
n

Proof. Note that the left-hand side of the claim is of the form f (∆DR (a)), where f is defined as in

Lemma C.1 with α := n
2 and β := 8

√
log k
n , so that we know it is decreasing for x ≥ K, where

K :=
1

2

(
β +

√
β2 +

2

α

)

=
1

2

[
8

√
log k

n
+

√
64 log k

n
+

4

n

]

=
8
√
log k +

√
64 log k + 4

2
√
n

≤ 8
√
log k + 1√

n

√
a+ b ≤

√
a+

√
b

≤ 8
√
log k +

√
2 log l√

n

√
2 log l ≥ 1

The result then follows by plugging in 8
√
log k+

√
2 log l√

n
into f to get the right-hand side of the claim.

■

Finally, we can set ∆ := 8
√
log k+

√
2 log l√

n
in Equation (C.2) and apply Lemma C.2 to obtain

E [∆DR (Ao
T )] ≤

8
√
log k +

√
2 log l√

n
+ |{a ∈ A : ∆DR (a) > ∆}| 8

√
log k +

√
2 log l

l
√
n

≤ 16
√
log k + 2

√
2 log l√

n

≲

√
log (kl)

n

where in the last line we have used the fact that
√
a +

√
b ≤

√
2 (a+ b). Substituting n = T

k then
yields the result.

C.3 PROOF OF THEOREM 2

Returning to the general NUE proxy µo
T (a) = minQ∈U

1
nQ

∑nQ

i=1 r
(
a,X

(i)
Q

)
, let us further assume

that X ⊂ R. Then, we conclude the following result.

Corollary C.2 (NUE concentration inequality). Suppose that r (a, ·) : X → [0,M ] is L-Lipschitz
for each a ∈ A. Then, we have that

P (µo
T (a)− µo

T (a′)− E [µo
T (a)− µo

T (a′)] ≥ t) ≤ exp

− t2

16L2 (2σ2
T +Σ2

T + 6VT ) +
2
√
6Mt

minQ∈U nQ


for all t ≥ 0 and a, a′ ∈ A.

Proof. Once again, using the definitions of Appendix B, we get that Zr(a,·) = µo
T (a). Since

r (a, ·) ∈ [0,M ] is L-Lipschitz for each a ∈ A, the claim follows by applying Theorem B.1. ■
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Note that we can scale all quantities in Theorem C.1 by M to work with rewards in
[0,M ] instead of [0, 1]. Then, as in the UE analysis, provided that ∆DR,min ≥ GT =

8M
(

4 log k
minQ∈U nQ

+ LσT

√
2 log k

)
, we can plug B = 16 log k

minQ∈U nQ
+ 4LσT

√
2 log k into Equa-

tion (C.1) to conclude that

P (Ao
T = a) ≤ P (µo

T (a)− µo
T (a∗)− E [µo

T (a)− µo
T (a∗)] ≥ ∆DR (a)−GT ) Eq. (C.1)

≤ exp

− [∆DR (a)−GT ]
2

16L2 (2σ2
T +Σ2

T + 6VT ) +
2
√
6M

minQ∈U nQ
[∆DR (a)−GT ]

 Cor. C.1

for all a ∈ A with positive gap. This in turn yields the regret bound

E [∆DR (Ao
T )] =

∑
a∈A:∆DR(a)>0

∆DR (a)P (Ao
T = a)

≤
∑

a∈A:∆DR(a)>0

∆DR (a) exp

− [∆DR (a)−GT ]
2

16L2 (2σ2
T +Σ2

T + 6VT ) +
2
√
6M

minQ∈U nQ
[∆DR (a)−GT ]


D MODIFIED UCB-E

Our goal is to perform a minimization variant of UCB-E Audibert et al. (2010) for T rounds on
the set of “arms” U . Since we will analyze all random variables under a fixed high-probability
event, we treat all quantities here as deterministic. In particular, we work with µ (Q) , µ̂t (Q) ∈
[0, 1] for each Q ∈ U and t ∈ {n0 (Q) , . . . , n0 (Q) + T}, where n0 (Q) ≥ 1 is the number of
pulls from arm Q ∈ U that we start the game with. We assume a unique optimal arm Q∗ :=
argminQ∈U µ (Q), with µ∗ := µ (Q∗), and define suboptimality gaps ∆(Q) := µ (Q) − µ∗ and
∆min := minQ∈U\{Q∗} ∆(Q). For some choice of plays {Qt}Tt=1, let

nt (Q) := n0 (Q) +

t∑
s=1

I {Qs = Q}

denote the number of times distribution Q has been played at time t ∈ [T ]. Additionally, we define
the following subset of arms:

U0 :=

{
Q ∈ U\ {Q∗} : n0 (Q) <

36

25
ϵ∆−2 (Q)

}
∪
{
Q∗ : n0 (Q

∗) <
36

25
ϵ∆−2

min

}
along with its cardinality (provided that it contains Q∗) k0 := |U0| I {Q∗ ∈ U0}, total initial sample
size T̃0 :=

∑
Q∈U0

n0 (Q) and the complexity notion it defines:

H0 := ∆−2
minI {Q

∗ ∈ U0}+
∑

Q∈U0\{Q∗}

∆−2 (Q)

The intuition is that U0 is a proxy for the set of arms played:

U ′ := {Q ∈ U : nT (Q) > n0 (Q)}

The UCB-E algorithm works by defining indices (adjusted here for lower confidence bounds)

LCBt (Q; ϵ) := µ̂nt(Q) (Q)−
√

ϵ

nt (Q)
∀Q ∈ U

given a parameter ϵ > 0 and, at each time step t ∈ [T ], playing

Qt := argmin
Q∈U

LCBt−1 (Q; ϵ)

After T rounds, we output

Q̂ := argmin
Q∈U

µ̂nT (Q) (Q)
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Theorem D.1 (Modified UCB-E optimality). Suppose that

|µ (Q)− µ̂t (Q)| < 1

5

√
ϵ

t

for all Q ∈ U and t ∈ {n0 (Q) , . . . , n0 (Q) + T}, and that

ϵ ≥ 25

36
∆2

min [n0 (Q
∗)− 1]

T ≥ 36

25
ϵH0 − T̃0 + k0

Then, it follows that Q̂ = Q∗ and

1

5

√
ϵ

nT (Q∗)
≤ ∆min

2

Proof. First, notice that for any t ∈ {0, . . . , T} and Q ∈ U , we have by assumption that∣∣µ (Q)− µ̂nt(Q) (Q)
∣∣ < 1

5

√
ϵ

nt (Q)
(D.1)

since nt (Q) ∈ {n0 (Q) , . . . , n0 (Q) + T}. All we need to do is show that, for any Q ∈ U\ {Q∗},

nT (Q) ≥ 4

25
ϵ∆−2 (Q) and nT (Q∗) ≥ 4

25
ϵ∆−2

min (D.2)

since this implies that

1

5

√
ϵ

nT (Q)
≤ ∆(Q)

2
and

1

5

√
ϵ

nT (Q∗)
≤ ∆min

2
≤ ∆(Q)

2

The second inequality is one of our desired results. To obtain the other, we observe that

µ̂nT (Q) (Q)− µ̂nT (Q∗) (Q
∗) = µ̂nT (Q) (Q)− µ (Q) + ∆ (Q) + µ∗ − µ̂nT (Q∗) (Q

∗)

> ∆(Q)− 1

5

√
ϵ

nT (Q)
− 1

5

√
ϵ

nT (Q∗)
Eq. (D.1)

≥ ∆(Q)− ∆(Q)

2
− ∆(Q)

2
= 0

Since this holds for all Q ∈ U\ {Q∗}, it follows that Q̂ = Q∗. To show (D.2), we break into two
cases.

D.1 CASE 1: Q∗ ̸∈ U0

First, suppose that Q∗ ̸∈ U0 and note that

nT (Q) ≥ 36

25
ϵ∆−2 (Q) >

4

25
ϵ∆−2 (Q) and nT (Q∗) ≥ n0 (Q

∗) ≥ 36

25
ϵ∆−2

min >
4

25
ϵ∆−2

min

for any Q ̸∈ U0 ∪ {Q∗} by definition. To show the first inequality for U0, we observe that k0 = 0
and H0 =

∑
Q∈U0

∆−2 (Q) and make the following claim, that applies in both cases.

Lemma D.1. Fix t ∈ [T ]. If Qt = Q ̸= Q∗, then

nt−1 (Q) <
36

25
ϵ∆−2 (Q)
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Proof. We have that

µ∗ > µ̂nt−1(Q∗) (Q
∗)− 1

5

√
ϵ

nt−1 (Q∗)
Eq. (D.1)

≥ LCBt−1 (Q
∗; ϵ)

≥ LCBt−1 (Q; ϵ) Qt = Q

= µ̂nt−1(Q) (Q)−
√

ϵ

nt−1 (Q)

> µ (Q)− 6

5

√
ϵ

nt−1 (Q)
Eq. (D.1)

Rearranging then yields the claim. ■

In other words, once nt (Q) ≥ 36
25ϵ∆

−2 (Q), arm Q ̸= Q∗ will no longer be played after round t.
This means that any arm outside of U0 ∪ {Q∗} will not be played at all. In addition, if Q∗ is not
played in the first

T ′ :=
∑
Q∈U0

[
36

25
ϵ∆−2 (Q)− n0 (Q)

]
=

36

25
ϵH0 − T̃0 + k0

rounds, then the plays will distributed within U0, resulting in

nT (Q) ≥ nT ′ (Q) =
36

25
ϵ∆−2 (Q) >

4

25
ϵ∆−2 (Q) ∀Q ∈ U0

where the first inequality uses the assumption that T ≥ T ′. When Q∗ is played, we get the following
result.

Proposition D.1. Suppose that Q∗ is played in some round. Then,

nT (Q) ≥ 4

25
ϵ∆−2 (Q) ∀Q ∈ U0

Proof. Let Q ∈ U0 and let t ∈ [T ] be any round such that Qt = Q∗. Then,

µ (Q)− 4

5

√
ϵ

nT (Q)
≥ µ (Q)− 4

5

√
ϵ

nt−1 (Q)

> LCBt−1 (Q; ϵ) Eq. (D.1)
≥ LCBt−1 (Q

∗; ϵ)

> µ∗ − 6

5

√
ϵ

nt−1 (Q∗)
Eq. (D.1)

≥ µ∗ − 6

5

√
ϵ

n0 (Q∗)

≥ µ∗ −∆min n0 (Q
∗) ≥ 36

25
ϵ∆−2

min

≥ µ∗ −∆(Q)

The claim then follows by rearranging the terms. ■

D.2 CASE 2: Q∗ ∈ U0

Next, we note that

k0 = |U0| and H0 = ∆−2
min +

∑
Q∈U0\{Q∗}

∆−2 (Q)

As a direct consequence of Lemma D.1, we can conclude that our proxy set U0 indeed contains the
arms played.
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Corollary D.1. U ′ ⊂ U0.

Proof. Fix Q ∈ U ′\ {Q∗} and let t ∈ [T ] denote any round in which Qt = Q. From Lemma D.1
we then get that n0 (Q) ≤ nt−1 (Q) < 36

25ϵ∆
−2 (Q). ■

Next, we show that suboptimal arms in the proxy set do not have too many samples by the end of
the procedure.

Proposition D.2.

nT (Q) <
36

25
ϵ∆−2 (Q) + 1 ∀Q ∈ U0\ {Q∗}

Proof. If Q ∈ U0\ (U ′ ∪ {Q∗}), then

nT (Q) = n0 (Q) <
36

25
ϵ∆−2 (Q) <

36

25
ϵ∆−2 (Q) + 1

Otherwise, fix any Q ∈ U ′\ {Q∗} and let t ∈ [T ] be the largest time step such that Qt = Q (i.e., the
last round in which Q is played). Lemma D.1 then implies that

nT (Q) = nT−1 (Q) = · · · = nt (Q) = nt−1 (Q) + 1 <
36

25
ϵ∆−2 (Q) + 1

■

This, in turn, implies that the optimal arm has sufficiently many samples and, in fact, is in U ′.

Proposition D.3.

nT (Q∗) >
36

25
ϵ∆−2

min + 1

Proof. We have that

nT (Q∗) = T + n0 (Q
∗)−

∑
Q∈U ′\{Q∗}

[nT (Q)− n0 (Q)]

= T + n0 (Q
∗)−

∑
Q∈U0\{Q∗}

[nT (Q)− n0 (Q)] Cor. D.1

= T + T̃0 −
∑

Q∈U0\{Q∗}

nT (Q)

> T + T̃0 −
∑

Q∈U0\{Q∗}

[
36

25
ϵ∆−2 (Q) + 1

]
Prop. D.2

= T + T̃0 −
36

25
ϵ
(
H0 −∆−2

min

)
− k0 + 1

≥ 36

25
ϵ∆−2

min + 1

where the last line follows from our lower bound assumption on T . ■

Corollary D.2. We have that Q∗ ∈ U ′.

Proof. This immediately follows from Proposition D.3 and our lower bound assumption on ϵ:

nT (Q∗) >
36

25
ϵ∆−2

min + 1 ≥ n0 (Q
∗)

■

We are then able to show that, by the end of the game, every arm has sufficiently many samples.
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Proposition D.4.

nT (Q) ≥ 4

25
ϵ∆−2 (Q) ∀Q ∈ U\ {Q∗}

Proof. Let Q ∈ U\ {Q∗}. Since Q∗ ∈ U ′ by Corollary D.2, let t ∈ [T ] be the last round such that
Qt = Q∗. Then,

µ (Q)− 4

5

√
ϵ

nT (Q)
≥ µ (Q)− 4

5

√
ϵ

nt−1 (Q)

> LCBt−1 (Q; ϵ) Eq. (D.1)
≥ LCBt−1 (Q

∗; ϵ)

> µ∗ − 6

5

√
ϵ

nt−1 (Q∗)
Eq. (D.1)

= µ∗ − 6

5

√
ϵ

nT (Q∗)− 1
nT (Q∗) = nt (Q

∗) = nt−1 (Q
∗) + 1

> µ∗ −∆(Q) Prop. D.3 and ∆min ≤ ∆(Q)

The claim then follows by rearranging the terms. ■

Let Q ∈ U\ {Q∗}. From Propositions D.3 and D.4, we can thus conclude inequalities (D.2)

nT (Q) ≥ 4

25
ϵ∆−2 (Q) and nT (Q∗) ≥ 36

25
ϵ∆−2

min + 1 >
4

25
ϵ∆−2

min

■

E PROOF OF THEOREM 3

Suppose that we are operating under permutation (a1, . . . , al) and parameters (ϵ1, . . . , ϵl) satisfying
the bound (1). To show our desired result, we will define a high-probability event, under which the
modified UCB-E analysis ensures the correctness of LCB-DR’s decision.

E.1 CONCENTRATION INEQUALITY

From the boundedness of r ∈ [0, 1], Hoeffding’s inequality implies that

P
(
|µ (a;Q)− µ̂t (a;Q)| < 1

5

√
ϵ

t

)
≥ 1− 2 exp

(
− 2ϵ

25

)
for all a ∈ A, Q ∈ U , t ∈ N and ϵ ≥ 0. Fix some j ∈ [l]. Then, taking union bounds yields

P

 ⋂
Q∈U

⋂
t∈[uj ]

{
|µ (aj ;Q)− µ̂t (aj ;Q)| <

Caj ∧ 1

5

√
ϵj
t

}
≥ 1− 2kuj exp

−
2
(
C2

aj
∧ 1
)
ϵj

25


We then define the high-probability event of interest:

Aj :=
⋂
Q∈U

⋂
t∈[uj ]

{
|µ (aj ;Q)− µ̂t (aj ;Q)| <

Caj
∧ 1

5

√
ϵj
t

}
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E.2 MODIFIED UCB-E ANALYSIS

Here, we apply the UCB-E analysis of Appendix D. Note that

T̄j =

j∑
r=0

Tr = k +

j∑
r=1

36
25

ϵr Hr︸︷︷︸
≤2Har

−T̃r︸︷︷︸
≤0

+ kr︸︷︷︸
≤k

 ≤ uj

Hence, nT̄j−1
(Q) + Tj ≤ T̄j ≤ uj , for any Q ∈ U and, thus, under event Aj ,

|µ (aj ;Q)− µ̂t (aj ;Q)| <
Caj

∧ 1

5

√
ϵj
t
≤ 1

5

√
ϵj
t

for all Q ∈ U and t ∈
{
nT̄j−1

(Q) , . . . , nT̄j−1
(Q) + Tj

}
. Moreover, since T̄0 = u0, we have from

the lower bound (1) on (ϵ1, . . . , ϵl) that

ϵj ≥
25

36
∆2

aj ,min (uj−1 − 1) ≥ 25

36
∆2

aj ,min

(
T̄j−1 − 1

)
≥ 25

36
∆2

aj ,min

(
nT̄j−1

(
Q∗

aj

)
− 1
)

for all j ∈ [l]. We can then conclude the following result.

Theorem E.1. For any j ∈ [l], under event Aj , it follows that Q̂j = Q∗
aj

and

|µDR (aj)− µo
T (aj)| <


∆DR (aj)

2
aj ̸= a∗

∆DR,min

2
aj = a∗

Proof. If we set T = Tj , ϵ = ϵj , n0 = nT̄j−1
, µ = µ (aj ; ·) and µ̂t = µ̂t (aj ; ·) in the setup of

Appendix D, then we can immediately see that Q̂j = Q∗
aj

by Theorem D.1, as its assumptions are
satisfied under Aj . Moreover, we have that

|µDR (aj)− µo
T (aj)| =

∣∣∣∣µ(aj , Q∗
aj

)
− µ̂

nT̄j

(
Q∗

aj

) (aj , Q∗
aj

)∣∣∣∣ Q̂j = Q∗
aj

<
Caj ∧ 1

5

√
ϵj

nT̄j

(
Q∗

aj

) event Aj and nT̄j
≤ T̄j ≤ uj

≤ Caj

∆aj ,min

2
Thm. D.1

=


∆DR (aj)

2
aj ̸= a∗

∆DR,min

2
aj = a∗

■

E.3 LCB-DR CORRECTNESS

Under the event
⋂l

j=1 Aj , we know that

µo
T (a∗)− µo

T (a) = µo
T (a∗)− µ*

DR +∆DR (a) + µDR (a)− µo
T (a)

> ∆DR (a)− ∆DR,min

2
− ∆DR (a)

2
Thm. E.1

≥ 0 ∆DR,min ≤ ∆DR (a)

for every a ̸= a∗. That is, Ao
T = argmaxa∈A µo

T (a) = a∗ and, thus, P (Ao
T = a∗) ≥ P

(⋂l
j=1 Aj

)
.

The result then follows from a union bound on the high-probability events {Aj}lj=1.
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F EXTENDING TO INFINITE DECISION SETS

Let Q̄ := 1
k

∑
Q∈U Q be the uniform mixture and suppose that we have access to a finite ϵ

k -cover
Aϵ of

(
{r (a, ·)}a∈A , L2

(
Q̄
))

in the following sense: for all a ∈ A, there exists a ϕa ∈ Aϵ such
that

∥r (a, ·)− r (ϕa, ·)∥L2(Q̄) :=

√
EX∼Q̄

[
(r (a,X)− r (ϕa, X))

2
]
≤ ϵ

k

The idea is that a learner can play the game dynamics on the finite set Aϵ to control the gap
∆DR (·;Aϵ), where we made the underlying decision set explicit in the notation, and this ensures
control of the original objective. We can relate this gap to the quantity of interest by noting that for
any a ∈ A,

∆DR (a;A) = max
a∗∈A

µDR (a∗)− µDR (a)

= max
a∗∈A

µDR (a∗)− max
a∗
ϵ∈Aϵ

µDR (a∗ϵ ) + ∆DR (a;Aϵ)

= max
a∗∈A

{
µDR (a∗)− max

a∗
ϵ∈Aϵ

µDR (a∗ϵ )

}
+∆DR (a;Aϵ)

We can bound the error term as follows: for any a ∈ A,

µDR (a)− max
a∗
ϵ∈Aϵ

µDR (a∗ϵ ) ≤ µDR (a)− µDR (ϕa)

= min
Q∈U

EX∼Q [r (a,X)]− min
Q∈U

EX∼Q [r (ϕa, X)]

≤ max
Q∈U

EX∼Q [r (a,X)− r (ϕa, X)]

≤
∑
Q∈U

EX∼Q [r (a,X)− r (ϕa, X)]

= kEX∼Q̄ [r (a,X)− r (ϕa, X)]︸ ︷︷ ︸
(∗)

≤ k ∥r (a, ·)− r (ϕa, ·)∥L2(Q̄)

≤ ϵ

That is,

∆DR (·;A) ≤ ∆DR (·;Aϵ) + ϵ

F.1 BINARY CLASSIFICATION

A special case is the binary classification setting:

• The data are pairs (X,Y ) ∈ X × {0, 1}.
• Decisions are binary-valued functions a : X → {0, 1} and VC(A) = d < ∞.
• The reward function is r (a, (x, y)) = I {a (x) = y}, so that

E(X,Y )∼Q [r (a, (X,Y ))] = P(X,Y )∼Q (a (X) = Y )

Suppose that we have a finite
√

ϵ
k -cover Aϵ of

(
A, L2

(
Q̄X
))

, where Q̄X is the marginal distribution
of Q̄ over X (recall that now the Q’s are distributions over pairs (X,Y ) ∈ X × {0, 1}): for any
a ∈ A, there exists a ϕa ∈ Aϵ such that

∥a− ϕa∥L2(Q̄X ) :=

√
EX∼Q̄X

[
(a (X)− ϕa (X))

2
]
≤
√

ϵ

k

From Dudley (see e.g. (van Handel, 2014, Theorem 7.16)), we know that there exists such a cover
of size

|Aϵ| ≲
(
k

ϵ

)Cd
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for some universal constant C. Then from the more general derivation, note that
(∗) = E(X,Y )∼Q̄ [I {a (X) = Y } − I {ϕa (X) = Y }]

= E(X,Y )∼Q̄ [I {ϕa (X) ̸= Y } − I {a (X) ̸= Y }]

= E(X,Y )∼Q̄

[
(ϕa (X)− Y )

2 − (a (X)− Y )
2
]

= E(X,Y )∼Q̄ [(ϕa (X)− a (X)) (ϕa (X) + a (X)− 2Y )]

= E(X,Y )∼Q̄

[
(ϕa (X)− a (X))

2
+ 2 (ϕa (X)− a (X)) (a (X)− Y )

]
(1)

≤ ∥a− ϕa∥2L2(Q̄X )

≤ ϵ

k
where for (1), we note that

• If a (X) = 1, then ϕa (X)− a (X) ≤ 0 and a (X)− Y ≥ 0.
• If a (X) = 0, then ϕa (X)− a (X) ≥ 0 and a (X)− Y ≤ 0.

In both cases (ϕa (X)− a (X)) (a (X)− Y ) ≤ 0.

For example, if we use the distribution-independent regret of Corollary 1, this shows that the output
Ao

T of UE on Aϵ guarantees
E [∆DR (Ao;A)] ≤ E [∆DR (Ao;Aϵ)] + ϵ

≲

√
k log (k |Aϵ|)

T
+ ϵ

≲

√
k
(
log k + d log k

ϵ

)
T

+ ϵ

≲

√
k (log k + d log (kT ))

T

where we chose ϵ = 1√
T

for the last line.

G UE V.S. NUE

Here, we will prove the bounds stated in Section 3.4. For convenience, we present the variance
quantities again below:

VT =

k∑
j=1

(
n(j) − n(j−1)

)
E

[
max

r∈{j,...,k}

1

n2
(r)

[
XQ(r)

− µQ(r)

]2]

Σ2
T = E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

(
X

(i)
Q − µQ

)2]

σ2
T = max

Q∈U

σ2
Q

nQ

We begin by proving the bound on Σ2
T .

Lemma G.1. Suppose that our data is bounded: XQ ∈ [0, 1]. Then,

Σ2
T ≤ 8

√
2 log (2k)

minQ∈U n3
Q

+ σ2
T

Proof. Recall that

Σ2
T = E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

Y 2
i,Q

]

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

where we define Yi,Q := X
(i)
Q − µQ ∈ [−1, 1] and note that E

[
Y 2
i,Q

]
= σ2

Q. Let us begin by noting
that

Σ2
T ≤ E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

(
Y 2
i,Q − E

[
Y 2
i,Q

])]
+ σ2

T

For a one-sided symmetrization argument, let Zi,Q be independent copies of the Yi,Q and let ϵn iid∼
Rad be independent from them, where n := maxQ∈U nQ. Then, we can bound the first quantity in
the upper bound as follows:

E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

(
Y 2
i,Q − E

[
Y 2
i,Q

])]
= E

[
max
Q∈U

E

[
1

n2
Q

nQ∑
i=1

(
Y 2
i,Q − Z2

i,Q

)∣∣∣∣∣Y
]]

≤ E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

(
Y 2
i,Q − Z2

i,Q

)]

= E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

ϵi
(
Y 2
i,Q − Z2

i,Q

)]

≤ E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

ϵiY
2
i,Q

]
+ E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

−ϵiZ
2
i,Q

]

= 2E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

ϵiY
2
i,Q

]
where Y denotes the collection of all Yi,Q’s. In the next lemma, we bound the last quantity above.

Lemma G.2 (Contraction). We have that

E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

ϵiY
2
i,Q

]
≤ E

[
max
Q∈U

CQ

nQ∑
i=1

ϵiYi,Q

]
where CQ := 2

nQ·minQ′∈U nQ′
.

Proof of Lemma G.2. Fix an index j ∈ [n], where n := maxQ∈U nQ. For each Q ∈ U , let us
additionally define dummy variables YnQ+1,Q, . . . , Yn,Q := 0, so that

E

[
max
Q∈U

1

n2
Q

nQ∑
i=1

ϵiY
2
i,Q

]
= E

[
max
Q∈U

1

n2
Q

n∑
i=1

ϵiY
2
i,Q

]
In what follows, we use Eϵj to denote an expectation only w.r.t. ϵj , while all other random variables
remain fixed (that is, conditioned on all other variables due to independence). Note that

Eϵj

max
Q∈U

 1

n2
Q

j∑
i=1

ϵiY
2
i,Q + CQ

n∑
i=j+1

ϵiYi,Q




=
1

2
max

Q,Q′∈U

{
1

n2
Q

j−1∑
i=1

ϵiY
2
i,Q +

Y 2
j,Q

n2
Q

+ CQ

n∑
i=j+1

ϵiYi,Q

+
1

n2
Q′

j−1∑
i=1

ϵiY
2
i,Q′ −

Y 2
j,Q′

n2
Q′

+ CQ′

n∑
i=j+1

ϵiYi,Q′

}
Next, note that

Y 2
j,Q

n2
Q

−
Y 2
j,Q′

n2
Q′

=

(
Yj,Q

nQ
+

Yj,Q′

nQ′

)(
Yj,Q

nQ
− Yj,Q′

nQ′

)
≤
(

1

nQ
+

1

nQ′

) ∣∣∣∣Yj,Q

nQ
− Yj,Q′

nQ′

∣∣∣∣
≤ |CQYj,Q − CQ′Yj,Q′ |
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Hence,

Eϵj

max
Q∈U

 1

n2
Q

j∑
i=1

ϵiY
2
i,Q + CQ

n∑
i=j+1

ϵiYi,Q




≤ 1

2
max

Q,Q′∈U

{
1

n2
Q

j−1∑
i=1

ϵiY
2
i,Q + CQ

n∑
i=j+1

ϵiYi,Q

+
1

n2
Q′

j−1∑
i=1

ϵiY
2
i,Q′ + CQ′

n∑
i=j+1

ϵiYi,Q′ + |CQYj,Q − CQ′Yj,Q′ |

}

=
1

2
max

Q,Q′∈U

{
1

n2
Q

j−1∑
i=1

ϵiY
2
i,Q + CQ

n∑
i=j+1

ϵiYi,Q

+
1

n2
Q′

j−1∑
i=1

ϵiY
2
i,Q′ + CQ′

n∑
i=j+1

ϵiYi,Q′ + CQYj,Q − CQ′Yj,Q′

}

= Eϵj

max
Q∈U

 1

n2
Q

j−1∑
i=1

ϵiY
2
i,Q + CQ

n∑
i=j

ϵiYi,Q




From independence, we can thus integrate iteratively starting at j = n to conclude that

E

[
max
Q∈U

1

n2
Q

n∑
i=1

ϵiY
2
i,Q

]
≤ E

[
max
Q∈U

CQ

n∑
i=1

ϵiYi,Q

]
= E

[
max
Q∈U

CQ

nQ∑
i=1

ϵiYi,Q

]
■

Again using symmetrization, let Zi,Q be independent copies of the Yi,Q and independent from ϵn.
Since Yi,Q are centered, we have that

E

[
max
Q∈U

CQ

nQ∑
i=1

ϵiYi,Q

]
= E

[
max
Q∈U

E

[
CQ

nQ∑
i=1

ϵi (Yi,Q − Zi,Q)

∣∣∣∣∣ϵn, Y
]]

≤ E

[
max
Q∈U

CQ

nQ∑
i=1

ϵi (Yi,Q − Zi,Q)

]

= E

[
max
Q∈U

CQ

nQ∑
i=1

(Yi,Q − Zi,Q)

]

≤ 2E

[
max
Q∈U

CQ

∣∣∣∣∣
nQ∑
i=1

Yi,Q

∣∣∣∣∣
]

Next, we bound this expectation using Hoeffding’s inequality. We begin with a high-probability
bound:

P

(
max
Q∈U

CQ

∣∣∣∣∣
nQ∑
i=1

Yi,Q

∣∣∣∣∣ ≥ t

)
≤
∑
Q∈U

P

(
CQ

∣∣∣∣∣
nQ∑
i=1

Yi,Q

∣∣∣∣∣ ≥ t

)

≤ 2
∑
Q∈U

exp

(
− 2t2

C2
QnQ

)

= 2
∑
Q∈U

exp

(
−
t2nQ minQ′∈U n2

Q′

2

)

≤ 2k exp

(
−
t2 minQ∈U n3

Q

2

)
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We can subsequently integrate the tails to obtain the in-expectation bound

E

[
max
Q∈U

CQ

∣∣∣∣∣
nQ∑
i=1

Yi,Q

∣∣∣∣∣
]
≤ 2

√
2 log (2k)

minQ∈U n3
Q

Combining all bounds presented thus far finally yields

Σ2
T ≤ 8

√
2 log (2k)

minQ∈U n3
Q

+ σ2
T

■

Next, we show how VT relates to Σ2
T .

Lemma G.3. We have that

VT ≤ min

{
max
Q∈U

nQ, k

}
Σ2

T

Proof. Let n := maxQ∈U nQ and note that we can equivalently express

VT =

n∑
i=1

E

[
max

Q∈U :nQ≥i

1

n2
Q

(
X

(i)
Q − µQ

)2]
From this, we see that

VT ≤ nE

[
max
i∈[n]

max
Q∈U :nQ≥i

1

n2
Q

(
X

(i)
Q − µQ

)2]

= nE

[
max
Q∈U

max
i∈[nQ]

1

n2
Q

(
X

(i)
Q − µQ

)2]

≤ nE

[
max
Q∈U

nQ∑
i=1

1

n2
Q

(
X

(i)
Q − µQ

)2]
= nΣ2

T

Alternatively, we can begin by bounding the max by a sum in VT :

VT ≤ E

 n∑
i=1

∑
Q∈U :nQ≥i

1

n2
Q

(
X

(i)
Q − µQ

)2
= E

∑
Q∈U

nQ∑
i=1

1

n2
Q

(
X

(i)
Q − µQ

)2
≤ kE

[
max
Q∈U

nQ∑
i=1

1

n2
Q

(
X

(i)
Q − µQ

)2]
= kΣ2

T

■

Finally, we prove the upper bound on VT stated in the example of Section 3.4.3.

Lemma G.4. Let U = {Q1, . . . , Qk}, where

• Q1, . . . , Qk−1 share a common variance σ2 and are supported in [0, 1].

• Qk has variance ν2.
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• We sample n times from each Q1, . . . , Qk−1 and m = T − n (k − 1) ≥ n times from Qk,
for a total of T ≥ nk samples.

Then,

VT ≤
√
2 log (k − 1) + σ2

n
+

ν2

T − n (k − 1)

Proof. Note that

VT = nE
[
max

{
max

j∈[k−1]

{
1

n2

(
XQj

− µQj

)2}
,
1

m2
(XQk

− µQk
)
2

}]
+

(m− n) ν2

m2

≤ 1

n
E
[

max
j∈[k−1]

{(
XQj − µQj

)2}]
+

nν2

m2
+

(m− n) ν2

m2

=
1

n
E
[

max
j∈[k−1]

{(
XQj − µQj

)2}]
︸ ︷︷ ︸

(∗)

+
ν2

m

Since
∣∣∣(XQj − µQj

)2 − σ2
∣∣∣ ≤ 1 for all j ∈ [k − 1], we then have that

(∗) = E
[

max
j∈[k−1]

{(
XQj − µQj

)2 − σ2
}]

+ σ2 ≤
√

2 log (k − 1) + σ2

■
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