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ABSTRACT

To address the needs of modeling uncertainty in sensitive machine learning ap-
plications, the setup of distributionally robust optimization (DRO) seeks good
performance uniformly across a variety of tasks. The recent multi-distribution
learning (MDL) framework |Awasthi et al.| (2023) tackles this objective in a dy-
namic interaction with the environment, where the learner has sampling access to
each target distribution. Drawing inspiration from the field of pure-exploration
multi-armed bandits, we provide distribution-dependent guarantees in the MDL
regime, that scale with suboptimality gaps and result in superior dependence on
the sample size when compared to the existing distribution-independent analyses.
We investigate two non-adaptive strategies, uniform and non-uniform exploration,
and present non-asymptotic regret bounds using novel tools from empirical pro-
cess theory. Furthermore, we devise an adaptive optimistic algorithm, LCB-DR,
that showcases enhanced dependence on the gaps, mirroring the contrast between
uniform and optimistic allocation in the multi-armed bandit literature.

1 INTRODUCTION

Classical statistical learning operates under the assumption that data comes from a single source
Hastie et al.|(2009). However, the growing use of machine learning in safety-critical applications has
brought forth the demand for more robust models that address stochastic heterogeneity. One well-
established paradigm is distributionally robust optimization (DRO) Rahimian & Mehrotral (2022),
which seeks good performance uniformly across a collection of distributions. Concretely, let A and
X be decision and data spaces, respectively, and suppose that data is sampled from a distribution
within some uncertainty set U C P (X). Under a target reward function r : A x X — R and
distribution () € U, an action a € A yields expected reward 1 (a; Q) = Ex,~q [r (a, Xq)]. DRO
then focuses on the problem

max {MDR (a) = min 1 (a; Q)} (DR)
Recent works Blum et al.| (2017); Sagawa* et al.| (2020); [Haghtalab et al. (2022) have studied the
setting of finite ¢/ and tackle it via interactive dynamics with the environment. More precisely,
the emergent multi-distribution learning (MDL) framework |Awasthi et al.|(2023)) assumes sampling
access to U, where a learning agent sequentially selects which distributions to sample from given a
fixed sampling budget.

The current literature is populated with distribution-independent rates; i.e., bounds that are indepen-
dent of problem parameters. While broad in its applicability, this approach falls short in capturing
the nuances of the underlying environment. Oftentimes, it is more intuitive to analyze the learner’s
performance in a fixed setting, as opposed to considering a worst-case instance for each sample size.
When domain knowledge is available, a “one-size-fits-all” rate does not provide any insight on how
to take advantage of this information.

To address these drawbacks, in this work, we study distribution-dependent guarantees for the MDL
problem. Motivated by its close ties to the well-studied pure exploration multi-armed bandits (PE-
MAB) Bubeck et al.|(2011) paradigm, we analyze the simple strategies of uniform and non-uniform
exploration, as well as their optimistic counterpart, ensuring regret guarantees that scale with sub-
optimality gaps and decay much faster with the sampling budget.
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1.1 MAIN RESULTS

We place MDL algorithms into one of two categories: non-adaptive and adaptive. In the former,
data is collected without any interaction with the environment and, in the latter, the learner sequen-
tially selects distributions based on previously acquired samples. We introduce two strategies of the
non-adaptive type: uniform (UE) and non-uniform (NUE) exploration (Section [3). As the names
suggest, UE gathers the same number of samples from each distribution, while NUE can benefit
from varied sample sizes. Using tools from empirical process theory, we provide non-asymptotic
regret guarantees that scale with the suboptimality gaps of the problem and decay exponentially
with the sampling budget 7" (Section [3.1). This stands in contrast to the distribution-independent
rates found in the recent literature, which hold under a worst-case environment and, thus, only scale

with O (ﬁ) From a novel Bernstein-type concentration inequality, we then show how NUE can
exploit distributional variability to allocate samples more effectively (Section [3.2).

While the non-adaptive methods already display exponentially decreasing regret, adaptivity can fur-
ther improve the dependence on instance-specific variables. Motivated by the enhancements of
UCB-E |Audibert et al.| (2010) over uniform exploration in the PE-MAB literature, we introduce

the analogous LCB-DR algorithm (Section {4) and showcase how optimism can result in superior
dependence on the suboptimality gaps when compared to UE (Section [4.T)).

Let Apg (a) == maxy e upr (@') — ppr (a) be the suboptimality gap of an action from a finite
set A. Given an algorithm, we denote its output after 7" sampling rounds by A$.. In short, we make
the following contributions: assuming bounded rewards r € [0, 1] for (i) and (iii),

(i) With n € N samples from each distribution, we show in Section [3.1]that UE has a simple
regret decay of order

E [Apr (A7)] < > Apr(a)exp (—nAfg (a))

a€A:Apr(a)>0

Moreover, we present the distribution-independent rate E [Apg (A%)] < 4/ w.

(ii) With ng € N samples from distribution ) € U over real-valued data and bounded reward
r € [0, M], we show in Section [3.2]that NUE attains the rate

Abe (a)
E [Apr (A7)] < Apg (a)exp | — DR | i
aeAzga(a»o 02+ Y2+ Vp+ M Apr(a)

mingey nQ

where 02, ¥, and Vr are empirical process variance quantities that scale with the variances
of each () € U and decrease with the ng.

(iii) Appealing to the principle of optimism, we devise the LCB-DR algorithm that, in a pre-
specified permutation of the arms (al, ag,...,aq A‘), for j =1,...,|A|, sequentially per-
forms a modified version of UCB-E, for T; rounds, on “losses” {1 (a;, Q)}Q cy s ameans
of identifying the worst-case distribution for a;. In Section[d] we show that this guarantees
an error probability of

P (Apg (A3) > 0) < f:exp B (Cﬁj A 1) (2+ T; — |uj|)
J

Jj=1

This bound, which may be of independent interest, results from an analysis of UCB-E un-
der a learner with previously acquired data (see Appendix [D). Since the learner has already
accumulated samples from previous iterations in each UCB-E batch, some “arms” can be
identified as suboptimal a priori. We show that the algorithm essentially operates on a sub-
set U; C U of the arms, whose total number T of pre-collected samples contributes to the
regret decay. Furthermore, while the standard analysis scales with the sum of the recipro-
cals of all suboptimality gaps, in this case, the quantity H; sum only over the smaller set
U;. The quantity C, is a newly introduced complexity measure that captures the differ-
ence in difficulty between the two tasks we face: identifying a as suboptimal and finding
its worst-case distribution. Drawing parallels with the MAB literature, we compare this
bound to that of UE, showing that the contrast is characterized by C,.
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(iv) In Section[5] we briefly discuss how the results can be extended to infinite decision sets,
assuming the availability of a suitable cover.

For ease of exposition, we removed constants and terms decreasing with 7" inside the exponential, as
well as any quantities outside of it. The formal statements are deferred to the corresponding sections.

1.2 RELATED WORK

The predominance of machine learning in society has highlighted the need for robust models that
maintain high-quality performance in a multitude of scenarios. Given the inherent uncertainty in
identifying the environment, much attention has been given to the problem of learning under distri-
bution shifts Ben-David et al.| (2009); Mansour et al. (2009), where training data may not necessarily
be sampled from the target distribution. To tackle this, several works|Volpi et al.[(2018); Zhang et al.
(2021); |Sutter et al.|(2021)) have applied the framework of DRO |Scarf] (1958); |Delage & Ye|(2010);
Ben-Tal et al.| (2013) by assuming that the shift occurs within a neighborhood ¢/ of some nominal
distribution, typically generating data, and solving (DR). There are many ways to construct I/ and
optimize the objective, and we refer to [Shapiro et al.| (2021)); Rahimian & Mehrotral (2022)) for a
thorough review.

A more recent line of work has specialized to finite and unstructured A = {Q1, . .., Q }, under sam-
pling access to each distribution. Agnostic federated learningMobhri et al| (2019) solves (DR)) under
mixtures of ¢/, providing high-probability bounds on the generalization gap of non-uniform explo-
ration and an algorithm with empirical optimization guarantees. Collaborative PAC learning Blum
et al.| (2017) focuses on binary classification, with the aim of guaranteeing P (Apg (A%) <€) >
1 — 0 under a minimal number of samples 7. The original work of [Blum et al.| (2017)) assumes
realizability and subsequent studies |Chen et al.| (2018)); Nguyen & Zakynthinou| (2018); |Carmon &
Hausler] (2022); [Haghtalab et al.| (2022) extended results to the agnostic case and gave improved
rates, along with sample-complexity lower bounds. |Awasthi et al.| (2023) later solidified the theory
and posed several open problems, some of which were recently addressed in [Peng| (2024)); Zhang
et al.|(2024) via optimal algorithms.

In this work, we turn our attention to the simple regret E [Apg (A%)]. For finite decision
sets A, an integration of the tails reveals that the regret achieved by [Haghtalab et al| (2022) is

0] (\/ logAlJTrklogk) . When A C R< has Euclidean diameter at most B > 0 and, for each z € X,
the function r (-, z) is both convex and Lipschitz, several studies have proposed comparable rates
using game dynamics. Group DRO |Sagawa* et al.| (2020) ensures a rate of O (k\/ BZ+T1°gk) and,

in the fairness context, |Abernethy et al.[(2022)) obtains O (%) plus a term that uniformly bounds
the generalization gap with high-probability. Subsequently, [Soma et al.| (2022) was able to attain

0] ( BQT+’“>, showing a matching lower bound, and |Zhang et al.| (2023)) devised strategies with

0] (wW) regret and additionally studied the setting with distribution-specific sampling
budget constraints.

Since the learner does not incur any costs when gathering data, MDL closely resembles PE-MAB
Bubeck et al.| (2011) under the fixed budget regime, where distributions represent the arms. It is
standard in the MAB literature to distinguish between distribution-dependent and independent rates.
The former typically depends on the suboptimality gaps and scales much faster with 7. In contrast,
the latter holds for worst-case environments for each 7, resulting in slower regret decay. See (Lat-
timore & Szepesvari, 2020, Ch. 33) for an in-depth discussion. In PE-MAB, |Audibert et al.| (2010)
introduced the UCB-E strategy, which improves performance relative to the gaps when compared
to uniform exploration. Motivated by these results, we demonstrate analogous faster distribution-
dependent rates in the MDL setting and explore a similar contrast between UE and LCB-DR.
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2 PRELIMINARIES

Notation. We frequently use the notation [k] := {1, ..., k}, where & € N. For a measurable space
X (we will omit the o-algebras), we let P (X') denote the set of all distributions over it. For two
real-valued functions f and g, we let f < g and f = ¢ denote inequalities up to universal constants.
Given values a,b € R, we define a V b := max {a, b} and a A b := min {a, b}.

2.1 MULTI-DISTRIBUTION LEARNING

Let X be the space where our data lives in and .4 the space where we make decisions. Given
data X ~ Q € P (X), statistical learning aims to maximize the stochastic objective y (a; Q) =
E [r (a, Xq)] with respect to a € A, where r : A x X — R is an underlying reward function. In the
MDL paradigm, we capture distributional uncertainty by assuming that the distributions come from
some uncertainty set { C P (X') and instead aim to solve the distributionally robust problem (DR},
where our goal is to maximize pupr (@) = mingey 4 (a; Q). We measure the performance of a deci-
sion a € A via its suboptimality gap Apg (a) = pipg — DR (@), Where 17y = max,e 4 Upr (a)
is the optimal objective value. Throughout this work, we operate under the following assumptions.
Assumption 1 (Finite decision/uncertainty sets). |A| = and || = k, where 2 < [, k < co.

Assumption 2 (Bounded rewards). The reward function r is bounded in [0, 1] for ease of presenta-
tion. This assumption will be relaxed in Section[3.2]

To solve (DR), we interact with the environment for a total of 7 € N rounds. In each round
t € [T], we (i) select a distribution Q); € U and (ii) receive independent data point X; ~ Q.
After the T rounds, we output a decision A% € A with the goal of minimizing the simple regret
E [Apr (AS)] or error probability P (Apr (AS) > 0). The strategies described in this work are of
the form A, = argmax, 4 1t (a) for an appropriately constructed proxy pg. : A — R.

Remark 1 (Simple regret v.s. error probability). Note that both performance measures are closely
related: since r € [0, 1], we have that Apgr € [0, 1] and, thus,

Apr,min P (Apr (A%) > 0) < E[Apgr (A7)] < P(Apr (AF) > 0)

where Apg,min is the minimal positive gap (see Section [2.2).

2.2 COMPLEXITY MEASURES

For each decision a € A, we define its worst performing distribution @ = argming;, 1 (a; Q)
and the suboptimality gaps A, (Q) = p(a; Q) — upr (a). Much of the analysis that follows is
characterized by the minimal positive gaps
ApRmin =min{Apg (@) >0:a€ A} and Ay i =min{A,(Q) >0:Q €U}
These quantities are additionally used to define complexity measures
ADR (a)

B T

H, = Z A72(Q) and C,:= amin
ADR,min *
QEU: AL (Q)>0 Ai a=a

for each a € A. In pure exploration bandits, H, is commonly used to characterize the complexity
of identifying the optimal arm (e.g.,|Audibert et al.|(2010)), which in our setting translates to iden-
tifying Q7. The intuition behind C,, is that it compares the difficulty of the two tasks we face: when
C, < 1forsome a # a*, or Apg (a) < Ay min, it is more challenging to rule out a as suboptimal
than it is to identify Q.

2.3  ALGORITHMIC TOOLS

*© id

For each distribution ) € U, let X, { X 8)} ~ () be a sequence of independent data points.
=1

For each (t,a,Q) € N x A x U, we define the empirical mean
t

fu (a; Q) = %ZT (a,XS)>

i=1
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t
s=1

I{Qs = Q} denote the number of times that
Q is played up to time ¢. The data received is then given by X; = X &*(Qt)).

Under a fixed sampling algorithm, let n; (Q) = >_

3 NON-ADAPTIVE STRATEGIES

We begin by describing two simple non-adaptive strategies. In essence, both sample a fixed number
times from each distribution in ¢/ and construct a proxy w7, that is the natural empirical version of
upR. Proofs of the results are deferred to Appendix

3.1 UNIFORM EXPLORATION (UE)

The most straight-forward strategy is the idea of uniform exploration (UE) (Algorithm [I)). As the
name suggests, we sample the same number n € N of times from each distribution, for a total of
T = nk samples, and form the empirical proxy

pr (a) = 81612 fin (a; Q)

Algorithm 1 Uniform exploration (UE)
Input: Number of samples n € N
1: Sample n times from each distribution @ € U
2: Construct p1f. (a) = mingey fin (a; Q)
Output: A} = argmax,¢ 4 1 (a)

2
Theorem 1 (UE regret). Suppose that n > ( AD: . ) log k. Then, the UE algorithm attains the

,min

following simple regret bound.:

n
E [Apr (A7)] < > Apg (a) exp —3
a€A:Apr(a)>0

A —
DR (a) 8 n

2
log k]

Since our empirical proxy (7. is not an unbiased estimate of pipr, we end up with an approximation

log k
n

that Apg (a) — 84/ % > 0 for all @ € A (see Appendix .

Remark 2 (Small gaps). When Apg min is really small, the lower bound condition on n may be
difficult to attain. This may be counterintuitive, for example, when all gaps are small, as we expect
the problem to be easy. In such situations, an alternative guarantee is

error bounded by . The lower bound on 7 is then required to apply tail bounds by ensuring

n
E[Apr (A7) < A+ Z Apg (a) exp —3
a€A:Apr(a)>A

A —
DR (CL) 8 n

2
log k]

for any A > 0, provided that n > (%)2 log k.

With some further manipulation, we can additionally obtain a distribution-independent regret bound.

2
Corollary 1 (UE distribution-independent regret). Suppose that n > ( 8 ) log k. Then, the

ADR,min
UE algorithm attains the following distribution-independent simple regret bound:

klog (kI
E [Aon (47)] < 1/ 8
3.2 NON-UNIFORM EXPLORATION (NUE)

A natural extension of the UE strategy is to sample a different number of times from each distribu-
tion. To address this, non-uniform exploration (NUE) (Algorithm [2)) samples ng € N times from
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each distribution ) € U, for a total of ' = > oeu @ samples. Similarly, we define the proxy
Hr (@) = min fing (a: Q)

Here, we consider real-valued data in X C R and define mean ;¢ = E [X] and variance aé =
Var (Xq) for each Q € U. We relax the boundedness assumption to rewards r € [0, M], for some
M > 0. Additionally, let us sort the sample sizes in increasing order as follows: 0 =: n(g) < n(q) <
-+ < n() and let Q(;y denote the corresponding distribution in the jth position: ng,, = n(;. The
regret bound presented will rely on the following variance quantities:

k
V= Z (nGy = nG-1) E

max =——5— [XQm - “Q(T)]Z]

Jj=1
LS (i) 2
Y2 = FE |max — (Xl — )
T Qcit né ; Q HQ
2
o
a% = max —2
QeUu nQ

mingey nQ

Lastly, we make use of the quantity G = 8M (% + Lor+/2log k), which we note de-
creases with the {ng}.

Algorithm 2 Non-uniform exploration (NUE)
Input: Number of samples {ng} oecu C Nallocated to each distribution
1: Sample ng times from each distribution Q) € U

2: Construct 1. (a) = mingey fin, (a; Q)
Output: A% = argmax, 4 1% (a)

Theorem 2 (NUE regret). Suppose that r (a,-) : X — [0, M| is L-Lipschitz for each a € A, and
that Apr min > Gr. Then, the NUE algorithm attains the following simple regret bound:

E [Apr (A7)]

A a) — Grl?
S Y e | e T
a€A:Apr (a)>0 1612 (207 + X% + 6Vr) + 2> — [Apr (a) — G

mingey nQ

As intuition suggests, the definitions imply that sampling more from distributions with higher vari-
ance yields better rates. On the other hand, due to the presence of minge; ¢ in the bound, it
may also be favorable to balance this principle with ensuring that no distribution is significantly
undersampled.

3.3 UNIFORM V.S. NON-UNIFORM EXPLORATION

Consider bounded rewards r € [0, M|, where M > 0. We can more generally express the probabil-
ity of selecting a suboptimal arm a € A for UE and NUE as follows (see Appendix [C)):

exp (—L [Apr (a) — B }2> vs. exp | — (Ao (a) — BJ”
M2 [BPR n s. 0% + 35 + Vo + gt [Apr (a) — Byl
U NUE

where we have omitted constants. Here, B,, is a quantity that decreases with the sample size. To

mirror the standard Hoeffding v.s. Bernstein discussion, consider a small-sample regime where
. 2

Apg (a) ~ By, The comparison then reduces to 22~ (for UE) v.s. 0% + % + Vi (for NUE), where

the smaller term is better. Note that M captures the range of the reward function r, while o2, 3.2,

and Vi capture the variance of the distributions in &/{. This shows that NUE can be better for two

reasons:
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(i) If the reward can take very large values but the data concentrates in a small region, then the
variances can be much smaller compared to M2,

(i1) If the learner allocates more samples to distributions with higher variance, then the decay
can be much faster.

3.4 BOUNDS ON VARIANCE QUANTITIES

While the variance quantities introduced seem hard to control and lack interpretability, here we
highlight some strategies and examples to mitigate this issue. Proofs of all results shown here are
deferred to Appendix

3.4.1 CRUDE BOUND

Note the variance hierarchy a% < 22T < V. To unify them, we can bound the max with a sum to

2
get Vpr < ZQ cu Z—g, which we can then substitute all three terms with. However, this results in a
linear dependence on k that we aim to avoid.

3.4.2 BOUNDING %%

Suppose that our data is bounded: X € [0, 1] for each @ € U. Then we can establish the following

upper bound:
log k
S S [+ o}
mmegQeuy nQ

Since the first term on the right-hand side decays faster than O ( L

—_ ), we can focus our
mingey nQ

attention on 0%, which is a more interpretable quantity.

3.4.3 BOUNDING Vp

The most formidable quantity is V7, but we can readily relate it to X%:

Vi < min<{ maxng, k p 22
r= {Qeu Q } T

In a setting where k is not too large, this result shows that control over 32, also ensures control over
Vr.

For a more concrete example, suppose that i = {Q1, ..., Qx}, where Q1, ..., Qx_1 share a com-
mon small variance o2 and @}, has a much larger variance v >> ¢2. In addition, suppose that
Q1,...,Qr—1 are supported in [0,1]. Consider the NUE procedure with n samples from each
Q1,...,Qr—1andm =T —n(k—1) > n samples (where T > nk is the total number of sam-
ples) from Q. Intuitively, we would like for m > n since Q) is harder to learn (i.e., has more
variability). This can be reflected in the strong variance:

Viogk + o? v?
<
Vr 3 n + T —nk

The comparison with UE then becomes (we ignore o2 and %% since V7 is the dominating term)

M?k Viogk + o? v?
V.S. n +

T T —nk
——
UE NUE

again with the smaller term being better. This shows that the NUE decay can be much smaller when
v2, M? k and T are large relative to o and n. For example, consider 02 = n = 1, v? = M? =
k=C >1land T = C + 49; that is, 1 sample is allocated to Q1,...,Qr_1 and 50 samples to
Qy. Then, up to constants, the comparison becomes C? (for UE) v.s. \/Iog C + C (for NUE). As C
grows, the UE bound becomes arbitrarily larger.
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4  OPTIMISM

As opposed to the non-adaptive strategies covered thus far, the next algorithm we present makes
sampling decisions as it interacts with the environment. For this analysis, we additionally operate
under the following uniqueness assumption.

Assumption 3 (Unique optima). a* and ()}, are the unique optimal decision and the unigue worst-
case distribution for a € A, respectively.

As is standard in UCB-style algorithms, for some choice of parameter € > 0, we define index

LCBt (Qa a, 6) - :unt ( Q)

€
x A x

e (Q) V(t,a,Q) e Nx AxU

which represents a lower confidence bound (LCB) on the true mean p (a; Q). At a high-level, the
LCB-DR strategy (Algorithm [3)) iterates through each decision a € A and performs a modified
version of UCB-E |Audibert et al.| (2010) to identify (). The modification takes advantage of the
fact that data sampled in a previous round can be reused for the current one. In essence, we analyze
UCB-E when each distribution starts the game with a certain number of pulls. Intuitively, if some
distribution has already been played sufficiently many times, it will not be played again in this round,
yielding an improved sample complexity.

For completeness, we initiate the procedure by sampling from each distribution once; that is,
ng (Q) = 1 for each Q@ € U. As a result, we define Ty := Ty = k to be the total number of

samples gathered before the game starts. The inputs to the algorithm are a permutation (aq, .. ., a;)
of A, dictating the order in which decisions are iterated through, and index parameters (eq, ..., €;)
satisfying
25
Z %Ai,mm (U’j—l - 1) (1)
where
wo:=Fk and wu;=k(j+1)+ ZGT ar

The procedure then works as follows: at each round j € [I],

1. Since we reuse samples from previous rounds, some distributions may already have enough
samples by the start of the current round and, thus, may not be sampled from at all. We
define the following set as a proxy for the arms that will be played in this round:

= {Q eu\{Q;,} i nr,_, (@ < G (Q)} U {Q;j snr, (@) < i

Additionally, define

= |Uj|H{QZj euj}, 7= 3 ng, , (Q)

QEeU;
Hy=020{Q0 e+ Y A2@Q
eeup\{a:, }
2. Allocate
T, = ‘356]}1 T+ k;

samples to this round and let Tj = ZZ:O T, denote the total number of samples obtained
up to and including round j € [I].
3. Foreacht =T, 1 +1,...,T}, sample

X ~ Q= argmin LCB,_1 (Q; aj, €;)
Qeu

In essence, we play the modified UCB-E for T} rounds on expected rewards
{N(aﬁQ)}Qeu‘

-2
a,min

|
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4. Define
Q; = arggluinﬂnfj(@ (a;;Q) and pip (a5) = fi,,,_ (4, (aj;Qj)
Intuitively, Qj and p7, are proxies for sz and upgr, respectively.
Finally, after gathering 7' := Zé‘:o T; total samples, we maximize the proxy objective: Aj, =

argmax,c 4 - (a). By analyzing the optimiality of the modified UCB-E algorithm (see Ap-
pendix D)), we can then reach the following conclusion.

Algorithm 3 LCB-DR

Input: Initial number of samples Ty = Ty, = k, permutation (a1, .. ., a;) of A and index parameters

(c1, .- €1):
1. forj=1,...,ldo

2 Define proxy set I{; and quantities k;, T} and H;.
3: Allocate T); samples to this round.

4 fort=Tj_1+1,...,T;do

5: Sample data point X; ~ .

6: end for .

7: Define proxies (); and p5. (a;).

8: end for

Output: A% = argmax, ¢ 4 17 (a)

Theorem 3 (LCB-DR error probability). Under Assumption[3|and the parameter lower bound (T)),
the LCB-DR algorithm attains the following error probability:

! 2(03/. /\1) €j
P(AS #£a*) < 2kZuj exp —1275

j=1

(€2 ) (Ty+T5—k;)
Hj

Note that ¢; = g—g W, so that the decay scales with O
J

) . Intuitively, at

each round j € [I], the sample complexity depends on the difficulty of identifying the worst-case
distribution (7, |, which, as in PE-MAB, is controlled by the suboptimality gaps {Aa]. Q) } ocu

Remark 3 (Improvement over UCB-E). We highlight the importance of using samples obtained in
previous rounds: as opposed to the standard UCB-E analysis, we have the additional T; contribution,

we only offset by k; < k, and the complexity measure H; improves upon H,; by only summing
over a subset of U.

Remark 4 (Unknown quantities). Note that the choice of T requires knowledge of unknown quanti-
ties, such as U; and Q;;j. However, as shown in the statement of Theorem optimality is ensured

provided that T; > 38¢,H; — Tj + k;, but the concentration bound in Appendix requires addi-
tional manipulation when substituting €; into Hoeffding’s.

In addition, we emphasize that ¢; and the decisions )y do not require knowledge of I{;: the
former relies on a lower bound and the latter optimizes over all of /.

4.1 COMPARISON WITH UE

Focusing on the dominating terms, the probability of selecting a suboptimal arm a; € A, that is
2
in the jth permutation position for LCB-DR, is approximately ~ exp (—M%(aj)) for UE and

(€2, n1)(1,+1)

~exp | — g ) for LCB-DR. Extracting the quantity inside the exponential, we break

it down into two cases:
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* Apr (@) < Ag, min (or Cq; < 1): intuitively, this means that it is more difficult to rule

out a; as suboptimal than to identify QZ,-- Then, the comparison reduces to m% (for
aj ,min

UE) v.s. = (for LCB-DR).
* Ay, min < Apr (aj) (or Cy; > 1): intuitively, this means that it is more difficult to identify

Q:j than to rule out a; as suboptimal. Then, the comparison is between ﬁz(a) (for UE)
"Spr \ 4

v.s. % (for LCB-DR).

Putting these together results in

i

T V.S T+
kmin{Af2 A2 (a-)} h H,
aj,min’ —DR \*"J
LCB-DR
UE

where the larger term yields the better rate. When sample sizes are large relative to [, so that T’ ~
Tj + Tj, optimism is favorable when H; < kmin {A*2 Apa (aj)}. As in MARB, this is always

aj,min’
the case when A;fmin is the smaller term; otherwise, it depends on the problem instance. Note that

H can be much smaller when |U/;| < k.

5 EXTENDING TO INFINITE DECISION SETS

While the results discussed thus far only apply to finite decision sets A, it is possible to extend to
larger (possibly infinite) sets via standard covering arguments. Let Q :== % ZQ@{ @ be the uniform

mixture and suppose that we have access to a finite £-cover Ac of ({r (a,)},c4,L* (Q)) in the

following sense: for all a € A, there exists a ¢, € A, such that

I (00 = (60 Min() = B [(r (@ %)~ (00, 0] < £

The idea is that the regret under the finite set A is close to the regret under A, so that a learner can
play the game dynamics on the former.

Lemma 1 (Controlling regret using a cover). Let Apg (a; Ac) := maxg«c 4, 4pr (@*) — ppr (a)
denote the suboptimality gap with respect to A.. Then, Apg (a) < Apgr (a; Ac) + eforall a € A.

This result admits a straightforward proof, which we defer to Appendix [Fl In addition, in Ap-
pendix we specialize this result to the binary classification setting and present a distribution-
independent bound for classes of finite VC dimension.

6 DISCUSSION

In this work, we delve into the problem of DRO within the MDL framework, an area of grow-
ing popularity in high-stakes machine learning applications. Rooted in empirical process theory
and inspired by the PE-MAB literature, we offer novel insight into the key strategies of uniform and
non-uniform exploration via distribution-dependent bounds. By scaling with instance-specific quan-
tities, our proposed bounds decay much faster, with respect to sample sizes, than existing ones. We
additionally devise an optimistic method, LCB-DR, that shows improvements over its non-adaptive
counterparts, paralleling classical findings in the MAB setting.

While LCB-DR exhibits favorable rates, we reiterate that tuning certain parameters involves esti-
mating unknown quantities. This raises the question of whether there exists a more astute way to
select such quantities with minimal prior information. Moreover, the procedure requires specifying
the order to play the actions in. Although the absence of any problem knowledge might preclude
exploiting this sequence effectively, perhaps some preliminary understanding of the distributions
allows potential advantages (e.g., start with actions that explore as much as possible, so that I{; is
small in future iterations).

10
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A EXPECTATION OF EMPIRICAL PROCESS MAXIMUM

Let i/ C P (X) be a finite set of distributions over a data space X, with 2 < k := || < oo. For
each distribution Q € U, we have an associated sample size ng € N and define T' := 35, ng-

When X' C R, we additionally denote the variance of each distribution by aé = Var (Q) and define
o7 = Maxgeu \;T%'

In the development that follows, we will work with independent X’-valued random variables
X, , X = (X(i)) , where X, (X(i) d for each ) € Y. For a col-
( ("?)QGL’ . Q JQeuielno)] @\7e @ @

lection of functions {fq : X = [=1,1]}

will be to bound the following quantity:

) i€[ng]
such that each fg (X¢) is centered, our primary goal

1 0)
= i 30 (58|

In particular, we will show the following bounds.
Theorem A.1. Let {fq : X — [-1,1]},, be a collection of functions such that E [fo (Xq)] = 0
foreach Q) € U. Then,

1 & ; log k
E — (x| <4y 25—
lgg&( nQ ; fo Q - mingey NQ

Moreover, if X C R and each function fq is L-Lipschitz, then

1 & ; 16logk
72]“@ (XS)) < ————+4Lory/2logk

E .
nQ i1 minQey NQ

max
Qeu

We note that the first bound can be directly obtained by a high-probability bound via Hoeffding’s
inequality, along with a union bound, and a subsequent integration of the tails. The second bound
(Theorem [A.3)) requires a more careful analysis and, in the process of deriving it, we additionally
show the first result (Corollary [A.2).

The proof will follow in two parts: first, in Section[A.T] we use symmetrization to bound the quan-
tity of interest with a notion of Rademacher complexity, and subsequently derive bounds on this

complexity in Section
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A.1 SYMMETRIZATION

A standard approach to bound empirical process maxima is via symmetrization. We begin by defin-
ing the Rademacher complexity variant of a class of functions {h¢q : X — R}Q cu

1 & :
— Y ehq (Xéj’)

QeU | ng P

R <{hQ}Qeu) =E lmax

where €1, . . ., €maxgey no “J Rad (i.e., they are each uniform on {—1, 1}) are independent from X.
Note that we place no assumptions on hg (X¢) being centered. We begin by stating an auxiliary
lemma.

Lemma A.1. For random variable Z € Z and function class F C R, we have that

sup [E [f (2)]| <E
ferF

sup | f (Z)]
feF

Proof. Forany f € F,

E[f(2)] <E[f(2)] <E [5’32 9 <Z>|}

The claim then follows by taking the supremum over f € F on the left-hand side. ]

The proof of the following result is virtually the same as that of (Wainwright, 2019, Theorem 4.10),
with minor modifications, and we present it here for completeness.

Theorem A.2 (Symmetrization). For any collection of functions {h¢g : X — R} ocur We have that

E lggg le g {hQ (XS)) —Efhq (XQ)]} ] <207 ({hQ}Qeu)

Proof. LetY = (YC(;))Q o] be an independent copy of X and let P denote their common
[SZRAS nQ

distribution. Then,

B %i{% (X)) ~Elha <XQ>1}| =E max %i{% (x) ~E [a (Yé”)}}\
AR

= (1)

Here, we view X = (xb) X7T as a T-dimensional vector. For each such vector, define

QGU,iG[nQ] €
function class
nQ

1 ) )
Fy = {y»—) %Z [hQ (sz) —hg (yég)] :QEZ/{} C {XT—HR}
i=1
We can then apply Lemma [A.T]to obtain

() = [ | max L7 ()]l aP ()

< /XT E LI‘%%-‘},(( |f (Y)] dP (x) Lem.[A]]
bl
=E glgi{( leé [hQ (Xé?) — hg (YC(QZ)H H

=: (*2)
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Next, define n := maxgey ng and let é,...,€&, € {—1,1} be fixed quantities. From symmetry
and independence, we have that

(hQ (Xg)) B hQ (YQ(;)>)Qeu,ie[nQ] i (gi {hQ (Xg)) B hQ (Yg))])Qeu,ie[nQ]

Hence, if we define Rademacher variables €” n id Rad that are independent from X and Y, we can

conclude that
=g T8 |l S () - ho ()]

eme{-1,1}"
i o _
=2 || 3 o (4) ~ e (187)] H
- nQ )
<E 825}{ Zeth (X ) ) - 1@ ;eihQ (Y(g)) }
<E 13255{ Zgth (X1> }4—%125{({ lean:Q‘hQ <Yc(f)) H
—=9E lmgl)j na - ZQeth (Xg))

= 2%y ({hQ}Qeu)

A.2 BOUNDS ON THE RADEMACHER COMPLEXITY

For the symmetrization trick to be useful, we need to bound R ({hQ } 0 eu) . To this end, we begin
by defining the Rademacher complexity of a set © C R™:
5(0) = [sup ("0}
9o
where €” = (e1,...,€,) % Rad. The process {(€",0)}yce is sub-Gaussian and, for finite ©, the

Rademacher complex1ty admits a particularly 51mple bound, shown next. For a deeper dive into the
field, see, e.g., (Wainwright, 2019, Chapter 5).

Lemma A.2 (Bounding the Rademacher complexity of a finite set). Let © C R” sarisfy 2 < |0] <

0o. Then,
R () < 2De+/log O]

where Dg = maxgco H9||2

Proof. Note that since each ¢; is 1-sub-Gaussian,

202 221013 A2p3

|:/\<60:| H]E Xeib; 71216 e <o
i=1

for any 6 € © and A\ € R. That s, (¢", ) is a centered Dg-sub-Gaussian variable and we can, thus,
apply the standard maximal inequality (e.g., (Boucheron et al.; 2013 - 2013| Theorem 2.5)) to obtain
the claim. u

We can relate both notions of Rademacher complexity introduced thus far to conclude the following
result.
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Corollary A.1. For a collection of functions {hg : X — R} ocuw define the random variable

he (X3
D({hQ}Qeu> = max ij ng)

Then, we have that
Rt ({hQ}Qeu) < 24/log kE [D ({hQ}Qeu)}

Proof. Fix x == (le) € XT. Let n := maxgey ng and define vectors 05 € R™ by

QEeU,i€[ng]

0 otherwise

h (zl) .
[og]i;—{QnQQ PSNQ vieln],Qeu

max
QeU

5 (0%) = E [ ax (", )| =

fcox

ngQ 3

Ze ho ( xQ ]
nq

- ({hQ}Qeu) —E [931 (@X)} <E [QD@xq/log |@x@ — 2./log kE [D ({hQ}Qeu)}

and define the set of all such vectors ©* := {0" Qel } so that |©*| = k > 2. Then, note that
ha(at) )’

Moreover, since Dgx = maxgey Z?:Ql (QIC)) , Lemma|A.2|yields

We can then readily obtain the first bound of interest.

Corollary A.2. Let {fq : X — [~1,1]},,, be a collection of functions such that E [ fo (Xq)] = 0
foreach Q € U. Then,

1 & ; log k&
E — (X (Z)) <4y | ——
lrg?lngti ng ; Jo(Xa - mingey nQ

Proof. Since each fg € [—1, 1], we have that

1 1
D( ) < ng | mingeu no
{fQ}Qeu = \/82&‘ ng \/minQeu nQ

Hence, combining Theorem[A.2]and Corollary [A.T] yields

ZfQ (X(Z)) ] < 2%Rr ({fQ}Qeu) < 41/log kE { ({fQ}QGM)} - 4m

max
Qeu

ng;

To obtain the second bound, we require a more refined analysis. We begin by introducing two simple
auxiliary lemmas.

Lemma A.3. Let b,c > 0 and suppose that x> < bx + c. Then, * < b+ +/c.

Proof. Define quadratic p (2) i= 22 — bz — ¢, so that p (x) < 0. Since p (0) = —c < 0, consider its
roots r1 < 0 < ro. Then, p is positive on (r3, c0) and, thus,

N
STQZWSH\@
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Lemma A.4 (Variance of Lipschitz functions). Let Z € Z C R be a random variable, and suppose
that f : Z — R is L-Lipschitz. Then,

Var (f (7)) < 2L* Var (Z)

Proof. Let Z’ be an independent copy of Z. Then,

Var (1 (2)) = E (£ (2) - E[f (2))])°]
=E[E[f(2) - 1 (2)|2)]

<E|(f(2) -1 (2] Jensen's
< L’E [(Z - Z’)z} Lipschitzness
=20 {Var (Z)+E[(Z —E[2]) (E [Z] — Z)]} 79z
=2L*Var (Z) A

Borrowing ideas from (Giné & Nickl, 2021} Corollary 3.5.7), we then conclude the second target
bound.

Theorem A.3. Suppose that X C R. Let {fo : X — [-1,1]} ey be a collection of functions such
that B [fo (Xq)] = 0 and fq is L-Lipschitz for each Q € U. Then,

nQ
1 ) 16log k
E — (X)|| £ =225 + 4Lory/2logk
|\g§z§ nQ ;fQ Q ] T mingey ngQ +abor o8

Proof. We begin with the following observation: from Jensen’s, we obtain

C = +/logkE [D ({fQ}Qeu)} < \/(logk’)E [D ({fQ}Qeu)z}

Next, we bound the expectation on the right-hand side:

g (i)
2 b ((rohgur)] -5 [y (L4

QeuU — nQ

na O\ 2 ) )
=E [max M o) [<M> +E (fQ(XQ)> ‘|
eeui nQ nQ nQ
E [f3 (Xo)] 12 [/ (X(i)) 72 (Xo)
<max{ — QU LR max—z e\e ) _gllelte
T Qeu nQ QeU | nQ P ng ng

=:(%1) = (2)

From Lemma|A.4|and the fact that E [f (Xq)] = 0, we know that

Vi X, e
(*1) — max M S 2L2 max 7Q = QLQO'%
QeU nQ QeU ng

17
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-2
As for (), we can apply Theoremon functions hg (z) = f%fj) to conclude that
(*2) <2R7 ({hQ}Qeu) Thm. [A2)]
logkE D ({ho}geu )| Cor.[AT]
Q]
e (1o (¥9)
log kKE [max Z cVe)
Qeu P} ngQ
log kE — _— 1< f3
ogk max o ; o fo = 1q
log k& 1 E |D
gk { o (2 (D ({falgau)|
4
mingey NQ
In other words, we have that
2 4logk
C? < (10g b)E | D ( )| < 2t C+2rfod logh
< (logk) [ {fQ}QeM = Mingey ng + ot log

Then, Lemma [A.3]implies that

4logk
——=— + Lor+/2logk
mingey nqQ +Lor 8

Combining this with Theorem[A.2]and Corollary we conclude that

TAC)

¢<

16log k

max T EE—
mingey NQ

Qeu

+4Lor+/2logk

<297 ({fo}gau) S4C <

nQ

B EMPIRICAL PROCESS CONCENTRATION INEQUALITIES

Again, suppose that i C P (X) is a collection of k distributions, and define independent variables
X = (X(i)) , where ng € N and (X(i)) i
@ ) qeut,ieing) N 9

~ (@ for each Q € U. Our object of
interest in this section is the random variable
Z; = min — (X“ )
P Z f

for a function f : X — R. As will become clear later, our primary goal will be to obtain concentra-
tion inequalities on Z¢ , == Zy — Z,.

i€[nq]

B.1 MCcDIARMID

To obtain the UE regret bound, we will apply a very simple concentration inequality, called Mc-
Diarmid’s inequality (e.g., see (Boucheron et al., [2013 - 2013} Theorem 6.2)). Here, we specialize
to
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Let us define the function ®; : (X*)" — [0,1] by @ (x1,...,Xp) = mingey = iy [ (25).
where each x; = (xiQ)Qeu € X*. Then, we can write Z; = ®; (X), where we view X as n

vectors of dimension k. Next, we show that @ ; satisfies the bounded differences property when f is
bounded.

Proposition B.1 (Bounded differences). Suppose that f : X — [0,1]. Then,

S|

max sup [f (X1, Xn) — Ps (X1, o, Ko 1, Y, K1, - -5 X)) <
i€[n] X1,y X,y EXF

Proof. Let us begin with a simple observation: for real-valued functions g, h : Z — R, where Z is
any domain, we have that

i) - e (o) =sup { nt o ()~ 1) | < sup {9 ()~ 1 () < supla )~ )

By symmetry, it then follows that |inf./cz g (2) —inf.cz h (2)| < sup,cz|g(2) — h(2)]. Next,

fix any index ¢ € [n] and inputs xi,...,X,,y = (yQ)QGM € X%, and define vectors x =
(X1,...,%X,) and X' == (x1,...,X;—1,¥,Xi+1,---,Xp). Then, from our initial observation, we
know that

|<I>f<x>f<1>f<x'>\:% win Zf(a:g,) —mind fo)+ 3 1 (vd)

J=1 JE[n]:j#i

IA
Sim
OF
m
:S’i
\
S
R
Q=
N—

Fly Z f (IQ)

n]:j#i
1
éﬁglgyf( zh) = f (vo)|
1
Sf
n

When the inequality in Proposition [B.1] holds, we say that ®; satisfies the bounded differences
property with constant parameter . This immediately implies the next claim.

Corollary B.1. For any two functions f,g : X — [0, 1], the function ® ; — ® satisfies the bounded
differences property with constant parameter %

Proof. Using the same variables x and x’ as in the proof of Proposition we obtain

[@5 (%) = @4 (¥)] = [2f (x) = By (X)]| < [@ (%) = Of (X)] + [Py (x) = By (x')] < %

Via McDiarmid’s, this property then directly yields the following concentration result.
Corollary B.2. Let f,g: X — [0,1]. Then,

t2
P(Zsg—E[Zf4] > t) <exp (—n2> vVt >0

Proof. Since Zy 4 = (P — ®,) (X) and X has independent components, we simply apply Corol-
lary [B.T]and McDiarmid’s. [ |
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B.2 BERNSTEIN

In contrast to McDiarmid’s inequality, our next goal is to derive a more involved bound that addition-
ally scales with the variance. To this end, we sort the sample sizes: 0 =: ney Sna) < < Ny
and let ()(;) € U be such that ng,, = n(;). Our analysis then relies on the following:

1 2
[XQm - /‘Qm]

k
Vri=> (ng —ni-n)E
j=1

max = ——
re€{j,....k} TL(T
1 2@ @) 2
$2 — E |max — (Xl - )
T QeU n2Q ; Q ~He
2
o

02 = max —2
QeU nQ

Theorem B.1. Suppose that X C Rand f,g: X — [0, M| are L-Lipschitz. Then,

t2
P(Zsyg—E[Z;g] >1t) <exp | — Yt >0
fa fa 1612 (202 + X2 + 6Vy) + 2/0ML_

mingey nQ

B.2.1 PRELIMINARIES

To prove Theorem [B.1] we must first state some standard results and definitions from the theory of
concentration of measure. We do not prove most results stated, and refer to Boucheron et al.[ (2013
- 2013) for further reference.

We say that a random variable X € R is sub-gamma on the right tail with parameters v, ¢ > 0 if
Z\2 1
loo F { A<X—1E[X1>] < Y2 wielo =
Sl T 2(1—c)) c
We denote the class of such variables by Iy (v, ¢). Due to the decaying tail, we get the following
concentration bound.
Proposition B.2 (Sub-gamma concentration). Let X € I'; (v, ¢). Then,
t2

P(X—E[X] >1t) <exp (_2(’/2+Ct)

) w0

Proof. See (Boucheron et al.,[2013 - 2013|, Section 2.4). [ |

Next, we introduce the notion of self-bounding functions: we say that a nonnegative function f :
X™ — R, has the self-bounding property if there exists functions { fi x5 ]R}Z. €[] such that

Fx) = fi(xu) €10,1] and > [f(x) = fi (x)] < f(x)
=1

for all i € [n] and x € A™, where we define x\; = (21,...,%i_1,%if1,...,%n). A simple
observation about such functions is that they are closed under convex combinations.

Lemma B.1 (Convex combination of self-bounding functions). Suppose that f and g satisfy the
self-bounding property and let o € [0,1]. Then, af + (1 — «) g also satisfies the self-bounding

property.

Proof. Let {f;} and {g;} be the functions satisfying the self-bounding property, and define h =
af + (1 —a)gand h; == af; + (1 — &) g;. Then, for any i € [n] and x € X™,

h(x) = hi (x) =a[f (x) = fi (xu)] + (1 —a) [g(x) — g (x)] €[0,1]

20
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and

The reason for introducing such functions is that they possess a favorable bound on their cumulant-
generating function (cgf).

Proposition B.3 (Cgf of self-bounding functions). Suppose that f : X™ — Ry has the self-
bounding property and let X™ = (X1, ..., X,,) be independent random variables. Then,

log E [eAf(X’”} <(*-1)E[f(X")] VAeR
Proof. See (Boucheron et al.,[2013 - 2013, Theorem 6.12). |

The last tool we need employs symmetrization once again. For the next result and the development

that follows, we omit the parentheses in az+ = (a+)2; that is, we take the positive part before
squaring.

Proposition B.4 (Exponential Efron-Stein). Suppose that X" = (X1,...,X,,) are independent
random variables and let W" = (W1, ..., W,,) be independent copies of them. Given a nonnegative
Sunction f : X™ — Ry, define variables Z = f (X™) and its symmetrized counterpart

Zz, = f(Xl,,X1,17W1,X1+1,7Xn) Vi € [n]
Additionally, let
n ) .
vt =3"E {(Zf Z;)+’X ]
i=1

Then, we have that

log E [eA(Z—E[Z])} < 2)

n
X log E [e 7 }
forany 0, A > 0 such that O\ < 1.

Proof. See (Boucheron et al.,[2013 - 2013, Theorem 6.16). |

Proof of Theorem|[B.1] To conclude our main result, we begin with a more general setup: let X :=

(X 8 )) o ol where n € N, be a collection of independent X'-valued random variables, and let
eUi€n

X@ = (X 8 )) ocu for each i € [n]. We de not impose any assumptions on their distributions. Our
€

random variables of interest will be
= 1 - (l)) = —
Zs Qmelg ;:1 fa (XQ and Zp,=2;—Z,

; : _ . b _ . b
for collections of functions f = {fQ X = [O, \/é] }Qeu and g = {gQ X = [0, \/é] }Qeu’
where b > 0. Define

pria =E[fo (XG)] and o3, o= Var (fq (x3)))

21
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Similarly, consider the variance variants:
) 2
zﬁ{ggg[ (x§) = nsal|
2
3= o () ]|

i=1

=E

2 . 2
gf = glgg;;%@
1=

Following the analysis of (Boucheron et al., 2013 - 2013| Theorem 12.2), we will use the tools
provided and proceed in 5 steps:

1. Upper bound V.

2. Apply exponential Efron-Stein along with the bound on V.

3. Show the self-boundedness of certain functions and apply the cgf bound.
4. Show that Z; , is sub-gamma and apply the tail bound.
5

. Specialize the analysis to the original setting.

B.2.2 BOUNDING VT
For each pair (i,Q) € [n] x U, let W(S ) be an independent copy of XS) and define W =
(Wg )) . Moreover, define

Qeu

Y, = (X<1>,...,X<i—1>,W<i>7X<i+1>,...,XW) Vi € [n]

and function @, : (X*)" — R by

n
Dpg(x1,... = gléngQ xQ - g}gbllZgQ/ (xZQ/)
i=1

where x; = (xf,) ocu € X k for each i € [n]. In what follows, we will use the more compact

notation X = (X1, ...,Xy). Note that Zy , = @5 , (X) and
Zj = 0y,4(Y;)
=min < fo (W&) + Z fa (Xg)) — min { gor (W(,)) Z 9¢Q (Xg))
Qeu , . Qe oy
jE[n]:g#i JE[n]:g#i

Given functions i = {hq : X — R}, define minimizer Qn: (XF)" = Uby

Qn (x) = argmlnz ho .Z‘Q)

Qeu =1

so that

Crg(x Zfooo (%m«) Zg%(x) ( 7o, x))

and

> far00 (T, 00) = 290 (#0) < @py () <Y far () = 90,00 (7,00 )
i=1 i =t .

22
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forany x € (A*)" and Q, Q" € U. Choosing Q@ = Q, (X) and Q' = Q; (Y;) below then yields
Zfg — Zz{ =®y (X) - Py (Y3)

= _Zn;fc‘zf(m (Xc(@jﬁw ) z”: (ng) X>)
p =~
fc}fm)( Qf<Y))+ Z Jaym ( Qﬁ(Y))

T 90,x) (WS <X>) je[nz]:mgQ (X) ( QQ)(X))

_r (1) _r (4) . (%) o (4)
—f@f(m(X@fm) fom>(W@fm>>+ 90,00 (W5 o)) ~ 90,00 (X5 x))
Then,

2
(Zf,g - Zz/)Jr

< Taso (X5 0) ~ a0 (W6 ) + 90,00 (W ix)) — 90,00 (XézZoo)r

<2 [fci)fm) (Xgim) —fo,m) (ch,zm))r +2 L"QQ(X) (ngm) T 9Q,(x) (Wé}:)(X)ﬂ?
(B.1)

7

Recall that our goal is to bound V* = 3" E [(Zf’g — Z()i ‘X} . We begin with the second term:
by adding and subtracting Hgi0,(X)> expanding the square and noting that the cross term is O under
the conditional expectation, we get that

d

éE HQC?AX) (Xgi<X>) T 9Q,(x) (Wé§3<x>)r
- Z { 90,00 (X)) = 020,00 E Hgégm (Wér0) = o] 2

< max {zn: 90 (X5)) - ug,z-,@r} +maX{ZE HgQ (W) - “g’i’Qﬂ }

i=1

)

_. —o2
=Iy =og

Note that we were able to upper bound via a maximization outside of the sum since the () indices
were fixed w.r.t. i. The first term in (B-T)) is not so readily bounded due to the dependence of Y; on
i. Hence, we rely on a weaker approach: for each ¢ € [n], we have that

. . 2
) O\ _f (i)
oy (X60w) ~ Tason (o)
2{fA (X(f) >7M - ]2+2[fv (W(f') ),u . r
= Qr(Y3) Qs (Y3) 14,Qf (Y3) Qr(Yi) Qs (V) 14,Qr(Yi)

< Qmax{[fQ ( ) — uf,i,Qr} + 215125[{{[fQ (Wé”) - Hf,i,Qr}

Summing and taking conditional expectations then yields

éEHfo(Yi)( Qf(y)) Tou (gﬂy) ‘X}

<2 glg);{[f@ (x3) umr} +22E {max{{fﬁ? (we’) - ”f’i’QrH

i=1

=Ty =Vy
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Finally, by putting everything together, we can obtain the upper bound
VT <2(Ty+07) +4(Tf + Vy)

where E [Ty] = X2 and E [T}] = V.

B.2.3 EFRON-STEIN

Next, we apply exponential Efron-Stein (Proposition[B.4): for A € [0,57!), we have that

logE eA(Zf,g*]E[Zf,g])} < - b)\b)\ logE [eAb_lv‘F}
bA )
< — T 2T+l +4Ty V)]
=1\ 10gE [ g }
__bA bA[L (66721, )+2 (66277 )] -1 2
D) {logE [e ’ : }+Ab (2og+4vf)}

(B.2)

B.2.4 SELF-BOUNDEDNESS

To bound the cgf of 3 (6b=2T'y) + 2 (6b=2T), we will show the self-boundedness of

n

_ i 2 e i 2
D o) = 60 a3~ e (o) — ool and ) ) = 6072 3 i [fo (o) = il

so that the function 1 h(l) +2 h(z) is also self bounded by Lemmaand we can thus bound the cgf
of (1) + 2p(2) (X) (6b ’Ty) + 2 (6b=2T) using ProposmonE We begin by showing
that h(l) is self-bounded: let

, 2
n (o) =60 max >° Jaq (w0) ~ mese]  Vieln)
JEln]:j#i
and define the maximizing distribution in A(1):

Q (x) _argmaxz 94Q OCQ) /‘971‘,@]2
eeu T

Fix some x € (Xk)n and i € [n]. Clearly, we have that h(") (x) > hgl) (x\i). Moreover,

2

n 2
) |
WY () =y (xy) =607 | 3 ﬁ[gQ(x>( ho) “Haiaea] —maxs > [ao (vh) ~ pasel
= jelnfi

2
_92 ~
< 6b [QQ(X) ( <x)) - #g,z',cz(x)]
<1

where the last line follows from our assumption that gg € [O, %} . We can add up the bounds to
get

n

> [h(l) (x) — iV (X\z)} <66~ Z {QQ(X ( - (x)) - Mg,z-,éz(:or =t (x)

=1

Together, these show that h(M s self-bounded. To show the same for h(?), consider the functions

) (x\;) = 6b~2 DL B [fQ (JJQ) 115.Q r
jElnj#i
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Again, we have that h(?) (x) > h§2) (x\;) and

_ i 2
) (x) = b (x\) = 6b *max [fo (¢) — nrael <1

3 [h(2) (x) — h® (X\i)] — h® (x)

=1

That is, h(?) is also self-bounded. As a result, Proposition implies that

log E [ebk[%(mf?rg)—&-% (66721 ] ( ~1)E [; (6b_2Fg) n % (6b_2Tf)
= (e —1)b7% (252 +4Vy)
< AT (4%2 4 8V5) (B.3)

provided that A € [O, b‘l), where in the last line we have used the inequality e” < 142z forx < 1.

B.2.5 SUB-GAMMA TAIL
Finally, we can combine Equations (B:2) and (B23) to get that

A2 (402 + 852 + 24V;) A2
202 +4%2 +12Vy) = ~4 g
gy (20 4% +12V) 2(1—b\)

log E [g(zf,g—wf,gn} <

for all A € [0,b=1). Thatis, Zy,, € I'y (\/402 + 82 + 24V}, b), which we know from Proposi-
tion[B-2] yields the tail bound

t2
P(Zpg—E[Zsg] >t) <exp (— (

vt >0 B.4
2 4ag+823+24vf+bt)> - B4

B.2.6 ORIGINAL SETTING

Recall that our original variables of interest live in some set Xy C R, and that sample sizes ng may
vary. Let n := maxgey ng and consider the space X = Xy U {xo} for the setup of this proof,

where xg ¢ Xj. Suppose that (Xg))} o] b ~ () and X("Q+1) o= Xé?n) = z( almost surely.
1e|ng

Let f : &y — R be the L-Lipschitz function from the statement of Theorem and consider its
extension f : X — R given by

oy Jf@) ze A
f @)= {0 T =m0
We apply the analysis above to the functions fg = %, ensuring that

nQ

1 (0)
Zr=gin o3 1 (XG)

where the variables follow the appropriate distributions, as in the original goal. Note that fo €
_ V6M

mingey nQ

Lemma [A.4]under the Lipschitzness assumption to obtain

[0, é\é } so that we can set b = . We analogously define everything for g. Next, we apply

X o},
03 = max {nQ Var <Q(Q)> } < 202 max —% = 2L%0%
Qeu nQ QeU ng
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For each Q) € U, let X ~ @ be independent from (X (i)) ol Then,
1€ nQ

Q
2 1§ (0 2
22=E glgg%;{g<XQ>_E[g(XQ)]:| ]
—E LS g [ (x9) - g (x)| X9
e UCH R Q]]
< L°E maxiij [(X(i)—X )Q‘X(i)” Lipschitzness + Jensen’s
- Qeu né P Q Q Q P
nQ
~ 0B e S [(56 -ne) od| B[() - o) o~ x5 =0
1
<I2!E LS5 (x® &e
< { m v 2 (X'~ o) *%lé‘z?w}

It remains to bound V;: recall that 0 = ney) < nay < <y and n(j) = NQ ;> SO that
- (@) 2
V=328 | max[fo (X§) — nsic]
i ; [ggg; fo (Xo)) = nriq

k
= (ng) —ng-1)E l max
j=1

. 2
re{g,....k} n(r)

[/ (Xa,) ~E[s <XQ<T>>H2]

With a similar symmetrization trick, we can further bound each expectation in the sum: let X é;) be
an independent copy of X¢. Then,

1

B| max - [f (Xau) ~E[f <XQ(,.>>H2] 5

ref{j,....k} ’I’L(T)

1 2

B [ (Yeu) = f (X, ) [Xau)
i g, B A o) =1 (e )| X

1IE X ¢ 2X
re?;,a..).(,k} nZ . ( Qery — Q(r)> Qe

2
max o {[XQm —Ho] + Ug)<r>}]

1 2
< 2L°E — [Xo,. —
= Legﬁﬁ} ”%r) [ Q) '“Qm] 1

where, in (1), we have applied Lipschitzness and Jensen’s and, in (2), we note again that the cross
term cancels when expanding the square. Hence, we get that

k
Vy <207 (ng) —ng-1) E

j=1
Plugging these values back into the bound (B.4) then yields the claim.

1 2
max. =5 [XQm - “Q(r)] ] =2L%Vr

C PROOFS OF SECTION[3]

Recall our non-adaptive proxy objective

1 0)
o —
i (@) = 522@; r (o xg))
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where, for UE, ng = n for all Q € U. For a € A, define generalization gaps
D, = —us = mi :Q) — min [ Q)
o = ppR (a) — pr (a) min (a; Q) i fing, (a; Q")

Using the same argument as in the proof of Proposition [B.T} we note that

nQ

IS T

< . _ N . —
[Dal < max |1 (a; Q) = fing (a; Q)| = max

Then from the theory of Appendix [A] we can conclude the following bounds.
Theorem C.1. For rewards bounded in [0, 1], we have that for any a € A,

[ logk
EU,) <4, —28%
mingey NQ

Additionally, when X C R and r (a, -) is L-Lipschitz for each a € A, it follows that

161og k
E[U.] < —208% | 41op/2logk
mingey NQ

Proof. We apply Theorem on functions fg (z) = E[r (a,Xg)] — 7 (a,z). Note that fo €
[—1, 1] since r € [0, 1]. Moreover, if 7 (a, -) is L-Lipschitz, then so is f¢, as we only add a constant
to it. |

Let E [U,] < B be any of the bounds from Theorem [C.1| Then, we get that

+E [upn (@) — 1y (0)] — B | g~ (a”)]
+

(a)
= Apr (a) + E [D,] — E [Dg-]
> Apr (a) — [E [Dy]| — [E [Da-]
> Apr (a) = E[|Dg|] — E [[ Do ]
> Apr (a) — 2E [U,]

(a)

for all ¢ € A. Hence,
P (A% = a) <P (u7 (a) > pr (a”))
=P (u7 (a) — py (a*) — E [u7 (a)
<P (ug (a) — py (a”) — E [u7 (a)

What remains is to apply the concentration inequalities of Appendix [B]

— pr ()] = B [uf (a7) — pr (a)))
— py (a”)] = Apr (a) — 2B) (C.1)

C.1 PROOF OF THEOREM[I]

Here, we use the UE proxy % (a) = mingey ~ Y1, 7 (a, X 8)) We can then obtain the follow-
ing concentration inequality.

Corollary C.1 (UE concentration inequality). We have that

n 2
B (45 (@) — i (@)~ E [y (a) — pp (a)] > ) < exp (‘5)

forallt > 0anda,a’ € A.

Proof. Note that in the notation of Appendix [B.1} Z,(,..) = 15 (a). Since 7 (a, -) € [0, 1] for each
a € A, the claim follows by applying Corollary [B.2] |
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DR,min

2
Next, note that under the assumption n > ( x 8 ) log k, we get that Apg (a) > 8 % for

all a € A with a positive gap. Hence, for all such a, plugging in the bound B = 44/ 1051@ into
Equation (C.1) yields

P(A} =a) <P (w% (a) — 1% (a*) — E [ (0) — s (a7)] = Apr (a) — 81/ 225 ) Eq. (CT)
2
< exp —% [ADR (a) — 8 losk] Cor.[C1]

This directly yields the desired regret bound:
E [Apr (A7)] = > Apr(a)P(Af =a)

a€A:Apr(a)>0

2
log k

< Z Apr (a)exp —g Apr (a) —8 ]

a€A:Apr(a)>0

n

Note that we can scale the rewards to instead operate under € [0, M]. This in turn yields the bound

2
n log k
E[Apr (A7) < Y. Apr(a)exp | 5 | Aok (a) —8My[—> ]
a€A:Apr(a)>0
C.2 PROOF OF COROLLARY [T]
An alternative way of writing the UE regret bound is as follows:
E [Apr (A7)] = > Apg (a) P (AT = a) + > Apr (a) P (AT = a)
a€A:Apr(a)<A a€A:Apr(a)>A
log k ’
n o
<A+ Z Apr (a) exp —3 [ADR (a) -8 5 ]
aeA:ADR(a)>A
for any A > 0. In other words,
log k ’
. n 0g
E [Apr (A7)] < igfo A+ > Apr (a)exp | —5 [ADR (@) =8/ —> ]
aEA:ADR(a)>A

(C2)
Next, we introduce a simple technical lemma.

Lemma C.1. Let o, 8 > 0. Then, the function f (z) = x exp (fa (x — 5)2) is decreasing for
x> 3 (ﬁ + \/ﬂQT%)
Proof. Notice that
7 (@) = exp (~a (e = 8)°) — 202 (2 — B)exp (—a (@ - 8)°)
=1 - 20 (z — B exp (~a(z— §)°)

Now, note that the function z +— 2ax(z — ) — 1 is quadratic, convex and has roots

% (5 +1/82 + %) and % (6 —\/B*+ %) Since the former is larger, it follows that the quadratic

is nonnegative for larger values. In other words, f’ () < 0 whenever x > % (ﬂ +4/8%+ %) |
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As a result, we can show the following inequality.

Lemma C.2. Provided that l > 2 and Apg (a) > Sivlogkjﬁ V2logl \o have that

2
/1 V1 V21
Apn (a) — 8 Oik] < 8v/log k + ogl

n
Apg (a) exp D)

Iv/n

Proof. Note that the left-hand side of the claim is of the form f (Apg (a)), where f is defined as in
Lemmawith o= g and =8 logk 5o that we know it is decreasing for x > K, where

n °

1 2
K::<B+\/52+>
2 «
1 log k 4logk 4
l8\/og Jr\/6 og Jr]
2 n n n

_ 8Vlogk + /641logk +4

2y/n
Viegk +1
< Svlsk+1 Va+b<va+ Vb
Vn
< 8\/logk\;r7\/210gl Slogl > 1
n

The result then follows by plugging in 87% v2log!

into f to get the right-hand side of the claim.
]

Finally, we can set A := 87“0%6} 2ozl in Equation (C2) and apply Lemmato obtain

n

o 8vl1ogk 4+ /2logl 8vl1ogk 4+ /2logl
E [Apg (A5)] < V-8 o 8 f{a€ A: Apg (a) > A}| gl\/ﬁ &
< 16+/log k + 2+/21ogl
= Vi
< log (k1)
~ n

where in the last line we have used the fact that \/a + v/b < /2 (a +b). Substituting n = % then
yields the result.

C.3 PROOF OF THEOREM[Z]

Returning to the general NUE proxy 49 (a) = mingey % S (a, X S)), let us further assume
that X C R. Then, we conclude the following result.

Corollary C.2 (NUE concentration inequality). Suppose that r (a,-) : X — [0, M] is L-Lipschitz
for each a € A. Then, we have that

t2

P (1 () — i (') — B [ (@) — o (a')] > £) < exp | —
! ! ! ! 1612 (203 + £ + 6Vy) + 2/0ML_

mingey nQ

forallt > 0anda,ad € A.

Proof. Once again, using the definitions of Appendix B} we get that Z,.(,.) = u§ (a). Since
r (a,-) € [0, M] is L-Lipschitz for each a € A, the claim follows by applying Theorem [ |
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Note that we can scale all quantities in Theorem [C.I] by M to work with rewards in
[0,M] instead of [0,1]. Then, as in the UE analysis, provided that Apgmin > Gr =

SM (M + LO’T1/2 logk)’ we can p]ug B = _l6logk —+ 4LO’T\/210gk into Equa-

mingey nQ mingey ng

tion (C.I)) to conclude that
P(AT = a) <P (u7 (a) — pf (a¥) = E [p7 (a) — p7 (a¥)] = Apr (@) = Gr)  Eq.
2
Sexp | — Ao () = Gr] Cor.[C1]

- 1612 (202 + 32, + 6Vp) + —2XM__ [Apr (a) — Gy

mingey ng
for all a € A with positive gap. This in turn yields the regret bound

E [Apr (A7)] = > Apr(a)P(A% =a)
a€A:Apgr(a)>0

A a) — G2
= Z Apr (@) exp | = 2 (952 2 Bor o) 2\/62;13/1
a€A:Apg (a)>0 1612 (207 + X% + 6Vr) + 22— [Apr (a) — G7]

mingey ng

D MOobDIFIED UCB-E

Our goal is to perform a minimization variant of UCB-E Audibert et al.| (2010) for T rounds on
the set of “arms” /. Since we will analyze all random variables under a fixed high-probability
event, we treat all quantities here as deterministic. In particular, we work with 1 (Q), ji; (Q) €
[0,1] foreach @ € U and t € {no(Q),...,n0 (Q) + T}, where ng (Q) > 1 is the number of
pulls from arm ) € U that we start the game with. We assume a unique optimal arm Q* =
argming e, p (Q), with p* == p(Q*), and define suboptimality gaps A (Q) = p(Q) — p* and

Apin = mingey (g+3 A (Q). For some choice of plays {Qt}thl, let

n (Q) =m0 (Q)+ Y I{Qs = Q}

denote the number of times distribution ) has been played at time ¢ € [T']. Additionally, we define
the following subset of arms:

o= {Q et (@)@ < Joea 2@} u{Qn (@) < Joeast)

along with its cardinality (provided that it contains Q*) ko = |Up| L {Q* € Uy}, total initial sample
size Ty = 3" 5¢yy, Mo (Q) and the complexity notion it defines:

Hy=A1{Q" e} + > A?(Q)
QeU\{Q"}

The intuition is that U, is a proxy for the set of arms played:

U ={Q el :nr(Q)>no(Q)}
The UCB-E algorithm works by defining indices (adjusted here for lower confidence bounds)

LCB: (Qs€) = fin,(@) (Q) — vQeu

€
ne (Q)
given a parameter € > 0 and, at each time step ¢ € [T, playing

Q¢ = argmin LCB;_1 (Q; ¢€)
Qeu

After T rounds, we output

Q = argmin /i, (@) (Q)
Qeu
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Theorem D.1 (Modified UCB-E optimality). Suppose that

forallQ eU andt € {ng(Q),...,no(Q)+ T}, and that
25 .
€2 %Afnin [TLO (Q ) - 1]
36 ~
TZ %GH()—To"‘kO

Then, it follows that Q = Q* and

™

—

| &
=S

o] =

nr (Q*

Proof. First, notice that for any t € {0,...,T} and Q € U, we have by assumption that

1 €

= fin, <z D.1
[1(Q) = @) Q] < 54/ 17 @ (D.1)
since ny (Q) € {no (Q),...,n0 (Q) + T}. All we need to do is show that, for any Q € U\ {Q*},
nr (Q) N (Q) and ng(Q*) > N (D.2)
25 25 ma
since this implies that
1 € A(Q) 1 € Amin _ A(Q)
- < and — < <
5\ np (Q) - 2 5V nr (Q*) - 2 - 2
The second inequality is one of our desired results. To obtain the other, we observe that
fing (@) (Q) = finr(@+) (@) = fing (@) (@) — n(Q) + A (Q) + 1" — finy (@) (Q7)
1 € 1 €
> A - - - - Eq. (D.1)
Q5@ 5@ @« &2
A(Q) (@)
>A - —
N
=0

Since this holds for all Q € U\ {Q*}, it follows that Q = Q*. To show (D.2), we break into two
cases.

D.1 CASE1l: Q* €Uy

First, suppose that Q* ¢ Uy and note that

36, 4, ) 36,
> — — > > — ;
= 256A (Q) > 25€A (Q) and np (Q ) Z 1o (Q ) = 25€Amm

for any @ ¢ Uy U {Q*} by definition. To show the first inequality for U, we observe that kg = 0
and Hy = Qctly A~2(Q) and make the following claim, that applies in both cases.

-2

4
2 A-
nr (Q) > 256 min

LemmaD.1. Fixt € [T]. If Q; = Q # Q, then

36

ni-1(Q) < %eA_Q (Q)

31



Under review as a conference paper at ICLR 2025

Proof. We have that

* ~ * 1
1> fin (@) (@F) = =4 — 50y Eq. ©.1)

> LCB;—1 (Q";¢)
> LCB;—1 (Q;¢) Qr=0Q

€

= /lmfl(Q) (Q) N m

Eq. (D.1)

Rearranging then yields the claim. |

In other words, once n; (Q) > 32eA™2(Q), arm Q # Q* will no longer be played after round ¢.
This means that any arm outside of Uy U {Q*} will not be played at all. In addition, if Q* is not
played in the first

36, _ 36 ~
T = Z |:256A 2(Q) —no (Q)} = %GHO —To + ko
QEUy

rounds, then the plays will distributed within {/y, resulting in

nr (@) 2 nr (Q) = S2eAT Q) > 5eeA Q) VQ EU

where the first inequality uses the assumption that 7' > T”. When Q* is played, we get the following
result.

Proposition D.1. Suppose that Q* is played in some round. Then,
4
nr(Q) > %GA Q) vVQ el

Proof. Let Q € Uy and let ¢ € [T'] be any round such that Q; = Q*. Then,

4 € 4 €
_ = > _ =
HO- 5@ 2P T s @
> LCB;_1 (Q;¢) Eq.
> LCB;—1 (Q%;¢)
6 €
7 B Eq. (D-1)
s\ e @) q. (D.1]
P
=T e (@)
* * 36 —2
> M Amm no (Q ) 2> 2756Amin
> p' = A(Q)
The claim then follows by rearranging the terms. |

D.2 CASE2: Q* € Uy

Next, we note that
ko = |Z/[0| and HO = A;i + Z A_Q (Q)
QeUN{Q"}

As a direct consequence of Lemma|[D.T] we can conclude that our proxy set U, indeed contains the
arms played.
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Corollary D.1. U’ C U,.

Proof. Fix Q € U\ {Q*} and let t € [T denote any round in which Q; = Q. From Lemma [D.1]
we then get that ng (Q) < ny—1 (Q) < 32eA™2(Q). [ ]

Next, we show that suboptimal arms in the proxy set do not have too many samples by the end of
the procedure.

Proposition D.2.

nr(Q) < SeeA Q) +1 VQ €U\ Q)

Proof. If Q € Up\ (U' U{Q*}), then

nr (@) =0 (Q) < S0eA (@) < oA Q) +1

Otherwise, fix any @ € U\ {Q*} and let ¢ € [T'] be the largest time step such that Q; = Q (i.e., the
last round in which @ is played). Lemma[D.I|then implies that

17 (Q) = 11 (Q) =+ = 10 (Q) = myr (Q) +1 < ;‘geﬁ Q) +1

This, in turn, implies that the optimal arm has sufficiently many samples and, in fact, is in I{’.

Proposition D.3.

min

36
* - A—Q 1
nr (Q ) > 256 +

Proof. We have that
nr (@) =T+no (@)~ Y, [7r(Q—no(Q)
Qeu\{Q*}

=T+n (@)= >, [ (Q) —n0(Q)] Cor.D.1I
QeUo\{Q*}

=T+Th— Y. nr(Q)
QEUN{Q"}
- 36
>T+To— Y {%EA—Q (@) + 1} Prop.[D7]
Qe \{Q*}
- 36 9
:T+TO_%E(HO_Amm) —k0+1
36 o
> — :
2 oF eA S +1
where the last line follows from our lower bound assumption on 7. ]

Corollary D.2. We have that Q* € U'.

Proof. This immediately follows from Proposition and our lower bound assumption on e:

36
nr (Q) > %EA;& +12>mn0(Q%)

We are then able to show that, by the end of the game, every arm has sufficiently many samples.
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Proposition D.4.

1A @ vQeu\{QY)

nr (Q) > 5%

Proof. Let Q € U\ {Q*}. Since Q* € U’ by Corollary[D.2] let ¢ € [T be the last round such that
Q: = Q*. Then,

4 € 4 €
> LCB;—1 (Q;¢) Eq.
> LCBt,1 (Q*v 6)
x 9 €
S Y v rory Eq. @©.1)
* 6 € *\ *\ *
=p 5 nr Q) — 1 nr (QF) = n (QF) = 1 (Q7) +1
>pt—A((Q) Prop.[D.3|and Apin < A(Q)
The claim then follows by rearranging the terms. |

Let Q € U\ {Q*}. From Propositions[D.3|and[D.4] we can thus conclude inequalities

4
nr (Q) > %6A72 (Q) and np(Q%) > —eAm]%l +1> —eA[;m
|
E PROOF OF THEOREM 3]
Suppose that we are operating under permutation (a1, .. ., ;) and parameters (e, . .. , €;) satisfying

the bound (T)). To show our desired result, we will define a high-probability event, under which the
modified UCB-E analysis ensures the correctness of LCB-DR’s decision.

E.1 CONCENTRATION INEQUALITY

From the boundedness of € [0, 1], Hoeffding’s inequality implies that

IP’(|M(a;Q) —u(1Q)] < ;/;) > 1 2exp< ;;)

foralla € A,Q € U,t € Nand € > 0. Fix some j € [I]. Then, taking union bounds yields

Cy.. N1 .
(NN {m 05Q) i a5 < 2 [

QeU te(uy)
2(C2 n1) g
> 1 — 2ku; 2
> Uj exp 9%

We then define the high-probability event of interest:

=N {W aj; @ ﬂt(aj;Q)<C‘”5M\/§}

QeU te(uy])
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E.2 MODIFIED UCB-E ANALYSIS
Here, we apply the UCB-E analysis of Appendix [D] Note that
B J
TjZZ +Z 25 H, —T—&—\k‘/ <y
r=0 2Har <0 <k

Hence, np, Q) +1T; < T u;, for any @) € U and, thus, under event A;,

N Ca./\l €j 1 6]'
- 0) — . e Y o AP
|l’[’ (a’]ﬂ Q) lu’t (a]7Q)| < 5 t — 5 t

forallQ € Y and t € {nT-j_1 @Q),... N Q)+ Tj}. Moreover, since Ty = ug, we have from
the lower bound (I)) on (ey, ..., ¢ ) that

€j Ag] mm( Uj—1 — 1) > 7A(21j min (7 -1 1) A(QLJ min ( TJ,I (Q;;) - 1)
forall j € [l] We can then conclude the following result.

Theorem E.1. For any j € [l], under event Aj, it follows that Qj =Q;, and

A j
7DR2'(%) a; #a*

|upr (a) = pr (a5)] < § 5 _
DR,min *
— %=

Proof. If we set T' = Tj,e = €j,m9 = np,_,, ;0 = p(aj;-) and fi = fi (ay;-) in the setup of
Appendix @ then we can immediately see that Qj = Q,’;j by Theorem as its assumptions are
satisfied under A;. Moreover, we have that

joon (05) = s ) = | (05,2, ) =, (g ) (00:@3)| @=

C,. N1 - _
< =4 & event A; and ng, < T; < u;
o\, (Qz_,.)
A, min
< Cy, ‘”2’ Thm. D]
Apr (a;) .
> 2 aj#a
B ADR,mm —a*
2 J

E.3 LCB-DR CORRECTNESS
Under the event ﬂ;zl A;, we know that

py (a*) = p (@) = 1§ (a*) = ppr + Abr (a) + por (a) — k- ()

A min A
> Apr (a) — =25 — D;(“) Thm. [E]

>0 ApR,min < Apgr (a)

forevery a # a*. Thatis, A} = argmax,c 4 43 (@) = a* and, thus, P (A%, = a*) > P (ﬂ;zl Aj).

The result then follows from a union bound on the high-probability events { A };:1
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F EXTENDING TO INFINITE DECISION SETS

Let Q = % ZQ@{ () be the uniform mixture and suppose that we have access to a finite -cover

Ac of ({r(a,)}4eq-L? (Q)) in the following sense: for all a € A, there exists a ¢, € A. such
that

2 €

I () =7 (@0, )l paq) = \/EXNQ [(r (@, X) =7 (60, X))°] < =

The idea is that a learner can play the game dynamics on the finite set A, to control the gap

Apr (+;Ae), where we made the underlying decision set explicit in the notation, and this ensures

control of the original objective. We can relate this gap to the quantity of interest by noting that for
any a € A,

Apr (a; A) = max ppr (a*) — por (a)

a*eA

= *) * A . .
max iR (a”) Jnax fipr (a7) + Apr (a; Ac)

= *) * A . .
max {MDR (a®) DX 1IDR (a‘e)} + Apr (a; Ae)

We can bound the error term as follows: for any a € A,
por (a) — nax yipr (ag) < ppr (@) — por (¢a)

=minEx.qr(e, X)] - minEx~q [r (¢a, X))

Qe
< gléag{(EXNQ [r(a, X) =7 (¢a, X)]
< Z Ex~g[r(a,X) =71 (¢g, X)]
Qeu

=kEx.glr(a,X)—r(¢q, X)]
()
S k ||’f' ((Z, ) -r ((z)av )||L2(Q)

<e

That is,
Apg (3 A) < Apgr (5 Ae) + €

F.1 BINARY CLASSIFICATION

A special case is the binary classification setting:

* The data are pairs (X,Y) € X x {0,1}.
* Decisions are binary-valued functions a : X — {0,1} and VC (A) = d < oo.
* The reward function is 7 (a, (z,y)) = I{a (z) = y}, so that

Ex vy~ [ (a, (X, Y))] = Px y)~q (a(X) =Y)

Suppose that we have a finite \/E -cover A, of (A, L? (Q ,—\g) ) , where Q v is the marginal distribution

of Q over X (recall that now the Q’s are distributions over pairs (X,Y) € X x {0,1}): for any
a € A, there exists a ¢, € A, such that

€

o= 6l o) = 1/ Bxman [0 060~ 60 (007 5%

From Dudley (see e.g. (van Handel, 2014, Theorem 7.16)), we know that there exists such a cover

of size
cd
k
Ads (2
€
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for some universal constant C'. Then from the more general derivation, note that
(*) = Ex vy~ [H{a (X) =V} = T{ga (X) = Y}]
= Exy)ng {¢a (X) # Y} —T{a(X) # Y}
= E(xy)~g | (60 (X) = ¥)* = (a(X) = V)’]
= E(xy)~ [(0a (X) — a (X)) (0 (X) + a (X) - 2Y)]
= E(xy)ng |(6a (X) = a(X))® +2 (0 (X) —a (X)) (a(X) = V)

O 2
< lla = Gallz2(qn)
€
< —
~k
where for (1), we note that

e Ifa(X)=1,then¢, (X)—a(X)<Oanda(X)-Y >0

e Ifa(X)=0,then ¢, (X)—a(X)>0anda(X)-Y <0
In both cases (¢q (X) —a (X)) (a(X)-Y) <0.

For example, if we use the distribution-independent regret of Corollary [T} this shows that the output
A%, of UE on A, guarantees

E [ADR (AO,A)] < E ADR A°; .A

[ klog k|A
k 1 k+dl
\/ ALl L )—f—e

N

k (logk + dlog (kT))

A

_ 1 i
where we chose € = 77 for the last line.

G UE v.s. NUE

Here, we will prove the bounds stated in Section [32[} For convenience, we present the variance
quantities again below:

k
1 2
Vr =3 (nG) = ng-n) E Legé%k} 2 [Xaq, = Ho]

TLQ 9
2 _ (7)
o gy > (58 )|
,L'_
2
g
O'T = Imax 7Q
QeU nQ

We begin by proving the bound on 2.
Lemma G.1. Suppose that our data is bounded: X¢q € [0, 1]. Then,
2log (2K
52 <8, | 208 (R) | o
mingey nQ

Proof. Recall that
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where we define Y; ¢ == XS) — pg € [—1,1] and note that E [Y;%,] = 03. Let us begin by noting
that
1 ngQ

P <E [max > (Vi -E[Yi])
=1

2
+o
2 T
QeU ng,

For a one-sided symmetrization argument, let Z; ¢ be independent copies of the Y; o and let €” i

Rad be independent from them, where n := maxgey n¢. Then, we can bound the first quantity in

the upper bound as follows:
1 &

Y

B 1 nQ
= E |max [né ; (Yo = Z20)

1 &
< E |max g ; (Yo = Zi0)

1 &

=B |max > i (Vi — Zlo)
Qi 1

=E Icrzl?ifw Zfz iq| tE

glgl}l{nQ Z —aZ ’Q

1 <
=2E lglg}j( % Zl €Yo
where Y denotes the collection of all Y; o’s. In the next lemma, we bound the last quantity above.

Lemma G.2 (Contraction). We have that

nQ
2
max — &Y, < E |maxC €Y;
lQeun Z ¢ - QeU Q; e

2
nQ-mianeu ngr’

where Cg =

Proof of Lemma|G.2] Fix an index j € [n], where n := maxgey ng. For each Q € U, let us
additionally define dummy variables Y,,, 11.q,- -, Yn @ = 0, so that
7LQ

max — 6Y? max —
Qeul nQQ ; e Qeu n Z

In what follows, we use IEEJ. to denote an expectation only w.r.t. €;, wh1le all other random variables
remain fixed (that is, conditioned on all other variables due to independence). Note that

E

J

1 ) -
Ee, | max 2D @Yig+Co Y aYia
Q =1 i=j+1

1 Q
:2QQ/€M{7L Zez 3 —I—CQ Z €Y; i,Q

=741
—1 2 n
14 Y2
L BN G > EiYZEQ’}
Q' =1 Q’ i=j+1

Next, note that

Yie Yie _ (YJyQ N Yj@’) (YjQ B Yj,Q’)
an n2Q, nQ ng: nQ ng
< (1 N 1) Yie Y
nQ TLQ/ TLQ ’ILQ/
<|CQYjq - CoYja|
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Hence,

E, [max ZQZQ—FCQZGYZQ
Qeu n ]

J—1

1
SQQQ’GM{TL Zez Yo+ 0o Z éiYiQ

i=j7+1

—1 n
13 )
MYy Z@'YLQ’ +Co Z aYiq +10QYq ~ CoYjql }
=1 1=j5+1
j—1

1 1 2
:2QQ/eu{n%ZEZ Yo +Cq Y «Yig

=1 i=j+1

T Zez Yig +Co Z &Yiq +C0QYjq — CorY, Q’}
Q" =1 i=j+1

1
1=
=E. [max QZGZZQ-FCQZQZQ
7l Qeu ng

=1 =7

From independence, we can thus integrate iteratively starting at j = n to conclude that

nQ

max C, €Y;
Ca Y i

n

max —5- Z 2
QReU n

=1

<E

n
max C, €Y
00 i

Again using symmetrization, let Z; o be independent copies of the Y; o and independent from €”.
Since Y; ¢ are centered, we have that

nQ nQ
ggg} Co ; €Yiq| =E Iggg{d@ Co ; & (Yiq — Zig)|e", Y

§ E %125[( CQ Z 61 1 Q — ZLQ)

nQ

=E oY (Yig - Z
max Q;( @~ Ziq)

nQ

<9E c Y,
< 2B |max Q; Q

ZY@

Next, we bound this expectation using Hoeffding’s inequality. We begin with a high-probability
bound:
>t> < ZP(CQ ZYZQ >t>
Qeu
<2 Z e 27
<o | —
< P Cona
) t*nq ming ey ng,
- Z exp | — 2

t? minpey nd
< 2kexp (—QGQ

max C
(QGZ/{ Q

2
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We can subsequently integrate the tails to obtain the in-expectation bound

EZﬁQ

Combining all bounds presented thus far finally yields

2log (2k)

max C
@ mingey ng)

QeU

2log (2k
mingeuy nQ

Next, we show how Vr relates to EQT.
Lemma G.3. We have that

Vp < min{ maxng, k p 2
r= {Q@fQ } ’
Proof. Letn = maxgey ng and note that we can equivalently express

S E = (X5 — 1)
Vr ; l@erz}:%}é >i né Q ~He

From this, we see that

2
Vr <nE |max max —- (X(z) Q)
i€[n] QEU:NG > ng

| ES—

L (@ 2
= nE |max max — (X — )
QEU i€[ng)] an Q T He

nQ

2
< nE (X()— )
=N gleai{( —~ é Q M

= nE%
Alternatively, we can begin by bounding the max by a sum in V:

Vi <E 271: Z nlé (X(l)_NQ)Q

i=1 QeUng>i

“2| T3 (6 )

2
| Q€U i=1 Q

nQ

<HE |max S 4 (X(") m 2]
> X 2 Q ~ Q)
QeU “ ng,

= kY3

Finally, we prove the upper bound on V7 stated in the example of Section [3.4.3]
Lemma G4. LetU = {Q1,...,Qk}, where

* Q1,...,Qr_1 share a common variance o and are supported in [0, 1].

* Qy has variance V.
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» We sample n times from each Q1,...,Qr—1 and m =T —n (k — 1) > n times from Qy,
for a total of T > nk samples.

Then,
Ve < 210g(kn— 1)+ o2 N T_nu(‘;_ -
Proof. Note that
Vr =nE {max {jg[lka}l] {le (Xq, — ,qu)z} ’ % (X, — NQk)QH + (m;lig)ﬂ
<2 [ {00, a7} i
- %E Lg{lfxu {(xe, - MQJ)Q}] +’§

()

Since ’(XQ]. — ,qu)2 — 02‘ < 1forall j € [k — 1], we then have that

2 2 2 2
= . — )= + < —-1) 4+
(x) =E Lén[kaxl] {(XQ‘7 ,[LQJ) o }] o 2log(k—1)+o
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