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Please analyze the following video and locate the timestamps when the implicit anomalous 

sentiments are present.

From 15s to 17s, there exists implicit anomalous sentiments, as the man near the door with his back to the 

camera seems to be shooting at someone.

0s 1s 2s

…

15s 16s 17s 28s

Ground Truth

Figure 1: An example to illustrate the IasDig task and the output of the proposed Hawkeye approach. In a recon-video like a
surveillance video, Hawkeye can precisely localize frame-level fine-grained implicit anomalous sentiments (red timestamps).

Abstract
In real-world recon-videos such as surveillance and drone recon-
naissance videos, commonly used explicit language, acoustic and
facial expressions information is often missing. However, these
videos are always rich in anomalous sentiments (e.g., criminal ten-
dencies), which urgently requires the implicit scene information
(e.g., actions and object relations) to fast and precisely identify these
anomalous sentiments. Motivated by this, this paper proposes a
new chat-paradigm Implicit anomalous sentiment Discovering and
grounding (IasDig) task, aiming to interactively, fast discovering
and grounding anomalous sentiments in recon-videos via leverag-
ing the implicit scene information (i.e., actions and object relations).
Furthermore, this paper believes that this IasDig task faces two key
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challenges, i.e., scene modeling and scene balancing. To this end,
this paper proposes a new Scene-enhanced Video Large Language
Model named Hawkeye, i.e., acting like a raptor (e.g., a Hawk) to dis-
cover and locate prey, for the IasDig task. Specifically, this approach
designs a graph-structured scene modeling module and a balanced
heterogeneous MoE module to address the above two challenges,
respectively. Extensive experimental results on our constructed
scene-sparsity and scene-density IasDig datasets demonstrate the
great advantage of Hawkeye to IasDig over the advanced Video-
LLM baselines, especially on the metric of false negative rates. This
justifies the importance of the scene information for identifying
implicit anomalous sentiments and the impressive practicality of
Hawkeye for real-world applications.
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1 Introduction
In the literature, Multimodal Affective Computing (MAC) [16, 55]
routinely focuses on leveraging the explicit information (e.g., acous-
tic, facial expressions and language) for precisely understanding
the sentiment of videos. These studies can be broadly divided into
two paradigms: fusion paradigm [8, 46] and interaction paradigm
[18, 41, 55]. However, in real world, there exists a vast amount of
recon-videos, such as surveillance and drone reconnaissance videos,
wherein the above explicit information is often missing, while these
videos are always rich in negative sentiments (e.g., criminal ten-
dencies). Under this scenario, it is urgent to leverage the implicit
scene information (e.g., actions and object relations) for precisely
discovering and grounding anomalous sentiments. In this paper,
we define the above recon-videos involved negative sentiments,
which require the implicit scene information for identifying, as the
implicit anomalous sentiments.

With these in mind, we propose a new Implicit anomalous
sentiment Discovering and grounding (IasDig) task, which lever-
ages Video-LLMs through a new chat paradigm for implicit anoma-
lous sentiment identification. This task aims at discovering and
grounding (i.e., classifying and localizing) anomalous sentiments
in recon-videos through implicit scene information, such as ac-
tions and object relations. To be specific, this IasDig task discovers
and locates the anomalous sentiments segments within the recon-
videos through interactions with LLM. For example, in Figure 1,
a man near the door with his back to the camera is shooting at
someone during the ground truth timestamps from 15s to 17s in the
recon-video, where the LLM is required to locate the timestamps
of implicit anomalous sentiment displays by the man. Under this
circumstance, LLM should fully use the scene information for pre-
cisely identifying implicit anomalous sentiments. In this paper, we
seek to leverage the advanced video comprehension capabilities
of Video-LLMs (e.g., Video-LLaVA [29]) to address our IasDig task.
However, current LLMs have deficiencies in scene understanding as
reported by [27, 35]. In this way, we believe that leveraging Video-
LLMs to comprehend implicit scene information at least faces two
main challenges.

On one hand, it is challenging tomodel the scene information (i.e.,
action and object relations) in recon-videos. As shown in Figure
1, considering the recon-video with obscured facial expressions
due to the camera angle, it is significantly difficult to precisely
discover and localize anomalous sentiments. In this situation, taking
the implicit scene information, such as action (shooting at) and
object relations (<man, near, door>) into consideration can help
better identifying anomalous sentiments. Therefore, how to model
the scene information is rather important. Fortunately, some prior
works have recognized this problem and utilize graph structures
to model object relations information [10, 48]. Actually, the joints
of the movements of human body can also be viewed as graph
structures. Inspired by this, this paper believes that a well-behaved
IasDig approach should consider leveraging graph structures to

model both the action and the object relations scene information for
further enhancing the scene understanding ability of Video-LLMs.

On the other hand, it is challenging to balance the above two
heterogeneous scene information during the alignment phase of
Video-LLMs. Still take the recon-video in Figure 1 as an exam-
ple, from 15s to 17s, the object relations information indicates a
man near the door, whereas the action information depicts a man
shooting at someone, which is a strong signal of the presence of
anomalous sentiments. Assigning equal weight to both two types
of scene information could lead to interference from object informa-
tion, causing the model to mistakenly categorize this video segment
as non-threatening. However, existing Video-LLMs process visual
features as a whole, lacking the ability to balance the weights of
individual elements. Therefore, this paper believes that a better-
behaved Video-LLM approach for IasDig should further consider
balancing the two heterogeneous scene information.

To this end, this paper proposes a tailored Scene-enhanced Video
Large Language Model named Hawkeye, i.e., acting like a raptor
(e.g., a Hawk) to discover and locate prey, for the IasDig task to
tackle the above two challenges simultaneously. Specifically, this
approach designs a Graph-structured Scene Modeling Module to
model the scene information, wherein an Action-Sensitive Graph
(ASG) and an Object-Relation sensitive Graph (ORG) are proposed
to model the action and object relations information respectively.
Furthermore, inspired by Mixture-of-Experts (MoE) [15, 19], this
approach designs a Balanced Heterogeneous MoE Module (B-H
MoE) along with a scene-balancing loss function to weight the
heterogeneity between the two scene information. Furthermore,
this paper constructs two scene-sparsity and scene-density IasDig
datasets to evaluate the effectiveness of Hawkeye, and detailed
experiments demonstrate that Hawkeye achieves significant per-
formance improvements compared to the advanced Video-LLMs.

2 Related Work
2.1 Multimodal Affective Computing
Previous studies on Multimodal Affective Computing (MAC) lever-
age explicit signals to predict sentiments [20, 65]. They can be
broadly divided into fusion paradigm [8, 46] and interaction para-
digm [18, 41, 55]. Recent studies focus more on the latter paradigm.
SELF-MM [57] leverages self-supervised learning to acquire the con-
sistency and difference of modalities. UniMSE [18] and ConFEDE
[55] introduce contrastive learning for mutimodal information rep-
resentation. However, these studies mainly focus on explicit senti-
ment analysis. Recently, a few studies pose the Implicit Sentiment
Analysis (ISA) while only focusing on language. Zhou et al. [63]
propose composition mechanism to event-centric ISA. Fei et al. [12]
introduce chain-of-thought to mimic the reasoning process. Differ-
ent from all the above studies, we propose a new chat-paradigm
Implicit anomalous sentiment Discovering and grounding (IasDig)
task to identify implicit anomalous sentiments in recon-videos via
implicit scene information. To our best knowledge, this is the first
attempt to incorporate these scene information in MAC.

2.2 Video Grounding
Video Temporal Localization (VTL) [36] and Referring Video Object
Segmentation (RVOS) [23] are two tasks within Video Grounding
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Figure 2: The overall architecture of Hawkeye. It consists of two modules, a Graph-structured Scene Modeling Module and a
Balanced Heterogeneous MoE Module (B-H MoE), where PE in B-H MoE denotes Projection Expert.

(VG) [60]. VTL aims to utilize language query to localize temporal
segments, while RVOS focuses on tracking objects correspond to
the language query. For VTL, it can be broadly divided into two
forms: one-stage models [42, 54] and two-stage models [30, 49, 62].
Besides, Chen et al. [4] propose an audio-enhanced approach. For
RVOS, it can be divided into offline [3, 51] and online [52] process-
ing. Particularly, Wasim et al. [50] propose an open vocabulary VG
task to localize and recognize objects and actions in the video. Con-
sidering the sentiment in the video, Zhang and Yang [61] propose a
temporal sentiment localization task to simultaneously localize and
classify the sentiments in long untrimmed videos. Further, a rele-
vant task for us is video-based anomaly detection [44, 53], which
provides some inspiration for defining our new task, IasDig. How-
ever, existing works primarily focus on classifying the objective
abnormal events, while overlook the subjective implicit anomalous
sentiments especially for localizing these sentiments. Besides, these
works struggle to adapt to the interactive demands of the LLM era.
Different from all the above studies, this paper aims to classify and
localize implicit anomalous sentiments in recon-videos, which is
adapt to interactive scenarios in the era of LLMs and seek to lever-
age implicit scene information to perform better identification.

2.3 Video-oriented Large Language Models
The emergence of ChatGPT [38] has sparked a boom in the field of
NLP with LLMs, such as LLaMA [45] and Vicuna [9]. Some studies
[5, 6, 25, 31] expand LLMs tomultimodal filed. All these studies pave
the way for the development of Video-oriented Large Language
Models (Video-LLMs). According to the visual encoder, Video-LLMs

can be categorized into four types. 1) VideoChat [26] and Video-
LLaMA [59] utilize BLIP-2 [25] and use the Q-former to map visual
representations to Vicuna. 2) Video-ChatGPT [34], Otter [24], Val-
ley [33], mPLUG-Owl [56] and ChatUniVi [21] take advantage of
CLIP [40] to obtain visual features. 3) PandaGPT [43] employs the
ImageBind [13] as its backbone for video comprehension. 4) Video-
LLaVA [29] leverages LanguageBind [64] to pre-align image and
video features into the language feature space. However, all the
Video-LLMs have overlooked the scene information in the video.
Recently, a few studies [27, 35] consider incorporating scene infor-
mation in images, while understanding scene in videos is almost
nonexistent. Besides, some studies [15, 28] introduce the concept
of MoE into LLMs, but they only focus on the efficiency, without
considering the balance between different information. In summary,
although all the above studies of Video-LLMs have achieved great
success in video understanding, the ethical constraints limit their
ability to analyze harmful content [37], therefore have difficulty
tackling the IasDig task. This paper proposes a Scene-enhanced
Video-LLM called Hawkeye, aiming to elicit the ability of Video-
LLMs in scene understanding through scene modeling, and design
a Balanced Heterogeneous MoE module to balance the scene infor-
mation.

3 Approach
Problem Formulation.Given a recon-video𝑉 with𝑇 frames, each
frame 𝑡 is labeled with 1 or 0, where 1 and 0 represent whether this
frame conveys implicit anomalous sentiments. The goal of IasDig is
to interactively discover and ground (i.e., classify and localize) the
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presence of implicit anomalous sentiments in 𝑉 , and generate a set
of segments {(𝑠1, 𝑒1), ..., (𝑠𝑖 , 𝑒𝑖 ), ..., (𝑠𝑛, 𝑒𝑛)}, where 𝑠𝑖 and 𝑒𝑖 denote
the start and end time of an implicit anomalous sentiment segment.
Challenges. The IasDig task faces two key challenges: scenemodel-
ing and scene balancing. To address the two challenges, we propose
two modules: a Graph-structured Scene Modeling Module and a
Balanced Heterogeneous MoE Module (B-H MoE).
Backbone. Several Video-LLMs are open-sourced currently, we
consider using Video-LLaVA [29] and its visual encoder Language-
Bind [64] as the backbone. It is optimized using a mixed dataset
of images and videos, and achieves the best performance on most
of the image and video benchmarks. Therefore, we utilize Video-
LLaVA as the backbone to explore the capabilities of Video-LLMs
in identifying implicit anomalous sentiments of recon-videos.

3.1 Graph-structured Scene Modeling Module
We design a Graph-structured Scene Modeling Module to model the
implicit scene information, which consists of an Action-Sensitive
Graph (ASG) and an Object-Relation sensitive Graph (ORG), de-
tailed as follows.

Action-sensitive Graph is designed to model the action infor-
mation of individuals. Specifically, we address two crucial questions:
1) how to capture the action information of individuals; 2) how to
make full use of the action information in the IasDig task. We
will provide comprehensive answers to these two questions in the
subsequent section, formulated as follows.

For question 1), we leverage HigherHRNet1 [7], a well-studied
bottom-up human pose estimation network, to obtain the action
information. As shown in ASG, given a sequence of video frames,
HigherHRNet is able to generate an action graph token 𝒙𝒂𝒊 consist-
ing of 17 nodes of human joints for each individual in each frame,
where 𝑖 represents the 𝑖-th frame. Then, we will get the full ac-
tion graph tokens X𝒂 = {𝒙𝒂1 , ..., 𝒙

𝒂
𝒊 , ..., 𝒙

𝒂
𝒏} of the video sequence2,

where 𝑛 represents the number of frames in this sequence.
For question 2), we leverage Action-aware Graph Attention to en-

rich video tokens X𝒗 = {𝒙𝒗1 , ..., 𝒙
𝒗
𝒊 , ..., 𝒙

𝒗
𝒏} from the Video Encoder

with X𝒂 . For each node 𝑒𝑘 in 𝒙𝒂𝒊 , we first compute the attention
weights 𝛼𝑘 𝑗 between it and its neighboring node 𝑒 𝑗 :

𝛼𝑘 𝑗 = softmax
( (Wℎ𝑘 ) · (Wℎ 𝑗 )√

𝑑

)
(1)

whereW is the weight matrix, ℎ𝑘 and ℎ 𝑗 represent the features of
𝑒𝑘 and 𝑒 𝑗 , and 𝑑 represents the dimension of features.

Then 𝛼𝑘 𝑗 can be used to aggregate the feature ℎ̂𝑘 of node 𝑒𝑘 :
ℎ̂𝑘 =

∑
𝑗∈N(𝑒𝑘 ) 𝛼𝑘 𝑗 · ℎ 𝑗 , where N(𝑒𝑘 ) denotes the set of neigh-

boring nodes of node 𝑒𝑘 . The final feature of 𝑒𝑘 is formulated as:
ℎ′
𝑘
= ReLU(W[ℎ̂𝑘 , ℎ𝑘 ]), whereW is the weight matrix and [ℎ̂𝑘 , ℎ𝑘 ]

denotes the concatenation of ℎ̂𝑘 and ℎ𝑘 .
After the graph attention operation, we consider enrichingX𝒗 by

leveraging the attention mechanism. Given the query Q𝒗 , key K𝒂

and value V𝒂 , the output of a cross-attention layer is first computed
as: X𝒄 = V𝒂 softmax

(
Q⊤
𝒗K𝒂

)
. We then borrow an idea from the

transformer encoder layer [47] where each sub-layer is put into a

1https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation
2Each token contains up to 5 people, and we average each token after graph attention.

residual structure, and layer normalization [2] is performed after
the residual connection. The input is X𝒄 , and the procedure can be:

X′
𝒄 = LN (X𝒄 + FMSA (X𝒄 )) (2)

X𝒄+1 = LN
(
X′
𝒄 + FFFN

(
X′
𝒄
) )

(3)

where LN (·) indicates layer normalization, FMSA (·) is the multi-
head self-attention layer, and FFFN (·) represents the feed forward
network. Then, we can obtain the action-aware video tokens X𝒄+1.

Object-relation Sensitive Graph is designed to model the ob-
ject relations information. Specifically, there are also two questions
to be answered: 1) how to effectively capture the object relations
information from videos; 2) how to leverage the object relations
information to help better implicit anomalous sentiment identifi-
cation in the IasDig task. Next, we will answer the two questions,
formulated as follows.

For question 1), we leverage RelTR3 [10], a well-studied one-
stage object-relation graph generation method, to obtain object
relations information. As shown in ORG, for a given sequence
of frames, RelTR is able to generate a sequence of graphs 𝐺 =

{𝐺1, ...𝐺𝑖 , ...,𝐺𝑛}, where𝐺𝑖 = (𝑅𝑖 , 𝐸𝑖 ) represents the object-relation
graph of the 𝑖-th frame, 𝑅𝑖 = {

(
𝑐𝑖,1, 𝑏𝑖,1

)
, ...,

(
𝑐𝑖,𝑘 , 𝑏𝑖,𝑘

)
} is a set of 𝑘

detected objects with the class 𝑐 and the corresponding bounding
box𝑏,𝐸𝑖 denotes a set of directed edges of the form {𝑐𝑖,𝑝 , 𝑟𝑖,(𝑝,𝑞) , 𝑐𝑖,𝑞},
assigning two directional edges from 𝑐𝑖,𝑝 to 𝑟𝑖,(𝑝,𝑞) and from 𝑟𝑖,(𝑝,𝑞)
to 𝑐𝑖,𝑞 , where 𝑟𝑖,(𝑝,𝑞) denotes a relationship categories. Take the
last frame of the video in ORG as an example, one object can be
expressed as (man, <0.28, 0.13, 0.62, 1.36>), and one edge can be
(man, near, door).

For question 2), we leverage object-aware masking together
with Masked Graph Transformer Networks (MaskGTN) to fully
use the object relations information. We first design object-aware
masking, which masks out the unimportant object parts of the
frame according to the bounding box information for each frame
representation 𝒙𝒗𝒊 ∈ X𝒗 . Then, we will get a sequence of masked
video tokens X𝒎 = {𝒙𝒎1 , ..., 𝒙𝒎𝒊 , ..., 𝒙𝒎𝒏 }.

For enriching each region representation in each frame, we pro-
pose MaskGTN by following Wang et al. [48], which aggregates
the information of its local neighbors through a graph transformer
layer (GT) [58]. Given an input graph𝐺𝑖 of region classes and edges,
MaskGTN computes new vectors of each region and edge. Suppos-
ing that we use 𝐿 GTs, let 𝐻 ℓ be the feature representations of the
ℓ-th layer in GTs, the forward propagation becomes:

𝐻 (ℓ+1) = 𝜎

(
�̃�− 1

2 �̃��̃�− 1
2𝐻 (ℓ )𝑊 (ℓ )

)
(4)

where 𝜎 is an activation function on the graph, �̃� is the adjacency
matrix of the graph𝐺𝑖 , i.e., a matrix from 𝐸𝑖 , �̃� is the degree matrix
of �̃�, i.e., �̃�𝑖𝑖 =

∑
𝑖 �̃�𝑖 𝑗 and𝑊 (ℓ ) is a trainable weight matrix. After

the last propagation, a feed forward network (FFN) will be intro-
duced to get the final object-aware video tokens X𝒔 = FFN

(
𝐻 (𝐿)

)
.

3.2 Balanced Heterogeneous MoE Module
After modeling the scene information, we design a Balanced Het-
erogeneous MoE Module (B-H MoE) for better implicit anomalous
sentiment identification. In this section, we address two crucial
3https://github.com/yrcong/RelTR

https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation
https://github.com/yrcong/RelTR
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questions: 1) how to obtain the routing weights of the two scene
information; 2) how to balance each type of the scene information.

For question 1), inspired by Mixture-of-Experts (MoE) [15, 19],
we hope to introduce two projection experts (PE), allowing them
to dynamically adjust the weights of the two heterogeneous pieces
of the scene information.

As shown in Figure 2, in contrast to other methods that introduce
several FFNs within LLMs, B-H MoE consists of two PEs outside
the LLM, which dynamically adjust the weights of information
from ASG and ORG. Each PE is a stack of transformer layers, and a
dynamicModality Router R is introduced to control the contribution
of each PE. The router R is structured as a straightforward MLP that
receives input tokens and calculates the routing weights for each
expert, i.e., a soft router [39]. Formally, for the output ℎ of ASG and
ORG, the output of B-H MoE can be represented as follows:

𝑦 = LN

(
𝑁∑︁
𝑖=1

𝑅(ℎ)𝑖𝐸𝑖 (ℎ)
)

(5)

where 𝑅(ℎ)𝑖 and 𝐸𝑖 (ℎ) denote the corresponding weight and the
output of the 𝑖-th PE, respectively. 𝑁 is the number of PEs. The
router 𝑅(·) can be written as: 𝑅(·) = softmax(ℎW𝑔), whereW𝑔 is
the trainable weight matrix for router 𝑅(·).

For question 2), inspired by LoRAMoE [11], we design a new
balancing constraint loss L𝑏𝑐 to optimize the soft router in B-H
MoE. By minimizing the L𝑏𝑐 loss, Hawkeye can encourage the
router R to dynamically adjust the contributions among all experts.
Formally, we define the importance matrix M, and M𝑖,𝑚 denotes
the sum of importance value of the 𝑖-th PE in B-H MoE for the𝑚-th
training sample in a batch, which can be represented as follows:

M𝑖,𝑚 =

𝑇𝑚∑︁
𝑗=1

exp
(
𝜔
𝑗
𝑖
/𝜏

)
(6)

where 𝑇𝑚 and 𝜔 𝑗
𝑖
denote the token numbers of the𝑚-th training

sample, the hidden output of the 𝑗-th token. 𝜏 is a hyper-parameter.
We then define a coefficient matrix P with the same size of

M, corresponding to the importance matrix M, P𝑖,𝑚 denotes the
importance coefficient ofM𝑖,𝑚 , which can be written as follows:

P𝑖,𝑚 =

{
𝑅𝑎
𝑖
, Type(𝑚) = Action

𝑅𝑠
𝑖
, Type(𝑚) = Object (7)

where 𝑅𝑎
𝑖
and 𝑅𝑠

𝑖
are routing weights of the action information and

the object information from HeteroMoE, Type(𝑚) is the type of the
𝑚-th training sample, i.e., action or object relations information.

The weighted importance matrix T can be T = P ◦M. In order to
constrain the scales of the scene information and meanwhile keep
a balance between them, we introduce the Coefficient of Variation
(CV) [1], and the new lossL𝑏𝑐 is formulated as:L𝑏𝑐 = CV =

���𝜎2 (T)
𝜇 (T)

���,
where 𝜇 (T) =

∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑡𝑖 𝑗

𝑚 ·𝑛 and 𝜎2 (T) =
∑𝑚

𝑖=1
∑𝑛

𝑗=1 (𝑡𝑖 𝑗−𝜇)2
𝑚 ·𝑛 represent

the variance and mean of T; 𝑛, 𝑚 are the rows and columns of
T; and 𝑡𝑖 𝑗 is element in the matrix T. The variance represents the
dispersion of the distribution of expert importance, while the mean
provides an indication of the central tendency of the distribution.
L𝑏𝑐 provides a dimensionless measure, allowing for comparisons
between different scene information.

3.3 Model Optimization for Hawkeye
We observe that Video-LLaVA lacks the ability to comprehend the
scene information, which is important for our study. To address
this, we take a two-stage training process.

Stage 1. Object-relation and Action Enhanced Pre-Tuning.
As shown in Figure 2, we first pre-tune Video-LLaVA using two
high quality and manually annotated datasets, i.e., RefCOCO [22]
and HumanML3D [14], which aims at enhancing Video-LLaVAwith
the scene understanding ability. The model is asked to “Describe
the image region and judge the action of the characters in the video”.

Stage 2. IasDig Tuning. At the second stage, our goal is to
make the model able to tackle the IasDig task through instruction
tuning. We construct an IasDig-tuning dataset and the pre-tuned
Video-LLaVA is asked to “Analyze the following video and locate the
timestamps when the individuals in the video convey implicit anoma-
lous sentiments”. The instruction will undergo Text Tokenization
to obtain the textual tokens X𝑡 . The input of the LLM will be “𝑦
from Eq.(5) + X𝑡 ”. The overall loss of Hawkeye can be represented
as L𝑡𝑜𝑡𝑎𝑙 = L + 𝜆L𝑏𝑐 , where L is the next-token prediction loss of
LLMs, and 𝜆 controls the strength of the balancing constraint loss.

4 Experimental Settings
4.1 Instruction Data Construction for Hawkeye
The training pipeline of Hawkeye contains two stages and each
stage needs an instruction dataset, detailed as follows.

For Stage 1. As shown in Figure 3, to enhance the scene under-
standing ability w.r.t actions and object relations of Video-LLMs, we
construct a dataset based on RefCOCO and HumanML3D. Specifi-
cally, based on these datasets, wemanually construct the instruction
for each video, for instance: Instruction: “Describe the image region
<objs> and judge the action of the characters in the video.” Answer:
“A man in suit wearing sunglasses. & A person raises right hand,
waves.”, where <objs> denotes the coordinates of the region. As
HumanML3D has 25K videos with an average duration of 1 seconds,
and we take 8 frames per second. For the data balance, we randomly
select 200K images from RefCOCO to form the dataset.

For Stage 2. As shown in Figure 3, we construct an IasDig-
tuning dataset consisting of 1K videos. We take 8 frames per sec-
ond, resulting in 1160K frames. This dataset consists of a real-word
Scene-sparsity IasDig dataset and a real-word Scene-density
IasDig dataset. Scene-sparsity (short for S-S) is based on TSL-300
[61], which includes only daily life scenes for temporal sentiment
localization (thus called scene-sparsity). To fit the IasDig scenario,
we have manually filtered out videos have facial expressions and
removed the audio of all videos. Each video in S-S contains 0.33
anomalous segments on average. Scene-density (short for S-D) is
based on UCF-Crime [44], a real-world surveillance video dataset
containing 13 crime scenes (thus called scene-density). As IasDig
mainly focuses on the anomalous sentiments, we only use the abnor-
mal videos with negative sentiments. Each video in S-D contains
1.09 anomalous segments on average. Further, we construct the
instruction for each video manually, for instance: Instruction: “Ana-
lyze the following video and locate the timestamps when the implicit
anomalous sentiments are present.” Answer: “From <s1> to <s2>, there
exists ..., as ... shooting at ...”, where <s1> and <s2> are the start and
end time of an anomalous segment.
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Table 1: Comparison of several Video-LLMs and Hawkeye on Scene-sparsity and Scene-density Iasdig dataset. The ↓ beside
FNRs indicates the lower the metric, the better the performance. I.T. means inference time in seconds for a one minute video.

Approaches
Scene-sparsity IasDig Dataset (S-S) Scene-density IasDig Dataset (S-D)

FNRs↓ F2 mAP@tIoU I.T. FNRs↓ F2 mAP@tIoU I.T.0.1 0.2 0.3 Average 0.1 0.2 0.3 Average
Video Chat 44.5 29.51 30.93 20.62 8.25 22.63 55 61.4 32.27 29.11 14.77 6.75 16.88 67

Video ChatGPT 61.26 30.66 25.56 18.89 10 18.15 72 78.48 17.99 17.02 6.83 4.25 9.37 80
Valley 56.07 25.77 31.35 15.15 6.76 17.75 63 68.6 27.51 28.79 14.14 7.73 16.87 62

PandaGPT 49.12 30.86 28.28 17.17 7.98 17.81 68 68.77 21.72 18.65 9.52 4.76 10.98 74
mPLUG-Owl 71.37 23.17 30.3 12.2 3.36 15.29 67 54.13 32.36 29.66 16.55 6.9 17.7 72
Chat-UniVi 61.81 21.78 18.82 10.61 9.05 12.83 89 80.52 21.65 16.9 7.75 2.11 8.92 92
Video-LLaVA 44.32 29.22 31.41 15.78 8.82 18.67 65 76.34 23.65 19.01 9.38 4.57 10.99 69
Hawkeye 35.82 38.09 35.24 21.21 14.71 23.72 66 45.66 45.03 34.41 19.22 12.1 21.91 74
w/o ASG 41.27 33.45 33.38 20.36 12.38 22.04 63 51.83 38.5 27.47 12.88 7.73 16.03 71
w/o ORG 37.47 35.28 34.69 21.01 11.52 22.41 65 48.88 39.03 31.82 12.96 8.33 17.7 72

w/o BH-MoE 42.94 31.33 29.59 18.37 9.18 19.05 62 58.79 34.22 24.33 12.32 7.38 14.68 70
w/o L𝑏𝑐 41.56 33.95 33.33 19.78 12.24 21.78 60 47.14 40.43 25.21 13.45 8.4 15.69 68

w/o Pre-tuning 43.96 28.77 31.63 16.33 10.2 19.39 64 69.8 28.01 18.61 10.39 6.49 11.83 73

RefCOCO

200K

HumanML3D

25K (200K Frames)

Stage 1:  Object-relation and Action Enhanced Pre-Tuning

Stage 2:  IasDig Tuning

Scene-sparsity

190 (224K Frames)

Scene-density 

810 (936K Frames)

Inference

Scene-sparsity

98 (112K Frames)

Scene-density 

290 (336K Frames)

Figure 3: Data composition for training and inference.
For Inference. The test set of S-S contains 98 videos, while the

test set of S-D contains 290 videos. The instructions can be the same
as those in Stage 24.

4.2 Baselines
Traditional methods cannot be directly applied to the IasDig task,
while general Video-LLMs can, so we choose several of them as
baselines. VideoChat [26] utilizes Q-Former to map visual features
to Vicuna [9]. Video-ChatGPT [34] combines LLM with CLIP [40].
Valley [33] uses a temporal modeling module. PandaGPT [43]
utilizes ImageBind [13] to demonstrate cross-modal capabilities.
mPLUG-Owl [56] uses a visual abstractor to align different modes.
Chat-UniVi [21] merges visual tokens with semantic meanings.
Video-LLaVA [29] conducts joint training stages on images and
videos. Because the above approaches are for different tasks and
have different experimental settings, for a fair and thorough com-
parison, we re-implement these approaches using their released
codes and all the LLM size is 7B in our experiments.

4.3 Evaluation Metrics
IasDig focuses on discovering and grounding implicit anomalous
sentiments, so it needs two evaluation metrics, detailed as follows.

For the localization performance, we adopt the commonly used
mAP@tIoU metric [61]. Under different intersection over union
(IoU), the metric is calculated by mean Average Precision (mAP).
We set thresholds ranging from 0.1 to 0.3, with an interval of 0.1.
4Code and dataset are released at https://github.com/Zhao-Jianing-SUDA/Hawkeye

For the classification performance, as IasDig mainly focuses on
precisely discovering the anomalous sentiments, we prefer false-
negative rates (FNRs), denoting the rates of "mistaking a frame
labeled positive (i.e., 1) for negative (i.e., 0)", which is of great im-
portance for the IasDig task. For the example in Figure 1, we’d
rather identify all timestamps as anomalous than miss a single
timestamp with anomalous sentiment. If a frame is missed, it could
result in a serious criminal event, so this is a typical FNRs problem.
We also prefer Recall over Precision and report F2 [61] as another
classification metric. The two classification metrics are denoted as:

FNRs =
# of false-negative frame

# of positive frame
(8)

F𝛽 =
(1 + 𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(9)

where # denotes the frame numbers and 𝛽 is 2. Moreover, 𝑡-test5 is
used to evaluate the significance of the performance.

4.4 Implementation Details
We utilize open-source codes to obtain experimental results of all
the baselines on S-S and S-D dataset. The hyper-parameters of
these baselines remain the same setting reported by their public
papers. The others are tuned according to the best performance. For
Hawkeye, we take 8 frames per second of each video. In training
stage, we use AdamW [32] as the optimizer. The initial learning
rate is 2e-5, with a warmup ratio of 0.03. For stage 1 and stage 2, we
fine-tune Video-LLaVA (7B)6 using LoRA [17], with the dimension,
scaling factor, dropout rate of the LoRA matrix set to be 16, 64 and
0.05, respectively, while keeping other parameters at their default
values. The number of experts in B-H MoE is 2, and the layers of
each expert are set to be 8. The hyper-parameters 𝜏 and 𝜆 of L𝑏𝑐

are set to be 0.07 and 0.2. Hawkeye is trained for one epoch with
a batch size of 8. All training runs on 1 NVIDIA A100 GPU with

5https://docs.scipy.org/doc/scipy/reference/stats.html
6https://github.com/PKU-YuanGroup/Video-LLaVA

https://github.com/Zhao-Jianing-SUDA/Hawkeye
https://docs.scipy.org/doc/scipy/reference/stats.html
https://github.com/PKU-YuanGroup/Video-LLaVA
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Table 2: Comparison of several well-performing Video-LLMs and Hawkeye on the 13 crime scenes of S-D dataset with FNRs.
Approaches Abuse Arrest Arson Assault Accidenct Burglary Explosion Fighting Robbery Shooting Stealing Shoplifting Vandalism
Video Chat 87.5 42.16 81.07 78.47 47.52 56.34 74.11 49.91 68.35 54.6 64.25 71.58 66.23

Video ChatGPT 93.75 70.7 76.62 94.45 83.67 78.45 78.9 71.76 65.42 70.34 79.95 87.59 83.12
Valley 69.5 49.63 52.86 79.51 84.16 55.62 50.35 50 100 92.76 74.88 88.49 72.73

PandaGPT 72.5 70.52 66.07 72.57 66.68 67.94 68.62 69.81 68.05 68.39 70.78 67.99 66.24
mPLUG-Owl 75 50.37 55 68.61 59.41 55.25 58.87 56.49 61.63 55.43 43 56.47 66.23
Chat-UniVi 100 76.87 87.5 85.42 94.06 74.64 87.59 85.06 72.18 81.06 45.89 97.48 80.52
Video-LLaVA 100 69.77 67.38 91.78 86.14 70.41 78.96 77.71 85.96 72.24 68.28 89.69 64.94
Hawkeye 62.5 37.06 22.68 47.35 40.92 34.72 36.29 43.51 54.14 39.74 34.3 52.52 25.11

40GB GPU memory. It takes around 8h for training stage 1, 40h for
training stage 2 and 6h for inference.

5 Results and Discussions
5.1 Experimental Results
Table 1 presents a comparative analysis of the performance of
various approaches. From this table, you can see that: 1) The per-
formances of Hawkeye and other Video-LLMs on both the S-S and
S-D datasets are significantly poor. In cases of the best perform-
ing Video-LLMs, the average results of FNRs, F2 and mAP@tIoU
are only 49.22%, 31.61%, and 20.12%. As for Hawkeye, the average
results are 40.74%, 41.56%, and 22.82%. This suggests that the Ias-
Dig task poses significant challenges, and the current approaches
still have a lot of room for improvement in identifying implicit
anomalous sentiments in real-world recon-videos. 2) Hawkeye con-
sistently performs better than other Video-LLMs. Compared to the
best performing approach on all metrics, Hawkeye achieves aver-
age improvements of 9.95% and 2.7% on F2 and mAP@tIoU on both
S-S and S-D datasets. Statistical significance tests show that these
improvements are significant (p-value < 0.01). This demonstrates
that Hawkeye can better model and balance the scene information
in recon-videos compared to advanced Video-LLMs.

5.2 Contributions of Each Key Component
To delve deeper into the impact of the key components of Hawkeye,
we conduct a series of ablation studies, the results of which are
detailed in Table 1. Effectiveness Study of Scene Information.
From Table 1, you can see that: 1) w/o ASG exhibits inferior per-
formance on both datasets compared to Hawkeye, with average
decreases of FNRs, F2, and mAP@tIoU by 5.81% (p-value < 0.01),
5.59% (p-value < 0.01), and 3.78% (p-value < 0.01). This substanti-
ates that the action information is important in implicit anomalous
sentiment identification and the ASG block is efficient in modeling
action information. 2) w/o ORG also shows inferior performance
on both datasets compared to Hawkeye, with average decreases of
FNRs, F2, and mAP@tIoU by 2.44% (p-value < 0.05), 4.41% (p-value
< 0.01), and 2.76% (p-value < 0.05). This justifies the importance
of the object relations information and the effectiveness of ORG
in modeling such information. Effectiveness Study of BH-MoE.
From Table 1, you can see that: 1) w/o BH-MoE exhibits inferior
performance compared tow/o ASG andw/o ORG on both datasets,
with average decreases of FNRs, F2, and mAP@tIoU by 4.32%, 7.69%
(p-value < 0.01); 3.2%, 4.38% (p-value < 0.01); and 2.17%, 3.19% (p-
value < 0.05), respectively. This indicates a heterogeneity between
the implicit scene information. 2) w/o BH-MoE shows inferior
performance compared to Hawkeye, with average decreases of

FNRs, F2, and mAP@tIoU by 10.13% (p-value < 0.01), 8.79% (p-value
< 0.01), and 5.95% (p-value < 0.01). This further demonstrates the
effectiveness of BH-MoE in scene balancing and encourages us to
consider handling heterogeneous issues in the manner of MoE. 3)
w/o BH-MoE shows inferior performance compared to w/o L𝒃𝒄 ,
with average decreases of FNRs, F2 and mAP@tIoU by 6.52% (p-
value < 0.01), 4.42% (p-value < 0.01) and 1.87% (p-value < 0.05). This
further demonstrates the effectiveness of L𝑏𝑐 in scene balancing
and encourages us to consider design a tailored loss function in the
MoE module for better implicit anomalous sentiment identification.
Effectiveness Study of Pre-tuning. From Table 1, you can see
that: w/o Pre-tuning shows inferior performance compared to
Hawkeye, with average decreases of FNRs, F2, and mAP@tIoU by
16.14% (p-value < 0.01), 13.17% (p-value < 0.01), and 7.21% (p-value
< 0.01). This is reasonable and again confirms that the backbone
lacks the ability to comprehend the scene information. This further
demonstrates the necessity and effectiveness of Pre-tuning, and
encourages us to use more high quality datasets to facilitate the
scene understanding ability of Video-LLMs before tuning on IasDig.

5.3 Practicality Study of Hawkeye via FNRs
To study the practicality of Hawkeye, we compare the FNRs of
Hawkeye with other Video-LLMs. From Table 1 you can see that:
Hawkeye performs the best on the metric of FNRs. On S-S, it out-
performs Video-LLaVA by 8.5% (p-value < 0.01), and on S-D, it
outperforms mPLUG-Owl by 8.47% (p-value < 0.01). This indicates
that Hawkeye is effective in reducing the rates of FNRs, which is
of great importance in practical applications. Moreover, recogniz-
ing that the S-D dataset encompasses 13 distinct real-world crime
scenes, we perform a detailed analysis of each crime scene on the
performance of FNRs, which is shown in Table 27. From this ta-
ble you can see that: Hawkeye significantly outperforms all other
Video-LLMs across the 13 anomalies. This further demonstrates the
effectiveness of Hawkeye and its robust ability to reduce the FNRs,
thereby reducing the likelihood of misclassifying anomalously sen-
timented samples as normal. This also underlines the necessity to
consider the scene information in the IasDig task, especially in the
case of Vandalism.

Besides, we also study the inference time of Hawkeye and other
Video-LLMs, from Table 1, you can see that: Hawkeye does not
perform much differently from the other models in terms of infer-
ence time. The inference time of Hawkeye for a one minute video
is 66s on S-S and 74s on S-D. While the fastest inference time on

7As FNRs can truly reflect the practicality of the IasDig task, and limited by the length
of the article, we do not illustrate F2 and mAP@tIoU on these 13 crime scenes. Actually,
Hawkeye is still the best performing approach.
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Figure 4: Convergence of training losses across training steps.

these two datasets are 55s (Video Chat) and 62s (Valley). This is
reasonable, as some studies confirm that the MoE architecture can
improve efficiency [11, 28]. This suggests that introducing more
information along with a MoE module for implicit anomalous senti-
ment identifying does not increase the inference time and Hawkeye
can maintain good inference efficiency while reducing the FNRs.

5.4 Convergence Analysis of Hawkeye
As illustrated in Figure 4, we study the efficacy of Hawkeye. We
analyze the convergence patterns of training losses for two strong
Video-LLMs (Video Chat and Video LLaVA), Hawkeye and its vari-
ant without specific components over various training steps. From
this figure, you can see that: 1) Hawkeye demonstrates the fastest
convergence compared to Video Chat and Video-LLaVA. At the
convergence inflection point, the loss of Hawkeye is 1.05, while
Video-LLaVA is 2.06. This underscores the high efficiency of Hawk-
eye over other strong Video-LLMs, which hints at the potential of
Hawkeye for quicker training times and less resource utilization,
thereby augmenting its practical utility in real-world applications.
2) Hawkeye demonstrates the fastest convergence compared to
its variant without specific components. This justifies that the two
types of scene information along with B-H MoE can accelerate the
convergence process, which further encourages us to consider the
scene information in the IasDig task. 3) Hawkeye demonstrates
faster convergence compared to w/o Pre-tuning, whose loss is 4.1
at the convergence inflection point. This justifies the importance
of scene understanding before IasDig tuning and encourages us to
consider using more high quality datasets for scene understanding
before tuning Hawkeye on the IasDig datasets.

5.5 Qualitative Analysis
As shown in Figure 5, we visualize and compare the performance of
Hawkeye with other Video-LLMs. We randomly select two samples
from each of the S-S and S-D dataset and ask these approaches to
“Determine the start and end time of implicit anomalous sentiments”.
From this figure you can see that: 1) Predicting implicit anomalous
segments is challenging. For instance, Figure 5 (b) captures a seg-
ment from the 5-th to the 8-th second where a man appears to be
abusing a pet dog with a stick. Identifying his abusive behavior is

··· ···

0s 5s 8s

Instruction: Determine the start and end time of implicit anomalous sentiments.

··· ···

0s 7s 13s

Rank Method Answer A.Score

Hawkeye 7~13s 0.95

Video Chat 9~13s 0.91

PandaGPT 9.5~12s 0.86

4 Video-LLaVA 8~10s 0.8

5 Valley 11.5~13s 0.73

6 Video ChatGPT 4~8s 0.65

7 Chat-UniVi 7~7.5s 0.6

8 mPLUG-Owl 4~7s 0.53

Ground TruthGround Truth

(a) (b)

Rank Method Answer A.Score

Hawkeye 5~8s 0.97

mPLUG-Owl 4~8s 0.88

Video Chat 4~6s 0.81

4 Valley 4.5~5.5s 0.78

5 PandaGPT 4~5.2s 0.7

6 Video-LLaVA 4~5s 0.64

7 Video-ChatGPT 1~3s 0.58

8 Chat-UniVi 0~2s 0.52

Figure 5: Two samples to compareHawkeyewith other Video-
LLMs, where A.Score means Anomaly Score.

particularly challenging, necessitating the assessment of sentiments
based purely on actions. 2) Compared to other well-performing
Video-LLMs, Hawkeye excels in either accuracy or predictive cov-
erage when it comes to locating segments with implicit anomalous
sentiments. In Figure 5 (a), Hawkeye excels Video Chat in predictive
coverage and in (b), it excels mPLUG-Owl in accuracy. The anomaly
score of Hawkeye is also the highest. This further demonstrates the
effectiveness of Hawkeye in precisely locating implicit anomalous
segments in recon-videos.

6 Conclusion
In this paper, we propose a new and challenging task, Implicit
anomalous sentiment Discovering and grounding (IasDig), poised
to significantly contribute to future research in video anomalous
sentiment discovering and grounding. The advanced method Hawk-
eye is presented to enhance anomalous sentiment identification in
recon-videos by leveraging the implicit scene information, with
potential applications in maintaining social order, national defense
security, etc. The core concept of Hawkeye involves utilizing two
modules, the Graph-structered Scene Modeling Module and the
Balanced Heterogeneous MoE Module to effectively model and
balance the action and object relations information. Experimental
results on our constructed scene-sparsity and scene-density IasDig
datasets demonstrate the superior performance of Hawkeye over
several advanced Video-LLMs. In our future work, we would like
to introduce more scene information in videos (e.g., videos style
and video-evolved events information) to further boost implicit
anomalous sentiment identification. In addition, as shown in Ta-
ble 1, the inference time is still expensive and encourages us to
leverage some light-weighting technologies (e.g., LLM distillation
and compression) to further improve the inference speed of our
Hawkeye model.
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