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Abstract

Lowering the numerical precision of model pa-
rameters and computations is widely adopted
to improve the efficiency of retrieval systems.
However, when computing relevance scores
between the query and documents in low-
precision, we observe spurious ties due to the re-
duced granularity. This introduces high variabil-
ity in the results based on tie resolution, mak-
ing the evaluation less reliable. To address this,
we propose a more robust retrieval evaluation
protocol designed to reduce score variation. It
consists of: (1) High-Precision Scoring (HPS),
which upcasts the final scoring step to higher
precision to resolve tied candidates with mini-
mal computational cost; and (2) Tie-aware Re-
trieval Metrics (TRM), which report expected
scores, range, and bias to quantify order uncer-
tainty of tied candidates. Our experiments test
multiple models with three scoring functions
on two retrieval datasets to demonstrate that
HPS dramatically reduces tie-induced instabil-
ity, and TRM accurately recovers expected met-
ric values. This combination enables a more
consistent and reliable evaluation system for
lower-precision retrievals. !

1 Introduction

Recent studies on low-precision techniques have
been widely explored (e.g., quantization and com-
pression) to enhance the efficiency and scalability
of neural networks while reducing computational
cost (Nagel et al.; Kurtic et al., 2024; Zhu et al.,
2024; Hao et al., 2025). Without sacrificing perfor-
mance, these methods aim to lower the numerical
precision of model weights, gradients, and activa-
tions in training and inference, along with the re-
trieval stage (Choi et al., 2024; Lee et al., 2025)
of retrieval-augmented generation (RAG) (Wang
et al., 2024; Zhang et al., 2024, 2025). To gener-
ate informative responses, retrieving accurate can-
didates is crucial; otherwise, the following stages

IThe source code will be available after the review period.
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Figure 1: Example of tie-induced instability in evalua-
tion metric. Three documents share the same score (G,);
two of them are relevant to the query. A tie-oblivious
evaluation arbitrarily breaks the tie, so the reported R@3
depends on a random internal ordering. Instead, the
tie-aware formulation deterministically reports the ex-
pectation over all permutations within the tie.

may be negatively affected and result in incoher-
ent outputs (Chen et al., 2024b; Yadav et al., 2024;
Sharma, 2025).

In neural retrieval systems, however, lowering
numerical precision (e.g, FP32 to FP16) inevitably
reduces the granularity of representable floating
point numbers (Shen et al., 2024; Hu et al., 2025)
(see Appendix A); this coarser grid produces spu-
rious ties among candidates by forcing many dis-
tinct relevance scores to quantize to the same value.
Though resolving this issue can significantly affect
evaluation scores (Figure 1), current mainstream
retrieval evaluation systems (e.g., MTEB? (Muen-
nighoff et al., 2023)) do not provide any principled
mechanism for handling ties. Instead, they truncate
the ranked list based on an arbitrary order (e.g., doc-
ument IDs), which increases variances in results.

Thus, we propose a reliable evaluation protocol
for low-precision retrieval. It is composed of (1)
High-Precision Scoring (HPS) and (2) Tie-aware
Retrieval Metrics (TRM). HPS upcasts the last scor-
ing function into higher precision, to collapse spuri-
ous ties (§ 2.2). TRM is an expectation-based evalu-
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ation augmented with extrema (i.e., maximum and
minimum achievable scores) to quantify the order
uncertainty of tied candidates (§ 2.3).

In our experiments, we demonstrate that evalu-
ating low-precision models using conventional tie-
oblivious metrics leads to misleading outcomes as
shown in Figure 1. Adopting HPS significantly re-
duces score range variability, reducing MRR @10
range by 36.82%p. Meanwhile, TRM exposes bi-
ases inherent in tie-oblivious metrics, highlighting
systematic overestimation by up to +9.08%p in
BF16 evaluations. By contrast, our combined ap-
proach recovers near-FP32 stability and ordering,
offering a consistent and discriminative framework
for evaluating retrieval models in low-precision set-
tings.

2 Reliable Evaluation Protocol

We first formalize the vulnerability of the current
tie-oblivious evaluation, and then present High-
Precision Scoring and Tie-aware Retrieval Metric.
(See Appendix A for preliminaries.)

2.1 Spurious Ties in Low-Precision Evaluation

Let z denote the output of the linear layer after
the last hidden state A. If the scoring function ¢ is
softmax or sigmoid, then the cross-encoder takes
the concatenated query and i-document pair (g; d;)
as input and produces the logits z;: two scalar val-
ues for softmax, or a single scalar value for sig-
moid. If ¢ is a pairwise product, z; denotes the pair
of embeddings (h,, h, ) obtained by encoding the
query g and the document d; independently with
a bi-encoder. We denote the query-document rele-
vance score §; as:

5 =¢P(z) (1)

where ¢ indicates that ¢ is operated entirely in a
B-bit mantissa format.

Applied with low-precision inference (e.g.,
BF16 (Burgess et al., 2019), FP16, etc), this maps
theoretically continuous values onto a discrete set
of representable scores; distinct true scores may
collide: §; = § ; even with z; # z s creating a tie.
After sorting by §, we obtain ordered tie groups G,
consisting of scores s; equivalent to v,

Gn = {i | gi = Vn}’ (2)

If the relevant document at cutoff rank k falls
inside a tie group G, where |G, | > 2, Any evalua-
tion that disregards ties (tie-oblivious) may become

stochastic and yield unpredictable results, as shown
in Figure 1.

2.2 High-Precision Scoring (HPS)

Scoring functions such as softmax, sigmoid, and
pairwise product compress logits into a narrow
range. This effect is exacerbated under lower-
precision formats due to fewer representable values
resulting in coarser bucketization in (0, 1) range
(See examples in Appendix B).

For lower-precision models, HPS upcasts only
the final scoring operation to FP32, leaving other
layers unchanged. Concretely we replace the low-
precision scoring function (Equation 1) with a
higher-precision scoring function:

§; = ¢(upcast(z,)), 3)

and retain a more fine-grained score §; for docu-
ment candidate sorting. This significantly reduces
the probability of tie collisions while preserving
latency, since only a small logits tensor is upcast,
requiring no re-training.

Advantages. HPS (i) leaves the forward pass in-
tact and upcasts logits right before scoring, (ii)
adds negligible memory and time overhead, (iii)
collapses large tie groups, and (iv) restores align-
ment with deterministic, high-precision production
sorting.

2.3 Tie-aware Retrieval Metric (TRM)

Existing tie-oblivious evaluation methods truncate
the sorted list after a predefined cutoff k. If multiple
candidates receive the same score, they are ordered
arbitrarily before truncation, affecting which items
are included in the top-k set. As a result, the evalu-
ation results may vary depending on how ties are
resolved as illustrated in Figure 1. To mitigate this
problem, TRM supplies exact expectations, range,
and a bias.

Expected Score. Let G;,...,G, be the tie
groups sorted in descending order, where each
group G, has |G, | items and r, relevant items to the
given query. To mitigate the random ordering in tie
groups, we propose reporting expected values for
evaluation E[ M| where M denotes an evaluation
metric. This score averages the performance val-
ues across all possible result orderings and removes
simulation variance. Since generating result permu-
tations requires super-exponential time, we utilize
closed-form expressions for calculating expectation



FP32 BF16 BF16 — FP32(+HPS)
Models —_—
M M,, [E[M] Range(v) Bias(v) M,, [E[M] Range(v) Bias(v)
MIRACLReranking, M = nDCG@10
Qwen3-Reranker-0.6B* 73.53  75.04 68.38 25.59 6.66 73.59 73.35 1.13 0.24
bge-reranker-v2-m3° 74.61 7559 74.54 3.90 1.05 74.63  74.57 0.16 0.06
gte-multilingual-reranker-base® 74.14 74.48 74.22 0.97 0.26 7439 7434 0.14 0.05
Qwen3-Embedding-0.6B* 63.94 6452 63.98 1.90 0.54 64.01 64.01 0.00 0.00
multilingual-e5-large-large® 64.78 6570 64.81 4.62 0.89 64.80 64.80 0.00 0.00
MIRACLReranking, M = MRR@10
Qwen3-Reranker-0.6B* 7748 7845 69.37 38.03 9.08 7743 77.22 1.21 0.21
bge-reranker-v2-m3° 79.58 80.68 79.17 6.72 1.51 79.66  79.56 0.19 0.10
gte-multilingual-reranker-base® 79.39 79.75 79.47 0.85 0.28 79.59 79.52 0.18 0.07
Qwen3-Embedding-0.6B* 68.97 69.54 6891 223 0.63 69.02  69.02 0.00 0.00
multilingual-e5-large-large® 7137 71.84 71.28 4.61 0.56 71.18  71.18 0.00 0.00
AskUbuntuDupQuestions, M = M AP@3

Qwen3-Reranker-0.6B* 31.20 33.28 31.13 4.03 2.15 31.58 31.29 0.57 0.29
bge-reranker-v2-m3° 3191 3226 31.83 0.83 0.43 31.89 31.84 0.09 0.05
gte-multilingual-reranker-base® 30.83 31.23 30.75 0.93 0.48 30.69 30.67 0.03 0.02
Qwen3-Embedding-0.6B* 29.54  30.10 29.65 0.87 0.45 29.69  29.69 0.00 0.00
multilingual-e5-large-large® 29.13 3131 2947 3.54 1.84 29.70  29.70 0.00 0.00

Table 1: Results using metric M with its tie-oblivious version (M ), expectation (E[M]), range (M, — M ;). and
bias (M — E[M]) on MIRACLEReranking (nDCG@ 10 and MRR @ 10) and AskUbuntuDupQuestions (MAP@3)
under three precision regimes, full FP32, BF16, and BF16—FP32 (with High-Precision Scoring). In full FP32 we
empirically observe M, = E[M] with zero range and bias, so only M is shown. &, ¢ and & indicate softmax,
sigmoid and pairwise product, respectively. Lower range and |bias| scores represent better stablility.

values (McSherry and Najork, 2008). Explicit for-
mulas are presented in Appendix C; the linear time
complexity analysis is in Appendix D.

Score Range. M, places the query-relevant
items in each partially included tie group as early
as possible; M ;. as late as possible.

Range(M) = M, — M ;.. “4)

Range(M) quantifies uncertainty due solely to unre-
solved internal orderings. A smaller range indicates
that results are more stable and reliable.

Score Bias. Let M, denote the tie-oblivious
metric obtained using the original implementation’s
fixed (typically index-preserving) ordering. We de-
fine the score bias as

Bias(M) = M, — E[M]. 5)

A large positive bias implies that M, does not
reliably estimate the expected positive values, in-
dicating overestimation of results, while negative
values indicate underestimation.

Reporting Protocol. For each cutoff k (or full
ranking if required), we propose to report the ex-
pectation value and the range of score variance:

(6)

optionally reporting the tie-oblivious value M,
discrepancy Bias(M), the extrema M, and M ;..

(E[M], Range(M)),

Models ') Size
Qwen3-Reranker-0.6B (Zhang et al., 2025) Softmax* 596M
bge-reranker-v2-m3 (Chen et al., 2024a) Sigmoid®  568M
gte-multilingual-reranker-base (Zhang et al., 2024)  Sigmoid®  306M
Qwen3-Embedding-@. 6B (Zhang et al., 2025) Product®  596M
multilingual-e5-large (Wang et al., 2024) Product®  560M

Table 2: Models used in our experiments and their cor-
responding scoring function and size.

With expectation and range values, our proposed
reporting protocol enables more reliable evaluation.

3 Experiments

We evaluate to what degree our proposed evaluation
protocol exposes and corrects reliability failures of
existing tie-oblivious evaluation.

3.1 Experimental Setting

More detailed explanations of experimental settings
and implementation are presented in Appendix E

Models We cover five models widely used in
reranking and embedding with three prevalent scor-
ing functions: Softmax®, sigmoid®, and pairwise
product® as in Table 2.

Evaluation Metric We evaluate the standard
ranking metrics nDCG (Jirvelin and Kekildinen,
2002), MRR (VOORHEES, 2000), MAP (Salton,
1983), and Recall.?

3Results for all metrics are deferred to Appendix F.



Datasets We utilize two publicly available
datasets, MIRACLReranking (Zhang et al., 2023)
and AskUbuntuDupQuestions (Lei et al., 2016)
that each supplies a fixed set of candidates per
query. This enables us to assess the second-stage
reranker or retriever independent of effects from
the first-stage retriever.

3.2 Results

Spurious Ties in Low-Precision Evaluation.
When using fully BF16, the results display
significant uncertainty as shown in Table 1.
Qwen3-Reranker model with softmax® shows the
highest variation — 25.59%p in nDCG@10 and
38.03%p in MRR @ 10. Models using sigmoid® and
pairwise product® also exhibit instability to a lesser
extent. These ranges exceed the margins typically
used to distinguish model superiority.

Crucially, a striking decision error appears.
Under the BF16 and nDCG®@10,,, evaluation,
Qwen3-Reranker seems to beat gte (75.04 >
74.48). However, tie-aware metric E[nDCG@10]
flips the ranking (68.38 < 74.22), and our pro-
posed protocol (HPS + TRM) confirms the reversal
(73.35 < 74.34) within a narrow range, rendering
the naive evaluation rankings unreliable.

Albeit bias can be positive or negative, all BF16
biases are positive, implying that tie-oblivious M,
is overestimated (up to +9.08%p). This positive
trend is likely a result of errors in dataset construc-
tion, coupled with deterministic tie-breaking, as the
positive items are more consistently placed earlier
in the dataset to create preferential tie groups.

High-Precision with Low-Cost. High precision
scoring (HPS) collapses the large tie groups while
keeping the bulk of computation in BF16. Softmax
ranges shrink from 25.59 to 1.13%p at nDCG@ 10
and from 38.03 to 1.21%p at MRR@10; sigmoid®
model ranges drop roughly an order of magnitude
(e.g.,3.90 to 0.16%p in nDCG @ 10); pairwise prod-
uct models become perfectly deterministic (range
= bias = 0). The remaining softmax residual range
(~ 1%p) lies within ordinary inter-model differ-
ences, making rank reversals highly unlikely.

Compared to fully FP32 inference (stable but
computationally costlier), HPS recovers near-FP32
stability and ordering with negligible overhead.
Hence, pure low-precision scoring erodes evalu-
ation reliability, and adopting our protocol, HPS
with reporting (E[ M ], Range), restores precise and
discriminative comparisons.
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90 90
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Figure 2: Tie-oblivious and expectation scores of nDCG
and MRR at k of Qwen3-Reranker-0.6B* model when
scored with each dtype on MIRACLReranking.

Impact of Precision across Cutoffs. Figure 2
shows nDCG and MRR metrics across various k-
rank cutoffs, illustrating increased variance ranges
and biases under lower-precision computations.
Consistent with our observations in Appendix A,
the BF 16 inference displays significant fluctuations
and uncertainty (wide shaded areas), whereas FP16
demonstrates intermediate stability, and FP32 offers
empirically stable results with negligible ties. This
reflects the coarser bucketization induced by fewer
mantissa bits in lower-precision formats (BF16 <«
FP16 < FP32).

Notably, under M, the BF16 curves surpass the
FP32 baseline at every cutoff. Such results would in-
correctly indicate better performance, highlighting
the unreliability of tie-oblivious evaluation due to
reduced precision. Conversely, the tie-aware expec-
tation E[ M ] consistently places BF16 below FP32,
accurately reflecting the true model performance,
shown in Appendix F.

4 Conclusion

We demonstrate that current retrieval evaluations
under low-precision settings overlook tied candi-
dates, resulting in unstable outcomes. To address
this, we proposed two concise yet effective reme-
dies: High-Precision Scoring (HPS) and Tie-aware
Retrieval Metrics (TRM). HPS upcasts the final
scoring function to collapse spurious ties with neg-
ligible cost, and TRM reports the expectation value
of scores with range and bias. Our proposed com-
bination mitigates spurious ties across precision
formats and provides a more reliable alternative
to previous naive methods. Our method enables
more stable document retrieval in tasks such as
retrieval augmented generation (RAG), while pre-
serving the efficiency and memory savings offered
by low-precision models.



Limitations

Our remedy targets the inference stage and does
not explore how low-precision training influences
ranking stability, nor whether mixed-precision train-
ing combined with HPS inference yields further
gains. Finally, TRM’s outputs, expectations with
ranges, are richer than single scalars, yet we have
not conducted user-centered studies to assess their
interpretability in practical evaluation pipelines.

References

Neil Burgess, Jelena Milanovic, Nigel Stephens, Kon-
stantinos Monachopoulos, and David Mansell. 2019.
Bfloat16 processing for neural networks. In 2079
IEEE 26th Symposium on Computer Arithmetic
(ARITH), pages 88-91. IEEE.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024a. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Weijie Chen, Ting Bai, Jinbo Su, Jian Luan, Wei Liu,
and Chuan Shi. 2024b. Kg-retriever: Efficient knowl-
edge indexing for retrieval-augmented large language
models. CoRR.

Chanyeol Choi, Junseong Kim, Seolhwa Lee, Jihoon
Kwon, Sangmo Gu, Yejin Kim, Minkyung Cho, and
Jy-yong Sohn. 2024. Ling-embed-mistral technical
report. arXiv preprint arXiv:2412.03223.

Zhiwei Hao, Jianyuan Guo, Li Shen, Yong Luo, Han
Hu, Guoxia Wang, Dianhai Yu, Yonggang Wen, and
Dacheng Tao. 2025. Low-precision training of large
language models: Methods, challenges, and opportu-
nities. arXiv preprint arXiv:2505.01043.

Weiming Hu, Haoyan Zhang, Cong Guo, Yu Feng,
Renyang Guan, Zhendong Hua, Zihan Liu, Yue Guan,
Minyi Guo, and Jingwen Leng. 2025. M-ant: Efficient
low-bit group quantization for llms via mathemati-
cally adaptive numerical type. In 2025 IEEE Interna-
tional Symposium on High Performance Computer
Architecture (HPCA), pages 1112-1126. IEEE.

Kalervo Jéarvelin and Jaana Kekildinen. 2002. Cu-
mulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS),
20(4):422-446.

Eldar Kurtic, Alexandre Marques, Shubhra Pandit, Mark
Kurtz, and Dan Alistarh. 2024. " give me bf16 or give
me death"? accuracy-performance trade-offs in llm
quantization. arXiv preprint arXiv:2411.02355.

Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Mad-
huri Shanbhogue, Iftekhar Naim, Gustavo Hernandez
Abrego, Zhe Li, Kaifeng Chen, Henrique Schechter

Vera, and 1 others. 2025. Gemini embedding: Gen-
eralizable embeddings from gemini. arXiv preprint
arXiv:2503.07891.

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi
Jaakkola, Kateryna Tymoshenko, Alessandro Mos-
chitti, and Lluis Marquez. 2016. Semi-supervised
question retrieval with gated convolutions. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1279-1289.

Frank McSherry and Marc Najork. 2008. Computing in-
formation retrieval performance measures efficiently
in the presence of tied scores. In European conference
on information retrieval, pages 414-421. Springer.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. Mteb: Massive text embedding
benchmark. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 2014-2037.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad,
Yelysei Bondarenko, Mart van Baalen, and Tijmen
Blankevoort. A white paper on neural network quanti-
zation. arxiv 2021. arXiv preprint arXiv:2106.08295,
4.

Gerard Salton. 1983. Modern information retrieval. (No
Title).

Chaitanya Sharma. 2025. Retrieval-augmented gener-
ation: A comprehensive survey of architectures, en-
hancements, and robustness frontiers. arXiv preprint
arXiv:2506.00054.

Haihao Shen, Naveen Mellempudi, Xin He, Qun Gao,
Chang Wang, and Mengni Wang. 2024. Efficient post-
training quantization with fp8 formats. Proceedings
of Machine Learning and Systems, 6:483-498.

EM VOORHEES. 2000. The trec-8 question answering
track report. In Proc. Eighth Text REtrieval Confer-
ence (TREC-8), NIST Special Publication 500-246,
pages 77-82.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Multilin-
gual e5 text embeddings: A technical report. arXiv
preprint arXiv:2402.05672.

Wikipedia contributors. 2025. Bfloat16 floating-point
format.

Neemesh Yadav, Sarah Masud, Vikram Goyal, Md Shad
Akhtar, and Tanmoy Chakraborty. 2024. Tox-bart:
Leveraging toxicity attributes for explanation genera-
tion of implicit hate speech. In ACL (Findings).

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie,
Ziqi Dai, Jialong Tang, Huan Lin, Baosong Yang,
Pengjun Xie, Fei Huang, and 1 others. 2024. mgte:
Generalized long-context text representation and
reranking models for multilingual text retrieval. In


https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: Industry
Track, pages 1393-1412.

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo,
Ehsan Kamalloo, David Alfonso-Hermelo, Xi-
aoguang Li, Qun Liu, Mehdi Rezagholizadeh, and
Jimmy Lin. 2023. Miracl: A multilingual retrieval
dataset covering 18 diverse languages. Transactions
of the Association for Computational Linguistics,
11:1114-1131.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang,
Huan Lin, Baosong Yang, Pengjun Xie, An Yang,
Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren
Zhou. 2025. Qwen3 embedding: Advancing text em-
bedding and reranking through foundation models.
arXiv preprint arXiv:2506.05176.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping
Wang. 2024. A survey on model compression for
large language models. Transactions of the Associa-
tion for Computational Linguistics, 12:1556-1577.



A Preliminaries

16-bit float

sign exponent (5-bit) mantissa (10-bit)
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bfloat16
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Figure 3: Bit layouts of FP16, BF16, and FP32 formats
(Wikipedia contributors, 2025)

Floating-Point Value A floating-point value is
a way to represent numbers in computer systems,
and typically encoded as three fields—sign, expo-
nent, and mantissa (also called the fraction)—as
illustrated in Figure 3. The exponent determines
the dynamic range, the largest and smallest magni-
tudes that can be represented, whereas the mantissa
governs the precision attainable within that range.
Since a shorter mantissa implies coarser quantiza-
tion, multiple real numbers inevitably collapse into
the same representable bin, producing tied values.

After the common 1-bit sign, FP16 allocates 5
exponent bits and 10 mantissa bits, BF16 uses 8
and 7 bits respectively, and FP32 retains 8 exponent
bits alongside a much longer 23-bit mantissa. By
preserving the full 8-bit exponent of FP32, BF16
inherits the same dynamic range as single precision,
which is widely credited with stabilizing training
and thereby aiding generalization.

However, when outputs are confined to the range
(0, I)—as with the probabilities emitted by soft-
max or sigmoid scoring functions—the short 7-bit
mantissa of BF16, and to a lesser extent the 10-bit
mantissa of FP16, sharply reduces resolution. This
loss of granularity, particularly severe in BF16, ex-
acerbates the tied-score phenomenon and makes it
difficult to distinguish among retrieval candidates
that quantize to identical values.

B Examples of Relevance Scores

The example lists below show raw relevance scores
for the first query of the MIRACLReranking
test split produced by the Qwen3-Reranker-90.6B
model where relevant values for the given are in
bold. The first list (scores_bf16) is obtained with
both the model and scoring function executed en-
tirely in BF 16, while the second (scores_hps) ap-
plies High Precision Scoring (HPS). Tie group sizes
shrink considerably under HPS.

scores_bf16 = [

1. , 1. , 1. , 1. , 1. ,

1. , 1. , 1. , 1. , 1. ’

0.99609375, 0.99609375, 0.99609375, 0.99609375, 0.99609375,
0.99609375, 0.99609375, ©0.99609375, ©.99609375, ©.99609375,
0.99609375, 0.99609375, ©0.99609375, ©0.99609375, 0.99609375,
0.99609375, 0.99609375, ©0.99609375, ©.99609375, 0.99218750,
0.99218750, 0.99218750, ©0.99218750, ©.99218750, ©.99218750,
0.99218750, 0.99218750, ©.99218750, ©.99218750, ©.99218750,
0.99218750, 0.99218750, ©0.98828125, ©.98828125, 0.98828125,
0.98828125, 0.98828125, ©0.98828125, ©0.98828125, 0.98437500,
0.98437500, 0.98046875, ©0.97656250, ©.97656250, ©.97265625,
0.96875000, ©.96875000, 0.96875000, ©.96875000, ©.96875000,
0.96875000, 0.96093750, ©0.96093750, ©.96093750, ©.96093750,
0.95703125, ©.95703125, 0.95703125, 0.95703125, ©.95703125,
0.95312500, 0.95312500, ©0.94921875, ©.94921875, ©0.94531250,
0.94531250, 0.94531250, ©0.94140625, ©0.94140625, ©.93359375,
0.92578125, 0.92578125, ©.91796875, ©.91406250, ©0.88671875,
0.88671875, 0.87890625, 0.87890625, ©0.87500000, 0.86718750,
0.77734375, 0.60937500, ©0.51562500, ©.46875000, ©.34960938,
0.30664062, ©0.28125000, 0.17285156, ©.08496094, 0.02441406,
]
scores_hps = [

0.99948066, ©0.99933332, ©.99929035, ©.99919587, 0.99914408,
0.99883050, 0.99883050, ©0.99875510, ©.99858958, ©.99829930,
0.99767691, 0.99767691, ©0.99752742, ©.99752742, 0.99736834,
0.99719906, ©0.99719906, ©0.99701905, ©.99682730, 0.99662340,
0.99662340, 0.99592990, 0.99566853, ©0.99566853, 0.99509466,
0.99509466, 0.99477994, 0.99444515, ©.99444515, 0.99408901,
0.99408901, 0.99408901, ©.99330717, ©.99330717, ©.99330717,
0.99242276, ©.99142247, ©.99142247, 0.99142247, ©.99087441,
0.99087441, 0.99029154, ©0.98967183, @.98901308, 0.98901308,
0.98901308, ©0.98831278, ©0.98831278, ©0.98756832, 0.98593640,
0.98409361, 0.98201376, ©0.97838473, ©.97702265, ©.97404259,
0.97068775, ©.96885622, 0.96885622, 0.96885622, ©.96691406,
0.96691406, 0.96267307, ©0.96036118, ©.96036118, ©0.96036118,
0.95791227, ©.95791227, ©.95791227, ©.95791227, 0.95531917,
0.95257413, 0.95257413, 0.94966936, ©0.94966936, ©0.94659668,
0.94659668, 0.94659668, ©.93991333, 0.93991333, 0.93245327,
0.92414182, 0.92414182, 0.91964257, ©.91490096, ©0.88720459,
0.88720459, 0.88079703, 0.88079703, ©0.87407720, 0.86703575,
Q.77729988, ©.60766321, ©.51561993, 0.46879065, ©0.34864515,
0.30735803, 0.28140560, 0.17328820, ©.08509904, 0.02442309,
]

C Closed-form Expectations

Let the tie groups be Gy, ..., Gy in descending
score order. Each group G, has size |G, | and r,, rel-
evant items (0 < r, < |G, |). Define the per-group



relevance probability

— (N

and the cumulative size

=D 1G,l,

m<n

Co = 0. (8)

For a cutoff rank k, the number of items from group
G, that appear within the top-k list is

t, =max{0, min(|G,|, k —c,_)}.  (9)

Count-based Metrics
With N, =) r,

E[Hits@kl = ) p,t,, (10)
n:t,>0
t
E[Recall@k] = M, (11)
N+
t
E[Precision@k] = ZTP (12)
2 t
E[F1@k] = M. (13)
k+ N,
nDCG
. . . . _ 1
With binary gains and weights w, = Tog D)’
fine
b
W (a, b) = Z w,. (14)
r=a
Then

E[DCG@kl = ' p, W (e, +1, ¢,y +1,),

n:t,>0
(15)
min(N, k)
IDCG@k= ) w, (16)
r=1
E[nDCG@k] = M' a7
IDCG@k

Reciprocal Rank

Let n* = min{n | r, > 0} be the first group con-
taining a relevant item and (z“) be the binomial

coefficient. If k < ¢,._; then [E[hRR@k] = 0; other-
wise

u=min(|Gx| -1, k—cp_1—1) (18)

rp=cCpoti+1 (19)

, @) (20)
t
A= @1
' |Gn* I
E[RR@K] =)' L (22)
r
=0 1

Average Precision

Forrankr =¢,_ +1+ 1 with0 <t <1, in group

G,
A, =R, +1+1¢ — (23)
nt — -1 |G | _ 1
D,,=c, +1+1, (24)
where R,_; = Y, _, 'n- The expected AP@k is
t,~1
E[AP@k] = — Z Z (25)

+nr>010

D Time Complexity

Let the ranked list for one query contain L candi-
date documents and let the evaluation cutoff be k.
The list is partitioned into N tie groups Gy, ..., Gy
of sizes |G|, ...,|Gy| with T |G,| = L. All
complexities below are per query.

High-Precision Scoring (HPS). Only the final
logits are upcast to FP32 and passed once through
a scoring function ¢, so the time cost is O(L) with
negligible extra memory.

Tie-aware Metrics (TRM). All computations
occur after sorting, so no additional log L factor is
introduced. (i) A single left-to-right scan gathers the
pairs (|G, |, r,) for every tie group in O(L) where
r, refers to the number of relevant items in the n-
th tie group G,,. (ii) Closed-form expressions let
nDCG, MAP, Recall, Precision, and F1 be evaluated
in O(min{k, N }) time. (iii) MRR examines only
the first tie group containing a relevant document,
costing O(|Gj* |) < O(k) where j* is the index of
the tie group that includes the first relevant item.
(iv) Max, min, and range scores need only the tie
group that straddles rank k, again O(k).

In total TRM adds at most O(k + N) C O(L)
lightweight arithmetic per query, far below the cost
of the forward pass or initial sort, while providing
tie-robust evaluation.



E Experimental Settings

E.1 Implementation Details

We use a maximum input length of 4,096 tokens*
and a batch size of 16°. All models are run under
three data types: BF16, FP16, and FP32. HPS is im-
plemented by upcasting the final scoring operation
to FP32. Baseline tie-oblivious scores rely on the
framework’s predefined index order inside ties. In
contrast, tie-aware expectations and extrema are
computed with TRM (Section 2.3).

E.2 Datasets

MIRACLReranking We adopt the English sub-
set of the MIRACLReranking test split (Zhang
et al., 2023), derived from an open-domain
Wikipedia. After discarding queries without a rel-
evant passage, 717 of the original 799 queries re-
main; each with exactly 100 candidate passages (~
2.9 relevant passages on average).

AskUbuntuDupQuestions For evaluation, each
query is a concise AskUbuntuDupQuestions (Lei
et al., 2016) question with at least one manually
annotated duplicate. The test split contains 375
queries, each accompanied by 20 candidate ques-
tions (= 6 true duplicates on average).

4Only multilingual-e5-1large is truncated to 512 tokens
due to its length constraints.

SBatch size affects the representations produced by
low-precision inference, even with identical inputs.



F Full Experimental Results

We present the detailed experimental results for both datasets in Figure 4 and 5. We attach results for
Qwen3-Reranker-0.6B, which is known as the state-of-the-art in general text retrieval tasks. Panels
(a)-(d) report nDCG, MRR, MAP, and Recall. Each marker shows the tie-oblivious score M, (X) and
the tie-aware expectation E[ M ] (@). The legend entry indicates the data types of the model and scoring
function, respectively. For example, BF16_FP32 denotes that the model operates in BF 16 precision, while
the scoring function is upcast to FP32, corresponding to the HPS setting.
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Figure 4: Metric scores for cutoff k of Qwen3-Reranker-0.6B on MIRACLReranking dataset.
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Qwen3-Reranker on AskUbuntuDupQuestions

Qwen3-Reranker on AskUbuntuDupQuestions
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Figure 5: Metric scores for cutoff k of Qwen3-Reranker-0.6B on AskUbuntuDupQuestions dataset. In this dataset,
all tie-oblivious metrics attain their maximum possible value (being overestimated) because, during candidate
construction, every relevant item is concatenated ahead of all non-relevant ones.?

®https://github.com/embeddings-benchmark/mteb/blob/1.38.38/mteb/evaluation/evaluators/

RerankingEvaluator.py#L175
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