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Abstract001

Lowering the numerical precision of model pa-002
rameters and computations is widely adopted003
to improve the efficiency of retrieval systems.004
However, when computing relevance scores005
between the query and documents in low-006
precision, we observe spurious ties due to the re-007
duced granularity. This introduces high variabil-008
ity in the results based on tie resolution, mak-009
ing the evaluation less reliable. To address this,010
we propose a more robust retrieval evaluation011
protocol designed to reduce score variation. It012
consists of: (1) High-Precision Scoring (HPS),013
which upcasts the final scoring step to higher014
precision to resolve tied candidates with mini-015
mal computational cost; and (2) Tie-aware Re-016
trieval Metrics (TRM), which report expected017
scores, range, and bias to quantify order uncer-018
tainty of tied candidates. Our experiments test019
multiple models with three scoring functions020
on two retrieval datasets to demonstrate that021
HPS dramatically reduces tie-induced instabil-022
ity, and TRM accurately recovers expected met-023
ric values. This combination enables a more024
consistent and reliable evaluation system for025
lower-precision retrievals.1026

1 Introduction027

Recent studies on low-precision techniques have028

been widely explored (e.g., quantization and com-029

pression) to enhance the efficiency and scalability030

of neural networks while reducing computational031

cost (Nagel et al.; Kurtic et al., 2024; Zhu et al.,032

2024; Hao et al., 2025). Without sacrificing perfor-033

mance, these methods aim to lower the numerical034

precision of model weights, gradients, and activa-035

tions in training and inference, along with the re-036

trieval stage (Choi et al., 2024; Lee et al., 2025)037

of retrieval-augmented generation (RAG) (Wang038

et al., 2024; Zhang et al., 2024, 2025). To gener-039

ate informative responses, retrieving accurate can-040

didates is crucial; otherwise, the following stages041

1The source code will be available after the review period.

Figure 1: Example of tie-induced instability in evalua-
tion metric. Three documents share the same score (𝐺2);
two of them are relevant to the query. A tie-oblivious
evaluation arbitrarily breaks the tie, so the reported R@3
depends on a random internal ordering. Instead, the
tie-aware formulation deterministically reports the ex-
pectation over all permutations within the tie.

may be negatively affected and result in incoher- 042

ent outputs (Chen et al., 2024b; Yadav et al., 2024; 043

Sharma, 2025). 044

In neural retrieval systems, however, lowering 045

numerical precision (e.g, FP32 to FP16) inevitably 046

reduces the granularity of representable floating 047

point numbers (Shen et al., 2024; Hu et al., 2025) 048

(see Appendix A); this coarser grid produces spu- 049

rious ties among candidates by forcing many dis- 050

tinct relevance scores to quantize to the same value. 051

Though resolving this issue can significantly affect 052

evaluation scores (Figure 1), current mainstream 053

retrieval evaluation systems (e.g., MTEB2 (Muen- 054

nighoff et al., 2023)) do not provide any principled 055

mechanism for handling ties. Instead, they truncate 056

the ranked list based on an arbitrary order (e.g., doc- 057

ument IDs), which increases variances in results. 058

Thus, we propose a reliable evaluation protocol 059

for low-precision retrieval. It is composed of (1) 060

High-Precision Scoring (HPS) and (2) Tie-aware 061

Retrieval Metrics (TRM). HPS upcasts the last scor- 062

ing function into higher precision, to collapse spuri- 063

ous ties (§ 2.2). TRM is an expectation-based evalu- 064

2https://github.com/embeddings-benchmark/mteb
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ation augmented with extrema (i.e., maximum and065

minimum achievable scores) to quantify the order066

uncertainty of tied candidates (§ 2.3).067

In our experiments, we demonstrate that evalu-068

ating low-precision models using conventional tie-069

oblivious metrics leads to misleading outcomes as070

shown in Figure 1. Adopting HPS significantly re-071

duces score range variability, reducing MRR@10072

range by 36.82%p. Meanwhile, TRM exposes bi-073

ases inherent in tie-oblivious metrics, highlighting074

systematic overestimation by up to +9.08%p in075

BF16 evaluations. By contrast, our combined ap-076

proach recovers near-FP32 stability and ordering,077

offering a consistent and discriminative framework078

for evaluating retrieval models in low-precision set-079

tings.080

2 Reliable Evaluation Protocol081

We first formalize the vulnerability of the current082

tie-oblivious evaluation, and then present High-083

Precision Scoring and Tie-aware Retrieval Metric.084

(See Appendix A for preliminaries.)085

2.1 Spurious Ties in Low-Precision Evaluation086

Let 𝑧 denote the output of the linear layer after087

the last hidden state ℎ. If the scoring function 𝜙 is088

softmax or sigmoid, then the cross-encoder takes089

the concatenated query and 𝑖-document pair (𝑞; 𝑑𝑖)090

as input and produces the logits 𝑧𝑖: two scalar val-091

ues for softmax, or a single scalar value for sig-092

moid. If 𝜙 is a pairwise product, 𝑧𝑖 denotes the pair093

of embeddings (ℎ𝑞, ℎ𝑑𝑖) obtained by encoding the094

query 𝑞 and the document 𝑑𝑖 independently with095

a bi-encoder. We denote the query-document rele-096

vance score 𝑠̃𝑖 as:097

𝑠̃𝑖 = 𝜙(𝐵)(𝑧𝑖) (1)098

where 𝜙(𝐵) indicates that 𝜙 is operated entirely in a099

𝐵-bit mantissa format.100

Applied with low-precision inference (e.g.,101

BF16 (Burgess et al., 2019), FP16, etc), this maps102

theoretically continuous values onto a discrete set103

of representable scores; distinct true scores may104

collide: 𝑠̃𝑖 = 𝑠̃𝑗 even with 𝑧𝑖 ≠ 𝑧𝑗 , creating a tie.105

After sorting by 𝑠̃, we obtain ordered tie groups 𝐺𝑛106

consisting of scores 𝑠𝑖 equivalent to 𝜈𝑛:107

𝐺𝑛 = {𝑖 ∣ 𝑠̃𝑖 = 𝜈𝑛}. (2)108

If the relevant document at cutoff rank 𝑘 falls109

inside a tie group 𝐺𝑛 where |𝐺𝑛| ≥ 2, Any evalua-110

tion that disregards ties (tie-oblivious) may become111

stochastic and yield unpredictable results, as shown 112

in Figure 1. 113

2.2 High-Precision Scoring (HPS) 114

Scoring functions such as softmax, sigmoid, and 115

pairwise product compress logits into a narrow 116

range. This effect is exacerbated under lower- 117

precision formats due to fewer representable values 118

resulting in coarser bucketization in (0, 1) range 119

(See examples in Appendix B). 120

For lower-precision models, HPS upcasts only 121

the final scoring operation to FP32, leaving other 122

layers unchanged. Concretely we replace the low- 123

precision scoring function (Equation 1) with a 124

higher-precision scoring function: 125

𝑠̂𝑖 = 𝜙(upcast(𝑧𝑖)), (3) 126

and retain a more fine-grained score 𝑠̂𝑖 for docu- 127

ment candidate sorting. This significantly reduces 128

the probability of tie collisions while preserving 129

latency, since only a small logits tensor is upcast, 130

requiring no re-training. 131

Advantages. HPS (i) leaves the forward pass in- 132

tact and upcasts logits right before scoring, (ii) 133

adds negligible memory and time overhead, (iii) 134

collapses large tie groups, and (iv) restores align- 135

ment with deterministic, high-precision production 136

sorting. 137

2.3 Tie-aware Retrieval Metric (TRM) 138

Existing tie-oblivious evaluation methods truncate 139

the sorted list after a predefined cutoff 𝑘. If multiple 140

candidates receive the same score, they are ordered 141

arbitrarily before truncation, affecting which items 142

are included in the top-𝑘 set. As a result, the evalu- 143

ation results may vary depending on how ties are 144

resolved as illustrated in Figure 1. To mitigate this 145

problem, TRM supplies exact expectations, range, 146

and a bias. 147

Expected Score. Let 𝐺1,… , 𝐺𝑁 be the tie 148

groups sorted in descending order, where each 149

group 𝐺𝑛 has |𝐺𝑛| items and 𝑟𝑛 relevant items to the 150

given query. To mitigate the random ordering in tie 151

groups, we propose reporting expected values for 152

evaluation 𝔼[𝑀] where 𝑀 denotes an evaluation 153

metric. This score averages the performance val- 154

ues across all possible result orderings and removes 155

simulation variance. Since generating result permu- 156

tations requires super-exponential time, we utilize 157

closed-form expressions for calculating expectation 158
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Models FP32 BF16 BF16→ FP32(+HPS)
𝑀𝑀𝑀 𝑀𝑜𝑏𝑙𝑀𝑜𝑏𝑙𝑀𝑜𝑏𝑙 𝔼[𝑀]𝔼[𝑀]𝔼[𝑀] Range(▾) Bias(▾) 𝑀𝑜𝑏𝑙𝑀𝑜𝑏𝑙𝑀𝑜𝑏𝑙 𝔼[𝑀]𝔼[𝑀]𝔼[𝑀] Range(▾) Bias(▾)

MIRACLReranking, 𝑀 = 𝑛𝐷𝐶𝐺@10𝑀 = 𝑛𝐷𝐶𝐺@10𝑀 = 𝑛𝐷𝐶𝐺@10

Qwen3-Reranker-0.6B♣ 73.53 75.04 68.38 25.59 6.66 73.59 73.35 1.13 0.24
bge-reranker-v2-m3♢ 74.61 75.59 74.54 3.90 1.05 74.63 74.57 0.16 0.06
gte-multilingual-reranker-base♢ 74.14 74.48 74.22 0.97 0.26 74.39 74.34 0.14 0.05
Qwen3-Embedding-0.6B♠ 63.94 64.52 63.98 1.90 0.54 64.01 64.01 0.00 0.00
multilingual-e5-large-large♠ 64.78 65.70 64.81 4.62 0.89 64.80 64.80 0.00 0.00

MIRACLReranking, 𝑀 = 𝑀𝑅𝑅@10𝑀 = 𝑀𝑅𝑅@10𝑀 = 𝑀𝑅𝑅@10

Qwen3-Reranker-0.6B♣ 77.48 78.45 69.37 38.03 9.08 77.43 77.22 1.21 0.21
bge-reranker-v2-m3♢ 79.58 80.68 79.17 6.72 1.51 79.66 79.56 0.19 0.10
gte-multilingual-reranker-base♢ 79.39 79.75 79.47 0.85 0.28 79.59 79.52 0.18 0.07
Qwen3-Embedding-0.6B♠ 68.97 69.54 68.91 2.23 0.63 69.02 69.02 0.00 0.00
multilingual-e5-large-large♠ 71.37 71.84 71.28 4.61 0.56 71.18 71.18 0.00 0.00

AskUbuntuDupQuestions, 𝑀 = 𝑀𝐴𝑃@3𝑀 = 𝑀𝐴𝑃@3𝑀 = 𝑀𝐴𝑃@3

Qwen3-Reranker-0.6B♣ 31.20 33.28 31.13 4.03 2.15 31.58 31.29 0.57 0.29
bge-reranker-v2-m3♢ 31.91 32.26 31.83 0.83 0.43 31.89 31.84 0.09 0.05
gte-multilingual-reranker-base♢ 30.83 31.23 30.75 0.93 0.48 30.69 30.67 0.03 0.02
Qwen3-Embedding-0.6B♠ 29.54 30.10 29.65 0.87 0.45 29.69 29.69 0.00 0.00
multilingual-e5-large-large♠ 29.13 31.31 29.47 3.54 1.84 29.70 29.70 0.00 0.00

Table 1: Results using metric 𝑀 with its tie-oblivious version (𝑀𝑜𝑏𝑙), expectation (𝔼[𝑀]), range (𝑀max−𝑀min), and
bias (𝑀 − 𝔼[𝑀]) on MIRACLEReranking (nDCG@10 and MRR@10) and AskUbuntuDupQuestions (MAP@3)
under three precision regimes, full FP32, BF16, and BF16→FP32 (with High-Precision Scoring). In full FP32 we
empirically observe 𝑀𝑜𝑏𝑙 = 𝔼[𝑀] with zero range and bias, so only 𝑀 is shown. ♣, ♢ and ♠ indicate softmax,
sigmoid and pairwise product, respectively. Lower range and |bias| scores represent better stablility.

values (McSherry and Najork, 2008). Explicit for-159

mulas are presented in Appendix C; the linear time160

complexity analysis is in Appendix D.161

Score Range. 𝑀max places the query-relevant162

items in each partially included tie group as early163

as possible; 𝑀min as late as possible.164

Range(𝑀) = 𝑀max −𝑀min. (4)165

Range(𝑀) quantifies uncertainty due solely to unre-166

solved internal orderings. A smaller range indicates167

that results are more stable and reliable.168

Score Bias. Let 𝑀obl denote the tie-oblivious169

metric obtained using the original implementation’s170

fixed (typically index-preserving) ordering. We de-171

fine the score bias as172

Bias(𝑀) = 𝑀obl − 𝔼[𝑀]. (5)173

A large positive bias implies that 𝑀obl does not174

reliably estimate the expected positive values, in-175

dicating overestimation of results, while negative176

values indicate underestimation.177

Reporting Protocol. For each cutoff 𝑘 (or full178

ranking if required), we propose to report the ex-179

pectation value and the range of score variance:180

(

𝔼[𝑀], Range(𝑀)
)

, (6)181

optionally reporting the tie-oblivious value 𝑀obl,182

discrepancy Bias(𝑀), the extrema 𝑀max and 𝑀min.183

Models 𝜙𝜙𝜙 Size

Qwen3-Reranker-0.6B (Zhang et al., 2025) Softmax♣ 596M
bge-reranker-v2-m3 (Chen et al., 2024a) Sigmoid♢ 568M
gte-multilingual-reranker-base (Zhang et al., 2024) Sigmoid♢ 306M
Qwen3-Embedding-0.6B (Zhang et al., 2025) Product♠ 596M
multilingual-e5-large (Wang et al., 2024) Product♠ 560M

Table 2: Models used in our experiments and their cor-
responding scoring function and size.

With expectation and range values, our proposed 184

reporting protocol enables more reliable evaluation. 185

3 Experiments 186

We evaluate to what degree our proposed evaluation 187

protocol exposes and corrects reliability failures of 188

existing tie-oblivious evaluation. 189

3.1 Experimental Setting 190

More detailed explanations of experimental settings 191

and implementation are presented in Appendix E 192

Models We cover five models widely used in 193

reranking and embedding with three prevalent scor- 194

ing functions: Softmax♣, sigmoid♢, and pairwise 195

product♠ as in Table 2. 196

Evaluation Metric We evaluate the standard 197

ranking metrics nDCG (Järvelin and Kekäläinen, 198

2002), MRR (VOORHEES, 2000), MAP (Salton, 199

1983), and Recall.3 200

3Results for all metrics are deferred to Appendix F.
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Datasets We utilize two publicly available201

datasets, MIRACLReranking (Zhang et al., 2023)202

and AskUbuntuDupQuestions (Lei et al., 2016)203

that each supplies a fixed set of candidates per204

query. This enables us to assess the second-stage205

reranker or retriever independent of effects from206

the first-stage retriever.207

3.2 Results208

Spurious Ties in Low-Precision Evaluation.209

When using fully BF16, the results display210

significant uncertainty as shown in Table 1.211

Qwen3-Reranker model with softmax♣ shows the212

highest variation — 25.59%p in nDCG@10 and213

38.03%p in MRR@10. Models using sigmoid♢ and214

pairwise product♠ also exhibit instability to a lesser215

extent. These ranges exceed the margins typically216

used to distinguish model superiority.217

Crucially, a striking decision error appears.218

Under the BF16 and nDCG@10𝑜𝑏𝑙 evaluation,219

Qwen3-Reranker seems to beat gte (75.04 >220

74.48). However, tie-aware metric 𝔼[nDCG@10]221

flips the ranking (68.38 < 74.22), and our pro-222

posed protocol (HPS + TRM) confirms the reversal223

(73.35 < 74.34) within a narrow range, rendering224

the naive evaluation rankings unreliable.225

Albeit bias can be positive or negative, all BF16226

biases are positive, implying that tie-oblivious 𝑀𝑜𝑏𝑙227

is overestimated (up to +9.08%p). This positive228

trend is likely a result of errors in dataset construc-229

tion, coupled with deterministic tie-breaking, as the230

positive items are more consistently placed earlier231

in the dataset to create preferential tie groups.232

High-Precision with Low-Cost. High precision233

scoring (HPS) collapses the large tie groups while234

keeping the bulk of computation in BF16. Softmax235

ranges shrink from 25.59 to 1.13%p at nDCG@10236

and from 38.03 to 1.21%p at MRR@10; sigmoid♢237

model ranges drop roughly an order of magnitude238

(e.g., 3.90 to 0.16%p in nDCG@10); pairwise prod-239

uct models become perfectly deterministic (range240

= bias = 0). The remaining softmax residual range241

(∼ 1%p) lies within ordinary inter-model differ-242

ences, making rank reversals highly unlikely.243

Compared to fully FP32 inference (stable but244

computationally costlier), HPS recovers near-FP32245

stability and ordering with negligible overhead.246

Hence, pure low-precision scoring erodes evalu-247

ation reliability, and adopting our protocol, HPS248

with reporting (𝔼[𝑀],Range), restores precise and249

discriminative comparisons.250

Figure 2: Tie-oblivious and expectation scores of nDCG
and MRR at 𝑘 of Qwen3-Reranker-0.6B♣ model when
scored with each dtype on MIRACLReranking.

Impact of Precision across Cutoffs. Figure 2 251

shows nDCG and MRR metrics across various 𝑘- 252

rank cutoffs, illustrating increased variance ranges 253

and biases under lower-precision computations. 254

Consistent with our observations in Appendix A, 255

the BF16 inference displays significant fluctuations 256

and uncertainty (wide shaded areas), whereas FP16 257

demonstrates intermediate stability, and FP32 offers 258

empirically stable results with negligible ties. This 259

reflects the coarser bucketization induced by fewer 260

mantissa bits in lower-precision formats (BF16≪ 261

FP16≪ FP32). 262

Notably, under 𝑀𝑜𝑏𝑙, the BF16 curves surpass the 263

FP32 baseline at every cutoff. Such results would in- 264

correctly indicate better performance, highlighting 265

the unreliability of tie-oblivious evaluation due to 266

reduced precision. Conversely, the tie-aware expec- 267

tation 𝔼[𝑀] consistently places BF16 below FP32, 268

accurately reflecting the true model performance, 269

shown in Appendix F. 270

4 Conclusion 271

We demonstrate that current retrieval evaluations 272

under low-precision settings overlook tied candi- 273

dates, resulting in unstable outcomes. To address 274

this, we proposed two concise yet effective reme- 275

dies: High-Precision Scoring (HPS) and Tie-aware 276

Retrieval Metrics (TRM). HPS upcasts the final 277

scoring function to collapse spurious ties with neg- 278

ligible cost, and TRM reports the expectation value 279

of scores with range and bias. Our proposed com- 280

bination mitigates spurious ties across precision 281

formats and provides a more reliable alternative 282

to previous naive methods. Our method enables 283

more stable document retrieval in tasks such as 284

retrieval augmented generation (RAG), while pre- 285

serving the efficiency and memory savings offered 286

by low-precision models. 287
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Limitations288

Our remedy targets the inference stage and does289

not explore how low-precision training influences290

ranking stability, nor whether mixed-precision train-291

ing combined with HPS inference yields further292

gains. Finally, TRM’s outputs, expectations with293

ranges, are richer than single scalars, yet we have294

not conducted user-centered studies to assess their295

interpretability in practical evaluation pipelines.296
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A Preliminaries413

Figure 3: Bit layouts of FP16, BF16, and FP32 formats
(Wikipedia contributors, 2025)

Floating-Point Value A floating-point value is414

a way to represent numbers in computer systems,415

and typically encoded as three fields—sign, expo-416

nent, and mantissa (also called the fraction)—as417

illustrated in Figure 3. The exponent determines418

the dynamic range, the largest and smallest magni-419

tudes that can be represented, whereas the mantissa420

governs the precision attainable within that range.421

Since a shorter mantissa implies coarser quantiza-422

tion, multiple real numbers inevitably collapse into423

the same representable bin, producing tied values.424

After the common 1-bit sign, FP16 allocates 5425

exponent bits and 10 mantissa bits, BF16 uses 8426

and 7 bits respectively, and FP32 retains 8 exponent427

bits alongside a much longer 23-bit mantissa. By428

preserving the full 8-bit exponent of FP32, BF16429

inherits the same dynamic range as single precision,430

which is widely credited with stabilizing training431

and thereby aiding generalization.432

However, when outputs are confined to the range433

(0, 1)—as with the probabilities emitted by soft-434

max or sigmoid scoring functions—the short 7-bit435

mantissa of BF16, and to a lesser extent the 10-bit436

mantissa of FP16, sharply reduces resolution. This437

loss of granularity, particularly severe in BF16, ex-438

acerbates the tied-score phenomenon and makes it439

difficult to distinguish among retrieval candidates440

that quantize to identical values.441

B Examples of Relevance Scores442

The example lists below show raw relevance scores443

for the first query of the MIRACLReranking444

test split produced by the Qwen3-Reranker-0.6B445

model where relevant values for the given are in446

bold. The first list (scores_bf16) is obtained with447

both the model and scoring function executed en-448

tirely in BF16, while the second (scores_hps) ap-449

plies High Precision Scoring (HPS). Tie group sizes450

shrink considerably under HPS.451

scores_bf16 = [ 452

1.00000000, 1.00000000, 1.00000000, 1.00000000, 1.00000000, 453

1.00000000, 1.00000000, 1.00000000, 1.00000000, 1.00000000, 454

0.99609375, 0.99609375, 0.99609375, 0.99609375, 0.99609375, 455

0.99609375, 0.99609375, 0.99609375, 0.99609375, 0.99609375, 456

0.99609375, 0.99609375, 0.99609375, 0.99609375, 0.99609375, 457

0.99609375, 0.99609375, 0.99609375, 0.99609375, 0.99218750, 458

0.99218750, 0.99218750, 0.99218750, 0.99218750, 0.99218750, 459

0.99218750, 0.99218750, 0.99218750, 0.99218750, 0.99218750, 460

0.99218750, 0.99218750, 0.98828125, 0.98828125, 0.98828125, 461

0.98828125, 0.98828125, 0.98828125, 0.98828125, 0.98437500, 462

0.98437500, 0.98046875, 0.97656250, 0.97656250, 0.97265625, 463

0.96875000, 0.96875000, 0.96875000, 0.96875000, 0.96875000, 464

0.96875000, 0.96093750, 0.96093750, 0.96093750, 0.96093750, 465

0.95703125, 0.95703125, 0.95703125, 0.95703125, 0.95703125, 466

0.95312500, 0.95312500, 0.94921875, 0.94921875, 0.94531250, 467

0.94531250, 0.94531250, 0.94140625, 0.94140625, 0.93359375, 468

0.92578125, 0.92578125, 0.91796875, 0.91406250, 0.88671875, 469

0.88671875, 0.87890625, 0.87890625, 0.87500000, 0.86718750, 470

0.77734375, 0.60937500, 0.51562500, 0.46875000, 0.34960938, 471

0.30664062, 0.28125000, 0.17285156, 0.08496094, 0.02441406, 472

] 473

scores_hps = [ 474

0.99948066, 0.99933332, 0.99929035, 0.99919587, 0.99914408, 475

0.99883050, 0.99883050, 0.99875510, 0.99858958, 0.99829930, 476

0.99767691, 0.99767691, 0.99752742, 0.99752742, 0.99736834, 477

0.99719906, 0.99719906, 0.99701905, 0.99682730, 0.99662340, 478

0.99662340, 0.99592990, 0.99566853, 0.99566853, 0.99509466, 479

0.99509466, 0.99477994, 0.99444515, 0.99444515, 0.99408901, 480

0.99408901, 0.99408901, 0.99330717, 0.99330717, 0.99330717, 481

0.99242276, 0.99142247, 0.99142247, 0.99142247, 0.99087441, 482

0.99087441, 0.99029154, 0.98967183, 0.98901308, 0.98901308, 483

0.98901308, 0.98831278, 0.98831278, 0.98756832, 0.98593640, 484

0.98409361, 0.98201376, 0.97838473, 0.97702265, 0.97404259, 485

0.97068775, 0.96885622, 0.96885622, 0.96885622, 0.96691406, 486

0.96691406, 0.96267307, 0.96036118, 0.96036118, 0.96036118, 487

0.95791227, 0.95791227, 0.95791227, 0.95791227, 0.95531917, 488

0.95257413, 0.95257413, 0.94966936, 0.94966936, 0.94659668, 489

0.94659668, 0.94659668, 0.93991333, 0.93991333, 0.93245327, 490

0.92414182, 0.92414182, 0.91964257, 0.91490096, 0.88720459, 491

0.88720459, 0.88079703, 0.88079703, 0.87407720, 0.86703575, 492

0.77729988, 0.60766321, 0.51561993, 0.46879065, 0.34864515, 493

0.30735803, 0.28140560, 0.17328820, 0.08509904, 0.02442309, 494

] 495

C Closed-form Expectations 496

Let the tie groups be 𝐺1,… , 𝐺𝑁 in descending 497

score order. Each group 𝐺𝑛 has size |𝐺𝑛| and 𝑟𝑛 rel- 498

evant items (0 ≤ 𝑟𝑛 ≤ |𝐺𝑛|). Define the per-group 499
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relevance probability500

𝑝𝑛 =
𝑟𝑛
|𝐺𝑛|

, (7)501

and the cumulative size502

𝑐𝑛 =
∑

𝑚≤𝑛
|𝐺𝑚|, 𝑐0 = 0. (8)503

For a cutoff rank 𝑘, the number of items from group504

𝐺𝑛 that appear within the top-𝑘 list is505

𝑡𝑛 = max
{

0, min(|𝐺𝑛|, 𝑘 − 𝑐𝑛−1)
}

. (9)506

Count-based Metrics507

With 𝑁+ =
∑

𝑚 𝑟𝑚,508

𝔼[Hits@𝑘] =
∑

𝑛∶𝑡𝑛>0
𝑝𝑛𝑡𝑛, (10)509

𝔼[Recall@𝑘] =
∑

𝑛 𝑝𝑛𝑡𝑛
𝑁+

, (11)510

𝔼[Precision@𝑘] =
∑

𝑛 𝑝𝑛𝑡𝑛
𝑘

, (12)511

𝔼[F1@𝑘] =
2
∑

𝑛 𝑝𝑛𝑡𝑛
𝑘 +𝑁+

. (13)512

nDCG513

With binary gains and weights 𝑤𝑟 =
1

log2(𝑟+1)
, de-514

fine515

𝑊 (𝑎, 𝑏) =
𝑏
∑

𝑟=𝑎
𝑤𝑟. (14)516

Then517

𝔼[DCG@𝑘] =
∑

𝑛∶𝑡𝑛>0
𝑝𝑛𝑊 (𝑐𝑛−1 + 1, 𝑐𝑛−1 + 𝑡𝑛),

(15)518519

IDCG@𝑘 =
min(𝑁+,𝑘)
∑

𝑟=1
𝑤𝑟, (16)520

521

𝔼[nDCG@𝑘] = 𝔼[DCG@𝑘]
IDCG@𝑘

. (17)522

Reciprocal Rank523

Let 𝑛∗ = min{𝑛 ∣ 𝑟𝑛 > 0} be the first group con-524

taining a relevant item and (𝑥𝑎
𝑥𝑏

) be the binomial525

coefficient. If 𝑘 ≤ 𝑐𝑛∗−1 then 𝔼[RR@𝑘] = 0; other-526

wise527

𝑢 = min(|𝐺𝑛∗| − 1, 𝑘 − 𝑐𝑛∗−1 − 1) (18)528

𝑟𝑡 = 𝑐𝑛∗−1 + 𝑡 + 1 (19)529

𝜋𝑡 =

(

|𝐺𝑛∗ |−𝑟𝑛∗
𝑡

)

(

|𝐺𝑛∗ |

𝑡

)

(20) 530

𝜆𝑡 =
𝑟𝑛∗

|𝐺𝑛∗| − 𝑡
(21) 531

𝔼[RR@𝑘] =
𝑢
∑

𝑡=0

1
𝑟𝑡
𝜋𝑡𝜆𝑡. (22) 532

Average Precision 533

For rank 𝑟 = 𝑐𝑛−1 + 𝑡 + 1 with 0 ≤ 𝑡 < 𝑡𝑛 in group 534

𝐺𝑛, 535

𝐴𝑛,𝑡 = 𝑅𝑛−1 + 1 + 𝑡
𝑟𝑛 − 1
|𝐺𝑛| − 1

, (23) 536

𝐷𝑛,𝑡 = 𝑐𝑛−1 + 𝑡 + 1, (24) 537

where 𝑅𝑛−1 =
∑

𝑚<𝑛 𝑟𝑚. The expected AP@𝑘 is 538

𝔼[AP@𝑘] = 1
𝑁+

∑

𝑛∶𝑟𝑛>0

𝑡𝑛−1
∑

𝑡=0
𝑝𝑛

𝐴𝑛,𝑡

𝐷𝑛,𝑡
. (25) 539

D Time Complexity 540

Let the ranked list for one query contain 𝐿 candi- 541

date documents and let the evaluation cutoff be 𝑘. 542

The list is partitioned into 𝑁 tie groups 𝐺1,… , 𝐺𝑁 543

of sizes |𝐺1|,… , |𝐺𝑁 | with ∑𝑁
𝑛=1 |𝐺𝑛| = 𝐿. All 544

complexities below are per query. 545

High-Precision Scoring (HPS). Only the final 546

logits are upcast to FP32 and passed once through 547

a scoring function 𝜙, so the time cost is 𝑂(𝐿) with 548

negligible extra memory. 549

Tie-aware Metrics (TRM). All computations 550

occur after sorting, so no additional log𝐿 factor is 551

introduced. (i) A single left-to-right scan gathers the 552

pairs (|𝐺𝑛|, 𝑟𝑛) for every tie group in 𝑂(𝐿) where 553

𝑟𝑛 refers to the number of relevant items in the 𝑛- 554

th tie group 𝐺𝑛. (ii) Closed-form expressions let 555

nDCG, MAP, Recall, Precision, and F1 be evaluated 556

in 𝑂(min{𝑘,𝑁}) time. (iii) MRR examines only 557

the first tie group containing a relevant document, 558

costing 𝑂(|𝐺𝑗∗|) ≤ 𝑂(𝑘) where 𝑗∗ is the index of 559

the tie group that includes the first relevant item. 560

(iv) Max, min, and range scores need only the tie 561

group that straddles rank 𝑘, again 𝑂(𝑘). 562

In total TRM adds at most 𝑂(𝑘 + 𝑁) ⊆ 𝑂(𝐿) 563

lightweight arithmetic per query, far below the cost 564

of the forward pass or initial sort, while providing 565

tie-robust evaluation. 566
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E Experimental Settings567

E.1 Implementation Details568

We use a maximum input length of 4,096 tokens4569

and a batch size of 165. All models are run under570

three data types: BF16, FP16, and FP32. HPS is im-571

plemented by upcasting the final scoring operation572

to FP32. Baseline tie-oblivious scores rely on the573

framework’s predefined index order inside ties. In574

contrast, tie-aware expectations and extrema are575

computed with TRM (Section 2.3).576

E.2 Datasets577

MIRACLReranking We adopt the English sub-578

set of the MIRACLReranking test split (Zhang579

et al., 2023), derived from an open-domain580

Wikipedia. After discarding queries without a rel-581

evant passage, 717 of the original 799 queries re-582

main; each with exactly 100 candidate passages (≈583

2.9 relevant passages on average).584

AskUbuntuDupQuestions For evaluation, each585

query is a concise AskUbuntuDupQuestions (Lei586

et al., 2016) question with at least one manually587

annotated duplicate. The test split contains 375588

queries, each accompanied by 20 candidate ques-589

tions (≈ 6 true duplicates on average).590

4Only multilingual-e5-large is truncated to 512 tokens
due to its length constraints.

5Batch size affects the representations produced by
low-precision inference, even with identical inputs.
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F Full Experimental Results591

We present the detailed experimental results for both datasets in Figure 4 and 5. We attach results for592

Qwen3-Reranker-0.6B, which is known as the state-of-the-art in general text retrieval tasks. Panels593

(a)-(d) report nDCG, MRR, MAP, and Recall. Each marker shows the tie-oblivious score 𝑀obl (×) and594

the tie-aware expectation 𝔼[𝑀] (●). The legend entry indicates the data types of the model and scoring595

function, respectively. For example, BF16_FP32 denotes that the model operates in BF16 precision, while596

the scoring function is upcast to FP32, corresponding to the HPS setting.597

(a) nDCG (b) MRR

(c) MAP (d) Recall
Figure 4: Metric scores for cutoff 𝑘 of Qwen3-Reranker-0.6B on MIRACLReranking dataset.
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(a) nDCG (b) MRR

(c) MAP (d) Recall
Figure 5: Metric scores for cutoff 𝑘 of Qwen3-Reranker-0.6B on AskUbuntuDupQuestions dataset. In this dataset,
all tie-oblivious metrics attain their maximum possible value (being overestimated) because, during candidate
construction, every relevant item is concatenated ahead of all non-relevant ones.6

6https://github.com/embeddings-benchmark/mteb/blob/1.38.38/mteb/evaluation/evaluators/
RerankingEvaluator.py#L175
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