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ABSTRACT

Ordinal Regression (OR), which predicts the target values with inherent order, un-
derpins a wide spectrum of applications from computer vision to recommendation
systems. The intrinsic ordinal structure and non-stationary inter-class bound-
aries make OR fundamentally more challenging than conventional classification
or regression. Existing approaches, predominantly based on Continuous Space
Discretization (CSD), struggle to model these ordinal relationships, but are ham-
pered by boundary ambiguity. Alternative rank-based methods, while effective,
rely on implicit order dependencies and suffer from the rigidity of fixed binning.
Inspired by the advances of generative language models, we propose Generative
Ordinal Regression (GoR), a novel generative paradigm that reframes OR as a
sequential generation task. GoR autoregressively predicts ordinal segments until a
dynamic (EOS), explicitly capturing ordinal dependencies while enabling adap-
tive resolution and interpretable step-wise refinement. To support this process,
we theoretically establish a bias—variance decomposed error bound and propose
the Coverage—Distinctiveness Index (CoDi), a principled metric for vocabulary
construction that balances quantization bias against statistical variance. The GoR
framework is model-agnostic, ensuring broad compatibility with arbitrary task-
specific architectures. Moreover, it can be seamlessly integrated with established
optimization strategies for generative models at a negligible adaptation cost. Ex-
tensive experiments on 17 diverse ordinal regression benchmarks across six major
domains demonstrate GoR’s powerful generalization and consistent superiority
over state-of-the-art OR methods.

1 INTRODUCTION

Ordinal Regression (OR), also referred to as ordinal classification, addresses the prediction tasks
where the target categories (or values) exhibit inherent ordinal relationships. As shown in Fig. 1(a),
this paradigm has broad applications across various domains such as computer vision (e.g., facial
age estimation (Niu et al., 2016a; Li et al., 2022b), image aesthetic assessment (She et al., 2021;
He et al., 2022)) and recommendation systems (e.g., watch time prediction (Sun et al., 2024; Zhao
et al., 2024), lifetime value prediction (Drachen et al., 2018; Ma et al., 2018)). Unlike conventional
multi-class classification and continuous regression, the fundamental challenge in OR lies in explicitly
modeling two critical properties: (1) the inherent ordinal structure among output labels, and (2) the
non-stationary nature of semantic boundaries between adjacent categories.

Previous OR works have predominantly relied on Continuous Space Discretization (CSD) (Wang et al.,
2025), as illustrated in Fig. 1(b). This strategy quantizes the target output space, potentially continuous
or fine-grained ordinal, into a finite set of ordered discrete bins. The model typically outputs a softmax
probability distribution over these bins, mapped to a prediction via probability-weighted expectation.
Essentially, CSD simplifies learning by transforming the problem into a multi-class classification.
Under this framework, subsequent research mainly explores in two directions.

As shown in Fig. 1(c), one is to tackle ambiguous inter-class boundaries by enhancing discrimination
of boundary-proximal samples through reference comparisons (Li et al., 2021; Shin et al., 2022).
However, its performance critically depends on efficient reference selection, which is often governed
by unstable heuristics and limits the gains in wide-range scenarios where combinatorial reference
points escalate selection complexity. Another is rank-based that implicitly encodes the ordinality via



Under review as a conference paper at ICLR 2026

E '. EEJV: Continuous Space » >. Ao 0. o "m
i s @ 0 — L]
] [y i y 8 O 4 a4t i e® e
Facial Age | Rl a' s B 5 | o e%l
Estimation i g‘i > B T T I¥ Discretization A alata 0o
| i
:L / \J i Order: From Young to Old
; . £ A { i P i
Watch Time 33 @ (B () (e ! iy
Prediction e v & il Y —_—t i
Order: From Short to Long 0 bin; bin; bin, . bin,
Weighted Expectation (2) Rank-based

(a) (b) (c)

Figure 1: Overview of Universal Ordinal Regression. (a) Representative Ordinal Regression tasks with
ordered labels. (b) The Continuous Space Discretization (CSD) workflow: discretizing continuous
space into bins and using weighted expectation for prediction. (c) Two key research directions
explored under the CSD framework.

label transformation, reframing OR into sequential binary subtasks (Niu et al., 2016a; Wang et al.,
2023a). Despite empirical success with theoretical guarantees (Chen et al., 2017), its order dependency
resides solely in label definitions, leaving bin-wise predictions independent (See Proposition 1).
Besides, the predefined discretization introduces rigidity: it amplifies head-category errors in long-
tailed distributions, frequently seen in real-world tasks, and makes performance highly sensitive to
bin granularity — wide intervals blur semantics, while narrow ones induce sparsity (Sun et al., 2024).

Inspired by the advances in generative language models (Liu et al., 2024a), we propose Generative
Ordinal Regression (GoR), a novel framework that reformulates ordinal regression as sequential
token generation. GoR autoregressively predicts tokens representing ordinal value segments, whose
cumulative summation yields the final prediction upon generating the (EOS) token. This design
explicitly models sequential ordinal dependencies through conditional generation while enabling
adaptive resolution via dynamic (EOS) prediction, circumventing the rigidity of fixed binning.
For instance, in facial age estimation, the model may first predict a coarse token (50), then finer
adjustments (+5, +3), culminating in the estimate (50+5+3=58 years). Each step progressively
reduces prediction error by selecting tokens that provide an increasingly precise approximation. This
step-wise refinement process mirrors human cognitive progression from coarse to precise estimation
and implements successive approximation, offering interpretable intermediate predictions.

However, adapting this paradigm to general ordinal regression poses two key challenges. First,
unlike purely compositional tokens in nature language process (NLP) tasks, GoR tokens uniquely
encode dual semantics, i.e., sequential ordinality and additive numerical relationships, necessitating
specialized mechanisms to disentangle and exploit these intertwined properties. Since numerical
values are infinitely decomposable and combinable, vocabulary design demands principled strategies
to balance expressiveness and efficiency. Second, domain heterogeneity in ordinal label distributions,
spanning diverse value ranges (e.g., [0, 1] for quality scores vs. [0, 100] for age estimation) and label
granularity types (discrete vs. continuous), requires robust cross-domain generalization capabilities.
Hence, effectively adapting the autoregression mechanism to universal OR tasks requires systematic
vocabulary design and label decomposition strategies.

Through bias-variance decomposition, we derive a closed-form Mean Squared Error (MSE) bound
that quantifies token selection trade-off between quantization bias and statistical variance, pro-
viding a theoretical foundation for vocabulary design. Building on this, we further propose the
Coverage—Distinctiveness Index (CoDi) to optimize token selection — maximizing coverage (bias
minimization) while suppressing common segments (variance reduction) — yielding a compact,
recoverable vocabulary that enhances cross-task adaptability. Besides, as a model-agnostic frame-
work, GoR’s core component, i.e., the encoder-decoder architecture, permits flexible substitution with
task-specific implementations and can be seamlessly integrated with existing optimization strategies
(Bengio et al., 2009; Goodman et al., 2020; Shao et al., 2024) at a negligible adaptation cost, thereby
ensuring its flexibility and extensibility for broader applications.

Our contributions are fourfold: (i) We expose the theoretical limitations of prevailing rank-based
methods under the CSD paradigm and, in turn, propose the first generative formulation of ordinal
regression as an autoregressive sequence generation task. (ii) We introduce GoR, a unified frame-
work that models sequential ordinal dependencies via dynamic (EOS)-terminated token generation,
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offering adaptive resolution and interpretable step-wise refinement. (iii) We establish a theoretical
foundation based on MSE decomposition, accompanied by the Coverage—Distinctiveness Index
(CoDi) to optimize the token vocabulary by bias-variance trade-off. (iv) We perform extensive
experiments across 17 ordinal regression benchmarks spanning six domains, demonstrating GoR’s
strong generalization and consistent superiority over SOTA baselines.

The remainder of this paper is organized as follows. Section 2 formalizes the problem, theoretically
analyzes rank-based methods’ limitation, and introduces the proposed GoR framework, including its
error-bound formulation, vocabulary construction, ordinal target sequencing, and encoder—decoder
design. Section 3 reports extensive experiments and analyses across diverse domains. Section 4
concludes the paper. Due to space limit, we provide related work review in Appendix. B.

2 METHOD

2.1 PROBLEM DEFINITION

We formalize the learning problem on a dataset D = {(x;,;)}}L,, where x; denotes an input

instance of heterogeneous modalities (e.g., visual data in computer vision or multimodal embeddings
in recommendation systems), y; € R> represents its ordinal label and N is the number of instances.
The fundamental objective of the ordinal regression task is to learn a function ¢ (+) that accurately
maps the input x; to its associated ordinal label y;, i.e., y; = g (x;). GoR reformulates ordinal
regression via sequence generation by establishing two key mappings:

* Ordinal target sequencing. Encode label y; into variable-length token sequence s; =

{st}5i st € V, where V is a predefined vocabulary {w;}}_,. T; is the length of s;, each

2

token w; represents a value segment and V' denotes the vocabulary size.

* Sequence scoring. Decode sequences back to the label space via y; = r(s;) = Zthl ¢(st), where
¢ : V — Ris a token-value lookup table.

Following standard sequence modeling practice, we extend the vocabulary ) with three control tokens:
(SOS), (EOS), and (PAD). (SOS) and (EOS) are appended at the beginning and end of the sequence,
respectively. (PAD) is utilized to pad sequence length for parallel processing. As these tokens do not
carry semantic meaning within the label space (i.e., p(w) = 0,w € {(SOS), (EOS), (PAD)}), they
are omitted from the following mathematical formulations for enhanced clarity.

2.2 THEORETICAL ANALYSIS

Our theoretical analysis consists of two parts: characterizing the limitation of rank-based CSD
approaches, and establishing GoR’s theoretical foundation via MSE decomposition, which derives a
closed-form MSE bound to guide vocabulary design.

Limitation of rank-based methods.

Assumption 1. Define a sequence of binary random variables B = 1(y; > ¢,,), where 1(+)
denotes the indicator function and c,, is the right boundary of the m-th interval. Then B; =
{B},..., BzM} constitutes a set of non-mutually exclusive binary decisions that together describe
the position of y;. Rank-based methods approximate the true conditional distribution P,,.(B; |

X;) = Hf\le P(B™B;™, x;) by assuming conditional independence across all binary decisions:

Poaive(Bi|x;) = HM P(BI"|x;). Based on this factorization, the final prediction is obtained as

m=1

g = Z%:l P(Bzm =1)-(em — cm-1)-

Building on this conditional independence assumption, we quantify the resulting approximation error:
Proposition 1 (Independence Limitation in Rank-based CSD methods).

M
Dir, (Prrue(Bil )| Puaive (Bilx:)) = > Eg<n [D})], 8))
m=1
where Dﬁ("ﬁ) measures the divergence between P(BI"|x;) and P(B!*|BS™, x;).

The complete derivations are provided in Appendix C. Proposition | reveals that naive discretization
exhibits systematic modeling errors stemming from its inability to capture inter-interval dependencies.
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This phenomenon manifests as an approximation error quantified by cumulative KL divergence

scaling with the conditional mutual information between adjacent intervals. To overcome this

limitation, we recast ordinal regression through an autoregressive framework that explicitly captures

sequential dependencies among latent tokens.

MSE bound. We denote ¢(s!) as a discrete random variable C?, which takes values in qb(wj);/:l.

The model aims to approximate C?! with its prediction C!. Let B = max;|E[C! | 6] — C!| denote
P _ )2

the maximum per-step bias, and define the variance term V,,, = max V(C}) < W, where

[Wmin, Wmax) is the range of {w; }}/:1.

Theorem 1 (Error Bound of Generative Ordinal Regression). By a bias-variance decomposition

(ignoring irreducible noise), the mean squared error of GoR satisfies:

2
E[(9: —v:)?] <T?B* + T Vyar < T/ B* + TQM 2)
The detailed derivation and illustrations is in Appendix D. This error bound demonstrates that
minimizing prediction error requires coordinated control of three critical factors: (i) token-sequence
length 75, (i1)) maximum per-step bias B, and (iii) per-step variance V... Guided by these findings,
we formulate three axiomatic principles for vocabulary design: (1) }V must support approximation of
all target values {y; }¥ ; through finite unique tokens, ensuring bounded approximation bias. (2) Joint
optimization of bias and variance via dual mechanisms—preventing sample imbalance bias through
coverage constraint while suppressing variance via vocabulary sparsity control. (3) Parametric
invariance across datasets, enforcing robustness to distribution shifts through scale-agnostic token
contributions. These principles collectively ensure rigorous error control while maintaining practical
applicability.

2.3 VOCABULARY CONSTRUCTION

We initialize the vocabulary W = {w]‘}}/lil through a quantile-based selection strategy, which
iteratively selects tokens based on a fixed percentile of the remaining label values, and subtracts
them from the exceeding labels until residuals are negligible (Details in Alg. 2 of Appendix E). This
initialization ensures comprehensive coverage of the observed value distribution while introducing
computational challenges due to excessive vocabulary size. We therefore develop a principled pruning
strategy based on our proposed Coverage-Distinctiveness Index (CoDi) for tokens as follows:

N
(1 count(wj, S;) N
CoDi; = <N;Ti ) lOg\{i\wjesiH—}—l 3)

Distinctiveness

Coverage

Here count(wj, s;) is the count of token w; in

the sequence s, while |{ | w; € s;}| denotes the Algorithm 1: Vocabulary pruning with CoDi

number of sequences containing w;. In CoDi, ~ Input: Label set Y = {y;};";; Sequence set
the Coverage term measures token usage fre- {s:}iL,; Threshold e; Initial vocabulary
quency, which affects approximation bias, while W = {w;};~,; Minimum percentage of
the Distinctiveness term evaluates token unique- initial vocabulary retained /3

Output: Pruned vocabulary V with err < e
VW,
Compute CoDi for all w; € V;
err < evaluate(V);
while err < eand |V| > 3|W| do
w4 argming ey CoDi;;
YV« V\{w }
Update sequence set {s; 1, based on V;
Update error metric

ness, influencing model variance.

Based on CoDi, we design a top-down vocabu-
lary pruning strategy in Alg. 1: starting with the
initial vocabulary, we iteratively remove tokens
with the lowest CoDi in the initial vocabulary V.
After each removal, the retained percentage (3
and threshold e are utilized to control vocabulary
size while preserving representational fidelity,
achieving a favorable trade-off between com- err — max{%}f\le;
putational efficiency and modeling power. The o end

refined vocabulary V' then serves as the founda- 10 return V;

tion for formalizing Ordinal Target Sequencing.

® N U R W N =

=

'Without loss of generality, the token indices in the vocabulary are also sorted in descending numerical order.
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Figure 2: The framework of our proposed Generative Ordinal Regression (GoR), which adopts a
flexible encoder-decoder architecture with the model-agnostic nature of both the encoder and decoder.
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2.4 ORDINAL TARGET SEQUENCING

Ordinal target sequencing aims to encode each target y; into a token sequence s; = {s7, ..., sf} that
preserves semantic fidelity while ensuring efficient learning, guided by three axiomatic principles:

lyi—r(

1. Accuracy: m sa)l < ¢, where € balances precision and practical feasibility;

2. Efficiency: use the shortest possible sequence length 7; to simplify the learning diffculties;
3. Monotonicity: enforce coarse-to-fine refinement with st > s!™1.

Building on these principles, we develop a greedy decomposition algorithm that iteratively selects the
largest admissible token s’ € V by satisfying s! = max {w eV]w<y — 22;11 P(sk )} which
terminates when the residual falls below e. This procedure guarantees: (i) minimal 7} for given e
by design, (ii) monotonic token values ensured by the decomposition process, and (iii) O(|V]) time

complexity via pre-sorted vocabulary search. The resultant sequences provide compact yet precise
representations while maintaining generation consistency across the dataset.

2.5 FRAMEWORK

As illustrated in Fig. 2, GoR employs a model-agnostic encoder-decoder architecture with two key
components: (1) a task-specific encoder for feature extraction, and (2) an architecture-agnostic
autoregressive decoder for sequential prediction. The encoder adapts to arbitrary input modalities
(e.g., text, images, or tabular), while the decoder generalizes across sequence modeling paradigms —
compatible with both RNN-based (Schuster & Paliwal, 1997; Chung et al., 2014) and Transformer-
based architectures (Vaswani et al., 2017)°.

2.5.1 ARCHITECTURE

Encoder. The encoder is input modality-specific. Structured feature vectors employ Feedforward Net-
work (FFN), while images use convolutional networks like ResNet (He et al., 2016) or ViT (Dosovit-
skiy et al., 2020). Formally, the encoder maps z; to a latent representation h; = Encoder(x;) € REXP
where D denotes the feature dimension and L is the input length expected by the decoder.

Decoder. Conditioned on h;, the decoder generates a token sequence 3; = (51, ..., §ZT) through
autoregressive factorization as follows:

Py(si | hi) = Py(sl,...,s7

T;
hi) = [[ Po(st | hi, 570 €
t=1

where 6 denotes the model parameters. At each step ¢, the predicted token 5! is sampled as:

§i = argmax Py (w|h, §7") = arg max Softmax(fo(hs, 57)) Q)

Here, fy outputs the unnormalized logits, while Py denotes the normalized probability distribution.

>To intuitively illustrate the generative regression process, Fig. 2 depicts an RNN-based decoder, which can
be replaced with any other architecture.
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Figure 3: Aesthetics assessment results on four benchmarks (Best viewed in color).
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Two-stage (Drachen et al., 2018) | 21.719  0.2386 | 74.782 0.431
MTL-MSE (Maetal.,2018) | 21.190 0.2478 | 74.065  0.433
ZILN (Wang et al., 2019b) 20.880 0.2434 | 72528  0.524
MDME (Li et al., 2022a) 16598  0.2269 | 72.900  0.516
MDAN (Liu et al., 2024b) 20.030 0.2470 | 73.940  0.437
OptDist (Weng et al., 2024) 15784 02505 | 70929  0.525
HIiLTV (Xu et al., 2025) 14764  0.2645 | 69.331  0.512
SRCC LcC MAE 0% Our GoR 12996 0.3026 | 67.035  0.533

Figure 4: Performanceon the TAD66K Table 1: Performance comparison on LTV datasets
dataset with different decoder architectures.  with the MAE and SRCC metrics.

Extensibility. Beyond flexible substitution with task-specific implementations, GoR can integrate
existing optimization strategies with negligible adaptation cost, including curriculum learning (Bengio
et al., 2009), N-gram (Goodman et al., 2020), and reinforcement learning such as GRPO (Shao et al.,
2024). The detailed discussion of these extensions is provided in Sec. 3.2.4.

2.5.2 TRAINING AND INFERENCE

Training loss. The primary objective is to minimize the negative likelihood:

N T;

Zlogp9 si|hi) == log Ps(s} | hi,57") (6)

i=1 t=1

o

To incorporate ordinal relationships into the predictions, we follow (Liu et al., 2018b) to employ the
Huber loss (Huber, 1992) as:

1 ~\2 . ~
N sy — s fly; — 9:] <&
[:uer:[: iy Yi) = 2(y y) ! -7 7
b 8y 91) {5~ (lyi — 95| — 26) otherwise @
where § balances sensitivity and robustness to outliers, and the final objective is:
ﬁtotal = »Cce + A »Chube'r (8)

where )\ is a hyperparameter that balances the two losses.

Inference process. The encoder processes the input x; to derive a hidden representation h; analogous
to the training phase. The decoder then initiates the generation of sequence §; autoregressively,
beginning with the (SOS) token and proceeding until the (EOS) token is generated. Finally, the

predicted value is computed by 7j; = ZtT;'l o(8h).

3  EXPERIMENTS

We first present GoR’s overall performance across multiple domains, then introduce in-depth analyses
of architectural choices, interval-wise performance, distributional visualization, extensibility, vocabu-
lary ablation, and token semantics to elucidate its underlying mechanisms. Evaluation metrics include
Mean Absolute Error (MAE), Cumulative Score (CS), XAUC (Zhan et al., 2022), Linear Correlation
Coefficient (LCC), and Spearman’s Rank Correlation Coefficient (SRCC). Due to space limit, detailed
metric definitions, implementation settings, and additional results are moved to Appendix F.
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Table 2: Performance comparison among different approaches on WTP task for four datasets.

Method KuaiRec KuaiRand CIKM16 Indust.
MAE| XAUCT | MAE| XAUCT | MAE| XAUCT | MAE| XAUC*?T
VR 7.634 0.534 12.349 0.521 1.039 0.641 46.343 0.588
WLR (Covington et al., 2016) | 6.047 0.545 11.582 0.529 0.998 0.672 - -
D2Q (Zhan et al., 2022) 5.426 0.565 10.564 0.537 0.899 0.661
CWM (Zhao et al., 2024) 3.452 0.580 8.696 0.561 0.891 0.662 - -
TPM (Lin et al., 2023) 3.456 0.571 9.573 0.542 0.850 0.676 41.486 0.593

CREAD (Sun et al., 2024) 3.307 0.594 9.487 0.549 0.865 0.678 39.979 0.597
SWaT (Yang et al., 2025) 3.438 0.585 9.553 0.544 0.857 0.685 40.995 0.591
Our GoR 3.194 0.616 7.032 0.567 0.812 0.694 38.528 0.604

3.1 OVERALL PERFORMANCE

3.1.1 IMAGE AESTHETICS ASSESSMENT (IAA)

Following (He et al., 2023), we select 14 representative and state-of-the-art (SOTA) baselines for
evaluation on four datasets: TAD66K (He et al., 2022), AVA (Murray et al., 2012), ICAA17K (He
et al., 2023), and SPAQ (Fang et al., 2020), with four metrics: MAE, XAUC, LCC, and SRCC.
Recognizing the critical importance of visual features in the IAA task (He et al., 2022), we evaluate
GoR by employing three distinct encoder backbones: ResNet50 (He et al., 2016), a representative
legacy architecture (He et al., 2022), and a recent SOTA model (Gao et al., 2024).

Performance. Fig. 3 demonstrates GoR’s superiority over SOTA methods across four metrics,
with three critical observations: (1) Compatibility: GoR with standard ResNet50 matches SOTA
models with expert-designed architectures; (2) Robustness: Even paired with outdated TANet, GoR
significant improvements over the SOTA methods—a compelling result given the critical dependence
of TAA tasks on feature quality; (3) Synergy: Combined with a modern AesMamba encoder, GoR
achieves new SOTA (detailed metrics in Appendix F.2.2). These results validate the universal efficacy
of our generative ordinal modeling paradigm across different encoder architectures.

3.1.2 LIFE TIME VALUE PREDICTION (LTV)

Following (Weng et al., 2024), we evaluate GoR on the Criteo-SSC and Kaggle datasets with MAE
and SRCC metrics. A Feed-Forward Network (FFN) serves as the encoder of GoR. Details regarding
the encoder architecture, the baseline methods, and datasets are in Appendix F.4.

Performance. Across both ordinal (SRCC) and numeric (MAE) metrics, GoR consistently surpasses
existing methods (see Tab. 1). It improves HiLTV by 3.43% in MAE (reduction) and 3.94% in
SRCC on Kaggle. Notably, for Criteo-SSC, GoR achieves a 13.6% reduction in MAE and a 12.59%
improvement in SRCC compared to the SOTA method HiLTV, substantiating the superiority of GoR.

3.1.3 'WATCH TIME PREDICTION (WTP)

Following (Lin et al., 2023; Zhao et al., 2024), three publicly available datasets (CIKM16,
KuaiRec (Gao et al., 2022a) and KuaiRand (Gao et al., 2022b)) and one industrial dataset from
a real-world short-video app are used to evaluate the proposed GoR, with the metrics of MAE and
XUAC. The encoder is consistent with the LTV task implementation in Sec. 3.1.2, and comprehensive
details about datasets and compared baselines are in Appendix F.3.1.

Performance. We compare GoR with 6 existing methods and the results are presented in Tab. 2.
Compared to the second-best method (marked in underline), GoR achieves relative reductions in
MAE of 3.36% (KuaiRec), 1.91% (KuaiRand), and 4.12% (CIKM16), alongside relative improve-
ments in XAUC of 1.07% (KuaiRec), 3.37% (KuaiRand), and 1.92% (CIKM16). The comprehensive
improvements in both MAE and XAUC substantiate the superiority of the GoR method. Besides,
GoR exhibits a 3.629% relative decrease in MAE and a 1.001% improvement in XAUC on the Indust
dataset, demonstrating its potential to significantly enhance real-world user experiences.

3.1.4 FAcIAL AGE ESTIMATION (FAE)

FAE is a discrete ordinal regression problem (e.g. 0-100 years old) unlike some previous tasks that
involve continuous ordinal labels. Consistent with the datasets, baselines, and evaluation protocol
used in (Paplhdm et al., 2024), we evaluate GoR on four FAE datasets (UTKFace (Zhang et al., 2017),
FG-NET (Lanitis et al., 2002), MORPH (Ricanek & Tesafaye, 2006), and CACD (Chen et al., 2014))
with MAE and CS (tolerance L = 5) metrics, and use FaRL (Zheng et al., 2022) as the encoder.
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Table 3: Facial age estimation results on four benchmarks

UTKFace FG-NET MORPH CACD
MAE] CS(%)7 MAE| CS(%)1t MAE| CS(%)T MAE] CS(%)*1

OR-CNN (Niu et al., 2016a) 4.40 63.67 5.09 83.80 2.83 61.97 4.01 73.41
DLDL (Gao et al., 2017) 4.39 63.65 5.26 83.83 2.81 62.43 3.96 73.37
SORD (Diaz & Marathe, 2019) 4.36 64.25 5.59 82.83 2.81 61.31 3.96 73.48
Mean-Var. (Pan et al., 2018) 442 63.36 5.45 83.43 2.83 62.87 4.07 72.98
Unimodal (Li et al., 2022b) 4.47 62.67 5.13 83.97 278 63.15 4.10 73.55

Method

POE (Li et al., 2021) 4.43 63.37 5.24 83.56 2.83 62.45 4.02 73.08
FaRL (Paplhdm et al., 2024) 3.87 65.38 4.95 84.52 3.04 63.49 3.96 74.18
Our GoR 3.43 66.58 4.68 85.66 2.69 64.95 3.73 75.29

0.4 H = GT,var=11.46 B = GT.var=11.46
i GoR, var=2.68 | m CREAD, var=1.81
-~ GT mean = 7.69 -~ GT mean = 7.69
GoR mean = 7.76 ~--- CREAD mean = 8.54

= GT, var=11.46
TPM, var=2.56

-~ GTmean = 7.69
--- TPM mean = 9.11

MAE
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(c) CREAD vs GT (d) TPM vs GT

Figure 5: (a) MAE comparison on the KuaiRec dataset across time intervals. (b-d) The distribution
of predicted values by GoR, CREAD, and TPM, compared against that of the Ground Truth (GT).

Performance. The results in Tab. 3 show that our GoR model achieves SOTA performance, signifi-
cantly surpassing all baselines across all datasets in both evaluation metrics. GoR delivers consistent
and substantial improvements — MAE reductions between 5.8% (MORPH) and 14.1% (FG-NET),
and CS improvements between 1.5% (CACD) and 2.7% (FG-NET) — demonstrating its generality
over diverse ordinal regression tasks, from continuous to discrete labels. Due to space constraint,
experiments of Historical Image Dating, another discrete OR task, are presented in Appendix F.6.

3.2 FURTHER ANALYSIS

3.2.1 ARCHITECTURE-AGNOSTIC ANALYSIS

Fig. 4 shows the results of decoder architecture ablation on TAD66K under IAA task: All variants
including RNN (Schuster & Paliwal, 1997), GRU (Chung et al., 2014), LSTM (Hochreiter &
Schmidhuber, 1997), and Transformer (Vaswani et al., 2017) surpass the SOTA methods, with
Transformer achieving the optimal performance, validating GoR’s architectural independence.

3.2.2 PERFORMANCE GAIN ANALYSIS OF GOR

We analyze model performance across ground truth (GT) time intervals on KuaiRec, where approxi-
mately 80% of videos have GT <10s. Fig. 5(a) shows that GoR significantly outperforms CREAD
and TPM on frequent short and medium watch times, with slightly lower performance only on the
last >10s interval, where it lags behind TPM (detailed reasons explained in Appendix F.3.3). Further
insights are observed by examining the predicted value distributions (Fig. 5(b-d)). GoR achieves
superior distribution alignment through its coarse-to-fine tokenization. GoR’s (EOS) token enables
precise near-zero GT predictions, highlighting its flexibility for adaptive resolution. Conversely, the
overestimation in CREAD and TPM stems from rigid discretization buckets, where large tail bucket
spans disproportionately amplify errors for shorter GTs.

3.2.3 VOCABULARY ANALYSIS

Ablation study. Vocabulary initialization analysis in Tab. 4 reveals: (1) Quantile-based method
outperforms manual (intervals [1,3,5,7] x 10™), and binary strategies (intervals 2" from 1) benefit from
balanced token distributions (See Fig. 6(a)); (2) CoDi enhances all initialization strategies, which
is linked to CoDi yielding a more balanced token frequency distribution by reducing token-level
frequency variance and per-step bias B, consistent with theoretical expectations. (3) 3 sensitiv-
ity analysis in Fig. 6(b) reflects that decreasing § filters more tokens, and performance varies
non-monotonically. This trend supports the bias-variance trade-off, showing initial size reduction
suppresses variance, while excessive compactness increases bias, aligning with Theorem. 1.

Analysis of learned token semantics. We analyze token semantics via derived weighted numerical

embeddings e; = Zf;l r - E[8L,:], where 7, = % weights token contributions and £ represents
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Figure 6: Vocabulary analysis on KuaiRec dataset for WTP task: (a) Token frequency distributions
under different vocabulary strategies. (b) The sensitivity analysis of 5. (c) t-SNE of weighted token
embeddings. (d) Tokens similarity heatmap against numerical distance.

Table 4: Performance Across Vocabulary Table 5: Compatibility with existing generative opti-
Construction Strategies (w/ vs. w/o CoDi) mization strategies on WTP and LTV tasks.

Vocabulary desi KuaiRec CIKM16 Strategy KuaiRec Criteo-SSC
ocabulary desigh | \fAE | XAUCT | MAE| XAUC 1 TF CL NP | MAE| XAUC?t | MAE| SRCC?
Manual (Man.) 3.281 0.604 | 0825  0.685 (a) v 3.359 0.588 16.198  0.252

Binary (Bin.) 3.268 0.605 0.821 0.687 (b) v 3.299 0.592 14.893 0.264
Quantile (Quan.) 3.221 0.609 0.820 0.688 (c) v 3.241 0.604 13.996 0.276
Man.+CoDi 3.253 0.610 0.819 0.689 (d) 4 v 3208 0.612 13.068  0.292
Bin.+CoDi 3.239 0.611 0.815 0.691 (e) vV | 3194 0.616 12.996  0.303
Quan.+CoDi 3.194 0.616 0.812 0.694 () w/DPO | - - - 3.185 0.620 12438 0.309

token embeddings matrix. As shown in Fig. 6(c), instances predicting the same initial token form
distinct clusters, and clusters for numerically similar initial tokens appear closer, indicating that
GoR effectively captures the magnitude relationships among tokens. Fig. 6(d) visualizes pairwise
token similarity based on probabilistic outputs, revealing a strong correlation: smaller numerical
differences correspond to smaller predicted probabilities differences, indicating GoR effectively
learns the intended magnitude relationships across the vocabulary. This structural encoding of ordinal
relationships validates the generative paradigm’s suitability for ordinal regression, positioning GoR
as a promising foundation for future research in this direction.

3.2.4 COMPATIBILITY WITH GENERATIVE OPTIMIZATION STRATEGIES.

As discussed in Sec. 1, GoR can seamlessly accommodate optimization strategies for generative
language model with negligible adaptation cost. Here, we assess this compatibility by incorporating
several representative strategies prevalent in language models: 1) Teacher Forcing (TF) (Sutskever,
2014) is a training method that feeds the ground-truth token at step ¢ — 1 into the decoder at step ¢. 2)
Curriculum Learning (CL) (Bengio et al., 2015) progressively shifts the training strategy from full TF
to a strategy that closely mimics autoregressive inference. 3) N-gram Prediction (NP) (Goodman
et al., 2020) simultaneously predicts N tokens to improve predictive lookahead and compensate for
output-to-input gradients. 4) DPO® (Rafailov et al., 2023) is a reinforcement-learning-based strategy
that optimizes model outputs via preference alignment. Our GoR requires no explicit reward model,
instead using beam-search candidates with MAE against labels as implicit preference signals. The
results in Tab. 5 indicate that this compatibility significantly enhances model performance. Crucially,
these improvements are achieved without introducing additional model parameters, demonstrating a
cost-effective and scalable enhancement that facilitates GoR’s future exploration in wider applications.

4 CONCLUSION

This paper proposes GoR, the first generative framework for Ordinal Regression (OR), formulating
OR as an autoregressive sequence generation task by predicting tokens for ordinal value segments
autoregressively. This explicitly models sequential dependencies and enables adaptive resolution,
overcoming the drawback of rigid binning. Supported by a bias-variance theoretical analysis and
the CoDi metric for vocabulary optimization, GoR demonstrates SOTA performance on 17 diverse
benchmarks spanning 6 domains, providing a strong baseline for future generative OR research.

3To avoid the prolonged training time associated with reinforcement-learning-based post-training, while
effective, all results are reported using the efficient setup from line (e).
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Generative Al tools (e.g., ChatGPT) were used solely to improve the manuscript’s clarity and
readability during the writing stage. These tools were not employed for generating any novel
content, such as text, figures, tables, code, or experimental results. No generative Al was used in
the conception, implementation, analysis, or evaluation of the research itself. The authors take full
responsibility for the integrity and accuracy of the final manuscript.

B RELATED WORK

B.1 ORDINAL REGRESSION (OR)

OR addresses prediction tasks with ordered targets, widely applied in diverse domains like facial
age estimation (Niu et al., 2016b; Chen et al., 2017), image aesthetic/quality assessment (He et al.,
2022; 2023), watch-time prediction Ma et al. (2024); Sun et al. (2024); Lin et al. (2023), life-time
value prediction (Wang et al., 2019b; Li et al., 2022a; Weng et al., 2024). Prior OR works have
predominantly relied on Continuous Space Discretization (CSD) (Wang et al., 2025), transforming OR
into classification. Within the CSD paradigm, key directions include methods that enhance boundary
discrimination via reference comparisons (Shin et al., 2022; Li et al., 2021; Zheng et al., 2024), but are
sensitive to heuristic reference selection. Another prevalent rank-based approach implicitly encodes
ordinality via label transformation into sequential binary subtasks (Niu et al., 2016b; Lin et al., 2023;
Sun et al., 2024; Chen et al., 2017; Liu et al., 2018b;a). While effective, the fixed discretization
leads to prediction rigidity and can amplify errors for head categories, particularly in long-tailed
distributions. Recent CLIP-based works align image features with textual ordinal descriptions to
enhance the semantic understanding and generalization of ordinal relationships, representing a rapidly
growing and promising research direction. The Learnable Prompts strategy (Li et al., 2022c; Yu et al.,
2024) employs trainable context vectors to automatically capture ordinal relationships and extract
rank concepts from CLIP’s latent space. Conversely, Semantic Alignment approaches (Wang et al.,
2023b; Du et al., 2024) focus on constructing rank-specific textual descriptions. In contrast, GoR
adopts a fundamentally different, generative perspective of autoregressive sequence modeling in
language models, which inherently captures explicit sequential dependencies and employs a dynamic
termination mechanism to generate sequences of variable lengths. This grants significantly greater
flexibility in output granularity compared to methods constrained by fixed bins, enabling adaptation
to varying data distributions and prediction requirements.

B.2 SEQUENCE PREDICTION

Sequence prediction, which necessitates models to comprehend input context and produce output
sequences, initially focuses on natural language processing (NLP) tasks such as machine transla-
tion (Sutskever, 2014; Cho, 2014) and text summarization (Wang et al., 2019a; Xiao et al., 2020). The
advent of the Transformer architecture (Vaswani et al., 2017) significantly improves sequence predic-
tion capabilities, leading to numerous derivative models (Liu et al., 2019b; Yang et al., 2019) and
expanding its application to fields such as computer vision (CV) (Tian et al., 2024; Wang et al., 2024)
and recommendation systems (Hidasi, 2015; Sun et al., 2019) through the successful reformulation
of their tasks as effective end-to-end sequence prediction problems. However, sequence prediction
has not yet been applied to OR, and our work pioneers a sequence prediction perspective for OR,
offering a fundamentally novel modeling paradigm. A related work is Ord2Seq (Wang et al., 2023a).
It maps generated sequences to fixed bins and, in essence, remains sequential binary subtasks under
the rank-based paradigm and does not scale well when the number of categories or the value range
is large—its reported validation has been limited to at most eight ordinal groups. In contrast, GoR
employs a generative autoregressive formulation with a dynamic (EOS), enabling adaptive ordinal
segmentation rather than relying on predefined bins.
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B.3 TOKENIZER DESIGN

Tokenizer design is widely employed in generative language models for compact vocabulary represen-
tation and broadly falls into two categories: bottom-up merging and top-down pruning. The former,
exemplified by BPE (Sennrich et al., 2016) and WordPiece (Wu et al., 2016), iteratively combines
subword units based on statistical criteria. Conversely, top-down pruning methods, represented by
Unigram (Kudo & Richardson, 2018), reduce large initial sets by evaluating and eliminating subwords
according to their contributions. Building upon these foundational strategies, recent literature has
explored various enhancements and adaptations (Xu et al., 2021; Hofmann et al., 2022; Yehezkel
& Pinter, 2023; Schmidt et al., 2024), further improving tokenization efficiency. However, these
traditional NLP tokenization strategies are not directly applicable to our GoR, where tokens inherently
exhibit dual sequential and numerical additive semantics, necessitating customized methodologies.

C PROOF OF PROPOSITION 1

C.1 THEORETICAL ANALYSIS

This section provides a theoretical analysis of these limitations, demonstrating the importance of
capturing temporal dependencies to improve prediction accuracy.

Let {(z;,v;)}}L, be the training set. Discretize the value range of y; into M intervals d,, =
[¢m—1,¢m] With boundaries ¢g < --- < c¢py. Define binary variables BY* = 1(y; > ¢,,) for
m=1,...,M,and let B; = {B},..., BM} with decision history Bfy™ = (B},...,B"!).

The label transformation methods with sequential binary subtasks implicitly assume conditional
independence across these discretized intervals:

M
Puive(Bi | z:) = [] PB" | 22). ©)
m=1

In contrast, the true conditional distribution factorizes sequentially:

M
Pre(Bi | z:) = [[ PB" | B, 2:). (10)

m=1
The KL divergence between these two distributions is given by:

Piwe(B; | x5
DKL(RrueHPnaive) = Z Plrue(Bi | xz) log %

Bm B<'m X
= 37 Puu(Bi | ) log o P B2 an
B, [T, P(BY" | )

M
P(B | BE™,
= X B0 3 o PG
B; i ¢

m=1

Rearranging the summation terms, we derive the total KL divergence that quantifies the error
introduced by ignoring dependencies among discretized intervals:

M
P B;n Bfm,aci
DKL(RrueHPnaive) = Z ZPtrue(Bi | l‘z) log w
m=1 B; i ¢ (12)
s e PBI | BE™ 2)
- — B, ~ Pirue g P(B;’n | xz)

We can decompose this expectation using the Law of Iterated Expectations:
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M
DKL(RrueHPnaive) - Z ]EBi<m |:]EB2m’\B,<7'L [log

m=1

]

™y BE™ x;
> PBY =B x)log — 5 —par

m_ pmB<m .
P(BL b |Bz 7X1)] (13)

m=1 bme{0,1}
M

_ (m)

=Y Ege<m [DYY
m=1

This can be explicitly expressed as the conditional KL divergence for each bucket:

D) = Dir (P(BY | 2, BY™) | P(BY | ;)

P(B" =b™ | x;, Bf™) (14)
= E PB"™ =b"|z;,B~™)1 d 7
( (2 | € ) (3 ) Og P(an — br,n | xl)
bme{0,1}

This expectation can be expressed as:
Eg<n [D;;ng] = I(B™:B:™ | ), (15)

where I(B*; B | ;) denotes the conditional mutual information between the current decision
B!™ and all preceding decisions B, given the features z;. The detailed proof is in the following:

Pb™ | b, x;)

I m, <m i é <m im zl
BB [w) £ D, PO |@i)log — 5o

b<m pm

m m | p<m PO™ | b=", ai)

Pb=" | 2) S PO™ | b, ) log o L2 2i)
b;n bzm P™ | x:) (16)

> PO &) (Drr (P(BY" | 2, BE™) || P(BY" | 2:)))

p<m

2 Eg<m D).

The derived KL divergence decomposition illustrates that the error introduced by the naive discretized
modeling approach which ignores dependencies across intervals, can be quantified precisely as the
cumulative sum of conditional mutual information across all discretized intervals. Specifically, if
intervals are entirely independent (i.e., mutual information I = 0), the resulting KL divergence
error is zero; conversely, if strong dependencies exist among intervals (I > 0), the error increases
proportionally to the strength of these dependencies.

C.2 EMPIRICAL VALIDATION

To empirically validate Proposition 1, we conduct additional experiments using an SOTA baseline
SWaT (Yang et al., 2025) on the CIKM 16 dataset of watch-time prediction task. Specifically, we
introduce explicit sequential dependencies by modeling previous bin features with an RNN for joint
prediction. The results in Tab. 6 demonstrate performance gains, substantiating our theoretical claims.

Table 6: Empirical validation of Proposition | on the CIKM16 dataset.

Method MAE] XAUC 1t

SWaT 0.857 0.685
SWaT+RNN 0.831 0.689
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D PROOF OF THEOREM 1

We provide a formal bias-variance decomposition of the expected squared error in GoR. Our goal is
to upper bound the prediction error of a model that generates a sequence of value tokens.

Let the true label be defined as:

yi =Y _ (s, (17)
t=1
and the predicted label be:
T;
i =Y o8, (18)
t=1

where T represents the overall length of the token sequence for sample 4, s! and §! denote the
ground-truth and predicted tokens at step ¢, and ¢(-) maps a token to its corresponding numeric value.

We model ¢(s!) as a discrete random variable, denoted as C!. The probability distribution of C! is
given by: P(C} = w),w € {¢(w;)}}_,,which denotes the probability of C} taking the value w. So,

the predicted token output be modeled as §; = Zf;l Cit

We now analyze the expected squared error:
T; T; 2
=6l -2 | (Lo 3] |. 19
t=1 t=1

Let A, := C! — C?. Then we can write:
2 2

T; T; T;
E <Z At> = ( E[Aﬂ) +V (Z At> (20)
t=1 t=1 t=1
Bias? Variance
T 2 T
= (Z bt) + ZV(At) + ZCOV(AtaAt')’ (21)
t=1 t=1 t£t!

where b, := E[A;] = E[C!] — C. This formulation captures the compounding errors of autoregres-
sive models through the covariance term, which reflects correlations between errors at different steps.
Next, we analyze the bias and variance terms separately to derive their upper bounds.

Bias Upper Bound. If the model is unbiased at each step, b; = 0. Otherwise, we assume:
|bt| < Bv Vtv (22)

where B represents the maximum bias across all time steps in the prediction sequence, mainly
governed by the model’s predictive accuracy. In practice, B corresponds to the extreme case where
the predicted token deviates most from the ground-truth token at the current step. Hence, it can be

bounded by the largest token value at the current step B < Jmax, C!. Then,
<SUSTs

T 2
(Z bt> < T?B2. (23)
t=1
Variance Upper Bound. Applying the Cauchy—Schwarz inequality:

D Cov(An Ap) <D VV(A)V(A) < T(TT_” ‘max V(A,). (24)

it/ i1/
We then analyze the item max; V(A;).

V(A) =V (éf - Cf) -V (Of) +V (Ct) = 2Cov (éf, Cf) (25)
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Algorithm 2: Quantile-based Vocabulary Initialization

Input: Dataset labels Y = {y;}¥ |; initially empty initial vocabulary VW = &; precision
threshold ¢; fixed percentile ¢
Output: initial vocabulary W

1 Sort Y in descending order to obtain Y

2 Initialize iteration counter iter < 1, error metric err < oo;

3 while err > ¢ do

4 Compute the g-percentile z;;., of Y

5 if z;tc, = O then break // terminate if percentile value is zero
6 Insert z;¢, into vocabulary W

7 foreach y; Y do

8 if J; > zjter then

9 ‘ gi — :gz — Ziter

10 end

1 Update error metric err < max Ji
vYi

12 iter < iter + 1
13 end
14 return W

Assume that the predicted variable and the true variable are two independent random variables. Since
the vocabulary is the same, the range of values for both the predicted and the true items is identical.
Assuming token values are bounded in [wyin, Wmax ], We apply Popoviciu’s inequality:

_ )2
Let:
— . )2
Viar i= mtaxV(At) < M 27)
Then total variance becomes:
VO A < T Var. (28)
t
Final Bound. Combining both components, we obtain:
_ . )2
E [@L _ yi)Q] < Ti2B2 4 Ti2 . M (29)

4

This theoretical bound reveals three critical insights for GoR optimization: (1) prediction error grows
quadratically with sequence length T}, suggesting shorter sequences are preferable when possible; (2)
both bias and variance contribute proportionally to overall error, necessitating balanced optimization;
and (3) token value range (wWmax — Wmin) directly impacts variance, indicating that carefully designed
vocabularies with appropriate value distributions can substantially improve model performance.
These findings provide a principled foundation for our vocabulary construction strategy.

E QUANTILE-BASED VOCABULARY INITIALIZATION STRATEGY

This section details the Quantile-based Vocabulary Initialization Strategy adopted in Sec. 2.3. As
shown in Alg. 2, this iterative strategy constructs the vocabulary by selecting tokens based on a fixed
percentile g of the remaining label values, subtracting them from exceeding values, and repeating
until residuals are negligible. Alg. 2 serves as the initialization stage: it provides a coarse yet
comprehensive token set. Building on this, Alg. I in Sec. 2.3 further prunes and refines the vocabulary
via the CoDi criterion, yielding a compact and task-adaptive representation.
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F ADDITIONAL EXPERIMENTS

F.1 EXPERIMENTAL SETTINGS

F.1.1 METRICS.

A set of performance metrics is utilized to evaluate the proposed method across various tasks. Task
requirements determine the specific metrics applied for each task:

* MAE (Mean Absolute Error): This regression precision is measured as the average absolute
error between the value prediction {¢;}Y,; and the ground truth {y;}, and is formulated as

1 N ~
N Zi:1 ‘yi - yz|
¢ CS (Cumulative Score): This metric quantifies the proportion of instances in the test set for

which the absolute error between the predicted value ¢; and the ground truth value y; is less than
or equal to a specified tolerance L.

* XAUC (Zhan et al., 2022): This metric measures the agreement between the predicted ranks and
the ground truth order for pairs of samples. Calculated over uniformly sampled pairs, XAUC
represents the proportion of pairs where the predicted relative order is consistent with the true
relative order. Higher XAUC indicates superior performance in capturing ordinal relationships.

¢ LCC (Linear Correlation Coefficient) (Talebi & Milanfar, 2018): This metric quantifies the
linear relationship between the predicted values {¢;} Y, and the ground truth values {y; }}¥,. It is
computed as their covariance divided by the product of their standard deviations. The LCC ranges
in [—1, 1], with values closer to 1 indicating a stronger linear correlation.

¢ SRCC (Spearman’s Rank Correlation Coefficient) (Talebi & Milanfar, 2018): SRCC assesses
the monotonic relationship between the ranks of the predicted values {g; }?¥ ; and the ranks of the
ground truth values {y; } lNzl. As a non-parametric measure of rank correlation, it ranges in [—1, 1].
Values closer to £1 indicate a stronger monotonic correlation. SRCC is less sensitive to outliers
compared to LCC.

F.1.2 IMPLEMENTATION DETAILS.

Unless otherwise specified in the respective experimental sections, the following training protocol
is adopted. The proposed GoR architecture employs an encoder-decoder framework. The encoder
architecture in GoR is tailored to the specific task, with details regarding data processing and encoder
configurations provided in the corresponding experimental sections. The decoder in GoR is a two-
layer Transformer decoder utilizing a 4-head attention mechanism. The hyperparameter A in Eq. (8)
is set to 10. For vocabulary construction, in Alg. 2 for initial vocabulary, q is set to 0.9, ¢ is set to
0.005. In Alg. 1, B is set to 0.7 and € is set to 0.005. To mitigate overfitting, a dropout rate of 0.1 is
applied. The Adam optimizer (Kingma & Ba, 2014) with default parameters (51 = 0.9, 82 = 0.999)
and a learning rate of 5e-4 are used to minimize the objective function. For experiments involving
image data (common in computer vision tasks), training is conducted for 100 epochs with a batch
size of 128. For the tasks involving structured data (WTP, LTV and Bid), training is performed for 20
epochs using a batch size of 1024. Experiments are conducted on a system equipped with an NVIDIA
RTX 4090 GPU.

F.1.3 REPRODUCIBILITY AND FAIR COMPARISON.

Each experiment is repeated five times, and we report both the mean and standard deviation (See
Appendix. F.7). As noted in prior work (Paplhdm et al., 2024), state-of-the-art methods in the
FAE field often exhibit large performance variance due to inconsistent dataset splits, preprocessing
protocols, and evaluation criteria, rendering many results incomparable and irreproducible. Motivated
by this, (Paplhdm et al., 2024) proposed a standardized evaluation protocol. We observe the same issue
in the JAA domain Consequently, we reproduced all baselines under their original hyperparameter
settings in their respective papers and averaged the results. This strategy offers two key benefits: (1) it
ensures fair and consistent comparisons; and (2) it establishes GoR as a reliable baseline to facilitate
standardized evaluations in future research. To ensure reproducibility, we will release the complete
codebase, including all baseline implementations.
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Table 7: The results of Image Aesthetics Assessment task on TAD66K and AVA datasets

Method TAD66K AVA
MAE] XAUC{ LCCt SRCCt MAE] XAUCt LCCt SRCC 1
RAPID (Lu et al., 2014) 1766 0510 0332 0314 0978 0513 0336 0327
AADB (Kong et al., 2016) 1463 0523 0400 0379 0784 0534 0431  0.408
PAM (Ren et al., 2017) 1314 0534 0440 0422 0614 0619 0531 0521
NIMA (Talebi & Milanfar, 2018)  1.422 0511 0405 0390 0715 0532 0472 0447
ALamp (Ma et al., 2017) 1349 0523 0422 0411 0657 0579 0498  0.487
MP,4, (Sheng et al., 2018) 1191 0589 0408 0389  0.602  0.632 0543 0531
MLSP (Hosu et al., 2019) 1132 0620 0432 0409 0579 0657 0563  0.553
BIAA (Zhu et al., 2020) 1329 0538 0431 0348 0672 0566 0496 0476
UIAA (Zeng et al., 2019) 1281 0548 0441 0361  0.608 0626 0535  0.525
POE (Li et al., 2021) 1185 0588 0420 0377  0.633 0608 0524 0506
HGCN (She et al., 2021) 1141 0615 0419 0406 0658 0578 0511 0486
TANet (He et al., 2022) 1.081  0.649 0452 0428 0577 0659  0.568  0.554
MaxViT (Tu et al., 2022) 1054 0659 0472 0441 0559 0679 0594 0571
Delegate (He et al., 2023) 1041 0661 0477 0451 0541  0.688  0.642  0.634
AesMamba (Gao et al., 2024) 1.035  0.666 0482 0468 0522  0.697  0.663  0.656
GoR with ResNet 1.036  0.667 0485 0471 0526 0701  0.668  0.657
GoR with TANet 1013 0672 0523 0499 0428 0735  0.689  0.686
GoR with AesMamba 0996  0.677 0541 0513 0395 0751 0726  0.701

F.2 IMAGE AESTHETICS ASSESSMENT (IAA)

F.2.1 DATASETS, BASELINES, AND EXPERIMENTAL SETUP.

GoR is evaluated on four widely used IAA datasets: TAD66K (He et al., 2022), AVA (Murray et al.,
2012), ICAA17K (He et al., 2023), and SPAQ (Fang et al., 2020). Data was randomly split into 80%
for training, 10% for validation, and 10% for testing. Due to the relatively small range of aesthetics
scores (typically 0-10), labels were scaled by 100 for GoR’s vocabulary construction and ordinal
target sequencing. Predictions were scaled back by 100 for evaluation metric computation to ensure
fair comparison.

Baselines were chosen based on two criteria: 1) classical architectures with available code, and
2) state-of-the-art (SOTA) performance in specific areas, such as personalized IAA. For a fair
comparison, these baselines were trained using their recommended hyperparameter settings and
evaluated under identical training and testing configurations. Consistent with the approach in (He
et al., 2023), all compared baselines were subjected to identical data preprocessing.

Given the critical role of visual features in image aesthetics assessment, we evaluate GoR by
employing three different encoder backbones: ResNet50 (He et al., 2016) as a widely recognized
standard, a representative older architecture (He et al., 2022), and a recent SOTA model (Gao et al.,
2024). This strategy also helps to ensure that observed performance gains are due to the GoR
framework itself, rather than simply an increase in model parameters.

F.2.2 COMPREHENSIVE BASELINES COMPARISON FOR IMAGE AESTHETICS ASSESSMENT.

Due to space constraints in Sec. 3.1.1 of the main paper, comprehensive baseline comparisons for the
Image Aesthetics Assessment task are presented here. Tab. 7 and Tab. 8 detail the performance of all
compared methods on the TAD66K/AVA and ICAA17K/SPAQ datasets, respectively.

F.3 WATCH TIME PREDICTION (WTP)

F.3.1 DATASETS AND EXPERIMENTAL SETUP

Three publicly available datasets and one industrial dataset are used to evaluate the proposed method.
The large-scale industrial dataset (Indust. for short) is sourced from a real-world streaming short-
video app with over 400 million DAUs and multi-billion impressions each day. We collect interaction
logs for 4 days and utilize the subsequent day’s data for evaluation. The CIKM16*, sourced from
the CIKM16 Cup competition, is designed to predict user engagement duration in online search

*https://competitions.codalab.org/competitions/11161
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Table 8: The results of Image Aesthetics Assessment task on ICAA17K and SPAQ datasets.

Method ICAAI7K SPAQ

MAE| XAUCt LCCt SRCCt MAE] XAUCT LCCtT SRCCY
RAPID (Lu et al., 2014) 0.7415  0.6416 05164 0.5083  1.0890  0.6997  0.6565 0.6128
AADB (Kong et al., 2016) 0.7142  0.6661 05311 0.5195 1.083 0.7036  0.6646  0.6162
PAM (Ren et al., 2017) 0.7070  0.6729  0.5385 0.5247 1.0726  0.7104  0.6691  0.6222
ALamp (Ma et al., 2017) 0.6948  0.6847  0.5478 0.5339  1.0511 0.7250  0.6835  0.6349
NIMA (Talebi & Milanfar, 2018)  0.6957  0.6839  0.5458 0.5333 1.0756  0.7084  0.6709  0.6204
MP,, 4, (Sheng et al., 2018) 0.6948  0.6848  0.5485 0.5340 1.0525 0.7240  0.6808  0.6341
MLSP (Hosu et al., 2019) 0.6814  0.6983  0.5606 0.5445 1.0428  0.7306  0.6952  0.6402
MT-A (Fang et al., 2020) 0.6855  0.6940 0.5558 0.5412  1.0455  0.7289  0.6862  0.6384
BIAA (Zhu et al., 2020) 0.6864  0.6932  0.5552 0.5405 1.0497  0.7259 0.6826  0.6358
UIAA (Zeng et al., 2019) 0.6889  0.6907 05559 0.5386 1.0469  0.7278  0.6862  0.6376
POE (Li et al., 2021) 0.6808  0.6966  0.5583 0.5432  1.0456  0.7307  0.6877  0.6368
MUSIQ (Ke et al., 2021) 0.6740  0.7059  0.5632 0.5504 1.0427 0.7308  0.6925  0.6401
HGCN (She et al., 2021) 0.6813  0.6983  0.5566  0.5445 1.040 0.7328  0.6934  0.6417
TANet (He et al., 2022) 0.6789  0.7008  0.5599 0.5465 1.0469  0.7279  0.6844  0.6375
MaxViT (Tu et al., 2022) 0.6582  0.7227  0.5853  0.5636 1.042 0.7308  0.6925  0.6401
Delegate (He et al., 2023) 0.6345  0.7498  0.6034  0.5847 1.019 0.7473  0.7114  0.6545
AesMamba (Gao et al., 2024) 0.6129  0.7663  0.6137 0.6294 09875  0.7522  0.7261  0.6895
GoR with ResNet 0.6115 0.7653  0.6133  0.6305 0.9911  0.7588  0.7322  0.6886
GoR with TANet 0.5994  0.7838  0.6744 0.6675 0.9489  0.7644  0.7406  0.7189
GoR with AesMamba 0.5842  0.7913  0.6823  0.6789  0.8722  0.7648  0.7434  0.7233

sessions. It contains 310,302 sessions, 122,991 items, and an average session length of 3.981. Both
KuaiRand (Gao et al., 2022b) and KuaiRec (Gao et al., 2022a) are real-world datasets collected
from Kuaishou app video view logs. KuaiRand comprises 26,988 users, 6,598 items, and 1,266,560
impressions, while the larger KuaiRec dataset consists of 7,176 users, 10,728 items, and 12,530,806
impressions.

Unlike traditional user behavior modeling tasks in recommendation systems, WTP does not inherently
depend on history action sequences. Consequently, we employ a two-layer Multi-Layer Perceptron
(MLP) as the encoder, maintaining the same configuration as the compared baseline methods.

F.3.2 BASELINES

We evaluate our method with several existing state-of-the-art WTP methods. Here, we provide more
detailed information about these compared methods as follows:

1. VR (Value Regression): This method employs direct regression fitting to predict the absolute value
of watch time, evaluating model accuracy by mean square error (MSE).

2. WLR (Covington et al., 2016): This method reformulates watch time regression as a binary
classification problem and incorporates the watch time as the weight in the loss function.

3. D2Q (Zhan et al., 2022): This method segments data based on the video duration and then employs
a regression model to predict the watch time quantile within each group. The final prediction is
obtained by converting the predicted quantile back into actual watch time.

4. CWM (Zhao et al., 2024): It models counterfactual watch time (CWT) by estimating user interest
via a cost-based transform function. The final prediction is derived by optimizing a counterfactual
likelihood function over observed watch times.

5. TPM (Lin et al., 2023): It uses a tree structure to model relationships between different granularities
of time intervals by ordinal regression. The watch time is calculated as the weighted sum of the
products of probabilities and time intervals along the tree path.

6. CREAD (Sun et al., 2024): Utilizing an error-adaptive discretization technique based on ordinal
regression, this method constructs dynamic time intervals. Within each interval, a specialized
classifier determines whether the watch time exceeds the interval’s threshold, and the final
prediction is derived from the weighted sum of probabilistic estimates across all intervals.

7. SWaT (Yang et al., 2025): User-centric statistical framework modeling watch time with behavioral
assumptions. It employs bucketization for non-stationary viewing probabilities, with prediction
via a weighted sum of probabilistic estimates.
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F.3.3 ANALYSIS OF PERFORMANCE IN THE >10S INTERVAL

TPM (Lin et al., 2023) is a tree-like binary model executing sequential binary subtasks for ordinal
regression. As shown in Fig. 5(d), the prediction distribution of TPM exhibits a notable skew
towards higher values, attributable to the model’s tendency (observed during case analysis) to learn
probabilities greater than 0.5 at the root node of its tree structure. This can result in an overall
overestimation of the predicted outcomes, thereby explaining why GoR’s performance is marginally
surpassed by TPM in the >10s interval. However, given the characteristic long-tail distribution of
real-world watch time data, the superior overall performance and distributional fidelity achieved by
GoR represent a favorable trade-off for this minor discrepancy in the high-value range.

F.3.4 PARAMETER-CONTROLLED COMPARISON

To ascertain that the enhancement observed in the GoR model is not merely a consequence of
an increase in model parameters, we conducted a comparative analysis, as presented in Tab. 9.
Specifically, we standardized the parameters of the SOTA models (CREAD (Sun et al., 2024),
TPM (Lin et al., 2023) and SWat (Yang et al., 2025)) to a uniform level. The results indicate that,
when evaluated with an equivalent parameter scale, GoR consistently surpasses the previous SOTA
methods across a range of metrics. This finding confirms that the observed performance improvement
is attributable not to the number of parameters, but to the efficacy of utilizing conditional dependencies
and the flexibility to generate a wider range of potential sequences.

Table 9: The impact of model parameters on the performance between different methods on KuaiRec.

Method Parameters MAE XAUC
VR 0.86M 7.634  0.534
TPM 0.86M 3456  0.571
CREAD 0.86M 3307 0.594
SWaT 0.838M 3438 0.585
VR-large 4.34M 7.556  0.545
TPM-large 4.34M 3432 0.577

CREAD-large 4.34M 3293 0.599
SWaT-large 4.35M 3.406  0.591

GoR (ours) 4.18M 3.194 0.616

F.3.5 ONLINE EXPERIMENT

We also conduct an online A/B test of watch time prediction task on a leading short-video platform to
demonstrate GoR’s real-world efficacy. Considering the platform serves over 400 million users daily,
doing experiments from 10% of traffic involves a huge population of more than 40 million users,
which can yield highly reliable results. Most recommendation systems follow a two-stage framework
where a set of candidate items is retrieved in the first stage and the top-ranking items are selected
from the candidates in the ranking stage. The predicted watch times are used in the ranking stage to
prioritize items with higher predicted watch times, making them more likely to be recommended.

The online experiment has been launched on the system for six days, with evaluation metrics including
app usage time, average app usage per user, and video consumption time (accumulated watch time).
The control group utilized the CREAD model, and the proposed GoR framework exhibited a 10.2%
reduction in average queries per second (QPS) during online serving. Despite this computational
overhead, the overall return on investment (ROI) met the threshold for full deployment, indicating
favorable trade-offs between operational costs and business value enhancement.

As shown in Tab. 10, the results demonstrate that GoR consistently boosts performance in watch time
related metrics, with an improvement by 0.087% on average app usage per user, significant 0.129 %
on video consumption time and 0.112% on app usage time with p-value’ = 0.01, substantiating its
potential to significantly enhance real-world user experiences.

SLower p-values mean greater statistical significance (e.g., p=0.01 implies a 1% likelihood of gain occurring
by chance).
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Table 10: Performance gain on online A/B testing.

APP Usage Time +0.112% (p-value=0.01)
A/B test | Average App Usage Per User +0.087%
Video Consumption Time +0.129%

In a stable video recommendation system, a 0.1% increase is significant.

F.4 LIFE TIME VALUE PREDICTION (LTV)
F.4.1 DATASETS AND EXPERIMENTAL SETUP

We evaluate GoR on the Criteo-SSC® and Kaggle’ datasets. For both datasets, a random split of 7:1:2
is used for training, validation, and testing, respectively. Criteo-SSC is a large-scale public dataset
derived from Criteo Predictive Search (CPS) logs. Each instance represents a user’s click behavior,
with the task being to predict conversion and associated 30-day revenue. The product price feature
was excluded from the inputs. The Kaggle Dataset contains transaction records. Following (Weng
et al., 2024), the task involves predicting a user’s total purchase value from a specific company in the
year following their initial purchase. Our experiments focus on initial purchases within 2012-03-01
and 2012-07-01, using data from the three companies with the highest transaction volume.

F.4.2 BASELINES

We evaluate our method with several existing state-of-the-art LTV methods (Drachen et al., 2018;
Ma et al., 2018; Wang et al., 2019b; Li et al., 2022a; Liu et al., 2024b; Weng et al., 2024). Here, we
provide more detailed information about these compared methods as follows:

1. Two-stage (Drachen et al., 2018) decomposes the CLTV prediction into two tasks: the first task is
a classification task predicting whether a user will churn or not, and the second task is a regression
task predicting the revenue that the user brings.

2. MTL-MSE (Ma et al., 2018) estimates conversion rate and CLTV with MSE loss according to the
multi-task learning paradigm.

3. ZILN (Wang et al., 2019b) assumes that the long-tailed CLTV distribution follows a zero-inflated
log-normal distribution and uses a DNN to estimate the mean u, standard deviation o and
conversion rate p for the samples.

4. MDME (Li et al., 2022a) divides the training samples by CLTV into multiple sub-distributions
and buckets, and constructs corresponding classification problems to predict the bucket a sample
belongs to. In the next stage, the bias within the bucket is estimated so that the samples obtain a
fine-grained CLTV value.

5. MDAN (Liu et al., 2024b) predicts predefined LTV bucket labels using a multi-classification
network and leverages a multi-channel learning network to derive embeddings for each bucket.
The final sample representation is obtained by fusing these embeddings with the classification
network’s output through a weighted sum, which is then utilized for CLTV prediction.

6. OptDist (Weng et al., 2024) employs an adaptive mechanism to model and select optimal sub-
distributions for individual samples, consisting of a distribution learning module (DLM) that trains
multiple sub-distribution networks, and a distribution selection module (DSM) that dynamically
chooses the appropriate sub-distribution for each customer.

7. HILTV (Xu et al., 2025) is a hierarchical framework for game LTV prediction that models
multi-modal recharge behaviors with a Zero-Inflated Mixture-of-Logistic loss and introduces a
calibration module for robust new-user prediction.

For this task, we employ the same encoder architecture for GoR in Appendix F.3.1.
F.5 BID SHADING FOR REAL-TIME BIDDING (RTB)

Bid shading in Real-Time Bidding aims to dynamically adjust advertiser bids to avoid overspending
under First-Price Auction (FPA) settings. Given bid requests with user and contextual features x7 and

Shttps://ailab.criteo.com/criteo-sponsored-search-conversion-log-dataset/
"https://www.kaggle.com/c/acquire-valued-shoppers-challenge
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first estimated values v;, the model generates shading ratios «; to obtain final bids b; = v; - ;. The
objective is to maximize the surplus (v; — b;) - Wr(b;|z;), where Wr(-) denotes the winning rate.

F.5.1 DATASETS AND METRICS

We evaluate GoR on both a public benchmark and a large-scale industrial dataset. The public iPinYou
dataset (Liao et al., 2014), derived from Second-Price Auctions (SPA), treats the advertiser’s bid as
the actual value and the paid price as the winning price. It consists of 10.6 million samples (29.7%
win rate) with 18 features, randomly split 7:3 for training and testing. In contrast, the industrial
dataset (Indust_RTB for short) from a real-world app platform is substantially larger, containing
162.5 million samples with a lower win rate of 3.89% and 197 features.

In First-Price Auctions (FPA), offline evaluation must prioritize business-centric metrics to assess an
algorithm’s viability for deployment. Aligned with the objective of bid shading, we select surplus
(V = b) - I(b > z) and surplus rate as primary metrics, as they directly quantify business impact. The
surplus rate, defined as the proportion of realized surplus to the total optimal surplus, is computed as

SurplusRate(SR) = 42’(%_&),]17(:)»)

F.5.2 BASELINES

We evaluate our method with six existing state-of-the-art RTB methods. Here, we provide more
detailed information about these compared methods as follows:

1. CVAE (Sohn et al., 2015): An extended model of variational autoencoder, which achieves sample
generation based on specific inputs by integrating conditional variables in the encoder and decoder.

2. TSBS-DLF (Ren et al., 2019): A two-stage bid shading method uses the DLF model in the machine
learning stage, which models the bid landscape without distributional assumptions, employing the
conditional probability chain rule and LSTM.

3. DF (Ho et al., 2020): A generative diffusion model that corrupts the data distribution by gradually
adding noise and then learns the inverse denoising process to generate the shading ratio.

4. WR (Pan et al., 2020): A two-stage bid shading method, which optimizes the surplus using a
bisection algorithm in the operations research stage.

5. EDDN (Zhou et al., 2021): A two-stage bid shading method, which optimizes the surplus using
golden section search in the operations research stage.

6. TSBS-ADM (Li et al., 2023): A two-stage bid shading method uses the ADM model in the
machine learning stage, which uses neighborhood likelihood loss for accurate prediction.

7. MEBS (Gong et al., 2024): An end-to-end bid shading method, which jointly optimizes the shading
model and the win rate model, performs supervised learning through the negative logarithm of the
surplus as the loss.

8. HALO (Dong et al., 2025) is a hindsight-augmented auto-bidding framework that leverages
trajectory reorientation and B-spline functional representation to enable efficient, generalizable
adaptation to diverse budget—ROI constraints in RTB systems.

F.5.3 PERFORMANCE

As summarized in Tab. 15, GoR consistently outperforms all baseline methods across both datasets,
achieving the highest surplus rate (SR) and total surplus. On the public iPinYou dataset, GoR attains
an SR of 60.48% and a surplus of 114.07 million, surpassing the strongest baseline by approximately
4 absolute percentage points in SR. On the more challenging Indust_RTB dataset—characterized by a
significantly lower win rate and higher feature dimensionality—GoR achieves an SR of 41.74% and a
surplus of 30.58 million, demonstrating a clear improvement over existing methods and highlighting
its robustness in large-scale, real-world environments.

F.6 HISTORICAL IMAGE DATING (HID)

F.6.1 DATASETS, BASELINES, AND PERFORMANCE

Here, we use the widely recognized Historical Color Image (HCI) dataset (Palermo et al., 2012).
Consistent with the established evaluation protocol adopted in numerous prior studies (Palermo et al.,
2012; Liu et al., 2018b; 2019a; Diaz & Marathe, 2019; Li et al., 2021; Shin et al., 2022; Wang
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Table 11: Performance comparison on RTB datasets.

iPinYou Indust_RTB
SRt Surplus 1 SRt Surplus 1

CVAE (Sohn et al., 2015) 51.42% 96,981,112 | 36.45% 26,698,064
TSBS-DLF (Ren et al., 2019) | 55.22% 104,164,484 | 27.25% 19,986,132

Method

DF (Ho et al., 2020) 48.04% 90,617,280 | 31.28% 22,912,038
EDDN (Zhou et al., 2021) 47.82% 90,199,768 | 19.88% 14,582,074
WR (Pan et al., 2020) 54.90% 103,560,851 | 26.13% 19,164,882

TSBS-ADM (Lietal., 2023) | 5549% 104,673,800 | 32.67% 24,183,220
MEBS (Gong et al., 2024) 54.46% 102,716,112 | 31.45% 23,041,120
HALO (Dong et al., 2025) 56.58% 105,531,332 | 36.67% 26,243,657

Our GoR 60.48% 114,068,392 | 41.74% 30,580,080

Table 12: Historical Image Dating Results

Methods Palermo et al. CNNPOR GP-DNNOR SORD POE MWR Ord2Seq GoR
Datasets (Palermo et al., 2012) (Liuetal,2018b) (Liuetal,2019a) (Diaz & Marathe, 2019) (Lietal,2021) (Shinetal., 2022) (Wang et al., 2023a) ©

HCI MAE | 0.93 0.82 0.76 0.70 0.66 0.58 0.53 0.51

et al., 2023a), we randomly partition the images within each decade into training (80%), validation
(5%), and testing (15%) subsets. Subsequently, 10-fold cross-validation is performed, and the mean
Mean Absolute Error (MAE) results for different methods are reported in Tab. 12. To ensure a fair
comparison, all evaluated methods utilize the ResNet50 (He et al., 2016) architecture as the backbone.
Our GoR model achieves state-of-the-art performance on the HCI dataset, yielding a significant
improvement over previous methods with a 3.77% reduction in MAE, indicating the superiority of
our approach.

F.7 ADDITIONAL RESULTS WITH MEAN AND STANDARD DEVIATION

To complement the main results, we report here the complete performance with mean and standard
deviation across five runs for all datasets and tasks. Significance is assessed using paired t-tests
against the strongest baseline, with improvements marked as * (p<0.05) and ** (p<0.01). These
results provide a more comprehensive view of GoR’s robustness and stability across domains.

Table 13: Image Aesthetics Assessment Results.

Method TAD66K AVA
MAE | XUAC 1 LCC 1t SRCC 1 MAE | XAUC 1 LCC 1t SRCC 1
GoR 0.996+0.003** 0.677+0.003** 0.541+0.012* 0.513+0.011%* 0.395+0.015%* 0.751+0.012* 0.726+0.028* 0.701£0.016%*
Method ICAA SPAQ
MAE | XUAC 1 LCC 1t SRCC 1 MAE | XAUC + LCC 1t SRCC ¢
GoR 0.5842+0.0081**  0.7913+0.0102**  0.6823+0.012%*  0.6789+0.0132*  0.8722+0.0223**  0.7648+0.0035**  0.7434+0.0028**  (.72334+0.0135*
Table 14: Life Time Value Prediction Results. Table 15: Real-Time Bid Shading Results.
Method Criteo-SSC Kaggle Method | iPinYou | Indust_RTB
MAE | SRCC 1 MAE | SRCC ‘ SR T Surplus 1 ‘ SR T Surplus 1
GoR 12.9964+0.353**  0.30264+0.094*  67.035+0.112%*  0.5334+0.041%* GoR (ours) ‘ 60.48+0.15%**  114,068,392+132582* ‘ 41.74+0.22%**  30,580,0804+43543*
Table 16: Watch Time Prediction Results.
Method KuaiRec KuaiRand CIKM16
MAE | XAUC 1 MAE | XAUC 1 MAE | XAUC
GoR 3.1944+0.031%%  0.616+0.007**  7.032+0.132*%  0.5674+0.006%*  0.812+0.019**  0.694-+0.006**
Table 17: Facial Age Estimation Results.
Method UTKFace FG-NET MORPH CACD
MAE | cst MAE | cst MAE | cst MAE | csT

GoR 3.4340.092%*  66.58+0.145%*%  4.68+£0.115%*  85.6640.032**  2.6940.028**  64.95+£0.232%*  3.734+0.068* 75.2940.105%**
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G LIMITATION AND FUTURE

While GoR establishes a novel generative paradigm for ordinal regression and achieves state-of-the-art
performance, several limitations exist, opening promising avenues for future research.

First, the autoregressive nature of GoR, while enabling sequential modeling, incurs an inference
latency cost that is proportional to the output sequence length. This poses a challenge for tasks
requiring rapid prediction of long sequences.

However, similar to the early challenges faced by initial Transformer models with non-linear time
complexities, it is important to emphasize that GoR achieves SOTA results across 17 diverse OR
datasets spanning six domains, which represents a foundational step toward a more powerful genera-
tive paradigm. Furthermore, even in industrial-scale recommendation systems with stringent real-time
requirements, GoR achieves a +0.112% increase in app usage time (p-value = 0.01) in A/B tests on
a real-world platform with over 400 million DAUs (See Appendix. F.3.5), demonstrating that the
trade-off between latency and performance is acceptable. Nevertheless, exploring non-autoregressive
generative architectures remains a meaningful direction for further reducing inference overhead.

Second, GoR, like other language generation models, is susceptible to the risk of error accumulation.
Errors in predicting earlier tokens can compound in subsequent steps, potentially leading to larger
deviations in the final prediction. Exploring sequence-level optimization or calibration strategies,
such as those based on reinforcement learning, could help alleviate this issue.
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