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Abstract

The first decade of genome sequencing saw a surge in the characterization of
proteins with unknown functionality. Even still, more than 20% of proteins in
well-studied model animals have yet to be identified, making the discovery of
their active site one of biology’s greatest puzzle. Herein, we apply a Transformer
architecture to a language representation of bio-catalyzed chemical reactions to
learn the signal at the base of the substrate-active site atomic interactions. The
language representation comprises a reaction simplified molecular-input line-entry
system (SMILES) for substrate and products, complemented with amino acid (AA)
sequence information for the enzyme. We demonstrate that by creating a custom
tokenizer and a score based on attention values, we can capture the substrate-
active site interaction signal and utilize it to determine the active site position in
unknown protein sequences, unraveling complicated 3D interactions using just
1D representations. This approach exhibits remarkable results and can recover,
with no supervision, 31.51% of the active site when considering co-crystallized
substrate-enzyme structures as a ground-truth, vastly outperforming approaches
based on sequence similarities only. Our findings are further corroborated by
docking simulations on the 3D structure of few enzymes. This work confirms the
unprecedented impact of natural language processing and more specifically of the
Transformer architecture on domain-specific languages, paving the way to effective
solutions for protein functional characterization and bio-catalysis engineering.

1 Introduction

The number of anticipated genes has exploded as high-throughput sequencing technologies have
improved dramatically. However, a considerable percentage of these newly found genes codifies
proteins with no known function, which is a fundamental hindrance in our understanding of molecular
life. The activity of a protein is directly related to the structure of the active site, a spatial region that,
under external pressure, evolved its amino acids (AA) sequence to interact with specific molecules.
The identification of active site residues and the characterization of the corresponding protein function
remains a difficult task. While wet-lab experiments give the most accurate protein annotation, their
limited throughput has increased the relevance of computational approaches. In fact, automated
functional annotation is essential for understanding genomic data, which is essential to generate
hypotheses about how proteins fit into processes and pathways. The last years have seen steady
improvements in the field. Many top-performing algorithms frequently incorporate machine learning,
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and while a few are generally superior, no single method outperforms all the others [Jiang et al., 2016].
The most successful approaches for biological function annotation of proteins usually rely on 3D
structural models [Yousaf et al., 2021, Sankararaman et al., 2010, Jiménez et al., 2017, Kozlovskii and
Popov, 2021, Yang et al., 2013, Kozlovskii and Popov, 2020, Wass et al., 2010] to transfer functional
insights, such as 3D features of protein-ligand binding sites, to the unknown proteins from structural
homologies. More advanced schemes include sequence and protein-protein interaction network
information to enhance the accuracy and coverage of the structure-based function predictions [Zhang
et al., 2017]. There have also been a few efforts to identify active sites solely based on sequence
similarity, such as PFAM [Mistry et al., 2020] and PSI-BLAST [Altschul et al., 1997]. In the last
two years, BERT [Devlin et al., 2018], and more in general models pretrained via masked language
modeling, have become the de-facto standard for different language understanding problems [Vig,
2019, Hoover et al., 2019, Rogers et al., 2020]. Their advent did not influence only the natural
language domain but had an impact in multiple disciplines ranging from biology to chemistry, where
string-based representations of proteins and molecules define a proteomic language [Rives et al., 2021,
Elnaggar et al., 2020, Vig et al., 2020], respectively chemical language [Wang et al., 2019, Kim et al.,
2021], that can be used to interpret and understand physical phenomena. Unsupervised language
models enabled the prediction of mutational effect and secondary structure, improving long-range
contact prediction [Rives et al., 2021, Rao et al., 2019, Vig et al., 2020], the targeting of binding
sites [Vig et al., 2020], the capture of important biophysical properties governing protein shape [Vig
et al., 2020, Elnaggar et al., 2020]. For small molecules, Schwaller et al. [2021] showed how
language models trained via masked language modeling (MLM) on organic chemical reaction data,
represented using SMILES [Weininger, 1988], can leverage attention to efficiently and accurately
map atoms between precursors and products with no supervision. Here, we approach the problem
from a multi-modal angle to capture the signal between the active site amino acids and the atoms
of the interacting molecules to identify a protein’s active site. We extend the work of Schwaller
et al. [2021] by developing a new method that employs a publicly available collection of enzymatic
reactions. We use SMILES for modeling each interacting molecule combined with the AA sequence
for the enzyme’s fundamental structure. This approach can recover 31.51% of the active sites when
considering co-crystallized substrate-enzyme structures as ground-truth with no supervision, largely
outperforming current state-of-the-art methods relying only on sequence similarities.
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Figure 1: RXNAAMAPPER pipeline. A BERT model is trained on a combination of organic
and enzymatic reaction SMILES using MTL, leveraging atom-level tokenization and MLM for the
SMILES components, while BPE tokenization and n-gram MLM for the AA sequence part (left).
The trained model is used in inference to define a score, based on the attention values computed on
the reaction SMILES provided as input, which allows the prediction of the active site (bold-face AAs)
of the enzyme bio-catalyzing the reaction with no supervision or structural information (right).

We repurposed BERT [Devlin et al., 2018] by jointly training it with Masked Language Modeling
(MLM) and a n-gram Masked Language Modeling [Xiao et al., 2020] (n-gram MLM, with n = 3),
leveraging Multi-task Transfer Learning (MTL) [Pesciullesi et al., 2020] on a combination of reaction
SMILES representing organic reactions [Lowe, 2012] (weight assigned 0.1) and bio-catalyzed
reactions [Probst et al., 2021] (weight assigned 0.9). For enzymatic reactions, each example consists
of a reaction SMILES complemented with the AA sequence representation of the enzyme of interest
(see Figure 1 for a depiction). As we train the model via MLM and n-gram MLM, we sparsely mask
the reactants and the products and densely mask the enzyme sequence. To reduce the length of the
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resulting reactions [Filipavicius et al., 2020], we built a sub-word vocabulary for AA sequences using
Byte Pair Encoding (BPE) [Gage, 1994] learned on UniProt [Consortium, 2020]. The prediction
of the active regions of proteins is unsupervised and entirely based on the analysis of the attention
values computed by the pretrained language model after encoding a reaction. If we label S ∈ Rl×d

(l = r + m + p) as the embedding of a given reaction and r, m, and p refer to the length of
the reactants, the enzyme, and the products, respectively, a forward pass of S through the model
yields a sequence S′ with the same dimension as S. Each encoder block computes the attention
matrix A ∈ Rl×l of the sequence S provided as input [Vaswani et al., 2017]. We construct a matrix
P ∈ Rr×m by summing two sub-matrices of A, describing the link between reactants and enzymes:
P = A[1 : r, 1 : m]+A[r+1 : r+1+m, 1 : r]T . We use the matrix P as shown in the Algorithm 1
to predict the active regions via a consensus scheme where each reactant’s atom has k votes to choose
its best-bound enzyme’s token. The selected enzyme’s tokens are uniquely gathered in a set and are
considered the protein’s active region. Hereinafter, the method will be referred to as RXNAAMapper.

Algorithm 1 Active Site Prediction
1: procedure RXNAAMapper(P ∈ Rr×m, k)
2: active_site← set()
3: for i in 1..r do
4: line← P [i]
5: for j in argmax(line, k) do
6: active_site.add(j)
7: return active_site

3 Evaluation

We use a set of 5K co-crystallized ligand-protein pairs from the Protein–Ligand Interaction Profiler
(PLIP) [Salentin et al., 2015] as ground-truth, to perform a two-fold evaluation: (1) a sequence-based
assessment benchmarking RXNAAMapper against a statistical baseline (Random Model), a pretrained
BERT model on natural language (BERT-base) and the alignments retrieved from Pfam [Mistry et al.,
2020]; and (2) a structural validation with protein-ligand binding energies computed with docking.
We used PFAM for a fair assessment with existing methods using sequence information only. For
the sequence-based evaluation, we use an overlap score between the prediction and the ground-truth,
as well as the false positive rate. The overlap score is defined considering the active site as a set of
non-overlapping segments in a sequence. If S with |S| = n is a sequence of amino acid residues, the
active region As of S is defined as As = {(ai, bi)}mi , where ai and bi are the index boundaries of the
segment i. The overlap score (OS(A,As)) between the predicted active region A = {(api, bpi)}ni
and the ground-truth As = {(asi, bsi)}mi is defined as:

OS(A,As) =

∑n
i

∑m
j max(0,min(bpi, bsj)−max(api, asj))∑m

i (bsi − asi)

Besides the overlap score, the false positive rate (FPR) of the predictions is defined as:

FPR =

∑n
i (bpi − api)1 m∧

j=1
[api,bpi]∩[asj ,bsj ]=∅∑n

i (bpi − api)

For the structural assessment, on a set of protein-ligand active sites predictions, we evaluated the
binding energy computed with Autodock Vina [Eberhardt et al., 2021, Trott and Olson, 2010]
considering predicted active sites and the ground-truth from PLIP.

4 Experiments and Results

In our experiments, we train models using a dataset of organic reactions from USPTO [Lowe,
2012] (∼1M, splits as reported in Schwaller et al. [2019]) combined with a dataset of bio-catalyzed
reactions from ECREACT [Probst et al., 2021]. ECREACT records were further processed by using
UniProt to replace and augment Enzyme Commission (EC) numbers with protein sequences from
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the corresponding EC classes. The resulting dataset has been further split into a training set (∼7M
reactions) and a validation set (∼4K reactions). BERT has been trained with 4,094 as the batch size
(leveraging gradient accumulation) and LAMB [You et al., 2020] as the optimization algorithm with
20,928 optimization steps. Table 1 reports the performance of the different approaches on the PLIP
ground-truth. Notably, RXNAAMapper performs consistently better than other methods, even though
the product information has been completely omitted, given the nature of the dataset.

Table 1: Performance on sequence-based active site prediction. Reported in the table the overlap
score and the false positive rates for the active site prediction using PLIP as a ground-truth for the
four methods considered: a random model, Pfam alignment-based model, a pretrained BERT model
and RXNAAMapper.

Overlap Score False Positive Rate
Random Model 4.98% 84.20%
Pfam 24.01% 78.01%
BERT-base 28.98% 75.56%
RXNAAMapper (ours) 31.51% 66.63%

Figure 2a shows an exemplar comparison of Pfam-based and RXNAAMapper predictions overlapped
with the PLIP ground-truth for a ligand-protein pair. Notably, RXNAAMapper controls the false
positives better than Pfam alignments and matches the active site reported in PLIP.
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Figure 2: Experiment results. (a): comparison of the prediction from Pfam alignments (left) and
RXNAAMapper (right) using PLIP as a ground-truth for an hydrolase (PDB id: 4FJP) interacting
with zinc (SMILES: [Zn]). (b): reported in the barplot the negative binding energy computed for a
subset of protein-ligand pairs from PLIP using two configurations for the active site: experimental
from PLIP (blue) and predicted via RXNAAMapper (orange).

For a subset of PLIP’s protein-ligand pairs, we used Autodock Vina to compute the protein-ligand
binding energy for the RXNAAMapper’s predicted active sites and for the corresponding experimental
ones provided by PLIP. We computed the binding energies by averaging the 3D coordinates of the
active sites atoms and setting the box side length to 50 Å. In Figure 2b, we show the binding energies
for the two active sites: RXNAAMapper and PLIP. We can appreciate how the binding energy
calculations performed on the active site predicted by RXNAAMapper accurately match the one
using the PLIP experimental information.

5 Discussion

The unsupervised detection of active sites using only protein sequence information is an important
step to identify the function of uncharacterized proteins. We presented RXNAAMapper, a technology
that uses pretrained language models on text-based molecule representations to identify active sites
in long amino acid sequences. Compared with protein-ligand interactions from PLIP, our approach
outperforms other sequence-based baselines reconstructing >30% of proteins’ active regions while
better controlling false positives. Furthermore, we have been able to validate the RXNAAMapper
active sites predictions using docking studies by comparing the binding energy configurations with
the experimental references. These results show how large language models can inherently capture
3D structural information and reaction mechanisms from 1D representations, thus, opening up novel
avenues for their consistent application in enzyme engineering.
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