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ABSTRACT

This paper explores the potential of leveraging large language models (LLMs) as
low-level action planners capable of executing long-horizon tasks based on nat-
ural language instructions. Although LLMs can act as the “brain” of robots by
excelling in high-level task planning, they are not yet capable of directly guid-
ing the “body” to execute low-level motion plans. This limitation stems from a
communication gap between the “brain” and the “body”. Specifically, LLMs lack
access to rich spatial semantic information from the robot’s real-time observations,
hindering their ability to generate precise and actionable low-level plans. To ad-
dress this, we propose a unified framework that bridges high-level and low-level
planning by establishing an efficient communication interface between LLMs and
robots. Our insight is to formulate the task as playing chess with LLMs. We
map the room into a semantic chessboard, which we call Room to Chessboard
(R2C). Each grid represents the position and size of objects inside the room. We
find that chessboard is succinct enough for LLMs to conduct semantic searches
with global view of the room. Also, the chessboard is informative enough to
convey detailed environmental state for LLMs to predict executable low-level ac-
tions. Additionally, we enhance decision-making through a Chain-of-Thought
(CoT) paradigm, improving LLMs’ interpretability and action reasoning. We im-
plement R2C using both fine-tuned open-source LLMs and closed-source models
like GPT-4, and demonstrate its efficacy on the challenging ALFRED benchmark.
Our results show that with communication based on chessboard, LLMs can serve
as effective low-level action planners, and can generalizes well to different set-
tings and open-vocabulary robotic planning tasks. View the demos on our project
page: https://anonymous4cv.github.io/Room2Chessboard/.

1 INTRODUCTION

The pursuit of general embodied agents focuses on developing robust systems that capable of un-
derstanding natural language commands to meet a wide range of human requirements. Traditional
robotic learning methods have shown success in executing complex embodied tasks. However, they
often face difficulties in generalizing to unseen environments or novel tasks due to their dependence
on task-specific training data and rigid planning mechanisms. Recently, Large Language Models
(LLMs) have emerged as promising candidates for enhancing embodied agents. Leveraging vast
amounts of training data, LLMs exhibit strong generalization abilities across various domains. This
makes them particularly suitable for tasks requiring flexible reasoning and decision-making in com-
plex, free-form settings.

Several pioneering works Huang et al. (2022a); Driess et al. (2023); Song et al. (2023); Huang et al.
(2022b) have explored the potential of LLMs as the “brain” of the embodied systems. Their strong
generalization enables them to apply knowledge across diverse scenarios, effectively managing a
wide range of embodied tasks. However, most existing LLM-based agents Huang et al. (2022a);
Ahn et al. (2022); Song et al. (2023) primarily focus on high-level task planning, where LLMs de-
compose long-horizon tasks, e.g., “bring me an egg” into subgoals such as “go to egg” → “take
it back”. Translating these subgoals into executable low-level actions still delegated to APIs such
as low-level policy networks Chaplot et al. (2020); Jang et al. (2022); Kalashnikov et al. (2021)
trained on robotic trajectory data or deterministic algorithms like Sethian (1999); Dijkstra (2022).
Nevertheless, while LLMs possess extensive world knowledge, they lack the spatial awareness of
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LLM R2C Robot

Let’s play a game on the chessboard. 
The rules are as follows: …
The chessboard info: 
Egg: [T4]. Microwave: [B2] …
Your task is to heat an eggs
Please tell me how to do it.

You need to first move from A1 to the egg
T4 (red path). Then, pick up the egg and 
proceed to the microwave at B2 (blue path). 
Use the microwave to heat the egg. Finally, 
place the heated egg on the dining table at 
C3 (purple path).

I want to heat an egg. Can you guide me 
on how to do it?

1. Pickup egg 2. Goto microwave 3. 
Heat egg 4. Goto table. Provide me 
with more details for a better answer.

⋯

High-Level

Low-Level

A1

C3

B2

T4

Figure 1: Comparison of LLM as a high-level planner versus low-level planner for the task of
“heating an egg”. While most existing methods use LLMs only for high-level task decomposition
(top), the R2C framework converts embodied tasks into a chess-like game (bottom). This enables the
LLM to perform executable low-level planning, guiding the robot through the path “A1-T4-B2-C3”
to complete the task.

real-world environments. This limitation makes it difficult for LLMs to accurately predict the affor-
dances and feasibility of specific actions. This often necessitates re-planning by the LLM Ahn et al.
(2022); Song et al. (2023), which can reduce the overall efficiency of these frameworks in real-world
applications and may impact task success rates under complex conditions. Hence, LLM’s powerful
reasoning capabilities are constrained.

The core barrier Song et al. (2023); Yang et al. (2023) to unleashing the potential of LLMs lies in the
ineffective communication between the LLM (brain) and the Robot (body). On one hand, the Robot
can hardly convey spatial information from the environment to the LLM, leaving the LLM devoid
of decision-making grounds. On the other hand, the LLM struggles to efficiently communicate
low-level decisions to the Robot, resulting in the Robot relying solely on external navigation APIs.
Therefore, there is a necessity to establish a “common language” between LLM and the Robot — A
platform to deliver sufficient environment information and low-level plans.

We propose a novel Room to Chessboard (R2C) framework, which transforms complex embodied
planning tasks into a chess-like game. As shown in Fig.1, R2C utilizes a grid-based chessboard as
an effective communication platform between the robot and the LLM. On one side, the robot can
continuously maps its observations onto the chessboard, which contains essential information such
as object semantics, scene layout, and object size, while avoiding information overload. On the
other side, the LLM is unlocked as a low-level action planner, guiding the robot through explainable
“moves” to complete the task.

Specifically, R2C realizes high-level and low-level planning in a unified framework. The LLM
first decomposes a long-horizon task into a sequence of subgoals. Each subgoal is then tackled
during the low-level planning stage. At this stage, we introduce an Environment Filter to maintain
the task-aware environment information onto a compact chessboard. Since the chessboard grid
size is calibrated to match the robot’s step length, the LLM can perform low-level planning on the
chessboard by predicting the robot’s next position. To further enhance LLM’s understanding of the
game, we formalize a Chain of Thought Decision (CoT-D) task for LLM to enhance its overall
spatial reasoning and decision-making capabilities.

To construct a chessboard representation that aligns with the complexity of the environment while
remaining manageable for LLMs, we design an Environment Filter to abstract the environment.
Initially, new observations are transformed into a detailed 3D semantic map. However, such high-
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dimensional representation can overwhelm LLMs. To address this, we apply kernel filters to down-
sample the map, and then flatten it into a 2D chessboard based on the current subgoal. The object
occupancy on the chessboard is further abstracted into coordinate sets. Such chessboard strikes a
balance between semantic richness and simplicity, capturing essential information such as scene
layout and object size, while enabling effective low-level action planning.

In R2C framework, LLM needs robust long-context understanding capabilities to comprehend the
object coordinate sets and spatial reasoning abilities for low-level planning. Despite advancements
in LLM capabilities, achieving this remains a huge challenge. To enhance LLM’s low-level action
planning capacity, we design a fine-tuning paradigm and formalized the CoT-D fine-tuning task.
CoT-D comprises four subtasks: key information extraction, direction determination, target predic-
tion, and selection analysis. LLM is required to link these subtasks together into a coherent logical
chain Wei et al. (2022). This task can not only strengthen the long-context understanding of LLM
but also enhance the spatial reasoning of model to generate more interpretable low-level plans.

We test our R2C framework on the comprehensive ALFRED Shridhar et al. (2020) benchmark,
which features a diverse set of challenging long-horizon tasks. We test both zero-shot GPT prompts
and fine-tune open-source LLMs using our novel CoT-D tasks. R2C achieves state-of-the-art (SoTA)
performance among LLM-based methods. Additionally, LLMs trained with CoT-D show strong spa-
tial perception and task-planning capabilities. Moreover, our low-level action planner demonstrates
strong generalization across open-vocabulary tasks, showcasing the versatility and robustness of the
R2C framework in complex environments.

The main contributions of this paper include:

1) Propose Room to Chessboard (R2C), an efficient communication platform between LLM and
Robot to unlock LLM as low-level action planner.

2) Develop an explainable chain of thought decision analysis paradigm to guide LLMs make more
reasonable and efficient robotic planning.

3) Achieve SoTA performances among LLM-based methods on complex long-horizon robot plan-
ning tasks using limited robotic data and show strong generalization to open-vocabulary tasks.

2 RELATED WORKS
2.1 TASK PLANNING IN ROBOTICS

Task planning in robotics Shridhar et al. (2020); Puig et al. (2018) involves generating a sequence
of actions for robots to execute in the environment to achieve a specific goal. In real-world ap-
plications, the instructions are typically complex, resulting in long-horizon tasks that encompass
a variety of embodied activities, such as navigation Anderson et al. (2018a); Gu et al. (2022) and
object interaction Levine et al. (2018).

Early approaches Pashevich et al. (2021); Suglia et al. (2021) simply integrate visual and textual
inputs to generate contextually appropriate action sequences. Besides, one widely used approach is
reinforcement learning (RL) Majumdar et al. (2020); Wang et al. (2019); Tan & Bansal (2019); Hong
et al. (2020). Although the above end-to-end methods have good performance, they rely entirely on
instruction-trajectory training data, resulting in poor generalization to unknown environment Min
et al. (2021); Kim et al. (2023); Song et al. (2023).

Therefore, some recent approaches Min et al. (2021); Blukis et al. (2022); Kim et al. (2023); Inoue &
Ohashi (2022) break down the complex task into the multiple modules to reduce the high data cost.
FILM Min et al. (2021) propose a framework with four submodules including language processing,
semantic mapping, semantic search, deterministic policy. However, they rely on task prior like
template-based instruction analysis and try using deterministic or a pre-trained low-level controller,
which make them struggle in adapting to novel robotic tasks.

2.2 TASK PLANNING WITH LLMS

To address these challenges, incorporating Large Language Models (LLMs) into robotic task plan-
ning presents a promising pathway toward more adaptable robotic systems Huang et al. (2022a); Ahn
et al. (2022); Rana et al. (2023); Huang et al. (2022b); Gu et al. (2023). Early attempts Huang et al.
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Chain-of-Thought Fine-tuning

High-Level Planning
Subgoal: go to tomato

Subgoal: pick up tomato

Subgoal: go to microwave

RGB-D
Stream

Key Information
Extraction

Target prediction

Large Language Model

Low-Level Planning

Task Description
On a 64*64 block chessboard, the rules of the 
game are as follows: Move 1 block at a time… 
### Explored objects: table: [[15, 35], ...], 
microwave: [[18, 31], ...], … 
### Task: (Goto, [microwave]). 
### Current Position: [21, 40]. 
Select your next position from [[20, 40], [22, 
40], [21, 39], [21, 41]].

Selection analysis

⋮

Environment Filter
Chessboard

Semantic
Mapping

Projection Map ((𝐶 + 2)×𝑀×𝑀)

obstacles

category-wise
binary grids

goal-aware
aggregate
function 

Direction judgement 

Based on the given information, the current position of the agent is [21, 40], … and 
the target is microwave, which is located at [[18, 31], [19, 31], [19, 32], ...]. The agent 
will go to [20, 34] to achieve the target, which is on the top left of the agent. 
There are 4 options ... Let's analyze the options given:
# [20, 40]: On the top of the agent. This strategy moves the agent away from the target.
# [22, 40]: On the bottom of the agent. The agent will move further …
# [21, 39]: … This action moves the agent nearer to the target.
# [21, 41]: ... This action will distance the agent from the target.
Based on the analysis above, the best … is [21, 39] .

⋮

state change

Current position: [21, 40]
Next position: [21, 39]
Agent facing: [20, 40]

(TurnLeft, 90°)
(MoveForward, 0.25m)

Agent State

Action Sequence

Figure 2: Overview of R2C: After high-level planning, the nvironment filter converts the current
environment state into a grid-based chessboard. The state, along with game rules, forms the prompt
input for the zero-shot or fine-tuned LLM. Through interpretable CoT decision analysis, the LLM
predicts the next position, which the robot executes, creating a loop with updated visual information.

(2022a) adopt LLMs to help with free-form human instruction following by decompose the task into
reasonable subgoals. However, due to LLM’s inability to perceive the complex real physical world,
the generated goals often fails to execute in the environment Ahn et al. (2022).

To address this, recent research has delved into integrating environment state information to ground
the output of the LLM-based planner. LM-Nav Shah et al. (2023) additionally utilize a pre-trained
Vision-Language Model (VLM) to generate visual captions and grounding the textual landmarks in
the topological map to enhance the executable of navigation plan. The object-centric scene graph or
topology graph is also utilized to enhance the LLM’s understanding of the relations among objects
within the environment Gu et al. (2023); Zhou et al. (2024); Chen et al. (2024). Other than directly
translate the visual feedback from the environment to LLM, Say-Can Ahn et al. (2022) trained a
vision-based value functions to judge the affordance of the LLM’s plan. Some other works Liu et al.
(2023) involve text-form Planning Domain Definition Language (PDDL) descriptions of a scene,
which are more easier for LLM to handle.

Although the above work has solved some cases where LLM plans are not executable, they all
use LLM as a high-level planner. Most works still relies on low-level controller to translate these
high-level plan into executable action sequences. Some recently works Huang et al. (2024); ? try
using end-to-end framework. Different from them, we address this challenge by introducing an more
interpretable pipeline. We map the room to chessboard to enable LLM directly make low-level plans
according to the updated environment state.

2.3 SCENE REPRESENTATIONS

Scene representation is crucial for embodied tasks, particularly when using LLMs as planners.
Topology graphs Anderson et al. (2018b); Ku et al. (2020) are often used for navigation but limit
movement to predefined node connections, reducing their practicality in real-world applications.
Object-centric scene graphs Gu et al. (2023); Rana et al. (2023) offer object-relative positions but
lack the spatial details needed for low-level motion planning.

In contrast, our proposed chessboard representation incorporates both physical spatial and semantic
information, making it suitable for a wide range of navigation tasks. As an abstraction of the seman-
tic map Min et al. (2021); Lu et al. (2023), this grid-based chessboard balances conciseness with
semantic richness, preserving essential details like object semantics, scene layout, and size, while
avoiding the complexity of high-dimensional data.
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3 METHODS

We aim to unlock LLMs as low-level action planner that can follow the instructions to solve long-
horizon tasks. We first introduce our newly designed Room to Chessboard framework in Sec.3.1,
and then illustrate the Chain-of-Though Decision (CoT-D) fine-tuning task formulation in Sec.3.2.

3.1 ROOM TO CHESSBOARD

Previous works, such as LLM-Planner Song et al. (2023) and SayCan Ahn et al. (2022), rely solely
on LLMs to parse instructions and decompose tasks into high-level subgoals. The execution of
each subgoal is then handled by a predefined controller that generates a sequence of low-level ac-
tions. In contrast, we introduce the Room to Chessboard (R2C) framework (Fig. 2), which enables
LLMs to perform both High-Level Planning (HLP) and Low-Level Planning (LLP) within a unified
framework.

First, the LLM conducts HLP, processing step-by-step instructions into a sequence of subgoals.
Each subgoal is then handled at the LLP stage. At each timestep, an egocentric RGB-D image is
processed by an Environment Filter to generate a chessboard abstraction. The updated chessboard
is subsequently converted into object occupancy coordinates, which are fed to the LLM. Acting like
a chess player, the LLM predicts the robot’s next move on the chessboard, guiding it to navigate or
interact with the environment.

3.1.1 HIGH-LEVEL PLANNING (HLP)

At the beginning of an episode, the LLM processes the natural language instruction L into a sequence
of high-level subgoals, denoted as G = [G1, G2, ..., GK ]. Each subgoal Gk is a tuple (Action,
Object), where Action ∈ AH is a primitive action chosen from the set of navigation action
(GOTO) or interaction actions (e.g., PICKUP, PUT). The Object refers to the semantic class of the
interacted object (e.g., SAFE, CD). These subgoals are executed sequentially during the LLP stage.

3.1.2 ENVIRONMENT FILTER

Since the environment is partially observed, the agent has never explored the entire environment
and must construct a map based on its own observations online. At each timestep, the Environment
Filter F (ot, Gk) takes the new observations ot as input to filter out the goal-related environment
information conditioned on the current subgoal Gk. This filtered information is then updated on a
dynamically updated semantic chessboard B to represent the current state of the environment. The
computation of F involves two parts: semantic mapping and map to chessboard.

Semantic mapping. We first build an online semantic map of the room, inspired by prior work
Min et al. (2021). At each timestep t, the agent receives an egocentric RGB-D observation ot =
{Irgb, Idpt}. An off-the-shelf instance segmentation model processes Irgb, and combined with Idpt,
the observation is converted into a point cloud, with each point labeled with predicted semantic
categories. This 3D point cloud is then voxelized and flattend along the Z-axis to form the 2D
semantic map M. The resulting semantic map is represented as an allocentric (C + 2) × M ×
M binary grid, where C is the number of object categories while two additional channels denote
obstacles and explored areas in each cell. Here, M represents the map resolution.

Map to chessboard. We further abstract the map into a compact chessboard. Map to Chessboard
(M2C) function consists of two cascaded kernels. The first kernel is a dilation kernel Kdila, to
prevent collisions between the agent and obstacles. Similar to the dilation algorithm in image pro-
cessing Serra (1982), it expands all occupied pixels of obstacles (including objects) outward by δ
in the map. The second kernel is a max pooling kernel Kpool, which performs max pooling on the
map. Then the map is down-sampled from size M to size W , where W =

⌈
D
ω

⌉
and ω is the grid

size, which is calibrated to match the length of agent’s step.

Next, we aggregate this map with multiple object layer into a unified single-layer chessboard. To
address the many-to-one projection problem, where overlapping objects might appear in the same
grid, e.g., “apples on a table”, we introduce a Goal-aware Aggregate function A(.). This function
prioritizes both the relevance of the current subgoal, i.e., the target object Object in current subgoal
Gk, and the size of the object. The most relevant and smallest objects are placed at the top layer,
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and then we merge object layers from bottom to top to produce the final chessboard. The overall
formulation of the M2C is:

M2C = A ◦ Kdila ◦ Kpool

B = M2C(M, Gk).
(1)

3.1.3 LOW-LEVEL PLANNING (LLP)

The chessboard filtered out from the Environment Filter provides compact yet sufficient environ-
mental state information for LLM. We then simulate a “chess game ” between the LLM and the
robot to perform low-level planning. The LLP task is formulated as a single-step generation task for
the LLM. As shown in Fig. 2, various state information is collected, including current subgoal Gk,
chessboard state U , action history Q and game rules R. Our prompt system P organizes this data
and feeds it into the LLM to generate the next position prediction u. Note that LLP is invoked only
for navigation subgoals, as interaction subgoals in ALFRED can be handled by predefined low-level
actions once the agent reaches the visible range of the target object.

Chessboard state. To translate the chessboard state for the LLM, we convert it into textual object
occupancy coordinate sets. The chessboard coordinate system originates from the upper left corner,
with the X-axis pointing down and the Y-axis to the right. For each object on the chessboard, we
gather a set of occupancy coordinates Uc

t = {xi, yi}, where c ∈ [1, C + 2] and xi, yi ∈ [1,W ]. The
agent’s current position is the previous step’s target position wt−1, and the initial agent position w0

is predefined in the benchmark.

Game Rules. To assist the LLM in planning, we define key game rules R: 1) Basic inputs, including
chessboard dimensions W , maximum steps T , and maximum failures F ; 2) Action space, simplified
to adjacent grids in four directions (up, down, left, right), i.e., the robot is only allowed to move 1
block at a time, due to the limited spatial reasoning ability of current LLMs; 3) Collision rules,
where grids occupied by objects or obstacles are considered illegal moves.

Action history. We maintain a queue Q with a fixed length τ to store recent successful movement
coordinates, providing the LLM with contextual information about previous actions.

At each step t, the prompt system combines all this information and feeds it to the LLM, which
simulates a chess player to decide the next move. The LLP models a policy π, defined as:

ut = π(P(Gk,Ut, R,Qt)), (2)

where ut = (xt, yt) is the predicted next position on the chessboard. According to the defined
action space, the available next positions are restricted to the adjacent grids in four directions xt+1 ∈
[xt − 1, xt + 1] and yt+1 ∈ [yt − 1, yt + 1], with xt+1, yt+1 ∈ [1,W ].

Since the chessboard grid size is calibrated to match the robot’s step length, the predicted adja-
cency target position ut can be directly converted to a sequence of executable low-level actions
a = {ai}, ai ∈ Anav in the real-world environment. For example, in the ALFRED benchmark,
Anav includes (MoveForward, 0.25m), (TurnLeft, 90◦) and (TurnRight, 90◦). Based on
the predicted target position, the movement in any of the four directions can be converted into the
corresponding action sequence (e.g., TurnLeft and MoveForward to move to the left adjacent
grid). Additionally, if the output wt is within the visible range of the target object OBJECT in the
current subgoal, the system moves on to the next subgoal. See more details of the complete R2C
planning pipeline in pseudo code Algo.1 in appendix.

3.2 CHAIN-OF-THOUGHT FINE-TUNING PARADIGM

To enhance the decision-making capabilities of LLMs in our chess game, we introduce an inter-
pretable fine-tuning paradigm with two key features: 1) simultaneous training of high-level Task
Decomposition (TD) and low-level Chain of Thought Decision (CoT-D) tasks to unify HLP and
LLP in within a single LLM, and 2) a Chain-of-thought Decision (CoT-D) process composed of
four sub-parts are designed to enhance LLM’s rule comprehension and spatial reasoning abilities.

6
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3.2.1 TASK DECOMPOSITION (TD)

We leverage the exceptional natural language understanding capabilities of LLMs to interpret and
follow instructions. Especially when utilized to effectively decompose complex, long-horizon tasks
into manageable subgoals. For the input instruction description L, it will be decomposed into a
sequence of sub-steps {G1, G2, ..., GK}, where each sub-step is a tuple of action and target object,
[Action, Object].

3.2.2 CHAIN OF THOUGHT DECISION (COT-D)

LLM must thoroughly comprehend our chessboard coordinate system and predict the next position
based on the semantic information of the chessboard and its inherent common sense. For the given
prompt P with chessboard state U , the LLM needs to generate answer sentence S (including next
position w) with probabilistic language model pLM . If LLM is asked to directly provide coordinates,
this process can be formalized as:

p(S | P) =
|S|∏
i=1

pLM (si | P, s<i) (3)

However, such a complex task is much more challenging than the task decomposition. This requires
that LLMs have strong capabilities in long-text comprehension and spatial reasoning. However, the
current leading models are not particularly skilled in these areas. Consequently, we design the Chain
of Thought Decision (CoT-D) tasks to strengthen LLM’s rationale R in these aspects. The task
consists of four sub-parts, each requiring LLMs to output the result of key information extraction
RE , direction judgment RD, target prediction RT , and selection analysis RS . We link these sub-
tasks sequentially in natural language to construct a coherent logical chain. The entire task can be
represented as:

p(S | P) = p(S | P,R) · p(R | P)

p(R | P) =
∏

ri∈{RE ,RD,RT ,RS}

pLM (ri | P, r<i)

p(S | P,R) =
|S|∏
j=1

pLM (si | P,R, s<j)

(4)

The specific content of the four sub-tasks will be introduced below. Examples can be found in Fig.2,
with details available in the appendix.

Key Information Extraction: Due to the intricate information contained within the chessboard,
when textualized, it becomes a lengthy document with substantial information. Considering
that LLM often encounters issues such as context loss when comprehending long texts, this
task is designed to train LLM in processing task-related long texts and extracting key infor-
mation. This task requires LLM to extract relevant information about the current coordinates
and target objects based on the chessboard information inputs. The form used in data annota-
tion is as follows: The current position of the agent is [COORDS], and the
target is [OBJECT NAME], which is located at [COORDS SET].

Direction Judgment: The conversion from a chessboard grid image to text is based on a two-
dimensional Cartesian coordinate system, and all spatial relationship understanding relies on a good
coordinate system understanding. Despite explaining the rationale for establishing this coordi-
nate system in the instruction using prompts like Establish a coordinate system with
the top left grid as (1,1), testing has shown that LLM still frequently misunderstands
our settings. This could be attributed to the length of the text and the scarcity of spatial reasoning
tasks incorporated during the pre-training of contemporary LLM. To ensure LLM’s accurate com-
prehension of the chessboard grid coordinate system, this task requires LLM to judge the direction
between the target and the current coordinates. The format employed in data annotation is as fol-
lows: the target is at..., which is on the [DIRECTION] of the agent.

Target Prediction:The locations where different categories of objects appear often have priors. For
example, sofas are likely to appear opposite the television. Therefore, we aim for LLM to develop
the capability of predicting target locations. This can minimize the ineffective or inefficient explo-
ration process for the robot to find target objects, thereby improving the efficiency of the system
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in completing embodied tasks. The expression utilized in data annotation is: Based on the
chessboard analysis, the target is likely located near [COORDS].

Selection Analysis:The tasks outlined above will enhance LLM’s comprehension of the spa-
tial relationships within the chessboard and the goals of the overall embodied task. Based
on this, we require LLM to analyze all possible next positions according to the rules of the
chessboard. Throughout this analysis process, utilizing the aforementioned analysis as a foun-
dation, LLM will provide analysis for each choice. The specific expression in the anno-
tation is: [COORDS]: This position is on the [DIRECTION] of the agent,
[Reason]. The [Reason] part is derived from annotations generated by GPT-4 based on
the agent’s current state and the correlation between the choice and the correct orientation.
For example: Objects in this direction have already been discovered;
we should head to areas that have not been explored.

4 EVALUATION

4.1 EXPERIMENT SETTINGS

Benchmark. We evaluate our method on the challenging ALFRED Shridhar et al. (2020) bench-
mark, which includes 7 types of long-horizon tasks across 207 unique environments and 115 dif-
ferent object types. In our experiments, we adhere to the benchmark’s settings, including low-level
actions, maximum agent steps, and failure limits.

Chessboard settings. The physical room size D is set to 16m, which is set to be the approximate
maximum room size, and the grid size ω is the length of the agent step, 0.25m. Thus, the size of the
semantic map and the chessboard is M = 320 and W = 64 separately. However, to represent more
complex environment, one can choose a more fine-grained chessboard. We show such demo in the
appendix6.3.

Model settings. For the zero-shot R2C, we use the public GPT-4-turbo API OpenAI (2023) without
any example. Considering the testing cost, we randomly sampled a subset of size 100 covering all 7
types of tasks strictly according to the task distribution of ALFRED. For fine-tuning, we collected a
total of 264,915 data samples for fine-tuning, including 70,000 samples for the Task Decomposition
tasks and 194,915 samples for the Chain-of-Thought Decision tasks. All data collection was based
solely on the training set of ALFRED. During training, we conduct full-parameter fine-tuning on
both the Mistral-7B-Instruct-v0.2 model Jiang et al. (2023) and the Llama-7B-Chat model Touvron
et al. (2023) using all the data. Both models were trained for only one epoch. We conduct all fine-
tuning experiments using 4 NVIDIA H100 GPUs, and all evaluations are performed on 4 NVIDIA
A40 GPUs. The codes will be released after the paper is accepted.

4.2 MAIN RESULTS

Tab.1 presents the evaluation results on the validation set of ALFRED. We compare our R2C frame-
work with both traditional robotic learning methods (specialists) and LLM-based approaches (gener-
alists). R2C achieves state-of-the-art performance among LLM-based methods, with the Mistral-7B
excelling in seen environments and GPT-4 in unseen environments.

Compared to SayCan Ahn et al. (2022) and LLM-P Song et al. (2023), which use LLMs only for
high-level planning, R2C integrates high-level and low-level planning, offering a more efficient,
end-to-end solution. LLM-P requires 100 instruction-plan pairs for training, while R2C operates in
a zero-shot setting without examples. Our CoT-D paradigm enables GPT to analyze the chessboard
state comprehensively, improving decision interpretability and efficiency.

R2C fine-tuned on open-sourced LLMs achieves competitive results, with a 2.31% improvement
in the seen split and a 1.65% drop in the unseen split compared to R2C-GPT-4. This highlights
GPT-4’s superior generalization to unseen environments. However, with our carefully designed
fine-tuning tasks, R2C implemented on much smaller models like LLaMA and Mistral, can still
deliver performance comparable to GPT-4. This demonstrates the effectiveness and efficiency of
our fine-tuning approach.

Finally, R2C fine-tuned on collected data performs comparably to specialist models like FILM Min
et al. (2021) and LEBP Liu et al. (2022). Although these models, specifically designed for ALFRED
tasks, excel in seen scenes, they struggle in unseen environments due to overfitting. In contrast, R2C
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Table 1: Main results on the ALFRED benchmark. SR and GC are short for success rate and goal-
conditioned success rate. ∆ SR and ∆ GC represent the performance differences in generalizing
from the seen to the unseen environment.

Method Training Mode Valid Seen Valid Unseen
∆ SR ↑ ∆ GC ↑

SR ↑ GC ↑ SR ↑ GC ↑
Specialists, only for ALFRED tasks

E.T. Pashevich et al. (2021) from scratch 46.59 52.92 7.32 20.87 -39.27 -32.05
HiTUT Zhang & Chai (2021) from scratch 25.24 34.85 12.44 23.71 -12.80 -11.14
M-TRACK Song et al. (2022) from scratch 26.70 33.21 17.29 28.98 -9.41 -4.23
FILM Min et al. (2021) from scratch 24.63 37.20 20.10 32.45 -4.53 -4.75
LEBP Liu et al. (2022) from scratch 27.63 35.76 22.36 29.58 -5.27 -6.18

Generalists, based on LLMs
SayCan Ahn et al. (2022) few-shot 12.30 24.52 9.88 22.54 -2.42 -1.98
LLM-P (GPT) Song et al. (2023)1 few-shot 16.45 30.11 15.36 29.88 -1.09 -0.23
R2C-GPT-4 (ours) zero-shot 20.00 28.46 24.00 28.24 +4.00 -0.22
R2C-Llama-7B (ours) fine-tune 20.83 29.60 18.99 29.69 -1.84 +0.09
R2C-Mistral-7B (ours) fine-tune 22.31 32.40 22.35 31.97 +0.04 -0.43

Table 2: Ablation of R2C. GT Seg. represents the
model using ground-truth segmentation. GT Goal rep-
resents using ground-truth subgoals. - SA is the model
without Selection Analysis part of CoT. - CoT is the
model without all CoT tasks.

Method Val Seen Val Unseen

SR GC SR GC

Base Model 22.31 32.40 22.35 31.97

+ GT Seg. 37.92 45.83 35.24 43.88
+ GT Seg., GT Goal 48.18 55.13 53.33 58.18
+ GT Seg., GT Goal, - SA 45.97 51.75 47.45 53.03
+ GT Seg., GT Goal, - CoT 41.22 49.35 41.96 47.88

Table 3: The performances of R2C on different tasks.

Task Type Val Seen Val Unseen

SR GC SR GC

Overall 48.18 55.13 53.33 58.18

Examine 75.86 79.31 83.33 87.96
Pick & Place 69.57 69.57 63.33 63.33
Stack & Place 29.03 37.00 45.45 46.46
Clean & Place 63.89 73.87 38.89 50.45
Cool & Place 36.84 49.60 61.11 69.23
Heat & Place 23.53 41.38 28.57 41.13
Pick 2 & Place 33.33 54.41 37.50 53.70

and other LLM-based methods demonstrate stronger generalization across both seen and unseen
environments.

4.3 ABLATION STUDY

We performed an ablation study to analyze the impact of different R2C modules, as shown in Tab.2.
Our base model uses raw RGB-D frames with pre-trained Mask-RCNN for instance segmentation,
ensuring a fair comparison with previous works Pashevich et al. (2021), Min et al. (2021). Ground
truth segmentation (GT Seg.) significantly improves performance, highlighting segmentation as a
bottleneck, especially in simulation environments where domain gaps between simulated and real-
world data are pronounced.

Using ground truth subgoals (GT Goal) also boosts SR, revealing the impact of ambiguity in natural
language instructions. Annotator confusion between categories like desk lamps and floor lamps can
hinder task decomposition, though LLMs’ strong generalization helps mitigate this.

Finally, removing the CoT-D framework, which forces the model to directly output position coor-
dinates without rationale, results in a significant performance drop, , especially in unseen scenes.
This highlights the importance of fine-tuning with CoT-D subtasks for better spatial reasoning and
action planning. Ablating individual subtasks is challenging due to their interdependence. We ablate
removing the Selection Analysis part, where decisions are made without analyzing options and it
causes a noticeable performance decline.

4.4 EVALUATION ACROSS TASKS TYPES.

We analyzed R2C’s performance across task types using GT Segmentation and GT Goal settings,
with task-specific results shown in Tab.3. The R2C model excels particularly in “Examine” tasks,

1For a fair comparison, we test the performance of the GPT-4 version LLM-P on the same selected subset
as us, achieving SR of 16.21% on seen scenes. Since this work solely employs LLM for task decomposition,
the performance is only significantly different from using GPT-3.
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step 3:  𝑤 = [32, 33] step 48:  𝑤 = [28, 39]step 33:  𝑤 = [18, 42]

 Put a washed bowl away in a 
kitchen cabinet.

The goal object "bowl" was 
not found within the maximum step limit.

CountertopGarbage Can

Cabinet

FridgeGoal Sink Basin

Stove BurnerTV StandShelf Side Table

step 10:  𝑤 = [29, 33] step 21:  𝑤 = 33, 32 , 𝑎 = [𝑃𝑖𝑐𝑘𝑈𝑝, 𝐵𝑜𝑜𝑘] step 30:  𝑤 = 30, 29 , 𝑎 = [𝑇𝑜𝑔𝑔𝑙𝑒𝑂𝑛,𝐷𝑒𝑠𝑘𝐿𝑎𝑚𝑝]

 Turn on the table lamp to read the book. Garbage CanShelfSafeGoal

Bed DrawerBook Desk

Figure 3: Cases study of our R2C with Mistral model. The model successfully finishes the task with
31 steps (up) while fails to find the small object in a complex environment (bottom).

Go to the center of the roomWalk to the armchair closest to the sofaWalk around the table

Figure 4: Cases of R2C-GPT-4 on open-vocabulary task. As the R2C framework unlocks LLM’s
low-level planning capability, LLM can tackle more open-ended tasks.

achieving the highest SR, but faces challenges in complex “Heat & Place” tasks, where the “HeatO-
bject” subgoal alone involves seven interactive steps, increasing the risk of error accumulation. Be-
sides, R2C shows strong navigation and exploration in “Pick & Place” tasks, benefiting from its
direction judgment and goal prediction reasoning. We provide a visualization of two case study of
R2C completing different tasks (“Examine” and “Clean & Place”) in Fig.3.

4.5 EXPLORATION ON OPEN-VOCABULARY TASK

While tasks in datasets like ALFRED are predefined and limited to 7 templates with fixed execution
orders, real-world demands are far more diverse. Standard instructions such as “walk around the
table” render high-level LLM planners relying on navigation APIs ineffective, as there is no cus-
tomized API for such tasks. We refer to these as open-vocabulary embodied tasks. In contrast, the
R2C framework equips LLMs to directly make low-level action plans, enabling them to adaptively
handle a wide range of tasks. As shown in Fig.4, we test open-vocabulary tasks with GPT-version
R2C, demonstrating superior performance and highlighting the importance of integrating low-level
planning for real-world applications.

5 CONCLUSION

We introduce the Room to Chessboard (R2C) framework, which map the complex room into a
chessboard as a communication platform between the LLM and the robot, unlocking the LLM as
low-level planner to directly guide the robot adaptively finish the embodied tasks. To address the
spatial reasoning tasks on chessboard, we design a CoT fine-tuning framework that enhances LLMs’
ability to make interpretable low-level decisions. Experiments show that R2C outperforms existing
LLM-based high-level planners, even in zero-shot settings, and allows 7B models to surpass GPT-
4. Furthermore, R2C enables LLMs to tackle open-vocabulary tasks where API-based frameworks
fall short. However, R2C still faces challenges, such as handling very large scenes. Future work
will focus on optimizing R2C for larger environments and exploring its potential for various open-
vocabulary tasks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Peter Anderson, Qi Wu, Damien Teney, J Bruce, M Johnson, Stephen Gould, and Anton van den
Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation instructions
in real environments. arXiv preprint arXiv:1711.07280, 2018a.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 3674–3683, 2018b.

Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. A persistent spatial semantic
representation for high-level natural language instruction execution. In Conference on Robot
Learning, pp. 706–717. PMLR, 2022.

Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, and Russ R Salakhutdinov.
Object goal navigation using goal-oriented semantic exploration. Advances in Neural Information
Processing Systems, 33:4247–4258, 2020.

Jiaqi Chen, Bingqian Lin, Ran Xu, Zhenhua Chai, Xiaodan Liang, and Kwan-Yee Wong. Mapgpt:
Map-guided prompting with adaptive path planning for vision-and-language navigation. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9796–9810, 2024.

Edsger W Dijkstra. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra:
His Life, Work, and Legacy, pp. 287–290. 2022.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Jing Gu, Eliana Stefani, Qi Wu, Jesse Thomason, and Xin Eric Wang. Vision-and-language nav-
igation: A survey of tasks, methods, and future directions. arXiv preprint arXiv:2203.12667,
2022.

Qiao Gu, Alihusein Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen,
Aditya Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, et al. Con-
ceptgraphs: Open-vocabulary 3d scene graphs for perception and planning. arXiv preprint
arXiv:2309.16650, 2023.

Yicong Hong, Cristian Rodriguez, Yuankai Qi, Qi Wu, and Stephen Gould. Sub-instruction aware
vision-and-language navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1045–1054, 2020.

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. In
Proceedings of the International Conference on Machine Learning (ICML), 2024.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022b.

Yuki Inoue and Hiroki Ohashi. Prompter: Utilizing large language model prompting for a data
efficient embodied instruction following. arXiv preprint arXiv:2211.03267, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In Confer-
ence on Robot Learning, pp. 991–1002. PMLR, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-
inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

Byeonghwi Kim, Jinyeon Kim, Yuyeong Kim, Cheolhong Min, and Jonghyun Choi. Context-aware
planning and environment-aware memory for instruction following embodied agents. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 10936–10946, 2023.

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
Multilingual vision-and-language navigation with dense spatiotemporal grounding. arXiv preprint
arXiv:2010.07954, 2020.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection. International
Journal of Robotics Research, 37(4-5):421–436, 2018.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Haoyu Liu, Yang Liu, Hongkai He, and Hangfang Yang. Lebp–language expectation & binding pol-
icy: A two-stream framework for embodied vision-and-language interaction task learning agents.
arXiv preprint arXiv:2203.04637, 2022.

Guanxing Lu, Ziwei Wang, Changliu Liu, Jiwen Lu, and Yansong Tang. Thinkbot: Embodied
instruction following with thought chain reasoning. arXiv preprint arXiv:2312.07062, 2023.

Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh, and Dhruv Batra.
Improving vision-and-language navigation with image-text pairs from the web. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part VI 16, pp. 259–274. Springer, 2020.

So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, and Ruslan Salakhut-
dinov. Film: Following instructions in language with modular methods. arXiv preprint
arXiv:2110.07342, 2021.

OpenAI. Gpt-4: Generative pre-trained transformer 4. arXiv, arXiv:2303.08774, 2023. URL
https://arxiv.org/abs/2303.08774.

Alexander Pashevich, Cordelia Schmid, and Chen Sun. Episodic transformer for vision-and-
language navigation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 15942–15952, 2021.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 8494–8502, 2018.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf.
Sayplan: Grounding large language models using 3d scene graphs for scalable robot task plan-
ning. In 7th Annual Conference on Robot Learning, 2023.

Jean Serra. Image Analysis and Mathematical Morphology, volume 1. Academic Press, 1982.

James A Sethian. Fast marching methods. SIAM review, 41(2):199–235, 1999.

12

https://arxiv.org/abs/2303.08774


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025
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6 APPENDIX

6.1 IMPLEMENTATION DETAILS OF CHAIN-OF-THOUGHT FINE-TUNING

6.1.1 MODEL PARAMETER SETTINGS

The hyperparameters for the Chain-of-Thought fine-tuning of Mistral-7B are detailed in Table 4.
We employ Mistral-7B-Instruct-v0.2 as the base model, which is trained using a full fine-tuning
approach. The learning rate is configured at 2e-5. For training, the batch size per device is 32, while
during inference, it is reduced to 1.

Hyperparameter for Mistral-7B fine-tuning

base model Mistral-7B-Instruct-v0.2
fine-tune mode full fine-tune
deep speed ds z3
cutoff len 3000
preprocessing num workers 16
per device train batch size 32
per device eval batch size 1
gradient accumulation steps 1
lr scheduler type cosine
logging steps 10
warmup steps 375
save steps 500
eval steps 500
evaluation strategy steps
learning rate 2e-5
num train epochs 1.0
max samples 1000000
val size 0.01
ddp timeout 1800000

Table 4: Hyperparameters in Chain-of-Thought fine-tuning of Mistral-7B.

6.2 COMPARISON OF THE COMPUTATION COST

Model FILM LLM-P (GPT) R2C-GPT-4 R2C-Mistral-7b
Input Prompt Length (tokens) / ∼1k ∼1k ∼1k
Output Seq. Length (tokens) / ∼20 ∼1.5k ∼1.5k
Training Data / Examples (ep) 21k 100 0 21k
Training Time (GPU*Day) 1.5[3090] / / 4[A100]
Inference Speed (s/times) 357[3090] 5 12 0.53 (100 processes) / 3.79 (1 process)
Inference Freq. (times per ep) 1 <10 ∼50 ∼50

Table 5: Comparison of different models and configurations.

We provide the comparison of the computational costs among the R2C models, traditional baseline
FILM, and LLM-based baseline, LLM-P. Note that inference speed refers to the time required to call
the model each time, and inference frequency refers to the average frequency of calling the model
per episode.

As shown in Tab.5, though the text results of the chessboard are relatively long, we only keep the
task-related object coordinates and remove the unexplored coordinates. The prompt length of R2C in
each turn is about 1k tokens, which is similar to the LLM-P. The proposed CoT-D mainly affects the
length of the output of LLMs. Therefore, the inference time will become relatively longer. However,
since LLM-P can only generate high-level plans, besides the inference time of GPT, its inference
time depends on the motion planning model, HLSM, which is not short either, see the inference
speed of FILM (357s).
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Besides, the training data we use is similar to FILM. We just split the complete episode data into
single steps to train the model’s single-step prediction ability. Since the number of parameters is
much larger than traditional models, the training time of R2C is greater than FILM. However, FILM
has 4 sub-models to train. The combination of each sub-models will also bring significant time
costs.

As for the inference cost, the average inference time of FILM is about 357 seconds for each episode.
Our R2C-Mistral-7b completes the tasks through single-step reasoning. the inference time costing of
an episode between FILM and R2C-Mistral-7b is on the same scale (357s vs. 8*50=400s). Note that
the model and the task can be run in parallel using the vLLM speed-up technique (multi-process) to
realize much faster inference. Using 4 A40 GPUs and run tasks in parallel (100 process) can speed
up the single step inference time to 0.53s.

6.3 DETAILS OF ROOM TO CHESSBOARD FRAMEWORK

The pseudo code of the complete R2C pipeline is described in Algo. 1:

Algorithm 1 Room to Chessboard (R2C) Planning Pipeline
1: Input: Instruction L, Game rules R, Initial chessboard information U0, Initial position w0

2: Output: Sequence of coordinates [wt = (xt, yt)] and action sequence a
3: Initialize current position (x0, y0) based on w0

4: Initialize history steps Q0 = []
5: t← 0, k ← 1, failures← 0
6: High-Level Planning (HLP):
7: Parse instruction L to generate sequence of subgoals G = [G1, G2, ..., GK ], where Gk =

(Actionk, Objectk)
8: while t < T and failures < F and k ≤ K do
9: Get current subgoal Gk = (Actionk, Objectk)

10: Low-Level Planning (LLP):
11: Get new observations: ot = {Irgb, Idpt}
12: Update chessboard: Ut = F (ot, Gk)
13: if Actionk is navigation then
14: wt = π(P (Gk,Ut, R,Qt)) ▷ Predict next position
15: Convert wt = (xt, yt) to executable actions a = {a1, a2, ..., an} in Anav

16: Execute actions a
17: t← t+ n
18: if Move to (xt, yt) is successful then
19: Q.append((xt, yt))
20: else
21: failures← failures+ 1
22: end if
23: if Objectk is visible in Ut then
24: k ← k + 1 ▷ Move to the next subgoal if the object is visible
25: end if
26: else if Actionk is interaction then
27: Execute predefined low-level interaction actions a = {a1, a2, ..., an} in Aint

28: t← t+ n
29: k ← k + 1 ▷ Directly move to the next subgoal after interaction
30: end if
31: end while

6.4 CASE STUDY OF MORE FINE-GRAINED CHESSBOARD

We further conduct experiments with the grid’s size set to be 0.1m. Then the chessboard becomes
more fine-grained (160 × 160). We use the R2C-Mistral-7b model trained on 64 × 64 chessboard
data to infer with this more fine-grained chessboard (zero-shot). We show the visualization results
in the Fig.5.
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Step25 Step59 Step75

Figure 5: Cluttered setting demo. The chessboard size is 160× 160. The task is “Get an apple from
the sink and heat it up in the microwave”. The blue dashed line represents the trajectory.

6.5 IMPLEMENTATION DETAILS OF GPT-4 EXPERIMENTS

In all our GPT-4 experiments on the ALFRED benchmark, we use the official API without any
in-context examples. The specific model employed is gpt-4-turbo-2024-04-09.

For subgoal decomposition, we approach this as a translation problem. The central concept involves
translating noisy high-level plan annotations into a subgoal format, structured as a subgoal verb with
corresponding subgoal objects. Each high-level plan annotation is directly mapped to a subgoal
expression.

In the prompt, we initially inform GPT-4 of the format and limitations of the subgoal expres-
sion, specifically the subgoal verb and objects. The subgoal verb is restricted to a predefined
set: [GotoLocation, PickupObject, PutObject, CoolObject, HeatObject,
CleanObject, SliceObject, ToggleObject]. For specific verbs like HeatObject, we
clarify their usage. The subgoal objects are task-dependent; for each task, we maintain a list of rel-
evant large and small objects, and GPT-4 is restricted to using only these listed items to predict the
subgoal objects. We also provide GPT-4 with the task description and the high-level plan annotations
in a list format, organized in chronological order of subgoals.

Finally, we define the output format for GPT-4 using a static example, employing a “—” to separate
subgoal sequences. Upon receiving GPT-4’s response, we process the reply to extract the subgoal
list. This involves using the “—” delimiter in the output format to segment the sequence into a list,
followed by subgoal cleaning. This cleaned list then guides the low-level actions.

For the prompts, we first ensure that GPT-4 understands the rules of a chessboard game, explaining
the board size, coordinate system, and terms to describe spatial relations: left, right, up, down,
leftup, rightup, leftdown, and rightdown. We then convert the current state of the chessboard into
text, which includes object names and their occupied coordinates. We specify that GPT-4 cannot
move to coordinates occupied by an object and can only travel one block at a time.

After setting up the chessboard game, we provide GPT-4 with all available information including
the task description, current subgoal, current position, and available positions. The task description
aligns with the current subgoal format. The candidates for available positions are the blocks im-
mediately adjacent (up, down, left, right) to the current position, ensuring no objects occupy these
blocks.

Finally, we instruct GPT-4 on its tasks and how to solve problems using a chain-of-thought approach.
Specifically, we ask GPT-4 to verbalize its reasoning, analyzing the spatial relationship between
the target and current positions, and between the current position and available positions. After
reasoning, we prompt GPT-4 to indicate its next desired position and analyze whether the subgoal
is achieved, thereby enhancing its understanding of the subgoals and the overall task. The output is
formatted in JSON with keys for “reason”, “next position”, and “subgoal done”. Importantly, we
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Please translate the subgoal instruction into subgoal expression like (GotoLocation,["Soapbar"]).
Each subgoal can be translated to ONLY ONE subgoal expression!For example, if you have 5 subgoal, you should only output 5 subgoal expression!
Please ONLY use the following subgoal verb:
['GotoLocation','PickupObject','PutObject','CoolObject','HeatObject','CleanObject','SliceObject','ToggleObject']
When the task means clean something, use CleanObject instead of ToggleObject something like faucet
When the task means heat or cook something, use HeatObject instead of PutObject into microwave etc.

Your task is Look at a mug in lamp light.
And the subgoal instruction are : ['Go to the desk in front of you, then look up to the shelves.', 'Pick up the mug from the shelf.', 'Look down to the lamp on 
the desk.', 'Turn on the lamp.']
Please ONLY use the following object name:
['Sink Basin', 'Arm Chair', 'Bathtub Basin', 'Bed', 'Cabinet', 'Cart', 'Coffee Machine', 'Coffee Table', 'Counter Top', 'Desk', 'Dining Table', 'Drawer', 'Dresser', 
'Fridge', 'Garbage Can', 'Microwave', 'Ottoman', 'Safe', 'Shelf', 'Side Table', 'Sofa', 'Stove Burner', 'TV Stand', 'Toilet', 'Faucet', 'Floor Lamp', 'None', 'Mug', 'Desk 
Lamp']
ONLY answer with DIRECTLY like the example below , notice that an subgoal except PutObject only have one object and this example's task is "put a cooked 
slice of bread on to the counter":

(GotoLocation,["Countertop"])|(PickupObject,["Knife"])|(GotoLocation,["Bread"])|(SliceObject,["Bread"])|(GoToLocation,["Drawer"])|(PutObject,["Knife","D
rawer])|(GoToLocation,["Dining Table"])|(PickupObject,["Bread"])|(GoToLocation,["Countertop"])|(PutObject,["Bread","Microwave"])|("HeatObject",["Brea
d"])|(GoToLocation,["Countertop"])|(PutObject,["Bread","Countertop"])

Answers: GPT-4: (GotoLocation,["Shelf"])|(PickupObject,["Mug"])|(GotoLocation,["Desk Lamp"])|(ToggleObject,["Desk Lamp"])

Figure 6: GPT-4’s high-level planning prompt and answer.

On a 64*64 block chessboard, the rules of the game are as follows: 
Establish a coordinate system with the top left grid as (1,1). Each block can be represented by coordinates.
For instance, the block in the 3rd row and 5th column is denoted as (3,5). its right is (3,6), its left is (3,4), its up is (2,5), its down is (4,5).
spatial relation:[left,right,up,down,leftup,rightup,leftdown,rightdown] 
In the chessboard, there are the following objects: Bed: [[14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [14, 34], [14, 35], [14, 36], [14, 37], [14, 38], [14, 39], 
[14, 40], [14, 41], [14, 42], [14, 43], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [15, 34], [15, 35], [15, 36], [15, 37], [15, 38], [15, 39], [15, 40], [15, 41], [15, 
42], [15, 43], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [16, 34], [16, 35], [16, 36], [16, 37], [16, 38], [16, 39], [17, 29], [17, 30], [17, 31], [17, 32], [17, 33], 
[17, 34], [17, 35], [17, 36], [17, 37], [17, 38], [17, 39], [18, 29], [18, 30], [18, 31], [18, 32], [18, 33], [18, 34], [18, 35], [18, 36], [18, 37], [18, 38], [18, 39], [19, 
29], [19, 30], [19, 31], [19, 32], [19, 33], [19, 34], [19, 35], [19, 36], [19, 37], [19, 38], [19, 39], [20, 29], [20, 30], [20, 31], [20, 32], [20, 33], [20, 34], [20, 35], 
[20, 36], [20, 37], [20, 38], [20, 39], [21, 29], [21, 30], [21, 31], [21, 32], [21, 33], [21, 34], [21, 35], [21, 36], [21, 37], [21, 38], [21, 39], [22, 29], [22, 30], [22, 
31], [22, 32], [22, 33], [22, 34], [22, 35], [22, 36], [22, 37], [22, 38], [22, 39], [23, 29], [23, 30], [23, 31]]
Unexplore: [[16, 40], [16, 41], [16, 42], [16, 43], [17, 40], [17, 41], [17, 42], [17, 43], [18, 40], [18, 41], [18, 42], [18, 43], [19, 40], [19, 41], [19, 42], [19, 43], 
[20, 40], [20, 41], [20, 42], [20, 43], [21, 41], [21, 42], [21, 43], [22, 40], [22, 41], [22, 42], [22, 43], [23, 40], [23, 41], [23, 42], [23, 43], [24, 39], [24, 40], [24, 
41], [24, 42], [24, 43], [25, 39], [25, 40], [25, 41], [25, 42], [25, 43], [26, 38], [26, 39], [26, 40], [26, 41], [26, 42], [26, 43], [27, 38], [27, 41], [27, 42], [27, 43], 
[28, 37], [28, 41], [28, 42], [28, 43], [29, 30], [29, 31], [29, 32], [29, 33], [29, 34], [29, 35], [29, 41], [29, 42], [29, 43], [30, 30], [30, 31], [30, 32], [30, 33], [30, 
34], [30, 35], [30, 41], [30, 42], [30, 43], [31, 31], [31, 32], [31, 33], [31, 34], [31, 35], [31, 36], [31, 41], [31, 42], [31, 43], [32, 31], [32, 32], [32, 34], [32, 35], 
[32, 36], [32, 41], [32, 42], [32, 43], [33, 41], [33, 42], [33, 43], [34, 31], [34, 41], [34, 42], [34, 43]]
Explore: [[21, 40], [23, 32], [23, 33], [23, 34], [23, 35], [23, 36], [23, 37], [23, 38], [23, 39], [24, 30], [24, 31], [24, 32], [24, 33], [24, 34], [24, 35], [24, 36], [24, 
37], [24, 38], [25, 30], [25, 31], [25, 32], [25, 33], [25, 34], [25, 35], [25, 36], [25, 37], [25, 38], [26, 30], [26, 31], [26, 32], [26, 33], [26, 34], [26, 35], [26, 36], 
[26, 37], [27, 30], [27, 31], [27, 32], [27, 33], [27, 34], [27, 35], [27, 36], [27, 37], [28, 30], [28, 31], [28, 32], [28, 33], [28, 34], [28, 35], [28, 36]]
Obstacle: [[24, 29], [25, 29], [26, 29], [27, 29], [28, 29], [29, 29], [29, 36], [30, 29], [30, 36], [33, 31], [33, 32], [33, 33], [33, 34], [33, 35], [33, 36], [34, 32], [34, 
33], [34, 34], [34, 35]]
Desk: [[27, 39], [27, 40], [28, 38], [28, 39], [28, 40], [29, 37], [29, 38], [29, 39], [29, 40], [30, 37], [30, 38], [31, 37], [31, 38], [32, 37], [32, 38], [33, 37], [33, 38], 
[33, 39], [34, 36], [34, 37], [34, 38], [34, 39], [34, 40]]
Shelf: [[30, 39], [30, 40], [31, 29], [31, 30], [31, 39], [32, 29], [32, 30], [33, 29], [33, 30], [33, 40], [34, 29], [34, 30]]
Mug: [[31, 40], [32, 39], [32, 40]]
Agent: [[32, 33]]

The movememt is forbidden on the object block.
You can only move 1 block at a time.
Your task is [['GotoLocation', ['shelf']], ['PickupObject', ['mug']], ['GotoLocation', ['desklamp']], ['ToggleObject', ['desklamp']], ['NoOp', []]]
Your subgoal is (GotoLocation, [mug])
Your position is at [32, 33]
Your available position is [[31, 33], [32, 32], [32, 34]]
Tell me what position you would move. You should first tell me your reason ,which first FIRST analyze the spatial relation between target position(if you 
see the subgoal object,else you should explore the room as far as you can) and your position, NEXT analyze each available position(the spatial relation 
between your position and it AND if it makes you near the target), and judge whether the sub-goal is finished.
ALL you OUTPUT is below, DO NOT use code block or other format:
{

"reason": "...",
"next_position": "(x, y)",
"subgoal_done": "True/False"

}

Answers: GPT-4:
{

"reason": "The subgoal is to go to the location of the mug. The coordinates for the mugs are at [31, 40], [32, 39], and [32, 40]. Currently, the agent is at 
location [32, 33]. The shortest path initially appears to be moving directly to the right from the agent's current position in order to approach one of the 
mug positions most directly. Moving right from [32, 33] leads to [32, 34], moving closer in the vertical lane to the target mug coordinates ([32, 39] and [32, 
40]). From [32, 34], the agent can then potentially proceed further right in subsequent moves to reach [32, 39] or [32, 40]. Moving left to [32, 32] or up to 
[31, 33] would not progress towards the mug’s location efficiently as these moves do not reduce the vertical distance to the target mug coordinates.",

"next_position": "(32, 34)",
"subgoal_done": "False"

}

Figure 7: GPT-4’s chain-of-thought prompt and answer.
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do not provide an example containing actual content, as we have found that doing so may inhibit
GPT-4’s ability to think independently, potentially limiting its performance.

6.6 OPEN-VOCABULARY PLANNING TASKS

Figure 8 depicts a step from GPT-4’s open vocabulary experiment, in which it approaches the chair
closest to the wall. Initially, we provide the rules and current state of the chessboard, including its
size and coordinate system. Subsequently, we update GPT-4 on the chessboard’s status and present
the specific task and position. For this task, GPT-4 independently determines when to terminate the
task. In its response, GPT-4 adopts the Chain-Of-Thought reasoning method. It accurately interprets
the semantics of the chair nearest the wall and precisely identifies the coordinates. Then, it analyzes
each viable move, selects two for deeper examination, and finally determines the direction for the
next step.
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Figure 8: GPT-4’s open-vocabulary prompt and answer-01. Task: Walk around the table.
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Figure 9: GPT-4’s open-vocabulary prompt and answer-02. Task: Walk around the table.
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Figure 10: GPT-4’s open-vocabulary promptand answer-03. Task: Walk around the table.
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