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Abstract

Large Language Models (LLMs) have achieved001
impressive results across numerous NLP tasks,002
and fine-tuning them for Machine Translation003
(MT) has improved their performance. How-004
ever, vanilla fine-tuning often leads to catas-005
trophic forgetting, compromising the broad006
general abilities of LLMs and introducing po-007
tential security risks. These abilities, which are008
developed using proprietary and unavailable009
training data, make simple data replay methods010
ineffective. To overcome this issue, we pro-011
pose a novel approach called RaDis (Rationale012
Distillation). RaDis harnesses the strong gener-013
ative capabilities of LLMs to create rationales014
for training data, which are then “replayed” to015
prevent forgetting. These rationales connect016
prior knowledge with new tasks, acting as self-017
distillation targets to regulate the training pro-018
cess. By jointly training on reference transla-019
tions and self-generated rationales, the model020
can learn new translation skills while preserv-021
ing its general abilities across other tasks. Addi-022
tionally, RaDis provides a fresh perspective on023
using rationales in the CL field and has the po-024
tential to serve as a general continual learning025
method for a variety of tasks.026

1 Introduction027

Large Language Models (LLMs) have demon-028

strated exceptional performance across diverse Nat-029

ural Language Processing (NLP) tasks but still030

fall short compared to conventional supervised031

encoder-decoder models in the realm of Machine032

Translation (MT). Recent studies have sought to033

enhance the translation performance of LLMs034

through continual instruction-tuning with parallel035

corpora (Yang et al., 2023; Xu et al., 2024). While036

this approach effectively boosts translation per-037

formance, it often introduces Catastrophic Forget-038

ting (McCloskey and Cohen, 1989). As illustrated039

in Figure 1, fine-tuning instruction-tuned LLMs040

results in a significant decline in these models’ per-041
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Figure 1: Translation performance (COMET) and gen-
eral conversational and instruction-following ability
(MT-Bench). While both Fine-tuning (blue triangle)
and RaDis (red star) greatly enhance the translation per-
formance, RaDis helps preserve most of the models’
general ability.

formance on MT-Bench (Zheng et al., 2023), indi- 042

cating a loss in general instruction following abil- 043

ities. Such degradation not only limits the broad 044

application of LLMs but also hinders their transla- 045

tion performance, such as formality steering and 046

contextualization capabilities (Stap et al., 2024). 047

While various replay-based approaches have 048

been proposed to mitigate forgetting (Mok et al., 049

2023; He et al., 2024; Wang et al., 2024), these 050

methods do not apply to our target scenario. This 051

limitation arises because the superior performance 052

of LLMs largely depends on high-quality, propri- 053

etary data, to which downstream users have no ac- 054

cess for replay. Previous studies have explored the 055

use of open-source monolingual data (Stap et al., 056

2024) or instruction-following datasets (Jiao et al., 057

2023; Zhang et al., 2023; Alves et al., 2024) as 058

alternatives. However, their effectiveness remains 059

limited as open-source datasets struggle to match 060

the performance of proprietary ones. 061

To address this problem, this paper explores 062

leveraging the strong generative ability of LLMs 063
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to synthesize their own replay data. However,064

given the vast task space of LLMs and the limited065

data we could use, generating high-quality synthe-066

sis data that encapsulates diverse general knowl-067

edge remains a non-trivial question. We found068

that instruction-tuned LLMs are capable of gener-069

ating detailed rationales when tasked with trans-070

lation requests (see Section 3.1 and Appendix F071

for more details). Further analysis suggests that072

these rationales encapsulate the internal knowl-073

edge LLMs utilize during translation. Building074

upon these findings, we propose a novel training075

method named RaDis (Rationale Distillation). It076

prompts the LLM to generate rationales for the ref-077

erence translations in MT training data and then078

concatenates references and rationales, forming an079

enriched dataset for subsequent training. By in-080

corporating both the rationales and the references081

into the training, RaDis ties LLMs’ internal knowl-082

edge with new tasks to learn and introduces a self-083

distillation loss on the rationale, thereby mitigating084

the forgetting issue.085

Comprehensive experiments using three widely086

adopted LLMs, LLaMA-2-7B-Chat (Touvron et al.,087

2023), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023),088

and Qwen2.5-7B-Instruct (Yang et al., 2024a) val-089

idates the effectiveness of RaDis. As depicted in090

Figure 1, RaDis improves translation performance091

to a level comparable to vanilla fine-tuning while092

maintaining the model’s original proficiency on093

general ability benchmarks. Further analysis re-094

veals that distilling self-generated rationales not095

only outperforms distilling from external rationales096

generated by a stronger model but also avoids the097

conflict between learning new tasks and consoli-098

dating the original ability. Together, these findings099

offer additional insights into RaDis’ effectiveness100

and future study.101

In summary, this work makes the following con-102

tributions:103

• It proposes RaDis, a novel training method104

that enhances LLMs’ translation proficiency105

while preserving their generality. RaDis uses106

the inherent ability of LLMs to generate ra-107

tionales for translation data (Section 3.1) and108

performs self-knowledge distillation on these109

rationales to alleviate forgetting (Section 3.3).110

• RaDis addresses a critical challenge in LLM111

application. In practice, LLMs are usually112

fine-tuned for downstream tasks. This pro-113

cess suffers from catastrophic forgetting, and114

the replay-based approach is not suitable due 115

to the absence of the training data of LLMs. 116

RaDis overcomes this problem by replaying 117

self-generated rationales, which provides a 118

fresh angle in the field of CL. 119

• Experimental results show that RaDis signifi- 120

cantly outperforms baselines. Most notably, it 121

achieves translation performance comparable 122

to vanilla fine-tuning while preserving 92% of 123

the LLM’s original ability. Further analysis 124

demonstrates that RaDis avoids optimization 125

conflict and generalizes well to broader tasks. 126

2 Related Works 127

2.1 Fine-tuning LLMs for MT 128

LLMs have achieved promising results in MT (Zhu 129

et al., 2024; Guo et al., 2024; Song et al., 2025). 130

Previous studies have primarily fine-tuned LLMs 131

using parallel corpora to enhance their translation 132

proficiency (Yang et al., 2023; Xu et al., 2024; 133

Zheng et al., 2024a; Yu et al., 2025; Lu et al., 134

2024). Although these methods enhance the trans- 135

lation proficiency of LLMs, they often compromise 136

the models’ general ability and internal knowl- 137

edge (Stap et al., 2024). To address this issue, 138

several studies have proposed to add open-source 139

monolingual data (Stap et al., 2024) or instruction- 140

following data (Jiao et al., 2023; Zhang et al., 2023; 141

Alves et al., 2024) into fine-tuning. However, lim- 142

ited by the quality of the data and the distribution 143

gap, they still suffer from forgetting and underper- 144

forming open-sourced LLMs by a large margin. In 145

contrast to these efforts, our approach solely uses 146

machine translation data and can preserve the gen- 147

eral ability by distilling self-generated rationales. 148

2.2 Continual Instruction Tuning 149

Continual instruction tuning (CIT) seeks to mit- 150

igate CF during the instruction tuning of LLMs 151

by employing CL approaches (Wu et al., 2024; 152

Shi et al., 2024). Traditional CL methods are 153

typically divided into replay-based, regularization- 154

based, and architecture-based methods (Ke and Liu, 155

2022). However, in the context of LLMs, the vast 156

parameter and task space reduces the feasibility of 157

regularization-based and architecture-based meth- 158

ods (Wang et al., 2024). As a result, current re- 159

search has predominantly focused on replay-based 160

techniques and their variants (Scialom et al., 2022; 161

Yin et al., 2022; Mok et al., 2023; He et al., 2024; 162

Wang et al., 2024) While these approaches are 163
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promising, they are subject to the reliance on ac-164

cess to the original training data. Consequently,165

they cannot be applied to mitigate the forgetting of166

instruction-tuned LLMs’ general abilities gained167

from in-house training data. SDFT (Yang et al.,168

2024b) is the first work designed for preserving169

the general instruction-following abilities of LLMs.170

It proposes to paraphrase the original train dataset171

with the LLM itself to bridge the distribution gap.172

However, the quality of the paraphrased data is173

limited by the capabilities of the prompt and the174

model itself, which may diminish the performance175

of the task to be learned. In contrast, RaDis argues176

the original data with self-generated rationales and177

avoids loss of performance on new tasks.178

3 Method179

We begin by presenting a key observation: when180

tasked with translation requests, instruction-tuned181

LLMs can generate detailed rationales that en-182

capsulate the internal general knowledge leveraged183

during translation (Section 3.1). Building on this in-184

sight, we introduce Rationale Distillation (RaDis),185

which leverages these self-generated rationales as186

replay data to help the model retain its broad gen-187

eral capabilities (Section 3.1). Finally, we demon-188

strate that the RaDis training objective can be de-189

composed into a conventional MT loss and a self-190

distillation loss on rationale tokens, which helps191

prevent excessive deviation of model parameters192

(Section 3.3).193

3.1 Observation: Self-generated Rationales194

“China's 'Belt and Road' Initiative' has become 

the largest international cooperation platform.“

Explanation:

The Chinese term "一带一路" (Yīdài Yīlù) can 

be translated to English as "Belt and Road." The 

Belt and Road Initiative (BRI) is a development 

strategy and infrastructure development project 

proposed by China in 2013. It aims to enhance 

connectivity and cooperation between countries 

in Asia, Europe and Africa …

中国提出的“一带一路”倡议，已成为规模最大
的国际合作平台。
Translate this sentence to English.

Figure 2: An example of LLM’s response to translation
instruction that encompasses a rationale.

Instruction-tuned LLMs exhibit a strong abil-195

ity to follow instructions and engage in conver-196

sational interactions, delivering helpful responses197

Figure 3: Distribution of translation rationales.

across a wide range of tasks. Unlike conventional 198

models that simply output the answer, instruction- 199

tuned LLMs are known to be able to generate ra- 200

tionales (Wei et al., 2022). As illustrated in Fig- 201

ure 2, when presented with a translation request, 202

instruction-tuned LLMs not only generate the trans- 203

lation but also provide an accompanying rationale. 204

We randomly sampled 250 sentences from di- 205

verse translation directions and extracted their cor- 206

responding rationales for analysis. The content 207

of these rationales included diverse information, 208

as expected. As shown in Figure 3, rationales 209

were generated for more than 95% of the sentences. 210

These rationales can be broadly categorized into 211

seven types, ranging from word alignments to fac- 212

tual knowledge.1 Intuitively, these rationales pre- 213

serve the original knowledge in LLMs. Building 214

upon this insight, we propose our approach, named 215

RaDis. 216

3.2 RaDis: distilling rationales to alleviate 217

forgetting 218

The forgetting issue can be attributed to an un- 219

suitable training approach. In conventional fine- 220

tuning, the supervision signal comes from the ref- 221

erence sentence solely, which biases the model to 222

a translation-specific distribution. Previous studies 223

have sought to address this issue by replay-based 224

methods. However, due to the absence of origi- 225

nal training data for LLMs and the poor quality 226

of open-sourced instruction-following data, their 227

effectiveness is limited. To this end, we propose 228

RaDis. The core idea of RaDis is similar to pseudo- 229

replay, which employs an additional data generator 230

to synthesize replay data (Shi et al., 2024). How- 231

1For examples of rationales, please refer to Appendix F.
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### Response:

The Sphinx is set as 

the backdrop and 

the narrator of a 

long story.

Explanation:

The Sphinx is a mythical 

creature with the body of a 

lion and the head of a human. 

In ancient Greek …

Explanation:

The Sphinx is a mythical 

creature with the body of a 

lion and the head of a human. 

In ancient Greek …

Rationale 

Generation

LLM

### Instruction: 

Translate this sentence 

from Chinese to English. 

背景幕布上是狮身人面像，
它也是长篇故事的讲述者。

LLM

### Instruction: 

Translate this sentence from 

Chinese to English. 

背景幕布上是狮身人面像，
它也是长篇故事的讲述者。

### Response:

The Sphinx is set as 

the backdrop and 

the narrator of a 

long story.

Translation 
Loss

Rationale Self-
distillation Loss

Continue
Generation

Rationale 

Disillation

Generality
Capability

Translation 
Capability

Figure 4: Overview of the RaDis approach. Rationale Generating (Left): Given a translation instruction-response
pair as an input, the LLM extends the response by generating a rationale. Fine-tuning with Rationale Distillation
(Right): RaDis utilizes this self-generated rationale to enrich the original response and fine-tunes the LLM with the
enriched data. The CLM loss computed on the rationale serves as a self-distillation regularization term, preventing
excessive parameter divergence.

ever, the superior generative abilities of LLMs now232

allow us to leverage the model itself to synthesize233

this replay data. As depicted in Figure 4, RaDis234

starts from an instruction-tuned LLM as the back-235

bone. It utilizes a prompt template I to format236

the translation sentence pair (x, y) and sends them237

into the backbone LLM parameterized as θ. As238

shown in Section 3.1, LLMs have the inherent abil-239

ity to continue generating a rationale r using the240

translation instruction-response pair as the prefix.241

r ∼ P (y,x, I) (1)242

These rationales encapsulate the internal general243

knowledge leveraged during translation, building244

a “semantic scaffold" that ties previous knowledge245

with new tasks. Therefore, introducing them into246

training improves knowledge retention. Specifi-247

cally, the self-generated rationale r is concatenated248

with the translation sentence y, creating an en-249

riched response ŷ = CONCAT(y, r). The en-250

riched instruction-response pair is subsequently251

used to train the backbone LLM using a standard252

causal language model (CLM) loss, defined as:253

L(x, ŷ) = − logP (ŷ|x, I) (2)254

The enriched response now incorporates both the255

task-specific knowledge for translation and di-256

verse original knowledge embedded within the self-257

generated rationale. As a result, fine-tuning the258

model with it can learn the translation task and con-259

solidate the original general ability simultaneously.260

3.3 Why RaDis Works: A Knowledge261

Distillation Perspective262

In previous sections, we discovered that self-263

generated rationales are effective substitutes for264

replay data. However, since they are neither tra- 265

ditional replay data nor pseudo-replay data, a nat- 266

ural question arises: why do they work? Here, 267

we demonstrate that RaDis can be understood as a 268

form of knowledge distillation, a technique proven 269

to mitigate forgetting. To explain this, we para- 270

phrase Equation 2 as: 271

L(x, ŷ) = − logP (ŷ|x, I)

= −
T+R∑
t=1

logP (ŷt|ŷ<t,x, I)
(3) 272

where R is the length of the rationale r. The prop- 273

erties of the CLM loss allow us to split and re- 274

assemble the loss across each token. By separating 275

the loss of the reference translation from the self- 276

generated rationale, we obtain: 277

L(x, ŷ) =−
T+R∑
t=1

logP (ŷt|ŷ<t,x, I)

=−
T∑

t=1

logP (yt|y<t,x, I)

−
T+R∑

t=T+1

logP (rt|r<t,y,x, I)

=− logP (y|x, I)− logP (r|y,x, I)

(4) 278

Here, the first term is a traditional MT loss, which 279

trains the model to acquire new translation knowl- 280

edge. The second term minimizes the negative log- 281

likelihood of the self-generated rationale r given 282

the conventional translation instruction-response 283

pair. It can be interpreted as a sequence-level self- 284

distillation loss with the rationales as the distilla- 285

tion target. In Section 5.2, we demonstrate the 286

advantage of distilling rationales over conventional 287

distillation. 288
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4 Experiments289

This section outlines the datasets, baselines, imple-290

mentation details, and evaluation metrics employed291

in our experiments and the main results.292

4.1 Backbone Models293

We employ LLaMA-2-7B-Chat (Touvron et al.,294

2023), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)295

and Qwen2.5-7B-Instruct (Yang et al., 2024a) as296

the backbone models in this work.297

4.2 Datasets298

Our experiments involve fine-tuning LLMs us-299

ing general machine translation data and evaluat-300

ing their performance across both translation and301

broader capabilities, including instruction follow-302

ing, safety alignment, and mathematical reasoning.303

The datasets and benchmarks used for fine-tuning304

and evaluation are listed below:305

General Machine Translation. For parallel306

training data, we adopt the human-written data307

collected by Xu et al. (2024). This data com-308

prises human written test datasets from WMT’17309

to WMT’20, plus the development and test sets310

from Flores-200 (Goyal et al., 2022). It covers 4311

English-centric language pairs, considering both312

from and to English directions: Czech (cs), Chi-313

nese (zh), German (de), and Russian (ru). The314

WMT’22 test dataset for the same eight transla-315

tion directions is used for testing. Translation per-316

formance is evaluated using the COMET metric317

(Unbabel/wmt22-comet-da) (Rei et al., 2022).318

Conversation and Instruction Following. MT-319

Bench (Zheng et al., 2023) and AlpacaEval (Dubois320

et al., 2024) are employed to evaluate the con-321

versation and instruction-following abilities of the322

models. MT-Bench consists of a set of challeng-323

ing multi-turn questions across various categories.324

GPT-4 is utilized as the judge, as outlined by Zheng325

et al. (2023). The AlpacaEval and AlpacaEval 2.0326

leaderboard evaluates the models on 805 prompts327

from the AlpacaEval dataset and calculates the win328

rate against text-davinci-003 and GPT-4-1106. For329

this evaluation, we use the weighted_alpaca_-330

eval_gpt4_turbo annotator as the judge.331

Safety Alignment. Safety is evaluated using332

harmful behavior datasets consisting of unsafe333

prompts. Following WalledEval (Gupta et al.,334

2024), we feed 520 unsafe prompts from Ad-335

vBench (Zou et al., 2023) into the LLMs and uti-336

lize LLaMA-3-Guard-8B (Dubey et al., 2024) to 337

assess whether the responses are harmful. We re- 338

port the safe rate, defined as the percentage of safe 339

responses across all prompts. 340

Math reasoning. The reasoning ability is evalu- 341

ated using GSM8K (Cobbe et al., 2021), which 342

comprises 8.8k high-quality arithmetic word 343

problems designed at the grade school level, 344

to assess the arithmetic reasoning abilities of 345

LLMs. The evaluations are conducted using 346

lm-evaluation-harness (Gao et al., 2024). 347

4.3 Baselines 348

We compare RaDis with the following fine-tuning 349

approaches: 350

• Vanilla Fine-tuning directly fine-tunes the 351

backbone model using translation data; 352

• Multi-task fine-tunes the LLM with both 353

translation and open-sourced instruction fol- 354

lowing data. 355

• Seq-KD (Kim and Rush, 2016; Khayrallah 356

et al., 2018) employs sequence-level knowl- 357

edge distillation along with fine-tuning to al- 358

leviate forgetting; 359

• SDFT (Yang et al., 2024b) leverages the back- 360

bone LLM to paraphrase the original training 361

data and fine-tunes the model using the syn- 362

thesized data; 363

Please refer to Appendix A for further details of 364

the baselines. 365

4.4 Training Details 366

Given the constraints of our computational re- 367

sources, the Low-Rank Adaptation (LoRA) tech- 368

nique (Hu et al., 2022) is utilized in most of our 369

experiments. Specifically, a LoRA adapter with a 370

rank of 16 is integrated into all the linear layers of 371

the LLMs and exclusively trains the adapter. The 372

LLMs are fine-tuned for three epochs on the trans- 373

lation dataset, with a learning rate of 1× 10−4 and 374

a cosine annealing schedule. The batch is set to 128 375

for stable training. Our implementation is based on 376

LLaMA-Factory (Zheng et al., 2024b). After the 377

fine-tuning phase, the LoRA module is merged into 378

the backbone LLM for testing. For further details, 379

please refer to Appendix C. 380
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Table 1: The performance on machine translation, instruction following, safety, and reasoning benchmarks.
Translation performance is averaged across all 4 languages tested. The best and second best results are marked in
Bold and underlined, respectively.

Models Machine Translation Conversation and Instruction Following Safety Reasoning

X→EN EN→X MT-bench AlpacaEval AlpacaEval 2.0 AdvBench GSM8K

Backbone LLM: LLaMA-2-7B-chat
Backbone 79.01 73.39 6.51 71.40 9.66 100.00 21.83
w/ Vanilla-FT 81.71 82.81 1.5 2.18 0.71 37.88 4.32
w/ Multi-task 81.75 82.59 5.64 44.55 3.98 98.65 11.98
w/ Seq-KD 78.37 73.28 6.59 67.48 8.33 100.00 19.48
w/ SDFT 80.79 75.48 5.66 67.55 7.09 98.08 20.02
w/ RaDis (Ours) 81.22 82.61 6.56 67.94 7.47 100.00 19.48

Backbone LLM: Mistral-7B-Instruct-v0.2
Backbone 80.84 67.79 7.67 84.91 15.09 68.46 41.62
w/ Vanilla-FT 82.33 84.31 1.94 6.07 1.02 4.23 0.23
w/ Multi-task 82.09 84.44 6.87 49.46 5.45 63.85 22.97
w/ Seq-KD 80.91 74.84 6.99 82.06 12.7 60.58 41.77
w/ SDFT 79.43 52.17 7.00 78.32 10.02 48.27 41.09
w/ RaDis (Ours) 81.94 84.39 7.57 80.34 11.05 62.12 41.70

Backbone LLM: Qwen2.5-7B-Instruct
Backbone 80.85 82.92 8.58 88.46 31.55 99.81 87.72
w/ Vanilla-FT 83.45 85.34 3.83 4.87 2.95 27.12 28.35
w/ Multi-task 83.90 85.55 7.67 50.58 9.14 98.85 72.1
w/ Seq-KD 80.93 84.01 8.58 87.64 26.9 99.62 88.02
w/ SDFT 81.45 85.36 7.48 67.7 18.91 93.85 83.09
w/ RaDis (Ours) 83.66 85.43 8.43 85.62 27.91 99.42 88.32

4.5 Results381

The performance on machine translation and382

general abilities, including instruction following,383

safety, and reasoning, is shown in Table 1.384

Fine-tuning is a double-edged sword. In the385

EN→X direction, Vanilla-FT significantly enhances386

translation performance compared to zero-shot re-387

sults, achieving an average COMET score improve-388

ment of +9.45. In the X→EN direction, the per-389

formance improvement is relatively small (+2.26390

COMET). This is mainly because the backbone391

LLMs already have a strong ability to translate to392

English. However, this improvement in transla-393

tion proficiency comes at the cost of a substantial394

decline in general capabilities, as reflected by the395

sharp performance drop in instruction-following,396

safety, and reasoning benchmarks.397

RaDis balances translation proficiency and gen-398

eral abilities. Multi-task achieves performance399

comparable to Vanilla-FT. However, its perfor-400

mance on general tasks declines significantly401

despite the inclusion of additional instruction-402

following data. This is because the external instruc-403

tion data is of low quality and out-of-distribution404

relative to the backbone LLM. As a result, fine-405

tuning these data does not alleviate the issue of406

catastrophic forgetting. The translation results of 407

SDFT fall below the performance of vanilla fine- 408

tuning. Additionally, SDFT shows weaker perfor- 409

mance in EN→X translations compared to X→EN. 410

This under-performance stems from the fact that 411

the prompt used for rewriting data is sensitive to 412

the model and task, which does not generalize 413

well. Seq-KD excels in preserving general capabil- 414

ities but brings almost no improvement in transla- 415

tion performance since it suffers from severe opti- 416

mization conflict (Section 5.2). In contrast, RaDis 417

strikes a better balance between translation profi- 418

ciency and general ability. It achieves a COMET 419

score comparable to Vanilla-FT while preserving 420

up to 92.50% of the general capabilities. 421

5 Analysis 422

5.1 RaDis Preserves the Advantage of LLMs 423

in Machine Translation 424

Previous studies primarily evaluate translation qual- 425

ity using general machine translation tasks. How- 426

ever, such evaluations may fail to capture the 427

nuanced capabilities of large language models 428

(LLMs) in translation, particularly their ability 429

to follow instructions. The capacity to adhere 430

to diverse and complex user instructions is cru- 431

cial for generating translations aligned with user 432
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Table 2: The result of formality steering in translation.
The best performance is marked in Bold.

Formal Informal

COMET Acc COMET Acc

LLaMA-2 72.22 74.0 67.08 91.4
w/ Vanilla-FT 80.16 82.9 78.79 26.0
w/ RaDis 79.61 87.3 78.80 72.4

Mistral-v0.2 62.23 91.9 58.62 73.9
w/ Vanilla-FT 80.46 82.4 79.25 25.9
w/ RaDis 80.69 83.0 79.11 46.3

Qwen2.5 80.86 81.1 79.1 98.7
w/ Vanilla-FT 82.39 81.9 81.52 53.9
w/ RaDis 82.80 94.3 81.31 87.0

preferences. To assess this aspect, we introduce433

instruction-following translation tasks. Specifi-434

cally, we utilize CoCoA-MT (Nadejde et al., 2022),435

which evaluates a model’s ability to control for-436

mality in translation. This dataset consists of 600437

English source sentences, each paired with both438

formal and informal reference translations. Using439

natural language prompts, we instruct the LLM to440

generate either formal or informal translations. Fol-441

lowing Stap et al. (2024), we set German as the442

target language and report both formality steering443

accuracy and overall translation performance. As444

shown in Table 2, LLMs demonstrate an ability to445

follow formality instructions, though their trans-446

lation quality remains relatively poor. While fine-447

tuning improves translation performance, it dimin-448

ishes the models’ ability to adhere to instructions,449

often resulting in unintended translations. In con-450

trast, RaDis maintains strong instruction adherence451

while achieving comparable translation quality, a452

crucial factor for effective user interaction.453

5.2 RaDis Avoids the Conflict between454

Learning and Mitigating CF455

As demonstrated in Section 3.3, our proposed456

RaDis can be viewed as a specialized form of457

sequence-level distillation, where the rationale r458

serves as the distillation target. However, while459

both methods excel at preserving general capa-460

bilities, RaDis notably enhances translation pro-461

ficiency, whereas Seq-KD does not. We posit that462

the difference arises from whether the regulariza-463

tion term conflicts with the MT learning process. In464

Seq-KD (Equation 5), the MT loss − logP (y|x, I)465

and the regularization term − logP (y′|x, I) share466

the same input but have different outputs, which467

may lead to conflict in optimization. In contrast,468

with RaDis (Equation 4), the MT loss and the reg- 469

ularization term − logP (r|y,x, I) are less likely 470

to exhibit this issue. 471

We analyze gradient similarity to validate our 472

assumption. Specifically, we sample 128 examples 473

from each translation direction to create a valida- 474

tion set consisting of 1024 samples. Subsequently, 475

the gradient features for the MT loss and the reg- 476

ularization term for both methods are extracted, 477

following Xia et al. (2024). Finally, the cosine 478

similarity of the gradient features is computed. As 479

depicted in Figure 5, in 24 out of 32 layers, the gra- 480

dient of the regularization term for Seq-KD exhibits 481

negative similarity with the MT loss, indicating a 482

significant conflict between these objectives. In 483

contrast, in 25 out of 32 layers, the gradient of 484

RaDis’ regularization term shows positive similar- 485

ity with the MT loss, suggesting that RaDis can 486

avoid the conflict between learning and mitigating 487

forgetting. 488

5.3 Which is the Key: Rationale Quality or 489

Self-distillation Property? 490

The effectiveness of RaDis can be explained in 491

two ways: rationale quality (in terms of the knowl- 492

edge they contain) and the self-distillation prop- 493

erty. We conducted the following ablation exper- 494

iment to analyze the impact of these two factors. 495

Specifically, the self-generated rationales in RaDis 496

were replaced by rationales generated by different 497

models, namely LLaMA-2-7B-Chat and LLaMA- 498

3-70B-Instruct (Dubey et al., 2024). Due to the 499

difference in parameter size and fine-tuning data, 500

these models can provide rationales with varying 501

levels of quality, but all lack the self-distillation 502

property. Therefore, it is possible to separate the 503

rationale quality and the self-distillation property 504

to analyze their contributions. 505

As shown in Table 3, RaDis consistently miti- 506

gates the forgetting of general capabilities, regard- 507

less of the type of rationales used. When compar- 508

ing rationales generated by LLaMA-2-7B-Chat and 509

LLaMA-3-70B-Instruct, the latter demonstrates su- 510

perior performance in both MT and general tasks. 511

However, self-generated rationales demonstrate the 512

strongest ability to retain general capabilities, even 513

outperforming those generated by LLaMA-3-70B- 514

Instruct, highlighting the importance of the self- 515

distillation property. Overall, these ablation re- 516

sults demonstrate that using the model itself as the 517

teacher is the most effective approach, which aligns 518

with the findings presented in Ren et al. (2024). 519
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Figure 5: Overview of the gradient similarity between the regularization term and MT loss.

Table 3: The result of ablation study. The names in brackets are the models used to generate rationales. The best
results in different RaDis variants are highlighted in bold.

Models Machine Translation Conversation and Instruction Following Safety Reasoning

X→EN EN→X MT-bench AlpacaEval AlpacaEval 2.0 AdvBench GSM8K

Mistral-7B-Instruct-v0.2 80.84 67.79 7.67 84.91 15.09 68.46 41.62
w/ Vanilla-FT 82.33 84.31 1.94 6.07 1.02 4.23 0.23
w/ RaDis (Self-generated) 81.94 84.39 7.57 80.34 11.05 62.12 41.70
w/ RaDis (LLaMA-2-Chat-7B) 82.33 84.51 6.89 63.85 6.28 98.46 35.03
w/ RaDis (LLaMA-3-70B-Instruct) 82.84 84.71 7.00 77.41 10.27 58.27 39.42
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Figure 6: Translation (COMET), instruction following
(Win Rate), and math reasoning (Acc) performance with
varying proportions of rationales.

To further investigate the impact of rationale521

proportion, we conducted ablation experiments by522

combining vanilla fine-tuning with RaDis, varying523

the proportion of training examples that include ra-524

tionales. As shown in Figure 6, RaDis achieves the525

best overall performance on general tasks when ra-526

tionales are provided for the entire training dataset.527

However, incorporating rationales in just 25% of528

the training data significantly mitigates the forget-529

ting of instruction-following and safety tasks. This530

finding aligns with concurrent works (Zheng et al.,531

2025; Chen et al., 2025) suggesting that the forget-532

ting of superficial alignment is also superficial and533

can be easily mitigated. In contrast, the forgetting534

of more intricate capabilities, such as reasoning,535

requires a greater proportion of rationales.536

5.5 Generalizing to Other Tasks 537

While we predominately grounded RaDis to the 538

MT task in this paper, RaDis can serve as a uni- 539

versal CIT method for broader tasks. To demon- 540

strate this potential, we conducted experiments on 541

code generation tasks. The results demonstrate that 542

RaDis generalizes well to broader tasks and has the 543

potential to serve as a universal CIT approach. Due 544

to space limits, we refer the readers to Appendix D 545

for further details. 546

6 Conclusion 547

In this paper, we demonstrate that LLMs suffer 548

from severe degeneration of general abilities while 549

fine-tuning for translation tasks. To address this 550

issue, we propose a simple yet effective strategy, 551

RaDis. RaDis prompts LLMs to generate rationales 552

for the reference translation and utilizes these ra- 553

tionales to mitigate forgetting in a self-distillation 554

manner. Mirroring the human learning process, 555

these rationales connect prior knowledge with new 556

tasks and tie internal concepts together, thereby 557

enhancing knowledge retention. Extensive experi- 558

ments show that RaDis greatly enhances the trans- 559

lation performance while preserving the models’ 560

general ability, which also benefits translation tasks. 561

Additionally, RaDis provides a fresh angle for uti- 562

lizing rationales in the CL field and can help future 563

research on building LLMs capable of excelling 564

in specialized tasks without compromising their 565

generality or safety. 566
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Limitations567

Our study is subject to certain limitations. Ow-568

ing to constraints in computational resources, we569

adopt LoRA on models with 7B parameters. Fur-570

ther investigations involving larger models and full571

fine-tuning remain to be explored. Besides, as a572

post-training method, RaDis is limited by the lan-573

guage proficiency of backbone LLM. This limits574

its performance on low-resource language. How-575

ever, we believe the rapidly evolving multilingual576

LLMs would narrow this gap. Furthermore, we577

predominately focus on fine-tuning with machine578

translation data, applying RaDis to other NLP tasks579

will further support its effectiveness. This poten-580

tial direction is what we intend to explore in future581

work.582

Ethical Considerations583

This work is dedicated to the field of fine-tuning584

LLMs for MT. It proposed to use self-generated585

rationales to aid vanilla fine-tuning and mitigate586

forgetting of general abilities of LLMs. It helps al-587

leviate the safety risk when fine-tuning downstream588

tasks. In our experiments, we used publicly avail-589

able datasets widely employed in prior research,590

containing no sensitive information to the best of591

our knowledge. The authors have followed ACL592

ethical guidelines, and the application of this work593

poses no apparent ethical risks.594

Reproducibility Statement595

Codes and model weights will be made public after596

review to advocate future research. For synthe-597

sizing data, we provide several examples in Ap-598

pendix F. For evaluation, we primarily use greedy599

decoding to ensure reproducibility, except where600

specific generation configurations are mandated601

by certain benchmark tools. Note that evaluations602

on instruction-following abilities (AlpacaEval and603

MT-Bench) rely on OpenAI’s API. The random-604

ness of API responses may have little impact on605

the reproducibility of these benchmarks.606
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A Baseline details 979

Vanilla Fine-tuning. This method directly fine- 980

tunes the backbone LLMs with translation data 981

without incorporating any mechanism to address 982

the forgetting issue. 983

Sequence-level Knowledge Distillation (Seq- 984

KD). (Kim and Rush, 2016; Khayrallah et al., 985

2018) This method first sends the formatted trans- 986

lation instructions to the backbone LLM and gen- 987

erates outputs y′. The model is trained with both 988

golden references y and the self-generated outputs 989

y′. The overall training objective is: 990

LSeq-KD =L(x,y) + L(x,y′)

=− logP (y|x, I)− logP (y′|x, I)
(5) 991

Self-distillation Fine-tuning (SDFT). (Yang et al., 992

2024b) This method first prompts the backbone 993

LLM to paraphrase the original responses present 994

in the task dataset, yielding a distilled dataset. Sub- 995

sequently, the distilled dataset, which is used in 996

subsequent fine-tuning, helps narrow the distribu- 997

tion gap between LLM and the original dataset. We 998

adopt the general distillation template provided in 999

their paper to paraphrase the dataset. 1000

Multi-task fine-tuning (Multi-task) . This 1001

method employs open-sourced instruction follow- 1002

ing datasets and fine-tunes the LLM with both trans- 1003

lation and instruction following data. Specifically, 1004

we adopt Alpaca (Taori et al., 2023) and Dolly 1005

(Conover et al., 2023) as the chosen instruction 1006

following dataset. Note that multi-task fine-tuning 1007

utilizes more data in the training process and is usu- 1008

ally considered the upper bound of the continual 1009

learning approaches. 1010
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B Full Results of Machine Translation1011

The detailed results for general machine translation1012

are shown in Table 4 and Table 5.1013

C Training Details1014

C.1 Prompt Templates1015

In all experiments, we use the original instruction1016

format of the backbone LLM for both rationale1017

generation and fine-tuning. For LLaMA To avoid1018

the overfit on specific instructions. 5 different trans-1019

lation instructions are generated and randomly ap-1020

plied to each sample. The instructions are shown1021

in Figure 7. The prompts used in formality steering1022

translation are shown in Figure 8.1023

C.2 Hyperparameter1024

Due to the limitation of resources, our experi-1025

ments utilize the Low-Rank Adaptation (LoRA)1026

technique (Hu et al., 2022). Specifically, we inte-1027

grate a LoRA adapter with a rank of 16 into all1028

the linear layers of the LLMs and exclusively train1029

the adapter. The LLMs are fine-tuned over three1030

epochs on the translation dataset, which equates1031

to approximately 2,500 steps. We use a learning1032

rate of 1 × 10−4 and a batch size of 128 to en-1033

sure stable training across most experiments. An1034

exception is Seq-KD, which requires a batch size1035

of 256 to maintain the same number of training1036

steps. All experiments are performed on 4 NVIDIA1037

A100 80GB GPUs. For data synthesis, we employ1038

vllm (Kwon et al., 2023) to facilitate fast data gen-1039

eration. For evaluation, we primarily use greedy1040

decoding to ensure reproducibility, except where1041

specific generation configurations are mandated by1042

certain benchmark tools.1043

D Comparison with Open-source1044

LLM-based MT Models1045

To compare with open-source LLM-based MT1046

models, We shifted the translation test set to the1047

WMT’23 test set. We report the performance of the1048

best model in our paper (Qwen2.5+RaDis) along-1049

side ALMA and TowerInstruct.1050

As shown in Table 6, Qwen2.5+RaDis consis-1051

tently outperforms TowerInstruct-v0.2 in terms of1052

preserving general abilities. This is primarily be-1053

cause TowerInstruct-v0.2 is fine-tuned using Ultra-1054

Chat, which, like other open-sourced instruction1055

datasets, suffers from lower quality.1056

In terms of translation, TowerInstruct-v0.21057

achieves higher performance, largely due to the1058

benefits of multilingual pre-training and extensive 1059

parallel fine-tuning. However, we would like to em- 1060

phasize the strong potential of our approach from 1061

two key perspectives: 1062

• RaDis is more efficient: The training times 1063

for TowerBase 7B and 13B were 80 and 160 1064

GPU days, respectively, using A100-80GB 1065

GPUs. Fine-tuning TowerInstruct adds an ad- 1066

ditional 200 GPU hours. In contrast, RaDis 1067

requires only 20 GPU hours (4 hours for gen- 1068

erating rationales and 16 hours for training), 1069

which is less than 1% of the training cost for 1070

TowerInstruct-7B, while still achieving strong 1071

performance. 1072

• RaDis can benefit from stronger back- 1073

bone LLM: While TowerInstruct achieves 1074

better translation performance, RaDis can 1075

effectively bridge this gap by leveraging a 1076

stronger backbone LLM. As shown in ‘Ta- 1077

ble 2‘, switching the backbone from Mistral 1078

to Qwen2.5 leads to substantial improvements 1079

across all tasks and outperforms ALMA. 1080

We believe that as open-source multilingual 1081

LLMs continue to improve, the performance 1082

gap in translation will gradually narrow. 1083

Together, these results underscore the advan- 1084

tages of our approach and demonstrate that RaDis 1085

offers a novel and competitive paradigm for build- 1086

ing LLMs that excel in both translation proficiency 1087

and general ability. 1088

E Generalizing RaDis to other tasks 1089

In this paper, we predominately grounded RaDis to 1090

the MT task. However, RaDis can serve as a univer- 1091

sal CIT method for broader tasks. In this section, 1092

we demonstrate this potential with the code genera- 1093

tion task. Specifically, we fine-tuned Mistral-v0.2 1094

on Python code data from the Magicoder dataset 1095

(Wei et al., 2024) and evaluated its performance 1096

using HumanEval (Chen et al., 2021) and general 1097

ability benchmarks. 1098

As shown in Table 7, RaDis outperforms Vanilla- 1099

FT and SDFT in code generation tasks, achieving 1100

higher Pass@1 on HumanEval and excelling in 1101

other benchmarks for general abilities. 1102

A key reason for this is that RaDis directly 1103

preserves the original references in the dataset, 1104

whereas SDFT paraphrases them. Intuitively, while 1105

paraphrasing helps bridge the distribution gap, it 1106

also reduces the amount of learnable knowledge. 1107

13



Table 4: The overall translation performance (COMET score) in X→EN.The delta performance compared to the
backbone LLM is shown.

Models Czech German Russian Chinese Avg.

Backbone LLM: LLaMA-2-7B-chat
Backbone LLM 79.53 81.20 80.36 74.95 79.01
w/ Vanilla-FT 82.74 83.31 82.70 78.08 81.71
w/ Multi-task 82.71 83.37 82.73 78.20 81.75
w/ Seq-KD 78.50 80.61 79.88 74.48 78.37
w/ SDFT 81.93 82.60 81.87 76.77 80.79
w/ RaDis (Ours) 81.75 83.07 82.22 77.83 81.22

Backbone LLM: Mistral-7B-Instruct-v0.2
Backbone LLM 81.88 81.73 81.97 77.76 80.84
w/ Vanilla-FT 83.51 83.35 83.23 79.21 82.33
w/ Multi-task 82.84 83.04 83.15 79.31 82.09
w/ Seq-KD 81.66 81.98 82.50 77.49 80.91
w/ SDFT 80.38 79.72 80.21 77.39 79.43
w/ RaDis (Ours) 82.41 82.86 83.32 79.17 81.94

Backbone LLM: Qwen2.5-7B-Instruct
Backbone LLM 81.09 80.73 81.48 80.11 80.85
w/ Vanilla-FT 84.19 83.83 84.62 81.19 83.45
w/ Multi-task 84.87 84.20 85.06 81.45 83.90
w/ Seq-KD 79.17 82.01 82.41 80.14 80.93
w/ SDFT 81.49 80.89 82.41 81.02 81.45
w/ RaDis (Ours) 84.44 83.93 84.82 81.46 83.66

As a result, SDFT may struggle to outperform1108

Vanilla-FT on certain tasks. In contrast, RaDis1109

directly utilizes the original references, preserving1110

all the knowledge embedded in the data.1111

Regarding performance on general tasks, RaDis1112

still outperforms SDFT. We believe this can be at-1113

tributed to the distribution gap. While SDFT claims1114

to distill the dataset, it paraphrases the data. As1115

a result, the model’s responses are sampled from1116

the paraphrased instruction’s output distribution,1117

which tends to be out-of-distribution relative to the1118

original task instruction. In contrast, RaDis per-1119

forms self-distillation using rationales, which are1120

fully in-distribution. This enables RaDis to more1121

effectively alleviate forgetting and better preserve1122

general abilities.1123

These results suggest that RaDis generalizes well1124

to a broader range of tasks, highlighting its poten-1125

tial as a robust, general-purpose continual instruc-1126

tion tuning method. We plan to investigate this1127

potential in future works.1128

F Rationale Examples1129

Several examples of rationales generated by1130

Mistral-7B-Instruct-v0.2 are provided in Fig-1131

ure 10,11,12,13,14,15,16.1132
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Table 5: The overall translation performance (COMET score) in EN→X. The delta performance compared to the
backbone LLM is shown.

Models Czech German Russian Chinese Avg.

Backbone LLM: LLaMA-2-7B-Chat
Backbone LLM 70.14 75.10 75.76 72.57 73.39
w/ Vanilla-FT 81.80 82.81 84.67 81.96 82.81
w/ Multi-task 81.67 82.58 84.24 81.86 82.59
w/ Seq-KD 70.17 74.40 75.62 72.93 73.28
w/ SDFT 68.59 75.21 79.67 78.45 75.48
w/ RaDis (Ours) 81.77 82.39 84.31 81.98 82.61

Backbone LLM: Mistral-7B-Instruct-v0.2
Backbone LLM 67.39 67.87 64.56 71.32 67.79
w/ Vanilla-FT 84.33 83.04 86.23 83.63 84.31
w/ Multi-task 84.79 82.64 86.47 83.87 84.44
w/ Seq-KD 74.30 73.69 73.10 78.28 74.84
w/ SDFT 51.90 53.32 47.07 56.38 52.17
w/ RaDis (Ours) 84.32 82.95 86.55 83.75 84.39

Backbone LLM: Qwen2.5-7B-Instruct
Backbone LLM 79.05 81.27 84.77 86.59 82.92
w/ Vanilla-FT 82.47 83.74 88.07 87.08 85.34
w/ Multi-task 82.18 83.96 88.67 87.41 85.55
w/ Seq-KD 80.95 82.06 85.79 87.24 84.01
w/ SDFT 82.86 83.57 87.92 87.08 85.36
w/ RaDis (Ours) 82.33 83.67 88.54 87.32 85.43

Table 6: Comparison to open-sourced LLM-based MT models. The best result in each column is marked in bold.
The second best is italicized.

Models Machine Translation Conversation and Instruction Following Safety Reasoning

X→EN EN→X MT-bench AlpacaEval AlpacaEval 2.0 AdvBench GSM8K

Qwen2.5-7B-Instruct 80.90 80.50 8.58 88.46 31.55 99.81 87.72
w/ RaDis 82.13 82.81 8.43 85.62 27.91 99.42 88.32

ALMA-7B 81.65 81.91 2.80 1.08 0.17 - 0.00
TowerInstruct-7B-v0.2 82.77 84.28 5.71 51.59 4.02 30.19 7.35

Instruction 1:
Could you please translate this sentence from {lang1} to {lang2}?
{sent1}
Instruction 2:
Translate the following sentence from {lang1} to {lang2}:
{sent1}
Instruction 3:
Translate this sentence from {lang1} to {lang2}.
{sent1}
Instruction 4:
Translate from {lang1} to {lang2}:
{sent1}
Instruction 5:
{sent1}
Translate this sentence to {lang2}.

Figure 7: The translation instructions.
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Formal Translation:
Please translate the following sentence from English to German in a formal tone: {sen-
tence}
Informal Translation:
Please translate the following sentence from English to German in a informal tone: {sen-
tence}

Figure 8: The formality steering translation instructions.

Table 7: Experiments on code generation. The best result in each column is marked in bold.

Models Code Generation Conversation and Instruction Following Safety Reasoning

HumanEval AlpacaEval AlpacaEval 2.0 AdvBench GSM8K

Mistral-7B-Instruct-v0.2 36.59 84.91 15.09 68.46 41.62
w/ Vanilla-FT 42.07 73.89 8.75 40.00 43.97
w/ SDFT 40.24 78.58 10.46 48.08 40.86
w/ RaDis 43.90 80.25 11.4 51.92 42.91

Instruction:
Translate this sentence from Czech to English.
Policie celý případ řádně prošetřila a útočníka posléze vypátrala.

Response:
The police investigated the case thoroughly and finally tracked down the assailant.

Rationale:
Explanation:
In this sentence, "policie" means "police," "celý případ" means "the entire case," "řádně prošetřila"
means "thoroughly investigated," and "vypátrala" means "tracked down" or "found." The past
tense verbs "prošetřila" and "vypátrala" both end in "-la," which is the feminine singular past
tense ending in Czech. Since there is no definite article before "policie," it is assumed to be in
the neutral form, which is why the verb forms are in the feminine singular. In English, we keep
the same meaning but change the word order to "the police investigated the case thoroughly and
finally found the assailant."

Figure 9: Example of rationale containing word/phrase translation.

Instruction:
Could you please translate this sentence from Czech to English?
Tak to vypadá, když se lidé za odpočinkem a zábavou přesunou někam, kde je to velmi odlišné od
jejich každodenního života.

Response:
This is when people go to a place that is very different from their regular day-to-day life to relax
and have fun.

Rationale:
or
It looks like this when people move to a place that is quite different from their everyday life for
relaxation and enjoyment.

Figure 10: Example of rationale containing alternative translation.
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Instruction:
Translate the following sentence from English to Chinese:
But denuclearization negotiations have stalled.

Response:
但无核化谈判陷入了僵局。

Rationale:
This translation is provided for information purposes only and may not be 100% accurate. It is
always recommended to consult a professional translator for important documents or conversations.

Figure 11: Example of rationale containing helpful&safety information.

Instruction:
Translate from English to Czech:
It will support their training.

Response:
Podpoří jejich výcvik.

Rationale:
This sentence means that the action or thing being referred to will help or contribute to the train-
ing of the people mentioned.

Figure 12: Example of rationale containing semantic explanation.

Instruction:
Could you please translate this sentence from English to Chinese?
According to their research, a single tea bag can release more than 11.6 billion plastic particles,
"which is higher than the plastic load of other earlier foods by several magnitudes".

Response:
根据这项研究显示，他们发现，单一茶袋释出超过116亿颗塑料微粒，“较先前其他食物的塑
料负荷量高出好几个级数”。

Rationale:
This sentence translates to:
According to their research, a single tea bag releases over 11.6 billion plastic particles, which is
several magnitudes higher than the plastic load of other earlier foods.

Figure 13: Example of rationale containing back-translation.
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Instruction:
Translate from English to Czech:
Its second claw was larger, giving rise to the name Hesperonychus which means "western claw."

Response:
Jeho druhý dráp byl větší, a proto byl pojmenován Hesperonychus, což znamená „západní dráp“.

Rationale:
This dinosaur was a theropod, a group of dinosaurs that includes meat-eating species. Hesperony-
chus lived during the Late Cretaceous period, around 75 to 73 million years ago, in what is now
the southwestern United States. Its fossils have been found in the Morrison Formation in Colorado
and Utah.
Hesperonychus was a relatively small theropod, with an estimated length of about 3 meters (10
feet) and weight of around 30 kilograms (66 pounds). It had a long, low snout and small, sharp
teeth, suggesting that it may have been an agile predator that hunted small prey.
The most distinctive feature of Hesperonychus was its second toe, which was much larger than
the others. This feature gave rise to its name, as "hespero" means "western" and "nychus" means
"claw." The large claw was likely used for gripping and holding onto branches or prey, making
Hesperonychus a unique and intriguing dinosaur.
Despite its small size, Hesperonychus was an important discovery in the study of dinosaur evolu-
tion, as it provided evidence of the diversity of theropod foot structures during the Late Cretaceous
period.

Figure 14: Example of rationale containing factual supplement.

Instruction:
Could you please translate this sentence from Czech to English?
„I kdyby všechno ostatní na světě bylo špatně, on byl nebroušený diamant, který ozářil každý den“,
řekl."

Response:
"With everything else that’s going wrong with the world, he was that diamond in the rough that
was shining bright every day," he said.

Rationale:
This idiomatic expression "diamond in the rough" refers to someone who has great potential or
value, despite not being polished or perfect yet.

Figure 15: Example of rationale containing semantic explanation.
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Instruction:
Wir können froh sein, dass wir diese Zeit längst überwunden haben.
Translate this sentence to English.

Response:
We can be glad that we have long overcome this time.

Rationale:
Explanation: The sentence in German means "We can be glad that we have got over this time a
long time ago." The past perfect tense "haben überwunden" (have overcome) is used to express
that an action was completed in the past. The subjunctive mood "können sein" (can be) is used to
express a state of being or a condition. The past participle "überwunden" agrees with the subject
"wir" (we) in gender and number. The article "diese" refers to the time mentioned earlier in the
sentence. The word "längst" (long) is an adverb that modifies the verb "überwunden" and indicates
that the action was completed a long time ago. The sentence in English conveys the same mean-
ing, but uses the past perfect continuous tense "have been glad" to express the same idea of a past
state that continues up to the present.

Figure 16: Example of rationale containing grammar information.
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