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Reproducibility Summary1

Scope of Reproducibility2

Neural Networks Fail to Learn Periodic Functions and How to Fix It [15] demonstrates experimentally that standard3

activations such as ReLU, tanh, sigmoid and their variants all fail to learn to extrapolate simple periodic functions.4

The original paper goes on to propose a new activation, which is named the snake function.5

The central claims of the paper are two-fold. (1) The properties of the activation functions are carried over to the6

neural networks. A tanh network will be smooth and extrapolates to a constant function, while ReLU extrapolates in a7

linear way. Standard neural networks with conventional activation functions are insufficient for extrapolating periodic8

functions. (2) The proposed activation function manages to learn periodic functions while being able to optimize as9

well as conventional activation functions. While both experimental proof and theoretical justifications are provided for10

the claims, we shall only be concerned with testing the claims via experimental means.11

Methodology12

While the author was contacted to clarify certain difficulties, the reproduction of all experiments was completed using13

only the information provided in the original paper itself. With one exception, the link to all datasets used was also14

provided in the paper itself. This allowed us to implement most experiments from scratch.15

Results16

We were able to successfully replicate experiments supporting the central claim of the paper, that the proposed snake17

non-linearity can learn periodic functions. We also analyze the suitability of the snake activation for other tasks like18

generative modeling and sentiment analysis.19

What was easy20

Many experiments included descriptions of the neural network architectures and graphs showcasing performance,21

giving us a clear benchmark to compare our results against. Links to datasets for all experiments, barring one, were also22

included in the paper itself.23

What was difficult24

Data for the human body temperature experiment was not available. Proper implementation details were not given for25

initializing the weights in neural networks with snake and using snake with RNNs.26

Communication with original authors27

One author, Liu Ziyin was contacted to provide the dataset used for the human body temperature experiment, elaborate28

upon the implementation of variance correction during weight initialization and provide his implementation of RNN29

using snake. He provided the GitHub link to his code for the human body temperature, market index, and extrapolation30

experiments. He also provided an explanation on how to implement variance correction. While the code for the RNN31

implementation using the snake activation was not made public, he provided a screenshot of the same.32
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1 Introduction33

Deep neural networks are playing an increasing prominent role in fields as diverse as computer vision [4], speech34

recognition [2], and language modeling [5]. However, while neural networks are excellent tools for interpolating35

between existing data, standard versions of these networks are not suited for extrapolation beyond the training range.36

This causes them to struggle at making predictions in problems with a periodic component.37

Previous attempts at addressing neural networks’ inability to learn periodic functions have included using periodic38

activation functions [11, 14]. For example, using sin(x) as the activation function for implicit neural representations39

has been successful at representing complex natural signals and their derivatives [12]. However in more general cases,40

experimental results suggest that using sin as the activation function cannot compete against ReLU-based activation41

functions [10, 6, 1, 13] on standard tasks [7].42

The original paper: (1) studies the extrapolation properties of a neural network beyond a bounded region; (2) shows43

that neural networks with standard activation functions are insufficient to learn periodic functions outside the bounded44

region where data points are present; (3) proposes a solution for this problem in the form of a novel activation function45

and its variants, and showcases its performance on toy examples and real-world tasks. We have tested the claims made46

in the original paper, replicating both the experiments displaying the failure of standard activation functions to learn47

periodic functions as well as the results of the novel activation function on toy and real-world tasks. We have also48

conducted experiments of our own to understand how viable the proposed activation function is at replacing existing49

standards such as ReLU and tanh.50

2 Scope of reproducibility51

The authors make two key claims:52

• Standard neural networks with standard activation functions are insufficient to learn periodic functions outside the53

bounded region where data points are present.54

• The proposed novel activation function can learn periodic functions while maintaining the favorable optimization55

property of the ReLU-based activations. The novel activation is dubbed “snake”:56

snakea(x) := x+
1

a
sin2(ax)

where a is treated as a fixed parameter in initial experiments, and as a learnable parameter in a few experiments.57

Snake is shown to outperform standard activation functions ReLU, tanh,LeakyReLU [6], as well as more recently58

proposed functions such as swish [10], and sin [12, 7].59

Due to the broad and far-reaching consequences of the two claims, the original paper supports them via both theoretical60

justification and an extensive list of experiments which range from testing performance on toy datasets to real world61

applications. We have exhaustively replicated the original list of experiments, and have conducted a few additional62

experiments of our own, using the proposed activation function in a Deep Convolutional Generative Adversarial63

Network (DCGAN) to generate images of handwritten digits and in a Long Short Term Memory (LSTM) network for64

sentiment analysis.65

3 Methodology66

The code used by the authors had not been made public at the time we started working on re-implementing the paper.67

That meant we reproduced all the results in the paper from scratch relying on the descriptions of the neural network68

architecture and a link or description of the dataset. The descriptions were brief but sufficient such as “feedforward69

neural network with 2 hidden layers, both with 64 neurons” for the Body Temperature Prediction experiment and “4-layer70

feedforward network with 1→ 64→ 64→ 1 hidden neurons” for the Financial Data Prediction experiment. In the71

case of experiments that utilized large standard networks such as ResNet18, the PyTorch library implementation of the72

model was used, with snake substituted in place of the default activation functions. Besides the model implementations,73

we were also required to make a a learnable parameter in snake for a few experiments.74
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3.1 Model descriptions75

Models used in the original paper included fully-connected, feed-forward neural networks with different architectures76

for the various experiments. Larger standard models such as ResNet18 were also used. The authors of the original77

paper had initially not made their code available and we had to implement most models ourselves.78

3.2 Datasets79

The data used in the extrapolation experiments are directly sampled from periodic functions such as sin(x). Some80

experiments dealt with standard datasets such MNIST and CIFAR-10. Data for the real-life datasets had to be81

downloaded:82

• Daily data from 1995-1-1 to 2020-1-31 of Wilshire 5000 Total Market Full Cap Index: Downloaded from link83

provided in the original paper: https://www.wilshire.com/indexes84

• Average weekly temperature evolution in Minamitorishima, an island south of Tokyo (longitude: 153.98,85

latitude: 24.28) after April 2008: Downloaded from link provided in the original paper: https://join.86

fz-juelich.de/access87

• Patient body temperature: Made available by the authors upon request88

• IMDB Reviews Dataset used for our additional sentiment analysis experiment: Downloaded from https:89

//www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews90

3.3 Hyperparameters91

Different experiments included varying levels of detail with respect to hyperparameters. Many experiments provided an92

overview of the neural network architecture (e.g. “4-layer fully connected neural network”) but not other hyperparame-93

ters, such as batch size, loss function, or learning rate. In cases where information was missing, assumptions had to be94

made, with some trial-and-error required to obtain a close approximation of the original result. This trial-and-error95

involved a grid search over the architecture (number of layers, number of neurons in each layer), number of epochs96

(100 to 5000), batch size (16 to 512), optimizer (Adam, SGD, RMSProp), learning rate (0.001 to 0.1) and value of a in97

networks with the snake activation (1 to 30).98

3.4 Experimental setup99

The entire codebase has been uploaded to GitHub and is publicly available: https://github.com/mayurak47/100

Reproducibility_Challenge. The experiments were run locally as well as on GPU enabled sessions on Google101

Colab. All the models and experiments were coded using the PyTorch library.102

3.5 Computational requirements103

Many of the experiments, particularly those relating to regressing different functions and datasets, could be run locally104

on a MacBook Air with an Intel i5 CPU and 8 GB of RAM, not requiring more than a few minutes to train. The more105

demanding experiments required the use of GPUs. Training a ResNet18 on CIFAR-10 with six activation functions for106

100 epochs took roughly 12 hours on a Tesla T4 GPU on Google Colab. Our additional experiments on training a GAN107

and an LSTM required roughly 2 hours each on the same hardware.108

4 Results109

Wherever possible, the claims of the original papers were tested and in each case, we were able to reproduce the original110

results. The list of experiments that we reproduced is listed below.111

4.1 Extrapolation experiments on analytic functions112

Neural networks with a single hidden layer consisting of 512 neurons are trained on data sampled from four different113

analytic functions using the ReLU and tanh activation functions. The training data is obtained by sampling from [-5, 5]114

with a gap in [-1, 1]. It is observed in Fig. 1 that the extrapolation of neural networks depends on the activation function115

used. When ReLU is used, the extrapolation diverges to ±∞. When tanh is used, the extrapolation levels off. The116

authors formally prove these observations and conclude that neural networks using these activation functions cannot117

learn to extrapolate periodic functions.118
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Figure 1: Regressing analytic functions with neural networks having the specified activation function

4.2 Applicability of proposed method119

It is first demonstrated that the snake activation function is easier to optimize than other commonly used baseline120

periodic activation functions like sin(x) and x+ sin(x). Fully-connected neural networks with 3 hidden layers (512121

neurons each) are trained on the MNIST dataset. This is a 10-way classification problem, and the training cross-entropy122

losses for the different networks can be observed in Fig. 2, with the snake network achieving the lowest training loss.123

Figure 2: Optimization of different activation functions on MNIST

It is then shown that snake is able to regress the periodic function sin(x). While all activation functions learn the124

training data (Fig. 1), only snake is able to capture the periodic behavior of sin(x) (Fig. 3). The extrapolation diverges125

from the underlying sin function due to the limited training data used.126

Figure 3: Regressing sin(x) using the snake activation function
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4.3 Applications127

Multiple experiments are conducted to illustrate the performance of snake on a range of tasks.128

Figure 4: Test accuracy of ResNet18
with different non-linearities

ResNet18 [3], with 10M parameters, is trained on the CIFAR-10 dataset. This129

is a 10-way image classification task. The ReLU layers in the architecture130

are replaced with the specified activation, and the network is trained for 100131

epochs. The LaProp optimizer 1 [16] is used; the learning rate is 4× 10−4 for132

the first 50 epochs and 4× 10−5 for the next 50. A test accuracy of 93-94% is133

achieved by the snake network (Fig. 4), in line with that of the other standard134

activation functions. This suggests that snake is suitable for large-scale image135

classification problems, and may be used as an straightforward alternative to136

other activation functions.137

The core utility of snake is shown via two real-life problems. The two tasks138

are predicting the evolution of temperature in Minamitorishima island in Japan139

(Fig. 5), and the modeling the body temperature of a patient (Fig. 6). The140

architectures used are 1 → 100 → 100 → 1 and 1 → 64 → 64 → 1141

respectively, as in the original paper. In the Minamitorishima experiment,142

the parameters a were made learnable; in the body temperature experiment,143

a = 30. In both cases, snake is the only activation function that makes144

meaningful extrapolation and predictions. It can also be seen in Fig. 5b that145

snake is the only activation function that is able to learn the training data - the146

other non-linearities are unable to fit the training points, irrespective of the147

number of epochs the models are trained for.148

(a) (b)

Figure 5: Atmospheric temperature evolution. (a) predictions of different networks; (b) train and test losses observed
during training

Figure 6: Regressing body temperature

1Code taken from https://github.com/Z-T-WANG/LaProp-Optimizer

5

https://github.com/Z-T-WANG/LaProp-Optimizer


The snake network correctly learns the periodicity of the atmospheric temperature dataset, even though the amplitude is149

slightly off, and correctly infers that body temperature is roughly 37°C.150

Another regression problem the authors used to demonstrate the working of snake is that of financial data prediction151

(Fig. 7). The data used is from the Wilshire 5000 Total Market Full Cap Index, considered representative of the152

worldwide economic trend. The snake network ( 1 → 64 → 64 → 1, a = 30), which was trained using data from153

1995 to 2020-1-31, before COVID-19 impacted the world economy, predicted an economic slowdown in 2020. This154

might be due to the cyclic nature of world markets, which the model was able to capture. As in the previous regression155

experiments, snake performs better than conventional non-linearities (Table 1).156

Figure 7: Predicting the Wilshere 5000 index

Method Test MSE
Swish DNN 390.33 ± 17.57
ReLU DNN 343.34 ± 78.07
Snake DNN 211.39 ± 46.64

Table 1: Prediction of Wilshere 5000 index

The authors, in an additional experiment described in157

the appendix, use this dataset to gain insights into how158

the snake activation function learns (Fig. 8). Observing159

the predictions made at various points in the training160

process, we notice that at first, the features learned are161

mostly linear, low frequency features are then learned, and162

high-frequency features are learned at the later stages of163

training.164

165

166

Figure 8: Predictions made by the model after 10, 20, and 50 epochs of training on the Wilshere 5000 index

The performance of a snake feedforward network (two hidden layers of 64 neurons each, a = 30) and a recurrent neural167

network (single recurrent layer, 64 features in hidden state), typically used for time-series prediction, are compared in168

Fig. 9. The task is to learn the function sin(0.1x), with Gaussian noise σ added, for T = 300 timesteps. The first 200169

are used for training, while the last 100 are used for testing.170

It is seen that because of the noisy training data, even the predictions of the RNN are noisy, with a high generalization171

loss. The feedforward network, on the other hand, almost perfectly learns the underlying function with the right172

frequency and amplitude.173

Further, RNNs learn by backpropagation through time (BPTT), which has a prohibitively high computation cost, and174

can result in the exploding/vanishing gradient problem [8]. As a result the time taken by the snake network to regress175

the function is roughly 2 orders of magnitude lower than the time taken by the RNN (Fig. 10). This suggests that snake176

networks may be more effective in modeling data that is known beforehand to be periodic in nature.177
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Figure 9: Predictions of a feedforward network with snake activation and a conventional RNN on sin(0.1x)

Figure 10: Time taken for a single epoch of training by an RNN and a snake feedforward network on T timesteps of
sin(0.1x)

4.4 Effect of a178

In a series of experiments, the authors depict the effect the parameter a has on the learning process. We reproduce one179

of these experiments for brevity. Simple neural networks ( 1→ 64→ 64→ 1) are trained on the sinusoidal function180

sin(x) + sin(4x)/4.181

Figure 11: Features learned by snake neural networks at different a
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It is seen in Fig.11 that larger a encourages the model to learn features with higher frequency. With a = 1, the higher182

frequency modulation is considered noise, while the a = 16 model learns both the signals. This tendency can be taken183

into account while working with data known to be periodic, with a well-chosen a speeding up training.184

4.5 Results beyond original paper185

The original paper demonstrated the ability of neural networks with the snake activation function to learn periodic186

functions and that the performance on everyday tasks like image classification is similar to that of conventional activation187

functions. We extend this study to more sub-fields of deep learning.188

We train a deep convolutional generative adversarial network (DCGAN) 2 [9] to generate samples of the MNIST dataset.189

All the activations in the generator and discriminator sub-networks are replaced with the specified non-linearity. We see190

that while the initial training is slow for the snake GAN (Fig. 13a), it eventually generates realistic samples (Fig. 12a),191

which are qualitatively indistinguishable from those output by a typical GAN using the LeakyReLU non-linearity (Fig.192

12b). a was a learnable parameter in this experiment.193

(a) (b)

Figure 12: Samples output by (a) snake GAN and (b) LeakyReLU GAN after training for 50 epochs

(a) (b)

Figure 13: Losses observed over the course of training (a) snake GAN and (b) LeakyReLU GAN

Finally, we use the snake activation function in a Long Short Term Memory (LSTM) network for sentiment analysis 3194

on the IMDB movie reviews dataset. This is a binary classification problem, attempting to predict whether a movie195

review is positive or negative. The typical tanh activation used to output the value ht = ot ∗ tanh(Ct) in an LSTM196

is replaced by the snake activation, so that ht = ot ∗ snake(Ct). We observed that the snake LSTM network did not197

perform very well in this task (Fig. 14) and convergence was much more gradual. A single epoch of training the snake198

LSTM took twice as long as training the tanh LSTM. Also, in many cases, the snake network got stuck in local minima,199

necessitating a restart of training.200

2Code adapted from https://github.com/eriklindernoren/PyTorch-GAN
3Code adapted from https://www.kaggle.com/arunmohan003/sentiment-analysis-using-lstm-pytorch and

https://github.com/piEsposito/pytorch-lstm-by-hand
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A possible explanation for this is that the snake function is not bounded like tanh, causing an increase in the values of201

ht. The results of the experiment do not mean that snake cannot be used in sequence models, only that the application is202

not as straightforward as in the previous experiments, and further modifications in the architectures might be necessary.203

(a) (b)

Figure 14: Training and testing accuracies versus epochs for (a) snake LSTM and (b) tanh LSTM

5 Discussion204

As the authors had not initially made their code available and only included brief descriptions of the network architectures205

used in their experiments, exact replication of their experimental results was not possible. However, the qualitative206

nature of the paper meant that only the relative performance of snake in comparison to other activation functions on the207

specified problems was of interest, as opposed to the exact architectural details or loss values achieved. For example,208

the losses observed in Table 1 and Fig. 5b are orders of magnitude different from those in the original paper, likely due209

to varying normalization techniques and hyperparameters, even though the overall results observed in Fig. 5a and Fig. 7210

are similar to those observed in the original paper. We were able to uphold the claim that neural networks with standard211

activation functions are insufficient to learn periodic functions outside the training range. We were also able to verify212

that the proposed activation function performs as well as standard activation functions, ReLU, tanh,LeakyReLU, over213

a wide range of tasks (with the exception of the LSTM experiment), by replicating the experiments in the original paper214

and conducting some additional ones ourselves. Future work could focus upon providing theoretical justifications for215

the behavior of snake and developing more suitable optimization algorithms.216

5.1 What was easy217

A detailed description of the neural network architectures used for experiments such as training on the MNIST dataset218

and human body temperature was provided, allowing us to replicate the experiments closely. Links to datasets for219

all experiments, barring one, were also included in the paper itself. An extensive appendix sections listed additional220

experiments comparing the performance of snake with different a. Every experiment was supported by graphs221

showcasing the performance of snake with other activation functions, giving us a clear metric against which we could222

compare the results of our reproductions.223

5.2 What was difficult224

The original source code was not provided initially and we had to rely on the descriptions of architectures and225

hyperparameters (which were absent in many cases) and educated guesswork while attempting to replicate the results.226

Data for the human body temperature experiment was not available. Theoretical justification for variance correction227

and the results of this variance correction using ResNet101 on CIFAR-10 were provided, but implementation details228

were not included. The section on Comparison with RNN on Regressing a Simple Periodic Function simply states that229

snake was deployed on a feedforward network, without any additional details of the hyperparameters used. The dataset230

for the experiment had to be inferred from the graphs of the results, and since white noise had been added to the data,231

exact replication of the experimental setup was not possible.232
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5.3 Communication with original authors233

Liu Ziyin, one of the authors, was contacted to provide the dataset used for the human body temperature experiment,234

elaborate upon the implementation of variance correction and provide the implementation of RNNs using snake.235

On being contacted, he provided the GitHub link to his code4 for the human body temperature, market index, and236

extrapolation experiments. He also provided an explanation on how to implement variance correction. While the237

code for the RNN implementation using snake activation was not made public, he provided a screenshot of the same.238

The provided code was incomplete and not fully documented but was nonetheless valuable in giving us a rough idea239

about the hyperparameters used. The provided repository also contains the human body temperature dataset within the240

codebase, which is not available in the original paper.241
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