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ABSTRACT

Machine learning interatomic potentials (MLIPs) have revolutionized molecular and ma-
terials modeling, but existing benchmarks suffer from data leakage, limited transferability,
and an overreliance on error-based metrics tied to specific density functional theory (DFT)
references. We introduce MLIP Arena, a benchmark platform that evaluates MLIPs based on
physics awareness, chemical reactivity, stability under extreme conditions, and predictive ca-
pabilities for thermodynamic properties and physical phenomena. Our evaluation challenges
previous assumptions about model architectures and performance. MLIP Arena provides a re-
producible framework to guide MLIP development toward improved predictive accuracy and
runtime efficiency while maintaining physical consistency. The Python package and online
leaderboard are available at huggingface.co/spaces/atomind/mlip-arena.

1 INTRODUCTION

The accurate prediction of molecular and material properties has driven innovation for decades
and remains crucial for addressing challenges in energy technology, climate change, and drug
discovery. While first-principles electronic structure methods have long served as the primary
workhorse for property prediction, their computational cost remains prohibitive for scaling atomistic
modeling beyond hundreds of atoms. Machine learning interatomic potentials (MLIPs), trained
on extensive databases comprising millions of density functional theory (DFT) calculations, have
emerged as an efficient and accurate alternative. These models have demonstrated remarkably
accurate approximations of the DFT potential energy surface (PES) across a wide range of chemical
compositions at a fraction of the computational cost of DFT.

However, MLIPs trained on the DFT total energy and interatomic forces do not necessarily capture
the correct atomic interactions (Fu et al., 2022), despite excelling in error-based metrics for bulk
systems (Riebesell et al., 2023). Analogously, it is well-known (Senftle et al., 2016) that classical
force fields fit to describe near-equilibrium radial distribution functions cannot capture the energetics
of bond-breaking. This limitation could continue to MLIPs that are primarily trained to near- and
on-equilibrium structures. More specifically, error-based benchmarks on near-equilibrium structures
can have limitations and might not correlate with utility for downstream scientific applications. We
highlight some specific limitations:

First, they are vulnerable to data leakage, failing to accurately assess a model’s extrapolation and
generalization capabilities. This issue is evident in Matbench Discovery (Riebesell et al., 2023),
where non-compliant models rank highly due to energy overfitting at the expense of forces, as this
work will show. Additionally, high-ranking models often rely on large datasets, risking test set
contamination without proper safeguards.

Second, benchmarks tied to specific datasets or DFT functionals lack flexibility in a rapidly evolving
field, where larger, more chemically diverse, or higher-accuracy datasets frequently emerge (Barroso-
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Table 1: PEC quality of homonuclear diatomics based on physical and geometric measures. Boldface
and underline represent the best and the worst metrics across all MLIPs, respectively. The rankings
from all metrics are aggregated to rank the win rate (overall performance) of the MLIPs. Select
PECs are shown in Figure S1. Detailed definitions and implementation details are available in
Appendix A.2.

Model Rank Rank Conservation Spearman’s coefficient Energy Force Tortuosity
aggregation deviation [eV/Å] E: repulsion F: descending jump [eV] flips

MACE-MP(M) 1 12 0.070 -0.997 -0.980 0.038 1.449 1.161
MatterSim 2 16 0.013 -0.980 -0.972 0.008 2.766 1.021
M3GNet 3 19 0.026 -0.991 -0.947 0.029 3.528 1.016
eSCN(OC20) 4 27 2.045 -0.939 -0.984 0.806 0.640 5.335
ORBv2 4 27 9.751 -0.883 -0.988 0.991 0.991 1.287
CHGNet 6 29 1.066 -0.992 -0.925 0.291 2.255 2.279
SevenNet 7 35 34.005 -0.986 -0.928 0.392 2.112 1.292
ORB 8 36 10.220 -0.881 -0.954 1.019 1.026 1.798
eqV2(OMat) 9 48 15.477 -0.880 -0.976 4.118 3.126 2.515
ALIGNN 10 53 5.164 -0.913 -0.310 9.876 30.669 1.818
EquiformerV2(OC20) 11 64 21.385 -0.680 -0.891 38.282 22.775 8.669
EquiformerV2(OC22) 12 69 27.687 -0.415 -0.855 64.837 21.674 15.880

Luque et al., 2024; Eastman et al., 2024; Kaplan et al., 2025; Schmidt et al., 2024). Static dataset
benchmarks quickly become outdated and misleading as newer models trained on larger or proprietary
datasets are introduced.

Third, conventional error-based regression metrics often fail to reflect the practical utility and
generalizability of MLIPs in real-world applications. Póta et al. (2024) recently demonstrated that
while some MLIPs exhibit zero-shot capabilities for lattice thermal conductivity prediction, many
top-ranked Matbench Discovery models perform worse due to broken crystal symmetry and rough
PES derivatives. This underscores that relying solely on regression metrics while ignoring physical
priors can widen the gap between model predictions and experimental observables.

To address these challenges, we introduce MLIP Arena, a fair and transparent benchmark platform
for foundation MLIPs. This platform evaluates the quality of the learned PES and the physical laws
and symmetries critical to chemical modeling. Unlike prior error-based DFT reference benchmarks
(Focassio et al., 2024; Riebesell et al., 2023; Wines and Choudhary, 2024; Yu et al., 2024; Zhu
et al., 2025), MLIP Arena focuses on examining physical soundness in order to evaluate the
utility of MLIPs for downstream applications. By moving beyond error-based assessments, it
offers more actionable insights for model development and training. Specifically, we examine how
well foundation MLIPs capture physics-aware phenomena, their reliability for accurate atomistic
modeling, and their readiness for practical scientific research and discovery.

2 MLIP ARENA BENCHMARKS

MLIP Arena assesses the limitations of MLIPs through three primary perspectives. In Section 2.1,
we focus on two-body interatomic interactions and propose metrics that enable robust and well-
balanced ranking of MLIPs, reducing susceptibility to overfitting on any single metric. Section 2.2
tests MLIPs under extreme conditions using molecular dynamics (MD) simulations, exposing their
instabilities and unphysical behaviors. Section 2.3 assesses the predictive capabilities of MLIPs in
determining thermodynamic properties and physical phenomena, which requires multiple model
passes, higher-order gradients, and more advanced workflows.

2.1 POTENTIAL ENERGY CURVES (PECS) OF DIATOMICS

Pairwise interactions are the most important interactions in atomistic systems. PECs have the benefit
of being less vulnerable to data leakage as DFT references for PECs are difficult to calculate due
to multiple possible spin configurations, basis set incompleteness in local-orbital DFT codes, and
convergence issues in plane-wave DFT codes. In Table 1, we compute six physical and geometric
measures to rank the homonuclear PECs of MLIPs in three aspects: conservative field, potential
stiffness, and smoothness, as we discuss below and in further detail in Appendix A.2.
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Conservative field. Conservative forces are important for energy conserving molecular simulations,
and non-conservative forces are known to degrade the stability of thermostats (Bigi et al., 2024).
We calculate the conservation deviation as the MAE between force and the central difference
approximation of the derivative of the energy along all PECs (eq. (S1)). We note that energy
conservation is a constraint that can be agnostic of the architecture itself, as the standard way it is
enforced is by taking gradients of the predicted potential energy in the loss function.

Potential stiffness. Atoms at close distances should experience strong repulsion. We use Spear-
man’s coefficients to measure the monotonicity of PECs at short interatomic distances. Robust MLIPs
should have Spearman’s coefficients close to −1 for the repulsive region in the energy curve and
before the maximum attraction in the force curve.

Smoothness. We quantify the smoothness of the PECs by measuring the tortuosity (eq. (S2)),
energy jumps (eq. (S3)), and force flips. Tortuosity measures the arc-chord ratio of PECs projected in
the energy dimension. Smooth PECs with a single equilibrium point, like the Lennard-Jones potential,
have a tortuosity strictly equal to 1. Energy jump detects the change in the sign of energy gradients
and sums up the discontinuity with neighboring points. Force flips count the times force curves flip
direction.

The metrics above provide a simplified picture of the quality of the general PES without considering
heteronuclear and many-body interactions. A more careful analysis will be needed in those cases,
especially when electrostatics become prominent in ionic interactions.

2.2 STABILITY AND REACTIVITY
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Figure 1: Hydrogen combustion via annealing NVT MD simulation (128 H2 + 64 O2 −−→ 128 H2O).
Applied temperature schedule is illustrated in the top panel. The experimental reaction enthalpy of
−68.31 kcal/mol is annotated in the bottom panel (Lide, 2004). CHGNet, EquiformerV2(OC20),
eSCN(OC2), and M3GNet could not finish 1 ns MD trajectories. Experimental adiabatic flame
temperature of hydrogen ranges from 2380K (air) to 3000K (pure O2) (Hasche et al., 2023). Only
MACE-MP(M) and EquiformerV2(OC20) ignite within this region. Runtime performance and
center-of-mass drift are available in Figure S2.
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Hydrogen combustion (temperature ramp). Hydrogen combustion is a challenging out-of-
distribution test since there are multiple bond breaking and formation events that are poorly rep-
resented in most of the available MLIP training sets to date (Guan et al., 2023). We evaluate the
models on 1 ns annealing MD simulations (2× 106 steps with 0.5 fs timestep) by heating a system of
hydrogen and oxygen molecules linearly from 300K to 3000K, holding at 3000K, and then cooling
back to 300K. Temperature fluctuations, number of water molecules, and enthalpy change ∆H are
monitored along MD trajectories (Figure 1).

CHGNet, EquiformerV2(OC20), eSCN(OC20), and M3GNet were not able to finish 1 ns MD
trajectories (see Figure 1). As analyzed in Figure S2, the slow runtime performance of models
without built-in equivariance, such as CHGNet and M3GNet, may seem surprising since equivariant
models are often more expensive to use. However, we found that molecules condense into droplets at
an early stage in CHGNet and M3GNet trajectories, drastically increasing the number of bond and
angle edges and therefore slowing down the MD speed.

While ORB and ORBv2 were fastest in terms of MD steps per second (Figure S2), they could not
react hydrogen and oxygen at the elevated temperature and keep the number of water molecules
close to zero throughout the trajectories; they also have positive reaction enthalpies, contradicting
experimental measurements (Lide, 2004). Figure S2 also shows that direct force prediction models
(EquiformerV2(OC20), ORB) have large center-of-mass drifts (> 102 Å) during MD simulations by
six orders of magnitude more than gradient-based models. Enforcing net zero forces as implemented
by ORBv2 only decreases the drift to (∼ 2.4 Å), while other models keep drifts around 10−4 Å scales
over 1 ns MD.

2.3 THERMODYNAMIC PROPERTIES AND PHYSICAL PHENOMENA

Vacancy formation and migration energies. Defects, especially vacancies, play a key role in de-
termining the properties of many functional materials used for photovoltaic, catalytic, thermoelectric,
and optoelectronic applications (Choudhary and Sumpter, 2023; Mosquera-Lois et al., 2024). We
evaluated six widely used MLIPs capable of predicting stress in elemental face-centered cubic (FCC)
and hexagonal close-packed (HCP) crystals, leveraging the vacancy diffusion database by Angsten
et al. (2014). The translational symmetry of crystal sites and vacancies requires that the paths and
barriers for forward and backward vacancy migration be identical, making this a robust test of a
model’s ability to respect crystal symmetry.

Climbing image nudged elastic band (CI-NEB) calculations were performed to analyze vacancy
migration barriers. The path asymmetry (eq. (S4)) and barrier asymmetry (eq. (S5)) of the migration
energy profiles are analyzed in detail in Appendix A.4. We found the symmetry of NEB profiles has
no strong correlation with the underlying model, and in general all models perform worse for HCP
crystals.

Second-order dynamical phase transition in perovskite. Perovskites are a versatile class of ma-
terials exhibiting diverse properties, including ferroelectricity, magnetoresistance, ionic conductivity,
piezoelectricity, and superconductivity. Barium zirconate (BaZrO3, BZO) has been predicted and
observed to have a second-order phase transition due to dynamical instability in the cubic polymorph
(Fransson et al., 2023; Rosander et al., 2023). In Figure S5, we probe the anharmonic PES of different
MLIPs along the octahedral-tilting phonon mode with different unit cell lattice constants. We observe
Landau-like second-order phase transition from quartic to quadratic polynomials in MACE-MP(M),
MatterSim, CHGNet, and SevenNet. M3GNet remains in quadratic PES across all structures with
close degeneracies. ORBv2 has an asymmetrical PES and multiple energy crossings.

3 DISCUSSION AND CONCLUSION

We present MLIP Arena, an open benchmarking platform that avoids simplistic regression metrics
susceptible to error cancellation and instead focuses on evaluating physical awareness and practical
utility. Our analysis uncovers key insights: gradient-based force predictions may exhibit non-
conservative behavior, larger training datasets do not always yield better performance, and equivariant
models can sometimes surpass invariant models in runtime efficiency. MLIP Arena serves as
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a transparent and reproducible workflow orchestrator, guiding the development of MLIPs with
improved adherence to physical principles, runtime performance, and predictive capability.
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A SUPPLEMENTARY INFORMATION
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Figure S1: Potential energy curves (PECs) of selected homonuclear diatomic molecules, representing
four different chemical characteristics—organics, alkali/alkaline earth metals, transition metals, and
metalloids—are presented. The curves from different methods are shifted and aligned to zero at the
largest separation distance.
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Figure S2: Hydrogen combustion. (Top left) The final reaction yield at the last MD step.
(Top right) MD runtime speed measured in steps per second using single NVIDIA A100 GPU.
cuEquivariance kernel was disabled for MACE-MP(M). (Bottom) The center-of-mass (COM)
drift displacement during MD trajectory.
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Figure S3: NEB profiles of vacancy migration in FCC (top panel) and HCP (bottom panel) elemental
crystals. All path lengths are normalized to 1, and all energies are normalized by PBE vacancy
migration energy barrier EPBE

vm as given in (Angsten et al., 2014). Number of missing predictions,
average path asymmetry, and MAPE of maximum energy barrier are annotated on top left.
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Figure S4: Asymmetry of vacancy migration barrier in FCC and HCP elemental crystals. Compliance
to symmetry is not correlated with the (non-)equivariance of the underlying MLIPs. Non-equivariant
MLIPs: ORBv2, MatterSim, CHGNet. Equivariant MLIPs: MACE-MP(M), SevenNet.

a

b

c

Figure S5: Landau-like second-order phase transition of octahedral-tilting mode in BaZrO3 (BZO).
(a) Undeformed 4 × 4 × 4 supercell of BZO with cubic unit cell lattice constant of 4Å. (b) R-tilt
phonon mode with maximum displacement of 0.5Å. Ba atoms are transparent for better visualization.
(c) Transitional behavior from quadratic to quartic Landau-like potential energy landscape as a
function of largest modal displacement for different lattice constants from 3.70Å to 4.15Å.
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A.1 SUPPORTED MODELS

Table S1: List of supported open-source, open-weight models in MLIP Arena. Custom models could be incorporated through convenient class inherited from ASE
Calculator.

Model Prediction1 NVT NPT Training Set2 Code Reference License Checkpoint First Release

MACE-MP(M) EFS ✓ ✓ MPTrj GitHub Batatia et al. (2024) MIT 2023-12-03-mace-128-L1_epoch-199.model 2023-12-29
CHGNet EFSM ✓ ✓ MPTrj GitHub Deng et al. (2023) BSD-3-Clause v0.3.0 2023-02-28
M3GNet EFS ✓ ✓ MPF GitHub Chen and Ong (2022) BSD-3-Clause M3GNet-MP-2021.2.8-PES 2022-02-05
MatterSim EFS ✓ ✓ MPTrj, Alex, Proprietary GitHub Yang et al. (2024) MIT MatterSim-v1.0.0-5M.pth 2024-05-10
ORB EFS ✓ ✓ MPTrj, Alex GitHub N/A Apache-2.0 orbff-v1-20240827.ckpt 2024-09-03
ORBv2 EFS ✓ ✓ MPTrj, Alex GitHub Neumann et al. (2024) Apache-2.0 orb-v2-20241011.ckpt 2024-10-15
SevenNet EFS ✓ ✓ MPTrj GitHub Park et al. (2024) GPL-3.0 7net-0 2024-07-11
eqV2(OMat) EFS ✓ ✗ OMat, MPTrj, Alex GitHub Barroso-Luque et al. (2024) Apache-2.0* eqV2_86M_omat_mp_salex.pt 2024-10-18
EquiformerV2(OC22) EF ✓ ✗ OC22 GitHub Liao et al. (2023) Apache-2.0 EquiformerV2-lE4-lF100-S2EFS-OC22 2023-06-21
EquiformerV2(OC20) EF ✓ ✗ OC20 GitHub Liao et al. (2023) Apache-2.0 EquiformerV2-31M-S2EF-OC20-All+MD 2023-06-21
eSCN(OC20) EF ✓ ✗ OC20 GitHub Passaro and Zitnick (2023) Apache-2.0 eSCN-L6-M3-Lay20-S2EF-OC20-All+MD 2023-02-07
ALIGNN EFS ✓ ✓ MP22 GitHub Choudhary and DeCost (2021) NIST 2024.5.27 2021-11-15

1 E: energy, F: force, S: stress, M: magmom.
2 MPTrj: Materials Project GGA-PBE relaxation trajectories, Alex: Alexandria GGA-PBE dataset (Schmidt et al., 2024), OMat: Open Materials dataset (Barroso-Luque et al., 2024),
MP22: Materials Project 2022, MPF: MPF.2021.2.8: Materials Project snapshot curated to train M3GNet (Chen and Ong, 2022). OC20, OC22: Open Catalyst Project (Chanussot et al.,
2021; Tran et al., 2023).
*Modified Apache-2.0 (Meta)
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A.2 BENCHMARK DETAILS FOR HOMONUCLEAR DIATOMICS

Two atoms are placed inside a vacuum box and the predictions are made with separation distances
ranging from 0.9 covalent radius to 3.1 van der Waals radius or to 6Å if van der Waals radius is not
available. The shortest, equilibrium, and longest separation distances are denoted as rmin, req, and
rmax respectively. The energy and force evaluations are performed at 0.01Å interval.

Conservative field. Conservative forces are important for physical and stable MD simulations,
as extra energy will be injected into or extracted from the system through non-conservative forces,
degrading the stability of thermostats (Bigi et al., 2024). Some models use direct force prediction
(Liao et al., 2023) or apply post-hoc correction (Neumann et al., 2024) to achieve better prediction
errors or smaller drifts during MD simulations. Despite enhanced speed performance, these non-
conservative forces may violate the law of energy conservation, undermining the stability of phonon
and MD simulations and the predictive power on finite-temperature thermodynamics quantities (Póta
et al., 2024). To quantify the deviation of force prediction from the conservative field, we compute
the MAE between force and the central difference of energy along the homonuclear diatomic curves:

Conservation deviation =

〈∣∣∣∣F(r) · r

∥r∥
+∇rE

∣∣∣∣〉
r=∥r∥

. (S1)

Note that this definition is only valid for diatomic interaction but a well-defined, manageable alter-
native for the exploding combinatorics of hetero-nuclear, many-body interactions. Many modern
MLIPs have many-body forces, and more careful decomposition of many-body contributions needs
to be considered for those cases.

Potential stiffness. Atoms at close distance should experience strong repulsion. Despite the
inaccuracies of DFT calculations at short interatomic distances (Appendix A.3), the well-behaved
classical FFs and MLIPs should reproduce strong repulsive interactions between atoms at short range
distances. In fact, Deng et al. (2024) has indicated prominent softening across MLIPs trained on
MPTrj, which consists of crystal relaxation trajectories close to equilibrium. Softened potentials often
have early drop in energy and forces at the short range, leading to increased probability of instability.
To quantify this behavior, we use Spearman’s coefficients to evaluate the repulsiveness of energy
curves (E: repulsion in Table 1) at the distance range r ∈ [rmin, req], where req = argmin

r∈[rmin,rmax]

E(r)

is taken as the equilibrium internuclear distance. Force curves (F: descending) are evaluated at the
distance range between rmin and the distance where the largest attractive (negative) force happens.

Smoothness. The smoothness of a PEC can be heuristically estimated by tortuosity as the ratio
between total variation in energy TVrmax

rmin
(E) and the sum of absolute energy differences between

shortest separation distance rmin, equilibrium distance req, and longest separation distance rmax . This
is essentially the arc-chord ratio projected in the energy dimension:

Tortuosity =

∑
ri∈[rmin,rmax]

|E(ri)− E(ri+1)|

|E(rmin)− E(req)|+ |E(req)− E(rmax)|
(S2)

. The Lennard-Jones potential and any potentials with single repulsion-attraction transition or pure
repulsion have tortuosity equal to 1. Note that the true PECs of some elements may have intermediate
range energy barriers and thus ideally the elemental average across the periodic table should be
slightly above one. For the simplicity of this metric, we rank the models by the absolute difference
with 1.

We also identify the sign changes of energy gradients on PECs to extract the energy jump on both
sides to the neighboring sampled points, which can be written down verbatim:

Energy jump =
∑

ri∈[rmin,rmax]

|sign [E(ri+1)− E(ri)]− sign [E(ri)− E(ri−1)]| ×

(|E(ri+1)− E(ri)|+ |E(ri)− E(ri−1)|) (S3)

. The smoother PEC has lower tortuosity and total energy jump.
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A.3 INACCURACIES OF PAW DFT CALCULATIONS AT SHORT INTERATOMIC DISTANCES

Due to the classical treatment of nuclei, frozen core approximation, and smoothed core electron
wavefunctions in the projected-augmented wave (PAW) DFT formalism, when two atoms are too close
to each other, electron wavefunctions start to overlap and oscillate significantly. In such cases, PAW
projectors and plane-wave basis set may not accurately describe core electrons and their interactions
with valence electrons, leading to large inaccuracies.

A.4 BENCHMARK DETAILS FOR VACANCY MIGRATION

The benchmarking workflow included geometry optimization of pristine crystals, optimization
of defective structure endpoints, and followed by climbing image nudged elastic band (CI-NEB)
calculations (Henkelman et al., 2000) to identify transition states and determine vacancy migration
barriers. Five intermediate images for NEB calculations were generated using the improved image-
dependent pair potential (IDPP) method (Smidstrup et al., 2014).

Figure S3 presents the NEB energy profiles of vacancy migration in FCC and HCP elemental solids.
HCP pathways are chosen to be on basal plane to avoid asymmetrical migrations. The path asymmetry
(eq. (S4)) is measured by mirroring against the midpoint. We found that MACE-MP(M), MatterSim,
and ORBv2 generally relax NEB more robustly than M3GNet, CHGNet, and SevenNet. MatterSim,
MACE-MP(M), CHGNet, and SevenNet exhibit near-perfect mirror symmetry around the saddle
point for most FCC paths, while MACE-MP(M) achieves the best balance between symmetry and
robustness for HCP paths.

Figure S4 demonstrates the distribution of barrier asymmetry (eq. (S5)) of the vacancy migrations
in elemental FCC and HCP crystals. We found that the compliance to symmetry is not strongly
correlated with the equivariance and non-equivariance of the underlying MLIPs. MACE-MP(M)
and MatterSim produce symmetric pathways. In contrast, ORBv2 and SevenNet tend to have
asymmetric migration pathways, possibly due to more corrugated PES with multiple local minima
where relaxation trajectories converge to. This might unintentionally lead to more undesirable
behaviors and broken symmetries for sophisticated PES and diverse chemistry.

We define path asymmetry by calculating the mean difference between the left and right wings of
normalized NEB profile ϵ(x) = EML(x)

EPBE
vm

with respect to the middle point x = 0.5:

path asymmetry = 2

∫ 0.5

0

|ϵ(0.5− x)− ϵ(0.5 + x)| dx (S4)

.

Barrier asymmetry is defined as the ratio of reaction energy to forward barrier height:

barrier asymmetry =
∆E

Eforward
=

Ef − Ei

ETS − Ei
(S5)

, where Ei, Ef are energies of initial and final endpoints, and ETS is the transition state energy.
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B ROTATIONAL EQUIVARIANCE EVALUATION

Equivariant MLIPs have been the standard, but recent models (Neumann et al., 2024; Qu and
Krishnapriyan, 2024) show competitive performance without explicit encoded equivariance. To
evaluate the ability of models to learn symmetries from data, we perform a test to quantify learned
rotational equivariance. For rotation matrix R and atomic positions r, we measure the cosine
similarity between rotated force predictions:

sim(F) =
RF(r) · F(Rr)

∥RF(r)∥∥F(Rr)∥
(S6)

where F(r) represents the models’ force predictions for atomic positions r. Perfect equivariance
would result in a cosine similarity of 1.0 regardless of the rotation angle.

We evaluate models across six rotation angles from 0° to 180°, using two different test sets: SPICEv2
(Eastman et al., 2024) and MPTrj (Deng et al., 2023). SPICEv2 is a dataset consisting of drug-like
compounds up to 110 atoms in size. MPTrj consists of inorganic bulk materials. We uniformly
sampled 1000 systems from each dataset from the test and validation sets. We then calculate the
cosine similarity averaged over the 1000 systems and 100 random rotation axes.

0 50 100 150
Rotation angle (degrees)

0.96

0.97

0.98

0.99

1.00

Co
sin

e 
sim

ila
rit

y

ORBv2-SPICEv2
ORBv2-MPTrj
MACE-MP(M)-SPICEv2
MACE-MP(M)-MPTrj

Figure S6: Cosine similarity under rotation for different models and datasets. Perfect equivariance
corresponds to a constant value of 1.0.

Figure S6 shows that ORBv2 (Neumann et al., 2024) achieves strong approximate equivariance, main-
taining a cosine similarity above 0.99 on SPICEv2 even at a rotation of 180°. However, performance
drops to about 0.96 on MPTrj. MACE-MP(M) (Batatia et al., 2024) maintains equivariance on both
datasets as expected.
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C ADDITIONAL DFT REFERENCE BENCHMARKS

Bulk modulus from equation of state (EOS) calculations. In the vacancy migration task (Ap-
pendix A.4), the geometry optimization of each pristine structure is then followed by an EOS fit to
compare with GGA-PBE data from Angsten et al. (2014). Figure S7 shows that most of the model
can capture the trend up to 400GPa well, with serious underestimation on a few FCC and several
HCP structures.
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Figure S7: Bulk modulus of FCC and HCP elemental solids compared with GGA-PBE calculations
(Angsten et al., 2014).

Table S2: Bulk modulus of FCC elemental crystals. nNA denotes the number of missing predictions
out of 57 entries except for noble gases.

model MAE (GPa) MAPE nNA

MACE-MP(M) 18.878 0.287 2
MatterSim 19.142 0.281 1
ORBv2 32.583 0.315 1
M3GNet 21.867 0.370 4
CHGNet 19.815 0.255 6
SevenNet 14.500 0.211 3

Table S3: Bulk modulus of HCP elemental crystals. nNA denotes the number of missing predictions
out of 57 entries except for noble gases.

model MAE (GPa) MAPE nNA

MACE-MP(M) 35.969 0.363 5
MatterSim 45.865 0.355 5
ORBv2 41.116 0.364 4
M3GNet 21.321 0.220 16
CHGNet 21.484 0.263 16
SevenNet 21.925 0.170 15
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