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Abstract
It is well-established that many iterative sparse reconstruction algorithms such as
ISTA can be unrolled to yield a learnable neural network for improved empirical
performance. Recently, ALISTA has been introduced, combining the strong empiri-
cal performance of a fully learned approach like LISTA, while retaining theoretical
guarantees of classical compressed sensing algorithms and significantly reducing
the number of parameters to learn. However, these parameters are trained to work in
expectation, often leading to suboptimal reconstruction of individual targets. In this
work we therefore introduce Neurally-Augmented-ALISTA, which computes step
sizes and thresholds individually for each target vector during reconstruction. This
adaptive approach is theoretically motivated by revisiting the recovery guarantees
of ALISTA and is able to outperform existing algorithms in sparse reconstruction.

1 Introduction
Compressed sensing is concerned with recovering a sparse vector from far fewer compressive linear
observations. Formally, consider the set of s-sparse vectors in RN , i.e. ΣNs :=

{
x ∈ RN

∣∣‖x‖0 ≤ s}.
Furthermore, let Φ ∈ RM×N be the measurement matrix, with typically M � N . For a given
noiseless observation y = Φx∗ of an unknown but s-sparse x∗ ∈ ΣNs we therefore wish to solve:

argmin
x
‖x‖0 s.t. y = Φx (1)

In [2] it has been shown, that under certain assumptions on Φ, the solution to the combinatorial
problem in (1) can be instead obtained by solving the convex LASSO problem. A very popular
approach for solving LASSO is the iterative shrinkage thresholding algorithm (ISTA) [4], in which a
reconstruction x(k) is obtained after k iterations from initial x(0) = 0 via the iteration:

x(k+1) = ηλ/L
(
x(k) +

1

L
ΦT (y − Φx(k))

)
(2)

where ηθ is the soft thresholding function given by ηθ(x) = sign(x) max(0, |x| − θ) (applied
coordinate-wise) and L is the Lipschitz constant (i.e. the largest eigenvalue) of ΦTΦ. Famously, the
computational graph of ISTA with K iterations can be unrolled to yield Learned ISTA (LISTA) [7],
a K-layer neural network in which all parameters involved can be trained using backpropagation
and gradient descent. LISTA achieves impressive empirical reconstruction performance for many
sparse datasets but loses the theoretical guarantees of ISTA. Bridging the gap between LISTA’s
strong reconstruction quality and the theoretical guarantees for ISTA, ALISTA [11] was introduced.
In ALISTA, all matrices are excluded from the learning process to retain desirable properties for
compressed sensing, and W ∈ RM×N corresponding to Φ is instead computed by optimizing the
generalized coherence:

µ(W,Φ) = inf
W∈RM×N

max
i 6=j

WT
:,iΦ:,j s.t. ∀i ∈ {1, . . . , N} : WT

:,iΦ:,i = 1 (3)

For each layer of ALISTA, only a scalar step size parameter γ(k) and a scalar threshold θ(k) is learned
from the data, yielding the iteration:

x(k+1) = ηθ(k)

(
x(k) − γ(k)WT (Φx(k) − y)

)
(4)
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As in LISTA, the parameters for ALISTA are learned end-to-end using backpropagation and stochastic
gradient descent by empirically minimizing the mean squared error between the reconstruction and
the target vector. The authors rigorously upper-bound the reconstruction error of ALISTA in the
noiseless case and demonstrate strong empirical reconstruction quality even in the noisy case. The
empirical performance similar to LISTA, the retained theoretical guarantees, and the reduction of
number of parameters to train from either O(KM2 +NM) in vanilla LISTA or O(MNK) in the
variant of LISTA-CPSS [3] to just O(K), make ALISTA an appealing algorithm to study and extend.

Thresholds that are adaptive to the current target vector have been explored in ALISTA-AT [9],
where thresholds are computed depending on the absolute values of the components from the current
reconstruction, for which the authors demonstrate superior recovery over ALISTA for a specific
setting of M,N and s. In a related approach [15] identify undershooting, meaning that reconstructed
components are smaller than target components, as a shortcoming of LISTA and propose Gated-
LISTA to address these issues. The authors show that adding their proposed gates to ALISTA, named
AGLISTA, improves its performance in the same setting of M,N and s as ALISTA-AT.

In this paper, motivated by essential proof steps of ALISTA’s recovery guarantee, we propose an
alternative method for adaptively choosing thresholds and step sizes during reconstruction. Our
method directly extends ALISTA by using a recurrent neural network to predict thresholds and step
sizes depending on an estimate of the `1-error between the reconstruction and the unknown target
vector after each iteration. We refer to our method as Neurally Augmented ALISTA (NA-ALISTA), as
the method falls into the general framework of neural augmentation of unrolled algorithms [14, 12, 5].
To summarize, our main contributions are:
1. We introduce Neurally Augmented ALISTA (NA-ALISTA), an algorithm which learns to adap-

tively compute thresholds and step-sizes for individual target vectors during recovery.
2. We provide theoretical motivation inspired by guarantees for sparse reconstruction which show

that NA-ALISTA can achieve tighter error bounds depending on the target x∗.
3. We show that NA-ALISTA empirically outperforms ALISTA and other state-of-the-art algorithms

in all evaluated settings and that the gains increase with decreasing M/N .

2 Theoretical Motivation
The thresholds θ(k) in (4) play an important role in the analysis of ALISTA. In this section we
motivate the choice of adaptive thresholds - the key improvement in our proposed NA-ALISTA.
More specifically, we repeat the conditions under which ALISTA guarantees no false positives and
highlight an intermediate step in the error bound from [11], which tightens when the thresholds can
adapt to specific instances of x∗.

Assumption (adapted from Assumption 1 in [11]):
Let x∗ ∈ ΣNs be a fixed s–sparse target vector. Let W be such that it attains the infimum (3) yielding
µ̃ = µ(W,Φ). Let s < (1 + 1/µ̃)/2, {γ(k)}kk=1 ⊂ (0, 2

2µ̃s−µ̃+1 ) and {θ(k)}Kk=1 with:

θ(k) ≥ γ(k)µ̃‖x(k) − x∗‖1 (5)

Because in ALISTA, {θ(k)}Kk=1 and {γ(k)}Kk=1 are optimized in expectation over the training data
sampled from a compact set X , (5) holds only if the thresholds are larger than the worst case `1-error
committed by the algorithm over all training vectors, i.e. θ(k) ≥ γ(k)µ̃ supx∗∈X ‖x(k)−x∗‖1, see eq.
(9) in [11]. Only in this case it is guaranteed that no false positives are in the support of x(k), meaning
that supp(x(k)) ⊆ supp(x∗), see Lemma 1 in [11]. However, the threshold θ(k) also appears in the
error upper bound. We employ an intermediate step of the error upper bound in Theorem 1 from [11]:

Reconstruction error bound: Under the settings of the Assumption, it holds that:

‖x(k+1)−x∗‖2 ≤ ‖x(k+1)−x∗‖1 ≤ µ̃γ(k)(s−1)‖x(k)−x∗‖1+θ(k)s+|1−γ(k)|‖x(k)−x∗‖1 (6)

This inequality is derived in detail in Appendix A of [11]. Hence it is desirable that θ(k) is as small
as possible, but such that it still satisfies (5). This means that ALISTA has to learn thresholds at least
proportional to the largest possible committed `1-error over all possible x∗ in order to guarantee good
reconstruction, for which it is in turn penalized in the error bound. However, the thresholds that make
the error bound tighter vary depending on the x∗ that is to be recovered. In fact, if an algorithm would
have access to ‖x(k) − x∗‖1 and were allowed to choose thresholds adaptively, depending on this
quantity, the more relaxed inequality (5) could be employed directly, without taking the supremum.
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3 Neurally Augmented ALISTA
In order to tighten the error upper bound in (6), we introduce Neurally Augmented ALISTA (NA-
ALISTA), in which we adaptively predict thresholds θ(k,x

∗) depending on an estimate for the `1-error
between x(k) and the unknown x∗. As can be observed from (6), such θ(k,x

∗) must be proportional
to ‖x(k) − x∗‖1. In theory, this true `1-error could be recovered exactly. This is because there are
no false positives in x(k), making it s-sparse and for µ̃ < 1/(2s− 1) the column-normalized WTΦ
is restricted-invertible for any 2s-sparse input [6] [Corollary 5.4, p.113]. However, it is infeasible
to solve such an inverse problem at every iteration k. Furthermore, in practice the sparsity is often
much larger than what is admissible via coherence bounds (see experiments of [7, 11, 15, 9], even
assuming optimal admissible coherence by Welch bound [13]).

Therefore NA-ALISTA approximates the `1 error. For this, consider the `1-norms:

r(k) := ‖Φx(k) − y‖1 = ‖Φ(x(k) − x∗)‖1
u(k) := ‖WT (Φx(k) − y)‖1 = ‖(WTΦ)(x(k) − x∗)‖1

(7)

of the residual and the iterative update quantity in (4). Both are known to the algorithm even
though x∗ is unknown and do not incur additional computational costs other than taking the norm.
Since WTΦ has low generalized mutual coherence, it is a restricted isometry for sparse vectors and
therefore u(k) will be correlated with the true error for sparse vectors. This correlation is validated in
Figure 1 for u(k), but also holds for r(k). Other useful quantities for approximating the `1-error are
‖x(0) − x∗‖1, . . . , ‖x(k−1) − x∗‖1 (also shown in Figure 1. The latter suggests the use of a recurrent
neural network in NA-ALISTA, leveraging the past estimations. We therefore propose to use an
LSTM [8] which has two input neurons, receiving u(k) and r(k) at each iteration k. This is used to
update the LSTM cell state c ∈ RH and hidden state h ∈ RH and produce the outputs θ(k,x

∗) and
γ(k,x

∗) via matrix multiplication with a learned matrix U ∈ R2×H and then passing through the
softsign function:

c(k+1), h(k+1) = LSTM(c(k), h(k), [r(k), u(k)]) (8)

θ(k,x
∗), γ(k,x

∗) = Softsign(Uc(k+1)) (9)

The threshold and stepsize are then used in the final step of one NA-ALISTA iteration:

x(k+1) = ηθ(k,x∗)

(
x(k) − γ(k,x∗)WT (Φx(k) − y)

)
. (10)

4 Experiments
In this section, we evaluate NA-ALISTA in a sparse reconstruction task and compare it against
ALISTA [11], ALISTA-AT [9], AGLISTA [15], as well as the classical ISTA [4] and FISTA [1]. To
emphasize a fair and reproducible comparison between the models, the code for all experiments listed
is available on Github1.

Experimental Setup. Following the same experimental setup as [11, 15, 3, 9], the support of
x∗ ∈ RN is determined via i.i.d. Bernoulli random variables with parameter S/N , leading to an

1https://github.com/feeds/na-alista
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Figure 1: Correlation between ‖x∗‖1 and u = ‖WTΦx∗‖1 for random Gaussian vectors x∗ ∈ R1000

is strong for sparse (‖x∗‖0=15 in (a)) and weak for non-sparse vectors (‖x∗‖0=1000 in (b)). Also,
the correlation between u(i) and the true error ‖x(j) − x∗‖1 is even preserved over multiple layers
for an instance of NA-ALISTA , e.g. for i=5 and j=6 in (c), and i=5 and j=8 in (d).
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Figure 2: The reconstruction error over the num-
ber of iterations K for N=2000, SNR=40dB. NA-
ALISTA outperforms all competitors.

500 750 1000 1250 1500 1750 2000 2250 2500

N

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

n
M

S
E

(d
B

)

ALISTA

ALISTA-AT

AGLISTA

NA-ALISTA

FISTA

ISTA

Figure 3: Reconstruction error over different com-
pression ratios. NA-ALISTA outperforms com-
petitors by an increasing margin as N increases.

expected sparsity of S. Its non-zero components are sampled according to N (0, 1). The entries of Φ
are also sampled fromN (0, 1) and each column is normalized to unit `2-norm. Then, the generalized
coherence in (3) between W and Φ is minimized via the Frobenius-Norm approximation using
projected gradient descent, identical to [11, 15, 9]. Adam [10] is used to minimize the reconstruction
error for all algorithms. A test set of 10000 samples is fixed before training and recovery performance
is measured with the normalized mean squared error. A support selection trick was introduced in
[3] to speed up convergence and stabilize training and has been subsequently used extensively (see
supplementary code of [11, 9, 15]). For a fair comparison, we employ support selection in all learned
models compared in this paper. Our AGLISTA implementation follows the description from [15]
and uses exponential gain gates and inverse-proportional-based overshoot gains. The λ parameter in
ISTA and FISTA was tuned by hand, we found that λ = 0.4 led to the best performance in our tasks.
When not otherwise indicated we use the following settings for experiments and algorithms: M=250,
N=1000, S=50, K=16, H=128, and y = Φx∗+ z with additive white Gaussian noise z with a signal
to noise ratio of 40 dB. We train all algorithms for 400 epochs, with each epoch containing 50,000
sparse vectors with a batch size of 512.

Comparison with Competitors. As shown in Figure 6, we first fix N and observe the reconstruc-
tion error for a varying amount of iterations. In Figure 3 we then decrease the compression ratio
by increasing N and keeping everything else fixed. We observe that NA-ALISTA outperforms
state-of-the-art adaptive methods in all evaluated scenarios, particularly by a larger margin as the
compression ratio becomes more challenging.

Computational Cost. In Figure 4, we examine the effect of changing the size H of the LSTM
network used. One can observe that an exponential increase in hidden neurons yields only a small
error reduction for different N , suggesting that the size H=128 is a sufficient default value regardless
of N . This verifies that the added computation in NA-ALISTA (adding the H2 term in O(MN +H2)
for each iteration) is negligible in practice.

Verification. As an empirical verification the Assumption 1 in (5) we need to check for every x∗,
whether the ratio θ(k,x

∗)/γ(k,x
∗) is proportional to the `1-error ||x∗ − x(k)||1. Since it is infeasible to

check the assumption for the whole space of sparse x∗, we empirically verify 5 for a sample of inputs
from the training distribution. In Figure 5 the means of both values are proportional to each other for
such a test sample, suggesting that the reconstruction bound from [11] holds for NA-ALISTA as well.
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Figure 4: Reconstruction error for LSTM size H
in NA-ALISTA. An exponential increase of the
hidden layer size only yields a marginal improve-
ment once H=64 is surpassed.
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A Supplementary Experiments
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(a) N=500, SNR=40
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(b) N=500, SNR=20
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(c) N=1000, SNR=40
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(d) N=1000, SNR=20
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(e) N=2000, SNR=40
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Figure 6: The reconstruction error for ALISTA, ALISTA-AT and NA-ALISTA over the number of
iterations run for different SNR and N settings. In 6a, for the standard setting in the literature with
N= 500 and a noise level of 40dB NA-ALISTA performs on par with competitors after 16 iterations.
For an increased N=1000 under the same noise level in 6c, our algorithm outperforms the other
methods clearly. For a noise level of 20dB all algorithms perform similarly for N =500 and N=1000
and NA-ALISTA outperforms the others at N = 2000.
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B Algorithm

Algorithm 1: Neurally Augmented ALISTA
Learnable Parameters: initial cell state c0 ∈ RH , initial hidden state h0 ∈ RH ,
cell state to output matrix U ∈ R2×H and parameters of LSTM cell.
Input: y
x← 0; h← h0; c← c0
for {1, . . . ,K} do

r ← ‖Φx− y‖1
u← ‖WT (Φx− y)‖1
c, h← LSTM(c, h, [r, u])
θ, γ ← Softsign(Uc)

x← ηθ

(
x− γWT (Φx− y)

)
end
Return x;

Algorithm 1: An algorithmic expression of NA-ALISTA
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