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ABSTRACT

We introduce Autoverse, an evolvable, domain-specific language for single-player
2D grid-based games, and demonstrate its use as a scalable training ground for
Open-Ended Learning (OEL) algorithms. Autoverse uses cellular-automaton-like
rewrite rules to describe game mechanics, allowing it to express various game
environments (e.g. mazes, dungeons, sokoban puzzles) that are popular testbeds
for Reinforcement Learning (RL) agents. Each rewrite rule can be expressed as
a series of simple convolutions, allowing for environments to be parallelized on
the GPU, thereby drastically accelerating RL training. Using Autoverse, we pro-
pose jump-starting open-ended learning by imitation learning from search. In such
an approach, we first evolve Autoverse environments (their rules and initial map
topology) to maximize the number of iterations required by greedy tree search
to discover a new best solution, producing a curriculum of increasingly complex
environments and playtraces. We then distill these expert playtraces into a neural-
network-based policy using imitation learning. Finally, we use the learned policy
as a starting point for open-ended RL, where new training environments are con-
tinually evolved to maximize the RL player agent’s value function error (a proxy
for its regret, or the learnability of generated environments), finding that this ap-
proach improves the performance and generality of resultant player agents.1

1 INTRODUCTION

The idea of open-ended learning in virtual environments is to train agents that gradually get more
capable and behaviorally complex. This idea comes in many forms, but what unites them all is that
there is no fixed objective or set of objectives; rather, the objectives depend in some way on the
agent itself and its interaction with the environment and other agents. This is true for early work
on competitive coevolution in evolutionary robotics, work on artificial life simulations, and also for
more recent work on open-ended learning.

However, we have yet to see any literally open-ended learning take place in these environments.
There have been interesting results, but learning generally stops at a rather low capability ceiling. We
hypothesize that this is at least partly because of the poverty of the environments, and the associated
limitations in the variability of the environments. It has been observed that the complexity of the
behavior of a living being, such an ant or a human, is at least partly a function of the complexity
and variability of the environment it is situated in. And it stands to reason that even a very capable
and motivated agent would not learn much in an empty white room with no toys, nor in a barren
gridworld.

A secondary hypothesis of ours is that open-ended learning is hampered by the complexity of “cold-
starting” learning policies from rewards in generated environments, as these may have rare rewards
that can only be accessed through uncommon action sequences for which the agents have no priors.
This hypothesis suggests that at least part of the reason for the success of reinforcement learning
in more well-known domains is that designers, wittingly or unwittingly, build in priors and other
domain-specific adaptations to their agents.

In this paper we present Autoverse, a new environment for open-ended learning. Autoverse stands
out for allowing more complex environment dynamics and much more environmental diversity than

1Code is available at https://anonymous.4open.science/r/autoverse-F5A5.
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(a) t = 1 (b) t = 20 (c) t = 40 (d) t = 60 (e) t = 80 (f) t = 102

(g) Example of a game which first reaches a relatively stable state (with an oscillating pattern of yellow tile
activations), which is then later disrupted by agent actions).

(h) t = 1 (i) t = 20 (j) t = 40 (k) t = 60 (l) t = 80 (m) t = 102

(n) An example of a game which is largely chaotic and unstable, this quality being a common property shared
by the majority of evolved games.

(o) t = 1 (p) t = 2 (q) t = 3 (r) t = 4 (s) t = 7 (t) t = 102

(u) An example of a game in which there is some instability early in the episode, but then reaches a stable state
which is maintained for the remainder of the episode.

Figure 1: Examples of environment dynamics in environments evolved for maximum search depth.
The player (blue tile) takes the best sequence of actions as returned by a greedy tree search algorithm
in order to maximize the reward returned by the environment’s transition rules.

other open-ended learning environments. Not only the layout, but almost every aspect of dynamics
and interaction can be modified during the open-ended learning process. Environment dynamics
are encoded as cellular automata, pairing conceptual simplicity with rich expressivity. The whole
system is implemented using JAX, meaning that it run parallelized on GPUs, and at least an order
of magnitude speedup.

We also conduct a set of experiments in open-ended learning with Autoverse. In particular, we
investigate the value of “warm-starting” reinforcement learning by imitating trajectories taken by
best-first tree search agents. This exploits the fact that Autoverse can be used as its own forward
model, making rapid tree search practical.

2 METHODS

2.1 AUTOVERSE: A BATCHED GAME ENGINE WITH EVOLVABLE COMPONENTS

In this section, we develop a framework for batched simulation of grid-world games, allowing game
designers to rapidly generate robust agents and complex environments for a broad family of games.
We propose a game engine—in the form of a domain specific language (DSL)—that is both general
enough to encode a diversity of interesting and complex individual games, while also allowing for
batched simulation so as to make rapid agent training accessible on a single GPU. Whereas prior
studies have largely fixed the semantics of the generated environments—for example constraining
them to always take place in a maze, on 2D navigable terrain (Brockman et al., 2016), or a 2.5D
space with moveable objects and rigid-body physics (i.e. XLand Team et al. (2021))—we are inter-
ested in generating environments that may carry a broader diversity of possible agent-environment

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) A rule is defined as a sequence of local tile pat-
terns, where the presence of an input pattern causes
an output pattern to appear at the following timestep,
and the application of a positive or negative reward.
A rule set is implemented as a sequence of convolu-
tions.

(b) Environments are mutated by modifying tiles in
the initial level map, or in the input/output patterns
of rules, as well as the reward values associated with
rules.

(a) Game environments are selected for maximum
fitness—where fitness is defined as the steps-to-best-
solution from greedy tree search—and mutated to
produce offspring. At each generation, tree search is
capped by a maximum number of steps, which is in-
creased when fitness comes within a threshold of this
maximum.

(b) For each environment, greedy tree search is per-
formed over the space of possible player actions. The
steps taken before finding the best solution is taken as
the fitness.

Figure 3: An overview of autoverse’s approach to generating novel environments and trajectories.
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Figure 4: The trajectories and environments generated by autoverse are incorporated in an Open-
Ended Reinforcement Learning loop.
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interactions to further push the generality of OEL-trained controllers. In this section we propose a
method to easily batch a surprisingly large category of games.

We focus on games whose dynamics involve discrete elements interacting on a grid. At the core of
the DSL are rewrite rules, which specify transformations applied to local patterns of tiles. Despite
their seeming simplicity, rewrite rules have been leveraged in prior game description languages, and
in particular, in the popular puzzle game engine PuzzleScript (Lavelle, 2013), to generate games
ranging from rogue-likes (in which players navigate dungeons, collect treasure and fight enemies),
Super Mario Bros-type side-scrolling platformers, and Sokoban-like box-pushing puzzle games and
simulacra of circuit-building.

For example, in a roguelike game where a player is tasked with exploring a dungeon littered with
obstacles, enemies, and treasure, a rewrite rule might describe the event of a player’s stepping into
lava by indicating that, if a player tile and a lava tile are overlapping, at the next timestep, the
player tile should disappear while the lava remains. A similar logic can be used to allow for basic
player movement: we allow the player agent to place invisible ‘force’ tiles at any cell adjacent to the
current player position; we then use a rewrite rule to ensure that whenever a player tile is adjacent to
a force tile overlapping with a ‘floor’ tile (i.e. a grid cell unobstructed by obstacles preventing player
movement), at the next timestep, the player should move onto this adjacent floor tile, consuming the
force tile in the process.

We propose a novel approach to rewrite rules by taking advantage of the fact that they can be imple-
mented with convolutions, allowing our environment to be both differentiable and easily hardware
accelerated. A rewrite rule says that when an n×m patch I of tiles is present on the map at timestep
t, it should be replaced by an n × m patch O at timestep t + 1. We can express the above state-
ment more formally, focusing on a n×m patch of the board C (and supposing patches are one-hot
encoded over the number of tile types), taking ∥M∥L0

as the sum of elements in a matrix M (i.e.
∥M∥L0 = 1T ·M · 1), and letting I := ∥I∥L0 , as:

Bt+1 =

{
O if ∥I⊙Bt∥L0 = I

Bt otherwise

Now, we detail how this operation can be applied to the entire board with a simple sequence of
contolutions. First, we construct a convolutional kernel KI , with dimensions c× 1× n×m (where
c is the number of tile types) for recognizing the input pattern I. To this end, we simply set KI [:
, 0, :, :] := I, with 0s everywhere else. In this way, when KI is applied to a patch containing I, its
activations will sum to exactly I . We can thereby use this kernel to compute an intermediary binary
state D, which is 1 wherever the input pattern is present, and 0 elsewhere. Denoting the state of the
board as C,

Dt+1 = ReLU (convKI
(Ct)− I + 1)

Next, we apply a transposed convolution to generate the change to the board required by corre-
sponding output patterns. More precisely, we construct a transposed convolutional kernel KO, with
dimensions 1 × c × n × m, such that KO[0, :, :, :] := O − I . In this way, when KO is applied to
the binary pattern D, then wherever D is equal to 1 (and thus the input pattern I is present at this
location), then the result of applying KO to D will, when added back to the prior board state Dt,
result in the replacement of the input pattern with the output pattern:

Ct+1 = convT
KO

(Dt+1) +Dt

2.1.1 POSSIBLE EXTENSIONS TO THE AUTOVERSE LANGUAGE

In addition to binary patterns, we can generate networks for propagating scalar “flows”. To simulate
a “source” of water using the binary rules above, we might specify that water cells can replicate
downward when unobstructed, and otherwise sideways (when unobstructed to the side). When
water flows to an adjacent tile, we update an additional channel, denoting the “level” of the water
at that point, for example, decrementing once with each horizontal tile transition, such that water
is “absorbed” by land tiles after a certain time. Using similar auxiliary, integer-valued channels,
we can effectively “count” the distance some substance has travelled from a source, and thereby
can move beyond rewrite rules based on local patterns to instantiate more complex algorithms like
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breadth/depth-first search-based pathfinding (again as a batched, differentiable convolutional neural
networks, as in (Earle et al., 2023)). Though in this work, we limit the games to only involve
binary activations, we note that certain games can exhibit phenomena that appear “flow-like”, as an
emergent property of interaction between evolved rules.

Finally, we note that it is also possible to adapt the rewrite-rules, encoded as convolutions, to support
applying each rule only once or a fixed number of times, and/or in a random order, by selecting tiles
to rewrite by taking the maximum over an additional channel of ordered or randomly-generated
index values. For maximum parallelism, we opt to apply rules in parallel, but can use masking to
guarantee that certain rules inhibit others.

2.2 WARM-STARTING OPEN-ENDED LEARNING FROM SEARCH

2.2.1 EVOLVING GAME ENVIRONMENTS TO MAXIMIZE SEARCH-BASED COMPLEXITY

The first component of our co-learning algorithm involves generating a large and diverse initial set
of environment mechanics and layouts prior to agent training. We begin with an effectively empty
environment. Here, the player has access to a handful of primitive actions, namely, rotating in either
direction, moving forward or backward, and activating a single purple tile at the cell in front of it.
In addition to the player, and the purple tiles which it may place, there are 3 additional tile types
(rendered in different colors), and an initial random environment is generated by activating one of
these additional tile types at each cell on the board with uniform probability. This initial environment
contains 5 rules, which begin as no-ops, containing empty input and output patterns of size 3 × 1
(all 4 rotated versions of each rules are applied to the board at runtime). During our evolutionary
algorithm, these rules may be randomly mutated by changing the value of tiles present in the rewrite
rule, and/or by changing the player reward resulting from each application of the rule. The tiles
changed may be in the input and/or output pattern, and at various spatial positions relative to one
another. For example, an empty rule might eventually be mutated such that it results in a reward
of +1, contains adjacent purple and red tiles in the input pattern, and a green tile in the output,
resulting in a game mechanic wherein whenever the player places a purple tile next to a red tile,
it results in a positive reward and mutates the board accordingly. Such a rule would incentivize a
play strategy in which the player races to “consume” as many red tiles as possible over the course
of an episode. Or, if other rules evolve to result in the propagation of red and/or purple tiles, a more
sophisticated and indirect strategy might be preferable. In this way, evolved rules may interact so as
to form increasingly complex dynamics, resulting in a lineage of games with non-obvious or perhaps
contradictory optimal strategies.

From the standpoint of getting an early sense of an AI player’s awareness of and ability to adapt
to new rules, the option to mutate reward is a useful feature because it allows for two copies of an
environment with identical dynamics to have inverted goals. For example, in one game, red tiles
may provide reward, and in another, they may provide negative reward, ensuring that the player
cannot ignore the specifics of mutated rules and apply the same strategy to both environments. It
is also worth noting that when mutating rewrite rules, we allow for rules to emerge which “kill”
the player and end the game (i.e. with one player tile in the input pattern and none in the output),
which similarly raises the stakes and decreases the likelihood that a rule-agnostic strategy can be
successfully applied to all environments.

We also mutate the initial level layout, a multi-hot array of tiles, by randomly flipping bits in the
array. It is important to jointly evolve the initial level layouts as some initial levels, when paired with
certain rulesets, may result in unsolvable environments or environments with uninteresting dynamics
(e.g. where certain rewrite rules are never applied because some particular tile type necessary for
the rule’s application is initially absent from the level). Conversely, the same rule-set can result
in multiple diverse tasks when paired with different initial level layouts. As a sanity check, we
can also disable ruleset-mutation and evolve the initial level layout of any of the base, hand-defined
environments, resulting, for example, in mazes or sokoban levels with increasingly difficult solutions
(as measured by a search-based agent, described below).

A simple mu + lambda evolution strategy is used to evolve environments using the above-mentioned
mutation operators. As a fitness metric, we compute a proxy for the complexity or difficulty of the
environment using search. In particular, we use best-first search to explore possible sequences of
actions that can be taken by a player agent, prioritizing those trajectories that lead to higher reward.
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The fitness of an environment is equal to the number of states visited by search prior to it finding
the highest-reward solution. A “node” in the search tree corresponds to a game state, i.e. the current
player reward, the position and orientation of the player agent, and the multihot array corresponding
to the state of the level at a given timestep; an edge in the search tree is a player action (rotating left
or right, moving forward, or activating a tile). When a game state is encountered that is equivalent
to some state seen earlier in search, the shallower node—closer to the root of the tree and thereby
occurring after fewer player actions—is kept, and the deeper node is pruned from the search tree.
If two states are equivalent except for their reward, then only the state with higher reward is kept.
The budget of best-first search is limited, and this limit is increased whenever there appears in the
population an environment whose best solution required a number of search iterations approaching
this limit to some degree.

2.2.2 IMITATION LEARNING: DISTILLING SEARCH-BASED SOLUTIONS

Throughout this process of environment evolution, we store trajectories corresponding to the solu-
tions of all environments encountered. If the same environment (i.e. a ruleset and initial level layout)
appears twice, we keep the trajectory that led to higher reward. (This situation may arise when a
clone of an environment is re-evaluated at a later stage in evolution, with a higher cap on the amount
of search afforded to our fitness evaluation.)

We then perform behavior cloning on this archive of trajectories, in effect distilling the set of solu-
tions discovered by search into a neural network. Behavior cloning is a simplistic form of imitation
learning, wherein the model is given (state, action) pairs and is trained to predict the corresponding
action for each state. Observations consist of a local patch of the surrounding tiles, centered at the
player’s current position, in addition to a binary representation of the evolved rules of the current
environment (so that the agent may adapt its strategy to suit the given mechanics).

2.3 OPEN-ENDED REINFORCEMENT LEARNING IN EVOLVING ENVIRONMENTS

Once the behavior cloning algorithm has converged, we continue training the agent with rein-
forcement learning, randomly sampling at each episode reset from one of the unique evolved en-
vironments contained in the set of trajectories above, and using Proximal Policy Optimization
(PPO) (Schulman et al., 2017) to update the agent’s parameters. Our PPO Jax implementation is
based on PureJaxRL Lu et al. (2022) which is in turn adapted from CleanRL Huang et al. (2022),
which allows our entire training loop to be just-in-time compiled to run on the GPU. Following
work in Unsupervised Environment Design (UED) (Jiang et al., 2021; Parker-Holder et al., 2022),
we continue to evolve environments in order to generate an adaptive curriculum for our RL player
agent.

Fixing some interval kevo as a hyperparameter, after every kevo updates in our RL loop, we evolve
Autoverse environments—both the binary array corresponding to the initial map layout, and the con-
volutional kernels corresponding to the input-output patterns of the set of rewrite rules. To evaluate
the mutated environments, we freeze the weights of the RL-trained player and have it play through
1 or more episodes in the environment. Following Jiang et al. (2021), we compute the mean abso-
lute value function error of the agent over the course of an episode, and use this as the candidate
environment’s fitness. The value function error is intended as a proxy measure of regret—that is, the
difference in return (i.e. discounted reward) accumulated by the learned player over the course of an
episode, and that of a hypothetical optimal player. Dennis et al. (2020) show that, when the adversar-
ial loop between the environment-generator agent (in our case an evolutionary algorithm) and player
agent is seen as a multi-agent game, wherein the generator’s objective to increase, and the player’s
objective to decrease, such a measure of regret, then this game converges to a Nash equilibrium,
implying that the generator has discovered maximally complex and challenging environments with
respect to the agent, and the agent has discovered a maximally capable policy with respect to the
environments produced by the generator (given some simplifying assumptions). Intuitively, we can
think of the value function error as indicating the extent to which the learned agent is “surprised” by
the outcome of its episode (i.e. having either over- or under-estimated its performance during play).
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Table 1: In agents trained with behavior cloning to imitate the solutions found from greedy search
on evolved environments, training and testing performance is higher given larger observations of the
surrounding board state. Agents that fully observe the board perform best.

train mean test mean
obs window
5 148.23 ± 27.30 154.22 ± 12.21
10 124.31 ± 23.53 136.69 ± 27.53
20 133.38 ± 15.21 145.08 ± 18.95
31 187.87 ± 14.54 165.94 ± 16.46

Table 2: In agents trained with imitation learning, observing an environments’ rules leads to higher
performance at train and test time.

train mean test mean
observe rules
False 167.26 ± 12.90 151.87 ± 15.49
True 187.87 ± 14.54 165.94 ± 16.46

3 RESULTS

Tables 1 and 2 show the importance of observations on agent performance when imitation learning
on trajectories generated from greedy tree search on evolved environments. Table 1 shows that
generally, larger observations of the map allow for increased performance both during training, and
on test environments (environments also generated by the evolutionary process, but held out for
testing). The best performance comes from agents that are able to fully observe the map (where
the observation is centered at the agent’s current position, and 0-padding is added to the map as
necessary).

Table 2 shows that agents that are allowed to observe each environment’s rule-set perform better
than agents for whom the rule-set is replaced by 0-padding. This shows that the mechanics of the
generated environments are sufficiently distinct, such that agents cannot perform effectively without
observing the rule-sets.

We show some preliminary qualitative results of the search-based evolutionary process in Figure 1.
We observe a variety of distinct environment dynamics in evolved environments. The majority of
environments exhibit highly unstable dynamics, in which the majority of cells on the map change
state from one timestep to the next, as exhibited in Figure 1n. The prevalence of such environments
may partially be explained by the fact that, in an environment where almost all states are different
from one another, a search-based agent is less likely to encounter the same state twice, thus forcing
it to search longer for optimal states. This is at least true toward the beginning of evolution: all else
being equal, if we compare an environment in which the agent’s actions have no effect (i.e. there
are no rules where the agent can construct the input pattern by placing force tiles) and which is
also stable throughout the episode; with an environment in which the agent’s actions have no effect,
but the map state is changing drastically from one timestep to another, the latter environment will
force the agent to construct a larger search tree with more distinct nodes. Given that these chaotic
environments remain prevalent later in evolution, however, requires further explanation. It must be
the case that these environments are also highly reactive to the actions of the player agent, i.e. that
by placing a force tile, the player can put into motion a chain of events (rule-applications) causing a
sequence of novel states requiring further search to explore.

One difficulty with the kinds of chaotic dynamics that appear so frequently among evolved environ-
ments is the difficulty of interpreting a player-agent’s strategy. Future work will qualitatively assess
the differences between high/medium/low reward trajectories in such environments.

Another distinct type of environment which we observe in our experiments is exemplified by the
evolved environment in Figure 1u. In this environment, there is some activity and state-changes
early on during the episode, after which point the map then becomes entirely stable, with the agent
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taking no further actions to affect outcomes. Presumably, all of the consequential decisions taken
by the player agent occur early on during the episode in this environment. It is surprising, then, that
such an environment persists later on in evolution, since one can easily imagine simply extending
the complexity of the early-episode phase to later in the episode, thereby increasing potential search
complexity. Indeed, it may be that as evolution continues, and the cap on search depth is gradually
increased, such exclusively “early-game” environments will die out. On the other hand, it may be
the case that the environment is not necessarily restricted to the early game, and that, instead, the
vast majority of action trajectories would result in more chaotic behavior. This would be especially
understandable if these more chaotic trajectories were deceptively rewarding, with the search agent
exploring them in depth before finally arriving at an obscure but long-term rewarding early game
move sequence (with this sequence perhaps being one of the rare sequences to result in a stable map
state for the rest of the episode). Analysis of alternative action trajectories, along with human testing
of the generated environment, can reveal the deeper nature of the evolved dynamics.

Finally, we also observe some environments with something of a balance between relatively
fixed/stable states, and more chaotic patterns, as shown in Figure 1g. Here, the environment sta-
bilizes after some initial activity, after which point the agent takes some actions which result in the
emergence and propagation across the map of more dynamic structures. Arguably, such environ-
ments are the most interpretable: unlike the purely chaotic environments, the impact of the agent’s
actions are more clearly distinguished against a non-chaotic backdrop; and unlike largely stable en-
vironments, the agent’s impact on the environment dynamics can be observed over time, instead
of occurring in the flash of an instant in a handful of early steps. Another way of seeing this is
that it seems less like the agent is learning a fine-grained, carefully-timed and exacting sequence of
actions—a kind of rhythmic password—and more like it is planning on a larger scale. Further work
would be needed, however, to formalize and quantify the difference between such types of strategies
before we might begin to associate them with different environments; ultimately, such heuristics
could be used to guide the evolutionary process itself toward environments begetting this type of
behavior from player agents. Similarly, our notion of this class of environments being more “inter-
pretable” than those previously described could be pursued further, with the aim of better aligning
the open-ended learning process with notions of human interestingness.

4 RELATED WORK

Reinforcement learning research has long relied on benchmarks of various kinds. These are often
taken from, or inspired by, games, including board games and video games, and sometimes from
robotics and other disciplines. An issue with these benchmarks is the risk of overfitting. If the
benchmark does not have appropriate degree of variability, the RL algorithm will tend to learn a
policy that will work only for a particular configuration of a particular environment. For example,
when training deep RL methods to play Atari games in the ALE framework, they will typically learn
a policy that works for only one game, and only the particular levels of that game, and break if you
give the trained policies a new level or even just introduce visual distortions Zhang et al. (2018);
Justesen et al. (2018); Cobbe et al. (2019).

One approach to ensuring sufficient diversity is to rely on procedural content generation (PCG),
where levels or other aspects of the benchmark are generated algorithmically Risi and Togelius
(2020). While the simplest forms of PCG simply consist of randomly changing parameters or mov-
ing things around, there are numerous PCG methods building either on various forms of heuristics
and optimization Shaker et al. (2016) or machine learning, including deep learning Liu et al. (2021).
Clearly, PCG can help to combat overfitting in RL; by training on an infinite stream of freshly
generated levels, more general policies can be found Justesen et al. (2018).

However, diversity in the training set is even better if you have the right sort of diversity. One
way of achieving this is through competitive coevolution, where agents seek to perform well in
environments and environments seek to provide challenge to agents. This idea, originating in biol-
ogy Dawkins and Krebs (1979), has a long history in evolutionary computation Rosin and Belew
(1997); Hillis (1990), and was later re-discovered in the form of adversarial learning Goodfellow
et al. (2014). Applied to generating environments for reinforcement learning, this basic idea has
taken on different shapes, including generating environments that provide an appropriate level of
challenge or that are learnable by the reinforcement learning algorithm Togelius and Schmidhuber
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(2008); Dennis et al. (2020); Bontrager and Togelius (2021); Mediratta et al. (2023). The animat-
ing spirit behind much of this work, beyond merely combating overfitting, is to enable open-ended
learning.

While there are many benchmarks and testbeds for reinforcement learning methods, few existing
benchmarks feature meaningful PCG; exceptions include Obstacle Tower Juliani et al. (2019), Coin-
Run Cobbe et al. (2019), and Neural MMO Suarez et al. (2024). In comparison to these, Autoverse
is an RL benchmark explicitly relying on and aiming to enable open-ended learning, where environ-
ment generation is responsive to progress in agent capabilities.

5 CONCLUSION

We introduce autoverse, a scalable testbed for open-ended learning algorithms, and run some ini-
tial experiments exploring the use of an evolutionary strategy to search for autoverse environments
comprising difficult game environments with respect to a search-based player agent. We formalize
the underlying mechanics of autoverse by association with cellular automata and the rewrite-rule
approach to game logic developed by other popular game languages. We walk through some ex-
amples of popular game and reinforcement learning environments, showing how mazes, dungeons,
and sokoban puzzles can be implemented with relatively straightforward sets of rewrite rules. We
also show how autoverse update rules in general can be implemented with a simple series of con-
volutions, allowing environment simulation to occur on the GPU, making for fast simulation and
neural-network learning in particular within the framework.

Our evolutionary search for challenging environments relative to a search-based player discovers a
large number of distinct environments, each constituting a potentially novel and interesting task for
an RL-based player agent. This evolutionary search also returns a large number of expert trajecto-
ries, which can ultimately be used for imitation learning and to jump start RL. Because the cap on
search depth is increased incrementally over the course of evolution, we also obtain a curriculum of
increasingly expert trajectories and/or increasingly complex environments. Future work will study
how this data can be used to jump-start a generalist reinforcement learning game playing agent by
pre-training its weights using imitation learning.

Of particular interest in the evolved autoverse environments is the degree to which a given environ-
ment’s dynamics are stable or chaotic. We note that a large number of environments tend toward
chaos, and argue that more human-relevant environments can be found in the middle ground of semi-
stable environments, where stable or oscillating patterns tend to be reached, but the player agent can
intervent to disrupt or alter them to some degree. Future work is needed to investigate quantitative
metrics that may be used to guide the search process toward such environments. More broadly,
using pre-trained foundation models or humans-in-the-loop could also allow us both to align the
process with notions of human interestingness, as well as to introduce additional human-authored
complexity into the learning process.
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