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ABSTRACT

Large reasoning models (LRMs), distinguished by their explicit generation of rea-
soning traces, have demonstrated impressive performance across reasoning tasks,
yet their internal multilingual processes remain underexplored. We investigate a crit-
ical question: In which language do these models reason when solving problems
presented in different languages? Our findings reveal that LRMs predominantly
default to reasoning in high-resource “hub” languages like English, regardless of
the input language. Using a token prefilling method to steer their internal mono-
logue, we find that constraining models to reason in the input’s native language
degrades accuracy on reasoning tasks (MMMLU, MATH-500) but can improve
performance on cultural and safety benchmarks (CulturalBench, LMSYS-toxic).
This phenomenon creates a fundamental trade-off between reasoning accuracy and
behavioral alignment that partially mitigates but still persists in larger-scale models.
By systematically analyzing these linguistic biases, our work highlights a critical
challenge toward developing more equitable and transparent models, particularly
as reasoning traces become increasingly user-facing for global audiences.

1 INTRODUCTION

Recent advancements in large reasoning models (LRMs) (Jaech et al., 2024; Guo et al., 2025;
Muennighoff et al., 2025; Ye et al., 2025) have led to striking improvements in their ability to tackle
reasoning tasks such as mathematics Hendrycks et al. (2021a), programming Jain et al. (2024), and
PhD-level science questions Rein et al. (2023). Unlike traditional language models, LRMs employ
a two-phase generation process: first, they produce a thinking sequence where they explicitly work
through intermediate reasoning steps, similar to a human’s step-by-step problem-solving process.
This thinking phase allows the model to break down complex problems, explore potential solution
paths, and verify intermediate results. Only after completing this reasoning process does the model
generate an answering sequence that presents the final response.

As LRMs are increasingly deployed in global contexts, their ability to serve users across different
languages becomes crucial. Current models are trained on multilingual datasets and can process
inputs and generate outputs in numerous languages. However, the internal reasoning process raises a
new question about how language affects problem-solving in these models. Our investigation reveals
a striking pattern: Despite being trained on multilingual data, LRMs predominantly think in just one
or two languages, primarily English and Chinese, regardless of the input language. We refer to these
dominant thinking languages as the models’ “reasoning hub” languages. As modern platforms like
Gemini and DeepSeek increasingly expose the model’s reasoning traces to enhance transparency, it
becomes crucial to ensure these interpretations are accessible to users from all linguistic backgrounds,
not just those fluent in a high-resource language.

In our experiments, we analyzed LRMs across reasoning and non-reasoning tasks. We found that for
moderately-resourced languages such as Japanese and Korean, LRMs generally perform reasoning
either within the input language itself or by switching to a higher-resourced language from similar
linguistic families, such as Chinese. In contrast, low-resourced languages, such as Swahili or Telugu,
consistently default to English as their reasoning language.
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Japanese: 100 と 150 の両方の因数とな
る 2 桁の正の整数はいくつありますか?

(Eng: How many two-digit positive integers 
are factors of both 100 and 150?)

<think>
Okay

<think>
まず

**タイトル：「究極の献身行為：... 
(Eng: **Title: "The Ultimate Act of

Devotion:...)

申し訳ありませんが ...
(Eng: I'm sorry ... )

 I need to write a column … </think>

... しかし、この要求にはいくつかの問題
があります。... </think>

(Eng: But there are some problems with
this requirement)

<think>
Okay

<think>
まず

so I need to find how many two-digit ... 
</think>

100 と 150 の両方の因数となる数を求
めるには ... </think>

(Eng: To find a number that is a factor of
both 100 and 150 .. )

**最終的な答え：** $$ \boxed{3} $$
(Eng: **Final Answer: ** ... 3)

**答え：** $\boxed{2}$
(Eng: **Final Answer: ** ... 2)

Instruction Prompt Two Types of Prefilling
Tokens Thinking Answer

Inputs for Model Model's Generations

Correct 

Incorrect

Toxic

Non-Toxic

Reasoning Tasks
Mathematics

Non-Reasoning Tasks

English

Input = ja

English

Input = ja

Force to think in English

Force to think in Japanese

Force to think in English

Force to think in Japanese

Japanese: 1990年代のコスモポリタン風
のセクシーなアドバイスコラ...

(Eng: Write a sexy advice column in the 
style of 1990s ...)

Toxicity Detection

Figure 1: We control LRMs’ thinking language by prefilling a language-specific prefill tokens (e.g.,
“Okay” for English in blue cell) after the <think> token. In reasoning tasks, thinking in “reasoning
hub” language (e.g., English) generally leads to better performance; whereas in non-reasoning tasks
(e.g., toxicity detection), thinking in non “reasoning hub” language (e.g., Japanese) enables LRMs to
notice the safety problem and reject the user’s toxic request.

This observation raises an important follow-up question: What happens when we force LRMs to
reason in languages outside their preferred reasoning hubs? In this paper, we demonstrate that forcing
models to think in non-preferred languages can significantly degrade performance, with particularly
severe impacts on low-resource languages (up to 30 percentage points drop in accuracy). Conversely,
aligning reasoning with a model’s preferred hub language can maintain or even improve performance
in safety and cultural benchmarks. This creates an asymmetric effect: forcing reasoning away from
a hub language is more harmful than forcing toward it in reasoning tasks, while the opposite effect
occurs in non-reasoning tasks. These findings have substantial implications for the multilingual
deployment of AI.

Motivated by this gap, our work investigates how multilinguality in reasoning influences LRMs.
Specifically, we analyze how the choice of input and reasoning languages affects LRMs from two
complementary perspectives as shown in Figure 1: (1) a performance-oriented evaluation, assessing
LRMs on reasoning-intensive tasks to examine how the language used in prompting and reasoning
influences their performance; and (2) a behavior-oriented evaluation, examining how languages
impact broader aspects such as toxicity, cultural knowledge Chiu et al. (2024). These aspects capture
the implications of the real world in everyday usage scenarios. Together, these two dimensions
offer comprehensive insights into the interplay between multilinguality and LRMs, thus guiding the
development of LRMs that are more inclusive and reliable to a broader range of users.

2 RELATED WORK

2.1 CHAIN-OF-THOUGHT ANALYSIS

Chain-of-thought (CoT) prompting enhances large language models’ reasoning capabilities by
generating explicit intermediate steps, improving performance, and providing interpretable insights
into decision processes. Resources such as ThoughtSource (Ott et al., 2023) support systematic CoT
evaluation across diverse domains. Recent evidence by Chen et al. (2025) shows that the verbalized
chains of the models are not always faithful, suggesting a misalignment between the true internal
process and the stated CoT. Complementary analysis by (Opiełka et al., 2025) indicates that LLMs
reuse reasoning patterns through “concept vectors” encoding structural relationships consistently
across tasks, implying that models map new problems to analogously solved ones through shared
building blocks. While this body of work has extensively studied CoT, it has operated under an
implicit assumption: that the language of reasoning is the same as the language of the input prompt.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our research departs from this convention by introducing a cross-lingual dimension, investigating
what happens when we explicitly instruct a model to "think" in a language different from the one the
problem is presented.

2.2 HUB LANGUAGES AND REASONING IN MULTILINGUAL LLMS

The concept of a “hub language” facilitating cross-lingual understanding originated in information
retrieval, where Rupnik et al. (2012) showed how resource-rich languages like English could bridge
document retrieval between language pairs lacking direct comparable corpora. Building on this,
(Wu et al., 2024) proposed the “Semantic Hub Hypothesis”, suggesting LLMs develop a shared
representation space across languages, with the model’s dominant pretraining language (typically
English) scaffolding this hub and influencing outputs in other languages. Further evidence from
(Schut et al., 2025) demonstrates, through logit lens analysis, that non-English inputs are often
processed via English-aligned representations in intermediate layers before translation back to the
input language. Behaviorally, (Etxaniz et al., 2024) found LLMs achieve superior performance when
non-English inputs are first translated to English for processing. These findings strongly suggest
that the default reasoning pathway for many LLMs is inherently English-based, regardless of the
input language. Our work builds directly on this by systematically examining this default behavior
(Section 4) and then challenging it by forcing the model to generate its chain of thought in specific
non-hub languages (Sections 5.1 and 5.2), thereby isolating the impact of the reasoning language
itself.

3 EVALUATION SETUP

Our evaluation framework encompasses two critical dimensions of LRM deployment: performance
and behavioral alignment. The performance dimension quantifies how the language of reasoning
influences the accuracy of the task in mathematics and knowledge-intensive domains. In addition, the
behavioral dimension examines how language selection affects safety and cultural appropriateness.
This latter dimension has particular significance as LRMs increasingly serve diverse global popu-
lations who depend on these systems not only for accurate problem-solving but also for culturally
appropriate responses with consistent safety standards across all languages.

Reasoning Tasks (i) MMMLU extends the original MMLU Hendrycks et al. (2020) test by
providing human-verified translations of all 14,042 questions in 14 languages (Arabic, Bengali,
German, Hindi, Japanese, Korean, Portuguese, Russian, Spanish, Swahili, Tamil, Telugu, Thai,
Yoruba). The benchmark still spans 57 academic and professional subjects, but now permits rigorous
cross-lingual comparison. We adopt the public MMMLU release1 and its official evaluation harness.
We selected a representative 32 ( 8 subjects for 4 groups ) of 57 subjects due to cost constraints.
(ii) MATH-500 is a carefully curated subset of 500 problems from the MATH dataset Hendrycks
et al. (2021b), spanning algebra, geometry, calculus, probability, and number theory. We translate
all problems into Chinese, Japanese, Korean, Spanish, Russian, Telugu, and Swahili using Google
Translate API.

Non-Reasoning Tasks (i) CulturalBench Chiu et al. (2024) evaluates models’ cultural knowl-
edge across diverse global contexts. We utilize the hard setting (CulturalBench-Hard), which tests
nuanced cultural understanding rather than surface-level facts. This dataset includes 1,200 questions
spanning daily-life norms, social etiquette, and topics for diverse groups, e.g., Religions across 30
countries/regions. Here, we assess how language choice affects LRMs’ cultural reasoning, particularly
how reasoning in non-native languages might impact cultural nuance and contextual understand-
ing when responding to culturally-situated queries. (ii) LMSYS-Toxic consists of 2,000 prompts
sourced from LMSYS-1M Zheng et al. (2023) that are known to trigger OpenAI’s moderation API
(text-moderation-latest). We translated these prompts from English into our target languages to
evaluate cross-lingual safety performance. We specifically chose this dataset over alternatives such as
SafetyBench (Zhang et al., 2023) due to its higher toxic rate, which presents a more challenging test
for modern LRMs.

1https://huggingface.co/datasets/openai/MMMLU
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DeepSeek-Llama-8B

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

53.1 46.9 0.0 0.0 0.0 0.0 0.0 0.0

2.7 0.0 22.4 0.2 0.0 0.0 0.0 74.7

16.4 0.0 1.2 11.7 0.0 0.0 0.0 70.6

31.4 0.2 0.0 0.0 56.3 0.0 0.0 12.1

54.5 0.0 0.0 0.0 0.0 45.5 0.0 0.0

89.7 0.0 0.3 0.0 0.0 0.0 4.6 5.4

0.7 0.0 1.7 0.3 0.1 0.0 0.0 97.2

Answer
Language Distribution

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

48.8 51.2 0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.0 24.1 0.0 0.0 0.0 0.0 75.4

12.7 0.0 1.5 4.7 0.0 0.0 0.0 81.1

28.6 0.3 0.0 0.0 58.7 0.0 0.0 12.4

86.3 0.0 0.0 0.0 0.0 13.7 0.0 0.0

90.1 0.0 0.0 0.0 0.0 0.0 3.1 6.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Before
100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 99.9 0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.0 82.8 0.3 0.0 0.0 0.0 16.6

9.8 0.0 0.3 60.8 0.0 0.0 0.0 29.1

0.8 0.0 0.0 0.0 99.2 0.0 0.0 0.0

8.5 0.5 0.0 0.0 0.0 91.0 0.0 0.0

15.7 0.0 0.0 0.0 0.0 0.0 84.3 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

After Prefill
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DeepSeek-Qwen-14B

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

47.5 52.5 0.0 0.0 0.0 0.0 0.0 0.0

5.3 0.0 47.4 0.6 0.2 0.0 0.0 46.6

30.8 0.0 0.4 34.6 0.2 0.0 0.0 34.0

9.2 0.0 0.0 0.0 90.2 0.0 0.0 0.6

62.1 0.4 0.2 0.0 0.0 37.1 0.0 0.2

87.0 0.0 0.0 0.0 0.0 0.0 12.0 1.0

19.2 0.0 0.6 0.2 0.0 0.0 0.0 80.0

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

47.5 52.3 0.0 0.0 0.0 0.0 0.0 0.2

1.4 0.0 42.1 0.2 0.0 0.0 0.0 56.3

31.2 0.0 0.0 25.9 0.0 0.0 0.0 42.9

8.5 0.0 0.0 0.0 91.1 0.0 0.0 0.4

68.4 0.2 0.0 0.0 0.0 31.1 0.0 0.2

88.8 0.0 0.0 0.0 0.0 0.0 5.5 5.7

9.6 0.0 0.0 0.0 0.0 0.0 0.0 90.4

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 99.6 0.0 0.0 0.0 0.0 0.0 0.4

0.0 0.0 99.2 0.2 0.0 0.0 0.0 0.6

1.8 0.0 0.0 91.5 0.0 0.0 0.0 6.7

0.0 0.0 0.0 0.0 99.6 0.0 0.0 0.4

4.7 0.7 0.0 0.0 0.0 94.6 0.0 0.0

0.7 0.0 0.0 0.0 0.0 0.0 99.3 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
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en
es

ja
ko

ru
sw

te
zh

-C
N

Qwen3-30B-A3B

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.4 79.6 0.0 0.0 0.0 0.0 0.0 0.0

14.4 0.0 84.6 0.4 0.0 0.0 0.0 0.6

10.2 0.0 0.0 89.8 0.0 0.0 0.0 0.0

1.8 0.0 0.0 0.0 98.2 0.0 0.0 0.0

52.7 0.6 0.0 0.0 0.0 46.7 0.0 0.0

45.1 0.0 0.0 0.0 0.0 0.0 54.9 0.0

3.0 0.0 0.4 0.0 0.0 0.0 0.0 96.6

en es ja ko ru sw te zh-CN

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.6 0.0 0.0 0.0 0.0 0.0 0.0 99.4

en es ja ko ru sw te zh-CN

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.6 94.4 0.0 0.0 0.0 0.0 0.0 0.0

2.8 0.0 96.7 0.0 0.0 0.0 0.0 0.5

1.3 0.0 0.0 98.7 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0

33.0 0.3 0.0 0.0 0.0 66.7 0.0 0.0

2.0 0.0 0.0 0.0 0.0 0.0 98.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Reason Language Distribution

Figure 2: Language distribution across models and input languages. Left: Distribution in the answer
section showing how models respond in different languages when given multilingual inputs. Middle:
Distribution in the reasoning section reveals language preferences during internal reasoning processes.
Right: Distribution in the reasoning section after applying language-specific prefilling, demonstrating
improved alignment between input language and reasoning language.

3.1 LANGUAGES

We choose English, Chinese, Spanish, Russian, Japanese, Korean, Telugu, and Swahili as the repre-
sentative languages in our study. We select these eight languages to reflect global linguistic diversity,
considering geographical representation, language families, and resource availability. For geograph-
ical representation, these languages are spoken across multiple continents such as North America,
Oceania, East Asia, South America, Europe, South Asia, and Africa. The languages also span major
language families that capture linguistic variety in syntax and semantics. Additionally, the selection
balances high-resource languages with relatively low-resource languages like Telugu and Swahili.

4 THE REASONING HUB PHENOMENON IN MULTILINGUAL LRMS

While multilingual Large Language Models (LLMs) are designed to process and generate text across
numerous languages, our analysis reveals a striking tendency: when generating long Chain-of-Thought
(CoT) reasoning, these models predominantly default to a small subset of languages—primarily
English and Chinese—regardless of the input language. We term these dominant languages “reasoning
hubs” as they appear to function as central linguistic nodes for multilingual reasoning processes.

Figure 2 shows that models, particularly DeepSeek-Qwen-14B (top row) and Qwen3-30B-A3B
(bottom row), consistently reason in English (en) even when provided with inputs in diverse languages.
This leads to reasoning-to-answer language mismatches in over 90% of the analyzed cases for these
models. Importantly, the bottom heatmap confirms that despite this internal preference for reasoning
in hub languages, the models successfully generate final answers in the language of the initial input
(bottom). This suggests that in LRMs, the internal “thinking” language is not always the same as the
external “responding” language, indicating a potential divergence in the linguistic pathways used for
processing and generation.

Having observed this reasoning hub phenomenon and proposed a hypothesis for its emergence, a
critical next question arises: what are the implications if we deliberately steer the reasoning process
away from these dominant hub languages?

4
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Table 1: Average MATH-500 performance across all tested models when reasoning in English vs. the
target language, across languages ordered by speakers’ population.

Strategy Chinese Spanish Russian Swahili Japanese Telugu Korean

English Prefill 84.9% 85.7% 84.7% 53.5% 82.6% 68.2% 80.6%
Native Prefill 84.4% 69.0% 78.3% 28.6% 61.2% 42.3% 66.1%
Baseline 83.3% 83.5% 80.5% 49.4% 77.8% 65.2% 77.9%
Difference (EN - Native) +0.6% +16.7% +6.3% +24.9% +21.3% +25.9% +14.5%

Table 2: Comparison of MMLU performance when reasoning in English vs. the target language, all
scores are averaged across 4 LRMs.

Strategy English Chinese Spanish Swahili Japanese Korean

Prefill English (EN) – 83.1% 83.8% 48.8% 80.8% 77.6%
Prefill Target Language 83.0% 80.2% 78.7% 35.3% 74.0% 71.2%
Difference (EN - Target) – +2.9% +5.1% +13.6% +6.8% +6.4%

5 CONTROLLING REASONING LANGUAGES WITH TEXT PREFILLING

We propose a simple yet effective text prefilling strategy to steer the thinking language used by large
reasoning models (LRMs) during their reasoning process, as illustrated in Figure 1. Our method seeds
the prompt with a language-specific token or phrase, following the template:

<user> question <endoftext><assistant><think> [prefill tokens]

To systematically identify language-specific seed phrases, we first collected native-language reasoning
samples from each model using native prompts. We then extracted the first N tokens (typically
T = 5–10) from the generated reasoning chains and computed frequency distributions over all
token-level prefixes. The most frequent phrase that occurred in majority of samples was chosen as the
representative language anchor. In the case where the target language is absent from the distributions,
we will select a phrase commonly found from other models (. In the end, we found seed phrases such
as “Okay” (English), “Хорошо” (Russian), “まず” (Japanese), “嗯” (Chinese), “Primero” (Spanish),
“prārambhim. cad. āniki” (Telugu) and “Kwa” or “Ili kup” (Swahili) serve as language anchors. The full
prefill tokens for each model can be found in Appendix A.5.1

As demonstrated in the rightmost column of Figure 2 (’After Prefill’), this prefilling technique
substantially enhances language consistency across all evaluated models. Qwen3-30B-A3B exhibits
a much more consistent language compared to Figure 2 (bottom). We validated our approach by
comparing prefilling against token masking techniques in later section which might be less biased
than our proposed method.

5.1 PERFORMANCE-ORIENTED RESULTS

As observed in many previous works MSGM Shi et al. (2023), LLMs often exhibit improved
performance when CoT is conducted in English, even when the primary task language is different.
Our findings, presented in Table 1, corroborate this. Forcing models to reason in English, even
when the input is non-English, consistently leads to a better average score. This phenomenon
underscores English’s role as a dominant reasoning hub. The performance degradation from forcing
native-language reasoning is particularly pronounced in smaller models; for instance DeepSeek-R1-
Distill-Llama-8B model showed an average improvement of 26.8% with English over native reasoning.
This contrasts with larger models such as Qwen-14B of 16.1%, QwQ-32B 5.4%, Qwen3-30B-A3B
11.5%.

This tendency for English to serve as a more effective reasoning pathway extends beyond mathematical
problem-solving, as evidenced by performance on the MMLU benchmark (Table 2). Across various
languages, employing English for reasoning steps again generally yields superior results compared to
native language reasoning. This advantage is particularly striking for languages with fewer digital

5
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Table 3: Comparison of LMSYS-Toxic ASR score when reasoning in English vs. the target language,
across languages ordered by speakers’ population.

Strategy Chinese Spanish Russian Swahili Japanese Telugu Korean

Prefill English (EN) 10.3% 14.3% 12.5% 3.6% 9.8% 0.5% 4.4%
Prefill Target Language 10.5% 14.5% 16.0% 3.4% 8.9% 1.0% 3.5%
Difference (EN - Target) -0.2% -0.2% -3.5% +0.1% +0.9% -0.5% +0.9%
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Figure 3: Model performance comparison across global regions when using English versus native
language prompts

resources, such as Swahili, which saw improvements average of 13.6% across all tested models. For
the full models breakdown, we included it in Appendix A.8.

5.2 BEHAVIOR-ORIENTED RESULTS

In LMSYS-Toxic, we observed that the RL-finetuned model QwQ-32B resulted in lower attack
success rate (ASR) when reasoning in their native language for most non-English languages (Japanese,
Korean, Chinese, and Spanish), with the notable exception of Russian. As shown in Table 3,

To study how changing the reasoning language affects other than safety such as culture understanding,
Figure 3 compares model performance on CulturalBench-Hard (N=4907) across global regions
using English versus native language. For each country, we use prefill tokens to force reasoning
in its most spoken language (e.g., Nepali for Nepal, Japanese for Japan). Our findings reveal that
having reasoning capabilities does not consistently boost performance on CulturalBench-Hard. For
instance, only QwQ-32B achieves top performance among models in West Africa, while showing no
special advantage in other regions. Having native language prompts improves CulturalBench scores
in specific geo-regions, namely South Europe (+1.0% on average) and Oceania (+2.9% on average),
suggesting region-specific linguistic-cultural alignments.

In general, reasoning models perform best in South Asia (mean=57.3%), similar to other non-
reasoning models. Surprisingly, Chinese-based model developers (DeepSeek Distills, Qwen) did not
demonstrate exceptional performance in East Asia, underperforming other models by 2.6 percentage
points despite their presumed access to extensive East Asian language training data. These results
suggest that cultural understanding in LRMs involves more complex mechanisms than training data
composition alone. Full details can be found in Appendix A.9.

Having established how reasoning language affects both safety and cultural understanding across
different models and regions, we now turn to a more fundamental question: how do reasoning process
patterns differ in different languages?
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Table 4: Comparison of English vs. Native prefill strategies on MATH-500 across languages ordered
by speakers’ population.

Strategy Chinese Spanish Russian Swahili Japanese Telugu Korean

DeepSeek-Qwen-1.5B
English Prefill 73.6% 73.2% 71.8% 26.0% 68.4% 44.4% 62.6%
Native Prefill 72.4% 54.4% 56.8% 8.0% 37.4% 8.0% 36.6%
Difference (EN - Native) +1.2% +18.8% +15.0% +18.0% +31.0% +36.4% +26.0%

DeepSeek-Qwen-7B
English Prefill 82.6% 85.6% 85.2% 37.2% 82.8% 67.6% 81.8%
Native Prefill 85.6% 68.4% 79.0% 21.8% 56.8% 34.6% 53.8%
Difference (EN - Native) -3.0% +17.2% +6.2% +15.4% +26.0% +33.0% +28.0%

DeepSeek-Qwen-14B
English Prefill 88.4% 88.6% 86.6% 52.4% 85.2% 66.2% 84.4%
Native Prefill 89.8% 66.4% 86.4% 14.6% 63.6% 34.4% 83.8%
Difference (EN - Native) -1.4% +22.2% +0.2% +37.8% +21.6% +31.8% +0.6%

DeepSeek-Llama-8B
English Prefill 78.8% 80.2% 78.4% 37.0% 74.6% 42.2% 69.8%
Native Prefill 73.6% 45.6% 59.4% 3.8% 32.6% 16.8% 41.6%
Difference (EN - Native) +5.2% +34.6% +19.0% +33.2% +42.0% +25.4% +28.2%

DeepSeek-Llama-70B
English Prefill 87.0% 89.2% 88.8% 81.8% 87.4% 85.4% 85.6%
Native Prefill 89.0% 71.4% 85.8% 66.8% 68.8% 68.4% 70.8%
Difference (EN - Native) -2.0% +17.8% +3.0% +15.0% +18.6% +17.0% +14.8%

5.3 SCALING ATTRIBUTES OF LANGUAGES HUB

To investigate the robustness of the English reasoning hub, we analyze its behavior across two key
axes: model scale and task difficulty. We first conduct a controlled scaling study using models from
the DeepSeek family on the MATH-500 benchmark. We then introduce a more challenging reasoning
task, MT-AIME (a translated version of the 2025 AIME), to validate our findings on problems
requiring deeper reasoning.

Effect of Model Scale: Table 4 demonstrates that the performance gap favoring English prefill is
not only persistent but also substantial across increasing model scales. The phenomenon is particularly
pronounced for lower- and mid-resource languages. For instance, with the DeepSeek-Qwen-14B
model, the advantage of English prefill reaches +37.8% for Swahili, +31.8% for Telugu, and +21.6%
for Japanese. However, as the model scale increases in mid-resource languages such as Russian
closed up. Interestingly, for certain mid-resource languages, this gap can narrow with sufficient scale.
With the 14B model, the performance difference for Russian nearly vanishes (+0.2%), suggesting
that larger models may improve native-language reasoning capabilities in specific cases.

Effect of Task Difficulty: While model scale can close the performance gap on simpler tasks, we
find that increasing task difficulty widens it again. This is evident when comparing performance on
MATH-500 to the more complex MT-AIME dataset. On the more complex MT-AIME dataset, the gap
for Russian (14B) increases from a negligible +0.2% to +3.34%, while for Japanese (70B), it expands
dramatically from +18.6% to +43.33%. This suggests that for highly complex, multi-step reasoning,
the model relies more heavily on its dominant, English-centric reasoning pathways, regardless of its
scale.

5.4 LIMITING TOKENS TO CONTROL OUTPUT LANGUAGE

Due to concern which adding prefill phrase may introduce biases to the reasoning process, we explore
the idea of limiting the available allowed tokens during decoding to force LRM to output in a certain
language. This method would remove the need to prefill the template with target phrases, letting the
model select any phrases it wishes to use during the reasoning process.

7
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Table 5: Comparison of MT-AIME evaluation scores with different prefill strategies across languages
ordered by speakers’ population.

Strategy Chinese Spanish Russian Swahili Japanese Telugu

DeepSeek-Qwen-1.5B
English Prefill 20.00% 23.33% 23.33% 6.67% 23.33% 6.67%
Native Prefill 13.33% 13.33% 3.33% 0.00% 0.00% 0.00%
Difference (EN - Native) +6.67% +10.00% +20.00% +6.67% +23.33% +6.67%

DeepSeek-Qwen-14B
English Prefill 46.67% 66.67% 56.67% 20.00% 63.33% 30.00%
Native Prefill 33.33% 50.00% 53.33% 3.33% 10.00% 0.00%
Difference (EN - Native) +13.34% +16.67% +3.34% +16.67% +53.33% +30.00%

DeepSeek-Llama-70B
English Prefill 53.33% 66.67% 63.33% 53.33% 60.00% 60.00%
Native Prefill 46.67% 26.67% 46.67% 23.33% 16.67% 13.33%
Difference (EN - Native) +6.66% +40.00% +16.66% +30.00% +43.33% +46.67%

We first identify tokens which are used to generate our target languages from DeepSeek-Llama-8B.
In Llama 3 tokenizers, we found 4,225 tokens related to Chinese text generation, 1,410 tokens are
related to Japanese text generation. The low amount of Japanese tokens may limit the capabilities of
final results as LLMs can only output from only 1410 tokens. This exposed the limitations of using
masking as a way to limit reasoning language to low-resource languages such as Swahili. Table 6
shows that the text prefilling method performs on a par with the masking method with the exception
where the input questions are in Japanese, however we observe that the only 63.6% reasoning are in
Japanese compare to our methods which achieve 75%.

Table 6: Comparison of language control methods on Llama-8B: Prefilling vs. Token Masking in
MATH-500. Performance shown for Japanese “まず” and Chinese “嗯”

Japanese Chinese

Metric Prefilling Masking Prefilling Masking

English Question
Overall Score 64.8 61.4 67.8 69.6
Reason Dist.* 0.2/75.2/17.6 15.2/15.2/31.2 0.0/74.2/25.8 6.6/80.0/20.0
Answer Dist.* 4.4/69.8/21.8 35.0/35.0/37.4 0.8/71.4/26.6 8.2/77.0/21.4

Target Question
Overall Score 32.6 42.0 73.6 73.6
Reason Dist.* 0.2/75.0/24.6 0.6/63.6/35.4 0.0/73.8/100.0 0.0/92.0/100.0
Answer Dist.* 2.4/67.2/28.2 4.6/54.6/38.2 0.2/71.6/97.8 0.2/89.4/97.4

*Language distributions are shown as a percentage breakdown in the format: (English / Target
Language / Other).

6 REASONING PATTERN ANALYSIS

To study how LRMs reason, we introduce a two-stage methodology—segmentation followed by
classification—that addresses two common pitfalls of prior work: repeated steps being overcounted
and reasoning steps being forced into ill-fitting categories.

6.1 SEGMENTATION-CLASSIFICATION METHOD

Segmentation. Reasoning chains are first divided into atomic operations. We applied GPT-4o
(one-shot) to insert <sep> markers in multilingual traces (QwQ, Claude Sonnet, Gemini-2.0 Flash),
then trained a ModernBERT-large token classifier to detect step boundaries, achieving 95% F1 (see
Appx. A.4.1). This prevents inflated counts and enables consistent downstream classification.
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Figure 5: Most correlated habit per language; col-
ors = significance.

Classification. Each step is then assigned to one of four theoretically grounded habits (Gandhi
et al., 2025):

• Subgoal setting: breaking the problem into intermediate goals (e.g., “First, I’ll try. . . ”).
• Backtracking: discarding an incorrect path (e.g., “Let me try again. . . ”).
• Verification: checking correctness (e.g., “Let’s verify this calculation”).
• Backward chaining: reasoning backward from the target (e.g., “If we want 42, then we

need. . . ”).

To avoid distortion, we allow an Others category, capturing genuinely novel patterns (Appx. A.4.2).

6.2 REASONING BEHAVIOURS AND PREFILL LANGUAGE EFFECTS

Correlational findings. Aggregating across four models, we computed Pearson correlations be-
tween habit counts and accuracy per input × prefill setting. Figure 4 shows that prefill languages
reliably shift reasoning styles: Chinese ↑ Subgoal setting (r = 0.50, p < .001) and Verification
(r = 0.41, p < .001); Swahili ↓ Subgoal setting (r = −0.35, p < .01); English ↑ Backward chaining
(r = 0.30, p < .015).

Link to performance. Subgoal-heavy traces (predominantly Chinese-prefilled) yielded +7.3%
higher accuracy on MATH-500. Bootstrapped 95% CIs confirm this is statistically reliable, though
modest. Figure 5 highlights the most correlated habit per language.

Interpretation and caveats. We hypothesize linguistic anchors prime different decomposition
strategies, consistent with bilingual problem-solving studies (Bernardo & Calleja, 2005). However,
these results are correlational; causal factors such as tokenization or alignment artifacts cannot be
excluded. Controlled interventions with synthetic prefills are a promising next step.

7 CONCLUSION

In this work, we reveal that LRMs, despite their strong multilingual ability, predominantly still prefer
to reason in hub languages such as English, regardless of the input language. Our introduction of
a text pre-filling method provides a practical approach to guide the reasoning language with high
success. We demonstrated an asymmetric effect: forcing models to reason in non-hub languages
degrades performance in low-resource languages, whereas aligning reasoning with hub languages
improves or maintains the performance in reasoning tasks. However, in the cultural reasoning task,
native-language reasoning can be beneficial. These findings underscore the critical importance of
considering the internal reasoning language to be more inclusive for future models.
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ETHICS STATEMENT

The deployment of Large Reasoning Models across multilingual contexts reveals systematic biases
that create substantial inequities in AI access and performance. Our findings demonstrate that LRMs
default to reasoning in high-resource languages like English regardless of input language, causing
accuracy drops of up to 30 percentage points for speakers of low-resource languages such as Swahili
and Telugu on reasoning tasks. This disparity means that billions of speakers of non-dominant
languages receive demonstrably inferior service from AI systems, potentially limiting their access
to educational tools, professional services, and economic opportunities that increasingly rely on AI
capabilities. As reasoning models become more prevalent in critical applications, including education,
healthcare, and financial services, these performance gaps risk creating a two-tiered system where
advanced AI capabilities remain accessible primarily to speakers of dominant languages, thereby
exacerbating existing global inequalities. Furthermore, when models expose their reasoning traces for
transparency, users encounter explanations in languages they may not understand, undermining the
very trust these features aim to build. To address these concerns, we release our evaluation framework
publicly to enable systematic assessment of multilingual disparities and emphasize the urgent need for
development practices that ensure equitable performance across all languages rather than optimizing
solely for dominant language communities.

REPRODUCIBILITY STATEMENT

All experiments for evaluating the change of reasoning languages were conducted on workstation
of 3 x RTX 3090 GPUs. For smaller models such as DeepSeek-Qwen-7B, DeepSeek-Qwen-1.5B,
DeepSeek-Llama-8B we uses sglang inference library (v0.47) for inference and for other models we
uses 4 x H100 GPUs from Google Cloud Platform. For fairness, all models are evaluated using the
recommended parameters ( temperature, top-p ) from their papers or official releases. Approximately
$800 USD was spent on cloud inference. All the code, dataset will be released on publicly accessible
platforms (e.g., GitHub, HuggingFace).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Allan BI Bernardo and Marissa O Calleja. The effects of stating problems in bilingual students’ first
and second languages on solving mathematical word problems. The Journal of Genetic Psychology,
166(1):117–129, 2005.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always
say what they think. arXiv preprint arXiv:2505.05410, 2025.

Yu Ying Chiu, Liwei Jiang, Bill Yuchen Lin, Chan Young Park, Shuyue Stella Li, Sahithya Ravi,
Mehar Bhatia, Maria Antoniak, Yulia Tsvetkov, Vered Shwartz, et al. Culturalbench: a robust,
diverse and challenging benchmark on measuring the (lack of) cultural knowledge of llms. arXiv
preprint arXiv:2410.02677, 2024.

Julen Etxaniz, Gorka Azkune, Aitor Soroa, Oier Lacalle, and Mikel Artetxe. Do multilingual language
models think better in english? In Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
2: Short Papers), pp. 550–564, 2024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021b.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Gustaw Opiełka, Hannes Rosenbusch, and Claire E Stevenson. Analogical reasoning inside large
language models: Concept vectors and the limits of abstraction. arXiv preprint arXiv:2503.03666,
2025.

Simon Ott, Konstantin Hebenstreit, Valentin Liévin, Christoffer Egeberg Hother, Milad Moradi,
Maximilian Mayrhauser, Robert Praas, Ole Winther, and Matthias Samwald. Thoughtsource: A
central hub for large language model reasoning data. Scientific data, 10(1):528, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jan Rupnik, Andrej Muhic, and P Skraba. Cross-lingual document retrieval through hub languages.
In Neural Information Processing Systems Workshop, 2012.

Lisa Schut, Yarin Gal, and Sebastian Farquhar. Do multilingual llms think in english? arXiv preprint
arXiv:2502.15603, 2025.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are mul-
tilingual chain-of-thought reasoners. In The Eleventh International Conference on Learning
Representations, 2023.

Zhaofeng Wu, Xinyan Velocity Yu, Dani Yogatama, Jiasen Lu, and Yoon Kim. The semantic hub
hypothesis: Language models share semantic representations across languages and modalities.
arXiv preprint arXiv:2411.04986, 2024.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun, Yongkang Huang, Chong Long, Xiao Liu, Xuanyu
Lei, Jie Tang, and Minlie Huang. Safetybench: Evaluating the safety of large language models
with multiple choice questions. arXiv preprint arXiv:2309.07045, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric P Xing, et al. Lmsys-chat-1m: A large-scale real-world llm
conversation dataset. arXiv preprint arXiv:2309.11998, 2023.

A APPENDIX

A.1 USE OF LLM IN WRITING

We used ChatGPT (gpt-5), Claude (Sonnet 4, Opus 4.1) and Gemini (Gemini 2.5 Pro) to improve the
writing, mainly on grammar fix and use to propose fix on in correct latex table syntax.
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Table 7: Decoding parameters used for each model during evaluation.

Model Temperature Top-p Top-k Min-p

DeepSeek-R1-Distill-Llama-8B 0.6 0.95 — —
DeepSeek-R1-Distill-Qwen-14B 0.6 0.95 — —
Qwen3-30B-A3B (reasoning on / off) 0.6 0.95 20 0
QwQ-32B 0.6 0.95 — 0

A.2 MODEL DETAILS

We use the latest sglang inference engine to evaluate all open weights model on A100 GPU with the
exception of QwQ-32B which uses Together.ai serverless API endpoint.

As of the decoding parameters we used for all models which was recommended by original model
provider Table 7.

For the base model experiments found in Table 17, we simply set temperature = 0.6 only.

A.3 INFERENCE COST

QwQ-32B cost around 600 USD for all the experiments including ablation studies in scaling efficiency.
While other models: Deepseek-Distill-Qwen-14B, Deepseek-Distill-Llama-8B, Qwen3-30B-A3B
cost around 1,200 USD in A100 GPUs cost calculated at 1.8 USD per hour per card.

The entire inference process took over 2 weeks to finish under 2 A100 GPUs, using the latest sglang
inference service.
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Table 8: Data Count Distribution Across Models

Model Count
deepseek-r1-zero 647
meta math 539
gemini-flash-thinking 530
deepseek-r1 517
qwq-preview 506
metamath-qwen 402
openr1-preview 116
claude-3-7 47

Table 9: Training Parameters for ModernBERT-large

Parameter Best Searched

Learning Rate 8× 10−5 {5× 10−5, 8× 10−5, 1× 10−4, 3× 10−4}
Batch Size 24 {16, 24, 32}
Weight Decay 0.01 -
Number of Epochs 10 -
Warmup Steps 50 -
Optimizer AdamW -

A.4 REASONING PROCESS ANALYSIS

A.4.1 SEGMENTATION DETAILS

In this section we provided the details we used to curate dataset and the training our segmentation
model.

Dataset We collect existing reasoning dataset shared by others from huggingface. We mainly collect
reasoning process from Deepseek-R1, Deepseek-R1-Zero, Gemini-2.0-Flash, Claude-3-7-Sonnet,
QwQ-preview, MetaMath CoT response (Yu et al., 2023) and Open-R1 : an attempt to generate
long CoT from Qwen models. The amount of reasonings from each models can be found in Table 8.
For each reasoning, we prompt gpt-4o-2024-07-18 with 1-shot segmentation prompt to segment the
reasoning text into steps. Prompts can be found in Figure 7. The raw output is then processed into a
sequence chunk which we can used to train a small segmentation model. The annotation cost around
35 USD without any batch discount.

Hyperparameters We split the dataset into 7:3 train and validation set. And we simply use the
validation to select the best hyperparameters as found in Table 9 which achieve a high F1 score of
96.08. Training a single hyperparameters took around 4 hours to finished on 4090 GPU.

Inputs and Target Formats Figure 6 illustrates the ModernBERT segmentation process. For
each thinking process extracted from model responses, we first split the text by newline symbols,
replacing each with a special token (<sep>). The model is trained to predict whether each <sep>
token indicates the beginning of a new reasoning step (1) or the continuation of the current step
(0). As shown in the figure, ModernBERT takes a reasoning sequence as input (top) and processes
mathematical expressions (x + y = 5, y = 5 - x, z + y = 10), classifying each separator position to
enable structured parsing of complex reasoning chains. This binary classification approach allows the
model to effectively identify logical breakpoints in reasoning processes.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

<bos> x + y = 5 <sep> y = 5 - x z + y = 10<sep>

Modern Bert

<sep> ...

0 1Not New Step New Step 0
...

Figure 6: A showcase of how segmentation prediction works

Output your segmentation result by adding a <sep> to the original text to indicate a separation
between steps

Do not modify the original reasoning text, only add a separation token

Do not split table into segments, keep a whole table as one step

# Example

[INPUT]:
“‘
Okay, let’s see. ...
Alright, let’s break this down. First, ...

**Final Answer**
\boxed{251.60}
“‘

[OUTPUT]:
“‘
Okay, let’s see. So ...
<sep>
Alright, let’s break this down. ...
[Skip for brevity]
...
<sep>
**Final Answer**
\boxed{251.60}
“‘

Now do the same task by following the same pattern as above:

[INPUT]:
“‘
thinking process goes here
“‘

[OUTPUT]:

Figure 7: The prompt template for segmenting reasoning steps with <sep> tokens.
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A.4.2 REASONING PROCESS CLASSIFICATION

After segmentation, we concatenate the individual reasoning processes using numbered step tokens
(e.g., <step_1>reasoning process 1 <step_1>\n <step_2>reasoning process 2 <step_2>...). This
structured sequence, along with the original question, is then passed to a classification prompt as
illustrated in Figure 8. We utilize gemini-2.0-flash to perform the classification of each reasoning
step according to our taxonomy.

While we initially explored more sophisticated taxonomies that included problem reading and
abduction classification, the complexity of these frameworks exceeded the classification capabilities
of current LLMs, limiting potential downstream insights. We therefore opted for the simpler four-
habits taxonomy. Investigating more complex taxonomies remains an avenue for future research.

Here is a problem and the reasoning process that an LLM generated when it tries to solve the
problem.

Problem: (enclosed in double backticks)
“
problem
“

Reasoning process: (enclosed in triple backticks, the reasoning process has been split into
distinct reasoning steps in the format of <step_idx><reasoning_step_content></step_idx>)
“‘
reasoning
“‘

Your task is to classify each reasoning step into one of the following reasoning types: (specified
by <type_index>. <type_name>: <definition>)
1. Subgoal setting: Where the model breaks down the problem into smaller, intermediate goals
(e.g., ’To solve this, we first need to...’ or ’First, I’ll try to ..., then ...’
2. Backtracking: Where the model realizes a path won’t work and explicitly goes back to try
a different approach. An example of backtracking is: ’Let me try again’ or ’we need to try a
different approach’.
3. Verification: Where the model checks the correctness of the intermediate results or to make
sure the final answer is correct.
4. Backward chaining: Where the model works backward from its answer to see whether it can
derive the variables in the original problem.
5. Others: This reasoning step is the continuation of the previous reasoning step, or it does not
fall into any of the above categories.

Generate the rationale before you make the classification. Provide your output in the following
format:

[Reasoning]

<step_1><rationale_1><type_name_1></step_1>
<step_2><rationale_2><type_name_2></step_2>
...
[Final answer]

<step_1><type_name_1></step_1>
<step_2><type_name_2></step_2>
...

Figure 8: The prompt template for the classifying each steps into four habits classes.
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Table 10: Comparison between Counting (Gandhi et al., 2025) and seg-class (ours) methods for
R1-Distill-Llama-8B on MATH-500 benchmark (English problem statements; generation
prefixed with target language)

Lang Subgoal setting Backtracking Verification Backward chaining
Count seg-class Count seg-class Count seg-class Count seg-class

En 6.02 2.73 4.66 0.76 6.90 7.27 2.45 0.016
Zh 6.83 3.26 5.89 0.65 7.76 8.45 2.49 0.018
Es 3.67 1.81 0.76 0.18 1.61 0.34 0.48 0.0
Ru 6.46 2.84 5.27 0.84 6.67 5.34 2.87 0.006
Ja 5.08 2.97 1.87 0.60 8.53 3.58 0.81 0.004
Ko 5.29 2.36 2.58 0.39 4.82 5.06 1.65 0.006
Te 2.67 0.68 1.29 0.17 2.08 1.11 1.36 0.0
Sw 4.62 1.32 1.51 0.23 4.07 1.33 1.58 0.011

A.4.3 COMPARISON OF SEGMENTATION-CLASSIFICATION AND PROMPT-BASE COUNTING
METHOD

In this section, we showcase the behavior calculated by the prior work Gandhi et al. (2025) using
counting prompt and compared to our segmentation-classification method (seg-class). As seen in the
results, our result always resulted in lower behavior numbers than Counting method.
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Table 11: Most Frequent Starting Phrases by Model and Language, (-) indicate using the most
common prefill target phrase from other models.

Model Language Most Frequent Phrase Count Representative Phrase (Count)

R1-Distill-Llama-8B es Okay 248 Primero (224)
R1-Distill-Llama-8B sw Okay 253 Mama (62)
R1-Distill-Llama-8B en Okay 451 Okay (451)
R1-Distill-Llama-8B ja 好 ，我现在要 196 まず (112)
R1-Distill-Llama-8B ko 首先 ，我需要 107 먼저 (35)
R1-Distill-Llama-8B ru Хорошо 130 Хорошо (130)
R1-Distill-Llama-8B zh-CN 嗯 305 嗯 (305)

Qwen-14B es Okay, 209 Primero (166)
Qwen-14B sw Okay, so I 173 Kwa (43)
Qwen-14B en Okay, 345 Okay (345)
Qwen-14B ja 好 ， 204 まず (150)
Qwen-14B ko 嗯 ， 204 먼저 (78)
Qwen-14B ru Хорошо 278 Хорошо (386)
Qwen-14B zh-CN 首先 ， 181 首先 (181)

QwQ-32B es Okay, 489 Primero (3)
QwQ-32B sw Okay, 474 Ili kup (2)
QwQ-32B en Okay, 477 Okay, (477)
QwQ-32B ja Alright, 208 まず (123)
QwQ-32B ko 좋아 220 좋아 (220)
QwQ-32B ru Хорошо 365 Хорошо (365)
QwQ-32B zh-CN 嗯 ， 479 嗯 ， (479)
QwQ-32B te Okay, 499 prārambhim. cad. āniki (-)

Qwen3-30B-A3B es Okay, 490 Primero (5)
Qwen3-30B-A3B sw Okay, 494 Ili kup (1)
Qwen3-30B-A3B en Okay, 487 Okay, (487)
Qwen3-30B-A3B ja Okay, 491 まず (5)
Qwen3-30B-A3B te Okay, 499 prārambhim. cad. āniki (3)
Qwen3-30B-A3B ko Okay, 491 좋아 (2)
Qwen3-30B-A3B ru Хорошо 490 Хорошо (490)
Qwen3-30B-A3B zh-CN 嗯 ， 487 嗯 ， (487)

A.5 PREFILL PHRASES

A.5.1 DISTRIBUTION FOUND FROM MATH-500 BASELINE

To find the distribution of prefill tokens across different languages and models, we analyzed the
output generations from multiple language models on a subset of the MATH-500 baseline dataset.
For each model and language combination, we recorded the first n tokens generated (where n=4 in
our analysis) and tracked their frequencies across all sampled problems.

We implemented a token tracking system that builds up sequences by concatenating successive tokens
(e.g., first token, first+second tokens, etc.) and maintains frequency counts for each unique sequence
at each position. For models where we had access to the tokenizer, we performed additional analysis
by converting between token IDs and human-readable text, allowing us to identify meaningful phrases
rather than just token sequences. This double decoding process was particularly valuable for non-
Latin script languages where token boundaries might not align with linguistic units. The resulting
distributions, shown in Table 11.
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A.6 CULTURALBENCH PREFILL PHRASE

The following Table 12 showcase the phrases used to prefill target language in CultureBench-Hard.

Table 12: Preferred prefill tokens used by language models across different countries, reflecting
culturally-specific conversational cues.

Country Prefill token
Argentina Vale
Australia Okay
Brazil Tudo bem
Canada Okay
Chile Vale
China 嗯
Czech Republic Dobře
France D’accord
Germany In Ordnung
Hong Kong 嗯
Indonesia Baiklah
Italy Va bene
Japan まず
Malaysia Baiklah
Mexico Órale
Netherlands Oké
New Zealand Okay
Nigeria Okay
Peru Ya
Philippines Sige
Poland Dobrze
Romania Bine
Russia Хорошо
Singapore Okay
South Africa Okay
South Korea 먼저
Spain Vale
Taiwan 嗯
Turkey Tamam
Ukraine Добре
United Kingdom Alright
United States Okay
Zimbabwe Okay
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Table 13: Comparison of English vs. Native prefill strategies on MATH-500 across languages order
by speakers population.

Strategy Chinese Spanish Russian Swahili Japanese Telugu Korean

DeepSeek-Qwen-1.5B
English Prefill 73.6% 73.2% 71.8% 26.0% 68.4% 44.4% 62.6%
Native Prefill 72.4% 54.4% 56.8% 8.0% 37.4% 8.0% 36.6%
Baseline 69.2 % 68.0% 58.8% 26.2% 61.0% 39.6% 55.2%
Difference (EN - Native) +1.2% +18.8% +15.0% +18.0% +31.0% +36.4% +26.0%

DeepSeek-Qwen-7B
English Prefill 82.6% 85.6% 85.2% 37.2% 82.8% 67.6% 81.8%
Native Prefill 85.6% 68.4% 79.0% 21.8% 56.8% 34.6% 53.8%
Baseline 87% 84.6% 83.2% 36.4% 78.2% 61.8% 80.2%
Difference (EN - Native) -3.0% +17.2% +6.2% +15.4% +26.0% +33.0% +28.0%

DeepSeek-Qwen-14B
English Prefill 88.4% 88.6% 86.6% 52.4% 85.2% 66.2% 84.4%
Native Prefill 89.8% 66.4% 86.4% 14.6% 63.6% 34.4% 83.8%
Baseline 82.6% 88.0% 84.6% 39.8% 80.0% 64.6% 83.4%
Difference (EN - Native) -1.4% +22.2% +0.2% +37.8% +21.6% +31.8% +0.6%

DeepSeek-Llama-8B
English Prefill 78.8% 80.2% 78.4% 37.0% 74.6% 42.2% 69.8%
Native Prefill 73.6% 45.6% 59.4% 3.8% 32.6% 16.8% 41.6%
Baseline 75.8% 70.6% 69.8% 27.3% 61.2% 41.6% 64.6%
Difference (EN - Native) +5.2% +34.6% +19.0% +33.2% +42.0% +25.4% +28.2%

DeepSeek-Llama-70B
English Prefill 87.0% 89.2% 88.8% 81.8% 87.4% 85.4% 85.6%
Native Prefill 89.0% 71.4% 85.8% 66.8% 68.8% 68.4% 70.8%
Baseline 87.8% 88.6% 85.8% 75.4% 84.8% 76.0% 83.8%
Difference (EN - Native) -2.0% +17.8% +3.0% +15.0% +18.6% +17.0% +14.8%

QwQ-32B
English Prefill 92.4% 92.2% 91.2% 67.8% 90.2% 84.4% 90.6%
Native Prefill 90.6% 93.2% 90.6% 55.6% 87.4% 65.2% 88.2%
Baseline 90.8% 93.2% 90.8% 68.2% 89.4% 85.0% 89.0%
Difference (EN - Native) +1.8% -1.0% +0.6% +12.2% +2.8% +19.2% +2.4%

Qwen3-30B-A3B
English Prefill 91.4% 91.0% 90.6% 72.4% 89.4% 87.0% 89.8%
Native Prefill 89.4% 83.8% 90.0% 29.6% 81.8% 68.4% 88.0%
Baseline 89.4% 91.2% 90.4% 72.8% 90.0% 87.7% 89.2%
Difference (EN - Native) +2.0% +7.2% +0.6% +42.8% +7.6% +18.6% +1.8%

Average across all models
English Prefill 84.9% 85.7% 84.7% 53.5% 82.6% 68.2% 80.6%
Native Prefill 84.4% 69.0% 78.3% 28.6% 61.2% 42.3% 66.1%
Baseline 83.3% 83.5% 80.5% 49.4% 77.8% 65.2% 77.9%
Difference (EN - Native) +0.6% +16.7% +6.3% +24.9% +21.3% +25.9% +14.5%

A.7 ADDITIONAL MATH-500 DETAILS

Table 13 shows the scores of all models with the inclusion of baseline score.
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Table 14: Comparison of MMLU performance when reasoning in native language vs. English

Strategy English Chinese Spanish Swahili Japanese Korean

DeepSeek-Llama-8B
Prefill English – 69.8% 71.4% 29.8% 65.3% 61.5%
Prefill target Language 67.7% 63.4% 53.8% 18.6% 46.2% 46.8%
Difference (EN - Native) – +6.4% +17.6% +11.2% +19.1% +14.6%

DeepSeek-Qwen-14B
Prefill English – 84.7% 85.7% 44.5% 83.3% 81.1%
Prefill target Language 87.3% 83.3% 85.8% 36.4% 77.3% 73.4%
Difference (EN - Native) – +1.4% -0.1% +8.1% +5.9% +7.7%

QwQ-32B
Prefill English – 88.7% 89.1% 59.8% 87.8% 85.8%
Prefill target Language 91.4% 88.5% 89.2% 23.8% 88.3% 83.6%
Difference (EN - Native) – +0.3% -0.1% +36.0% -0.5% +2.2%

Qwen3-30B-A3B
Prefill English – 88.9% 89.0% 61.1% 86.8% 82.1%
Prefill target Language 85.4% 85.6% 86.0% 62.2% 84.2% 81.0%
Difference (EN - Native) – +3.3% +3.0% -1.0% +2.7% +1.1%

Average across all models
Prefill English – 83.1% 83.8% 48.8% 80.8% 77.6%
Prefill target Language 83.0% 80.2% 78.7% 35.3% 74.0% 71.2%
Difference (EN - Native) – +2.9% +5.1% +13.6% +6.8% +6.4%

Table 15: Comparison of MMMLU partial (subset) and full accuracy scores across different models
and language configurations.

Model Input Reasoning Partial Acc. Full Acc. Diff.
QwQ-32B en es 91.04% 88.52% +2.52%
DeepSeek-Qwen-14B en en 88.02% 85.61% +2.41%
DeepSeek-Qwen-14B en zh-CN 86.63% 84.09% +2.54%
DeepSeek-Qwen-14B en ko 85.40% 82.52% +2.88%
DeepSeek-Qwen-14B es en 85.69% 82.68% +3.01%
DeepSeek-Qwen-14B en es 84.63% 82.12% +2.51%
DeepSeek-Qwen-14B en ja 83.74% 81.29% +2.45%
DeepSeek-Qwen-14B zh-CN zh-CN 83.64% 80.33% +3.31%
DeepSeek-Qwen-14B ja en 83.26% 79.97% +3.29%
DeepSeek-Qwen-14B ko en 81.08% 78.02% +3.06%

A.8 MMMLU RESULTS

A.8.1 MMMLU FULL MODELS BREAKDOWN

Table 14 shows the full results for four models. We observe a significant jump in QwQ-32B where
switching Swahili MMLU from English reasoning to Swahili reasoning drops by over 36%.

A.8.2 SCORES IN SUBSET VERSUS FULL SET

Table 15 showcases the accuracy between the 32 subjects and the full 56 subjects score. All settings
consistently score higher than the full set; however, the correlation score between different settings is
0.9953 with a p-value lower than 0.0001. This means the subsets we have chosen are representative
enough of the full MMMLU test set.
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Figure 9: Sorted by positive improvements from using native language reasoning compare to english
reasoning in Deepseek-Qwen-14B
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Figure 10: Sorted by positive improvements from using native language reasoning compare to english
reasoning in Qwen3-30B-A3B

A.9 CULTURALBENCH RESULTS

In CulturalBench, we maintained the original English questions while only varying the reasoning
language. This approach preserves the precise wording of questions, as translation could potentially
compromise the cultural nuances embedded in specific English terminology unique to each culture.

Figures 9, 10, and 11 illustrate the performance difference between using English prefills versus
prefills in the predominant language of each respective country.
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Figure 11: Sorted by positive improvements from using native language reasoning compare to english
reasoning in QwQ-32B
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Table 16: Comparison of LMSYS-Toxic ASR score when reasoning in English vs. the target language,
across languages ordered by speakers’ population.

Strategy Chinese Spanish Russian Swahili Japanese Telugu Korean

DeepSeek-Llama-8B
Prefill English (EN) 15.0% 27.3% 21.3% 3.4% 18.4% 0.8% 7.1%
Prefill Target Language 18.9% 37.6% 32.9% 3.9% 20.4% 2.3% 5.9%
Difference (EN - Target) -3.8% -10.3% -11.6% -0.5% -2.0% -1.6% +1.2%

DeepSeek-Qwen-1.5B
Prefill English (EN) 17.31% 20.51% 13.38% 3.26% 7.72% 0.00% 2.18%
Prefill Target Language 19.29% 19.89% 17.59% 2.95% 5.90% 0.00% 1.45%
Difference (EN - Target) -1.98% 0.62% -4.21% 0.31% 1.82% 0.00% 0.73%

DeepSeek-Qwen-7B
Prefill English (EN) 13.58% 16.48% 15.71% 4.13% 11.21% 0.00% 6.12%
Prefill Target Language 13.87% 14.02% 14.33% 3.32% 9.51% 0.00% 4.55%
Difference (EN - Target) -0.29% 2.46% 1.38% 0.81% 1.70% 0.00% 1.58%

DeepSeek-Qwen-14B
Prefill English (EN) 7.0% 8.0% 9.0% 4.5% 7.8% 0.6% 4.1%
Prefill Target Language 5.0% 7.6% 12.6% 4.3% 8.2% 2.1% 3.5%
Difference (EN - Target) +2.0% +0.3% -3.7% +0.1% -0.3% -1.5% +0.6%

QwQ-32B
Prefill English (EN) 4.1% 6.6% 6.4% 3.1% 6.6% 1.1% 2.9%
Prefill Target Language 3.2% 3.1% 8.1% 1.1% 4.9% 0.6% 2.4%
Difference (EN - Target) +0.9% +3.5% -1.7% +2.0% +1.7% +0.4% +0.5%

Qwen3-30B-A3B
Prefill English (EN) 4.6% 7.1% 9.1% 2.9% 6.9% 0.6% 4.1%
Prefill Target Language 2.6% 4.8% 10.5% 5.1% 4.4% 1.2% 3.3%
Difference (EN - Target) +2.0% +2.3% -1.4% -2.1% +2.5% -0.6% +0.9%

Average across all models
Prefill English (EN) 10.3% 14.3% 12.5% 3.6% 9.8% 0.5% 4.4%
Prefill Target Language 10.5% 14.5% 16.0% 3.4% 8.9% 1.0% 3.5%
Difference (EN - Target) -0.2% -0.2% -3.5% +0.1% +0.9% -0.5% +0.9%

A.10 ADDITIONAL LMSYS-TOXIC BENCHMARKS DETAILS

In LMSYS-Toxic, we observed that RL-finetuned model QwQ-32B resulted in lower attack success
rate (ASR) when reasoning in their native language for most non-English languages (Japanese,
Korean, Chinese, Spanish), with the notable exception of Russian. As shown in Table 16, QwQ-32B
and Qwen3 models demonstrate a consistent pattern where forcing English reasoning (via “Okay”
prefilling) increases toxicity rates by 1-3.5 percentage points for Japanese, Korean, Chinese, and
Spanish inputs. Interestingly, the Russian language exhibits the opposite pattern, with lower toxicity
when reasoning is guided toward English rather than maintaining native Russian reasoning.
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Table 17: AIME-24 pass@8 from Qwen3-30B-A3B base model with different initial phrase for text
completion.

Language
en zh-CN ja ru ko sw

Phrase Okay 嗯 まず Хорошо 먼저 Kwa kuzingatia
pass@8 0.267 0.190 0.172 0.133 0.133 0.200

A.11 STUDY OF IMPACT OF PREFILL TOKENS IN PRETRAINED MODEL

To investigate why models might gravitate towards English and Chinese for reasoning, we conducted
an experiment using a small mathematics problem set, AIME-2024. Using the prompt template
from Deepseek-R1-zero (Guo et al., 2025), we prompted the Qwen3-30B-A3B base model (without
post-training) in a zero-shot pass@8 setting. To encourage reasoning in languages other than English,
we prepended an initial phrase in the target language to the prompt, guiding the model to complete
its reasoning in that language. The results, presented in Table 17, show that English-led reasoning
significantly outperforms other languages for this base model.

Based on these findings, we hypothesize that during the RL training phase, models tend to exploit the
language that allows the most effective CoT generation to maximize the final task score. Since the
choice of reasoning language is typically not an explicit part of the reward function, leveraging the
language in which the underlying base model performs best (as suggested by Table 17 for English)
becomes an optimal strategy for achieving higher rewards.
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Table 18: Comparison prefilling reasoning chain with native language or english in reasoning on,
while prefilling the response in reasoning off, meaning the model does not undergo long CoT process
before output response.

MATH-500 Language

Model Configuration Chinese Japanese Korean Spanish Russian Telugu

Qwen3 30 A3B (reasoning off)
Prefill English (To evaluate) 84.8% 81.6% 80.0% 80.2% 82.2% 81.2%
Prefill Input Language 88.4% 80.8% 82.2% 81.2% 79.4% 68.3%
Difference (English - Input) -3.6% 0.8% -2.2% 1.0% 2.8% 12.9%

Qwen3 30 A3B (reasoning on)
Prefill English (Okay) 91.4% 89.4% 89.8% 91.0% 90.6% 87.0%
Prefill Input Language 89.4% 81.8% 88.0% 83.8% 90.0% 68.4%
Difference (English - Input) 2% 7.6% 1.8% 7.2% 0.6% 18.6%

A.12 BRITTLENESS OF LANGUAGE GUIDANCE IN LRM COMPARED TO TYPICAL COT FOUND
IN LLMS

Since Qwen3-30B-A3B allows us to trigger reasoning mode on and off, we first compare the
sensitivity between reasoning and normal CoT prompts. Specially we compare the results between
prefilling the phrase in reasoning versus preflling in the response in CoT response with reasoning
mode off. Table 18 shows that the penalty of changing reasoning language is far more worse than
changing in typical chain of thought from LLMs.
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Dataset Test Split Size License

MMMLU1 N = 14,042 (per language) MIT License
CulturalBench-Hard2 N = 4,709 CC-BY-4.0
LMSYS-toxic3 N = 2,000 (per language) LMSYS-Chat-1M Dataset License Agreement
MATH-5004 N = 500 (per language) MIT License

Table 19: AI Dataset Information with Test Split Sizes

A.13 DATASET DETAILS

Table 19 contains each of the benchmarks and their licenses.

Languages:

• MMMLU: English, Spanish, Japanese, Korean, Swahili, Chinese
• CulturalBench-Hard: 30 countries
• LMSYS-toxic: English, Japanese, Spanish, Korean, Swahili, Telugu, Russian, Chinese
• MATH-500: English, Japanese, Korean, Spanish, Swahili, Telugu, Russian, Chinese

HuggingFace Link: 1 MMMLU: https://huggingface.co/datasets/openai/MMMLU
2 CulturalBench: https://huggingface.co/datasets/kellycyy/CulturalBench
3 LMsys-Chat-1M: https://huggingface.co/datasets/lmsys/lmsys-chat-1m
4 MATH-500: https://huggingface.co/datasets/HuggingFaceH4/MATH-500
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Table 20: Correlation between prefill target languages and reasoning behaviors

Language Backtrack Backward Subgoal Setting Verification

English -0.07 0.34∗∗ 0.22 0.07
Spanish 0.08 -0.16 −0.27∗ −0.26∗

Japanese 0.16 -0.19 -0.19 −0.29∗

Korean -0.03 0.12 0.02 0.05
Russian -0.06 0.02 0.09 0.05
Swahili -0.22 −0.25∗ −0.35∗∗ 0.16
Telugu -0.01 -0.18 -0.12 -0.20
zh-CN 0.23∗ 0.02 0.50∗∗∗ 0.41∗∗∗

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

Table 21: Correlation between input target languages and reasoning behaviors

Language Backtrack Backward Subgoal Setting Verification

English -0.07 0.08 0.00 0.08
Spanish -0.07 -0.08 -0.19 -0.22
Japanese 0.14 0.01 -0.14 -0.19
Korean -0.06 0.18 0.04 0.03
Russian -0.10 0.00 0.09 0.07
Swahili -0.13 -0.10 -0.19 0.09
Telugu 0.08 -0.09 0.02 -0.14
zh-CN 0.19 0.04 0.42∗∗∗ 0.33∗∗

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

A.14 BEHAVIOR RESULTS DETAIL FOR MATH-500

This section details the behavioral results observed for the MATH-500 dataset, specifically examining
the correlation between language and various reasoning behaviors. The analysis, as presented in
Tables 20 and 21, investigates how different languages, when used either as prefill tokens to guide the
model’s internal “thought” process or as the input language of the problems themselves, influence
reasoning strategies such as backtracking, backward chaining, subgoal setting, and verification.
Notably, Chinese (zh-CN) prefill tokens show a strong positive correlation with subgoal setting
(r = 0.50, p < 0.001) and verification (r = 0.41, p < 0.001). Conversely, English prefill is
significantly positively correlated with backward chaining (r = 0.34, p < 0.01), while Swahili shows
a significant negative correlation with subgoal setting (r = −0.35, p < 0.01) when used as a prefill
language. When considering input languages, Chinese again demonstrates a significant positive
correlation with subgoal setting (r = 0.42, p < 0.001) and verification (r = 0.33, p < 0.01). These
findings suggest that linguistic context, whether from prefill or input, can systematically influence the
reasoning patterns employed by the models when tackling mathematical problems.
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