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Abstract001

Large language models (LLMs) have achieved002
top results in recent machine translation evalua-003
tions, but they are also known to be sensitive to004
errors and perturbations in their prompts. We005
systematically evaluate how both humanly plau-006
sible and synthetic errors in user prompts affect007
LLMs’ performance on two related tasks: Ma-008
chine translation and machine translation eval-009
uation. We provide both a quantitative analysis010
and qualitative insights into how the models011
respond to increasing noise in the user prompt.012
The prompt quality strongly affects the trans-013
lation performance: With many errors, even a014
good prompt can underperform a minimal or015
poor prompt without errors. However, different016
noise types impact translation quality differ-017
ently, with character-level and combined nois-018
ers degrading performance more than phrasal019
perturbations. Qualitative analysis reveals that020
lower prompt quality largely leads to poorer021
instruction following, rather than directly af-022
fecting translation quality itself. Further, LLMs023
can still translate in scenarios with overwhelm-024
ing random noise that would make the prompt025
illegible to humans.026

1 Introduction027

LLMs, particularly closed-source systems acces-028

sible via APIs, have recently dominated machine029

translation benchmarks (Kocmi et al., 2024a), and030

users increasingly turn to them over other systems.031

However, LLMs are notoriously sensitive to prompt032

perturbations (Qiang et al., 2024, inter alia).033

Research publications tend to contain well-034

crafted prompts. The users, i.e., the actual target035

audience of the models, are less meticulous than036

researchers motivated to achieve state-of-the-art re-037

sults with their models. Thus, the evaluation mode038
0We release the 2.2M translations in 3 language pairs from

6 state-of-the-art (closed & open) models and 7 noisers at
[anonymized] to enable further research into the effects
of prompt quality on LLM performance.
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Figure 1: Changing model performance, as measured
by COMET score (y-axis), across all noised prompts.
The similarity of each noised prompt to the original is
measured by the inner product of their sentence embed-
dings (x-axis).

is misaligned with the way the models are used and 039

evaluations in research might misrepresent the true 040

model performance in the wild. 041

Our work aims to fill this practice-evaluation gap. 042

We evaluate LLM robustness to mistakes and per- 043

turbations in prompts on two machine translation- 044

related tasks: machine translation itself, and LLM- 045

based machine translation evaluation (Kocmi and 046

Federmann, 2023b). 047

We simulate real-world LLM usage by adding 048

noise to the prompts. Some of the noisers imi- 049

tate L2 practitioners using prompts in “imperfect” 050

English, which allows us to gauge the potential 051

performance loss incurred by such users. The con- 052

trollable noisers help us to quantify the impact of in- 053

formation loss through perturbations on the model 054

performance, and observe error modes at more ex- 055

treme noise levels. We focus specifically on noise 056

in the user prompt, as opposed to other parts of 057

the input, such as the system prompt. This is to 058

mimic the typical user/researcher use-case, who 059

typically do not have access to the system prompt 060

of state-of-the-art LLMs. 061

1



Contributions. We provide a systematic evalu-062

ation of the effect of errors in the user prompt on063

LLM performance in machine translation and MT064

evaluation. By considering different error types,065

we establish the severity of natural and synthetic066

errors, both at the orthographic and lexical-phrasal067

level. Our analysis is both quantitative and qualita-068

tive, showing how models try to recover, as well as069

when off-target language responses become more070

common.071

Findings. Through a large-scale quantitative072

evaluation (followed by smaller-scale qualitative073

evaluation) on three language pairs, six state-of-074

the-art models, and seven noisers, we find that:075

• All models and prompts show similar sensitivity076

to various levels of prompt noise (see Figure 1).077

• Various noise types impact translation quality078

differently, with synthetic and phonetic noises079

degrading performance more than orthographic080

or phrasal perturbations.081

• High prompt noise also increases the rate of off-082

target language outputs, with models often re-083

sponding in the wrong language, especially when084

translating between unsupported language pairs.085

• Lower prompt quality does largely lead to lower086

instruction following, rather than lowering the087

translation quality itself.088

• LLMs are capable of providing translations even089

when the prompt is illegible to humans.090

• The suitability of a prompt dramatically varies by091

model, implying that comparing the performance092

of two models using a single prompt is unfair.093

Similar findings also hold true for the sibling task094

of translation quality estimation: Lower-quality095

prompts show a weakly detrimental effect on the096

automatic quality assessment, as meta-evaluated by097

system-level correlation with human judgments.098

2 Related Work099

LLMs for Machine Translation. General-100

purpose decoder-only LLMs have demonstrated101

state-of-the-art performance in machine transla-102

tion with zero- and few-shot prompts (Kocmi et al.,103

2024a). However, LLMs may refuse to answer or104

generate unwanted text surrounding the translation105

which adversely affects automatic evaluation (Bri-106

akou et al., 2024). Further, performance has been107

shown to vary depending on the chosen prompt108

(Bawden and Yvon, 2023).109

LLMs show strong translation performance with 110

zero-shot prompting (Hendy et al., 2023). This is 111

especially true for explicitly multilingual models 112

such as EuroLLM (Martins et al., 2024). Both fine- 113

tuning (Xu et al., 2024) and instruction-tuning on 114

the translation task can further boost performance 115

(Alves et al., 2023). For example, TowerLLM (Rei 116

et al., 2024), which is instruction-tuned for multi- 117

lingual translation and related tasks, achieved lead- 118

ing results on the WMT24 general translation task 119

(Kocmi et al., 2024a). 120

Robustness of LLMs. Robustness of language 121

models has been explored in the context of adap- 122

tation to low-resource settings and user-generated 123

text (e.g., Bafna et al., 2024; Srivastava and Chiang, 124

2025). Both these papers model multiple types of 125

variation through automated means, similar to our 126

approach. Srivastava and Chiang (2025) focus on 127

modelling variation in English and provide a tool 128

to reproduce their interventions. Bafna et al. (2024) 129

rather introduce noise for multiple languages and 130

evaluate models for robustness against noise in the 131

input segments of classification tasks. 132

Belinkov and Bisk (2018) diagnosed NMT mod- 133

els to be sensitive to both synthetic and natural 134

noise in the input text. More recently, Peters and 135

Martins (2024) found GPT-3.5 to be surprisingly 136

resilient against synthetic noise. Unlike us, they 137

looked at the input segment and not the user prompt. 138

They also only applied synthetic typos in 10-100% 139

of input tokens, while we define a much broader 140

set of noise types. 141

Relatively little work has addressed noise in the 142

prompt specifically. Zhu et al. (2024) generate ‘ad- 143

versarial’ prompts containing possible typos and 144

semantic errors, as generated by several different 145

tools. However, they seem to be working with 146

rather mild noising and do not address different 147

noise levels. Additionally, while they cover a num- 148

ber of tasks, these are mostly classification tasks. 149

Their evaluation for translation is superficial com- 150

pared to ours. 151

LLM-as-a-judge for Translation. LLMs have 152

been shown to be effective evaluators of models’ 153

instruction-following abilities (Zheng et al., 2023), 154

and have since been successfully applied to transla- 155

tion evaluation. Kocmi and Federmann (2023a,b) 156

introduce GEMBA, a prompt-based metric using 157

GPT-4 to produce direct assessments (DA), mul- 158

tidimensional quality metric (MQM) analysis, or 159

error span annotations (ESA; Kocmi et al., 2024b). 160
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Figure 2: Top: Machine translation pipeline. The origi-
nal prompt is noised, then augmented with source lan-
guage, target language, and source sentence, before
being translated by an LLM. Bottom: Quality estima-
tion pipeline. Translations are evaluated using the GPT
Estimation Metric Based Assessment (GEMBA) tool.

In this work, we use the zero-shot GEMBA-DA161

prompt which achieves high system-level correla-162

tions with human judgments for both reference-163

based evaluation and reference-free quality estima-164

tion, competitive with fine-tuned metrics (Freitag165

et al., 2023, 2024) such as CometKiwi (Rei et al.,166

2022b) and XCOMET-QE (Guerreiro et al., 2024).167

Improvements to LLM-based quality estimation are168

observed with chain-of-thought prompting for error169

analysis (Lu et al., 2024) and fine-tuning on human170

judgments, which boosts poor segment-level corre-171

lations of LLMs-as-judges (Fernandes et al., 2023).172

While Huang et al. (2024) investigate the effect of173

including source and references on evaluation per-174

formance, to our knowledge, our work is the first175

to investigate the prompt robustness of LLMs-as-a-176

judge for translation.177

3 Prompt Noising178

We define a number of noise types and noising sce-179

narios, covering both plausible human errors and180

random synthetic noise. A full description of the in-181

dividual noising functions is given in Appendix A.182

See examples of the noised prompts in Table 1.183

3.1 Modeling Scenarios of Interest184

Given the noising functions, we model the follow-185

ing scenarios:186

1. Random noise. Our random noiser (A.1) cre-187

ates character-level typos, parameterized by a188

probability p. We use it to stress-test model tol-189

erance to noise with 10 choices of p uniformly190

spaced between [0, 1].191

2. Natural orthographic noise (spelling errors)192

due to imperfect proficiency is modelled by193

our orthographic noiser (A.2). This also intro- 194

duces character-level noise with a parameter 195

p. The specific perturbations are motivated by 196

documented errors from L1 and L2 speakers 197

(Cook, 1997). We manually choose a range for 198

p ∈ [0, 0.4] as representing a natural spectrum 199

for the intensity of this type of error, and gen- 200

erate noised prompts for 10 uniformly spaced 201

values of p within this range. We may imag- 202

ine that latter parts of the range represent less 203

proficient L2 writers, and L1 and L2 children. 204

3. Phonetic LLM-generated noise (A.3) is mo- 205

tivated by different phonetic transcription sys- 206

tems that speakers of different first languages 207

may have. This noiser also produces primarily 208

character-level edits but is not parameterized. 209

4. Phrasal noise (A.4) mimics phrasal substitu- 210

tions and simplifications as made by beginner 211

and intermediate speakers of English. 212

5. Register noise (A.5) also operates on a phrase 213

level, but rather transforms the prompts to an 214

informal register. We generate noised prompts 215

corresponding to two different intensities. 216

6. Low-proficiency writers, such as L2 learners 217

of English, presumably commit lexical/phrasal 218

errors as well as spelling errors. We model 219

this as a combined scenario by applying ortho- 220

graphic noise (with the same settings as above) 221

over both levels of simplification as applied by 222

the phrasal noiser. This results in 10 · 2 = 20 223

noiser parameterizations per prompt. Different 224

compositions of the two noisers can be imag- 225

ined to represent the diversity of proficiency in 226

English, i.e. users with syntactic proficiency but 227

imperfect spelling or vice versa. 228

7. Lazy users use informal registers, and presum- 229

ably also make spelling errors. As above, we 230

compose the orthographic noiser in the selected 231

range over both levels of the register noiser to 232

generate prompts with varied noise levels. 233

For all scenarios involving the random and ortho- 234

graphic noisers, we generate 20 noised prompts per 235

noiser parametrization. 236

3.2 Noise Level and Sampling 237

Recall that we want to obtain noised prompts over 238

a range of error intensities in order to measure the 239

effect of errors on LLM performance. Since not 240

all of our noisers are straightforwardly parameter- 241

ized, we define two metrics of prompt similarity to 242

measure noise level: 243
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• chrF between the base prompt and the noised244

version gives a surface measure of prompt simi-245

larity, where a lower chrF score indicates a higher246

noise level.247

• Inner product of embeddings of the base248

prompt and the noise prompts gives a more se-249

mantic measure of prompt similarity. The embed-250

dings are derived from all-MiniLM-L6-v2251

from SentenceTransformers (Reimers and252

Gurevych, 2019a).253

By using various noiser parameterizations per254

scenario as described above, we are able to obtain255

noised prompts modeling our scenarios of interest256

over a range of noise levels as measured by chrF257

score. We sort all noised prompts for a particular258

scenario and prompt into k = 10 buckets of increas-259

ing error intensity, and study model performance260

over these buckets. Given a bucket, the prompt261

used for a particular input is sampled randomly262

over noised prompts in that bucket. This helps in263

providing stable estimates of model performance264

by reducing vulnerability to outlier prompts.265

4 Experimental Settings266

Prompts. We choose four zero-shot prompts267

used by LLM-based systems at the WMT24 Gen-268

eral Translation task (Kocmi et al., 2024a) as our269

base prompts. As a sanity check, we include results270

for an additional minimalistic baseline that was271

shown to perform well by Zhang et al. (2023). We272

do not apply any perturbations to this baseline. See273

Table 4 for the full baseline prompts, Table 1 for274

examples of perturbed prompts, and Appendix B275

for implementation details.276

Setup. We select two closed-source API models277

and four open-weight models:278

• GPT-4o-mini (OpenAI, 2024)279

• Gemini-2.0-flash (Google, 2024)280

• Llama-3.1-8B-Instruct (Dubey et al., 2024)281

• Qwen2.5-7B-Instruct (Yang et al., 2025)282

• EuroLLM-9B-Instruct (Martins et al., 2024)283

• TowerInstruct-7B-v0.2 (Rei et al., 2024)284

The models are selected so that they support the285

languages used for the experiments, and, for the286

open-weight models, that we are able to run them287

on our infrastructure. See Appendix Table 7 for288

the list of models we considered and the languages289

they support.290

Prompt 3: Translate this from {src_lang} to {tgt_lang}:\n
{src_lang}: {src_text}\n {tgt_lang}:

Orthographic (0.1) Trranslate ti from {src_lang} too
{tgt_lang:}: \n {src_lang}: {src_text} \n {tgt_lang}:
Orthographic (0.4): Tranzlate dhiss from {src_lang} to
{tgt_lang}: \n {src_lang}: {src_text} \n {tgt_lang}:
Orthographic (0.5): Granslaas yhii fftom {src_lang} tto
{tgt_lang}: \n {src_lang}: {src_text} \n {tgt_lang}:
Orthographic (1.0): Reaajaky fgo trormm {src_lang} ttk
{tgt_lang}:: \n {src_lang} {src_text} \n {tgt_lang}::
Lexical/Phrasal (1): Make this text in {tgt_lang} from
{src_lang}: \n {src_lang}: {src_text} \n {tgt_lang}:
Lexical/Phrasal (2): You translate this text to {tgt_lang}
fromm {src_lang}: \n {src_lang}: {src_text} \n {tgt_lang}:
Phonetic: Tranzlate thees from {src_lang} to {tgt_lang}:
\n {src_lang}: {src_text} \n {tgt_lang}:
Register (1): {tgt_lang} version of this pls: \n {src_lang}:
{src_text} \n {tgt_lang}:
Register (2): change lang {src_lang} -> {tgt_lang}: \n
{src_lang}: {src_text} \n {tgt_lang}:

Table 1: Various types and levels (denoted in parenthe-
ses) of noise applied to Prompt 3.

We use language pairs present in WMT 2024 291

(Kocmi et al., 2024a), specifically: Czech- 292

Ukrainian, German-English, and English-Chinese. 293

Qwen officially supports only English, while the 294

other models either officially support or empirically 295

show good performance on these languages (i.e., 296

by taking part in WMT24). For each language pair, 297

we randomly choose 500 segments, which is close 298

to the total number in the test set. For evaluation, 299

we use ChrF (Popović, 2015) and COMETDA
22 (Rei 300

et al., 2022a). We rely on both because COMET 301

is known to struggle on out-of-distribution transla- 302

tions (Zouhar et al., 2024). 303

Quality Estimation with GEMBA. We use GPT- 304

4o-mini for consistency with our translation exper- 305

iments. We use two base prompts: GEMBA-DA 306

(quality estimation Prompt 1) (Kocmi and Fed- 307

ermann, 2023b) and TMU-HIT’s WMT24 qual- 308

ity estimation prompt (QE Prompt 2) (Sato et al., 309

2024); full prompts are shown in Appendix Table 5. 310

We test on Czech-Ukrainian, German-English, and 311

English-Chinese, as for translation. We meta- 312

evaluate the quality estimation performance by 313

computing system and segment level Pearson cor- 314

relations with human scores on submitted WMT24 315

systems. We follow a strict setup with no retries; 316

when GEMBA fails to output a correctly formatted 317

score, we set the score for that segment to 0. We 318

limit experiments on the quality estimation task to 319

orthographic noise on the two base prompts, both 320

to maintain a realistic scenario and to limit costs. 321
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Figure 3: Sensitivity to perturbations by language pair. Translation quality measured by ChrF (top) or COMET
(bottom), given a certain amount of perturbations (x-axes). Perturbation probability refers to the probability p of
applying orthographic noise. Prompt similarity (semantic) refers to the inner product of sentence embeddings.
Prompt similarity (surface) refers to the chrF score of the noised prompt against the base prompt.

5 Results and Discussion322

5.1 Both Prompt Choice And Errors Matter323

Figure 1 shows the changes in translation quality324

depending on the semantic similarity to the origi-325

nal prompt, per prompt. We see that all four base326

prompts are affected by applying noise. However,327

there are also marked differences in performance328

between the base prompts, showing that prompt329

choice matters, and state-of-the-art performance is330

more likely to be achieved with a better prompt.331

The ‘minimal’ prompt yields a reasonable per-332

formance but stays behind the best base prompts.333

Its key benefit compared to the other prompts is the334

fact that the minimal prompt is essentially impos-335

sible to make mistakes with: Using an otherwise336

‘good’ prompt with many mistakes leads to much337

worse performance, and may be worse than using a338

‘bad’ prompt, or the minimal prompt. At the same339

time, a ‘bad’ prompt without errors can perform340

worse than a ‘good’ prompt with only few mistakes.341

These observations show clearly that both prompt342

choice and correctness matter for best results.343

5.2 Effects Appear Across Metrics & Models344

Figure 3 shows error sensitivity per language pair.345

We show six subplots, one for each combination346

of quality metric (ChrF, COMET) and measure of347

noise level (noising probability p, semantic prompt 348

similarity, and surface prompt similarity). Thus, 349

we validate that the perturbation probability p for 350

the orthographic noiser is closely related to the two 351

measures of prompt similarity. Both translation 352

quality metrics show a similar degradation with the 353

introduction of more errors. 354

Importantly, we also see that all language pairs 355

are affected to a similar degree. Czech-Ukrainian 356

appears slightly more sensitive than the other two, 357

possibly due to less robust support of the models for 358

this language pair, while translation into Chinese 359

scores lower on ChrF. Note that TowerInstruct does 360

not support Czech or Ukrainian, and Llama-3.1 361

officially does not support Czech, Ukrainian, or 362

Chinese. Similarly, Appendix Figure 7 shows the 363

sensitivity per language pair and model. All models 364

are affected, for all languages, to a similar degree. 365

5.3 Comparing Noise Types 366

Table 2 shows Pearson correlations of translation 367

quality with the prompt similarity to the base 368

prompt, per noise type and per prompt. A high 369

correlation implies that at low similarity, transla- 370

tion quality is also low, i.e, changes in this direction 371

have more impact on output quality. A low correla- 372

tion means that at low similarity, translation quality 373

is not strongly affected. 374
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Noiser Prompt 1 Prompt 2 Prompt 3 Prompt 4 All prompts

Random noise 0.86 0.92 0.68 0.61 0.77

Phonetic LLM 0.84 0.72 0.86 0.57 0.75

Lazy user 0.94 0.77 0.36 0.52 0.65

Orthographic 0.71 0.58 -0.01 0.67 0.49

L2 0.71 0.46 0.47 0.14 0.44

Register 0.74 0.88 0.31 -0.17 0.44

Phrasal 0.51 0.59 0.30 -0.67 0.18

All noisers 0.76 0.70 0.42 0.24 0.53

Table 2: Pearson correlation within each noiser and prompt (averaged across models and languages). See Appendix
Figure 6 for visualization in a single plot.

On average across all prompts, the random noise375

shows the strongest effect. This may be partly376

because these errors are less realistic and therefore377

further out-of-distribution than the more plausible378

orthographic errors. Additionally, the random noise379

was applied in a wide range of intensity, and it380

shows a relatively steep drop-off in performance as381

the prompt similarity decreases.382

The effect of the phonetic LLM-generated noise383

is also strong, with both low prompt similarity mea-384

sures and low translation quality.385

Phrasal perturbations show the least overall ef-386

fect: For Prompt 4, we even see a negative correla-387

tion, meaning some substitutions performed better388

than the original prompt. Phrasal noise tends to389

simplify the prompt, and is rated less distant from390

the original prompt by the inner product metric.391

This increases robustness to phrasal noise overall,392

and can even help.393

The ‘L2’ and ‘Lazy User’ scenarios combine the394

orthographic noiser with phrasal and register noise,395

respectively. While the orthographic noiser affects396

spelling, phrasal and register noise changes the397

wording of the prompt. Each combined scenario398

has more impact than the wording changes alone,399

though notably the ‘L2’ scenario is not worse over-400

all than orthographic errors alone. This may be due401

to the simplifying effects of phrasal noise.402

5.4 Comparing Prompts 403

Remarkably, there is no correlation between noise 404

level and quality when Prompt 3 is noised with 405

realistic orthographic errors. Additionally, as noted 406

above, Prompt 4 even seems to benefit from phrasal 407

noise. Prompts 3 and 4 appear more resilient to 408

noising overall. We conjecture that this is primarily 409

due to one factor: They are short, and we preserve 410

the critical variables of source and target language, 411

as well as the input segment. Therefore, noising 412

the rest of the short prompts introduces relatively 413

less confusion than when noising the more complex 414

prompts 1 and 2. Additionally, prompts 1 and 4 415

do not outperform the minimal prompt baseline in 416

terms of absolute quality (see Figure 1). While 417

Prompt 1 is long and appears brittle, Prompt 4 418

benefits from phrasal substitution, perhaps because 419

there is room for improvement. 420

Additionally, the best-performing prompt for one 421

model can be the worst-performing prompt for an- 422

other. We observed that GPT-4o tends to benefit 423

from the structure of Prompt 1, however, the re- 424

maining models tend to copy parts of it regardless 425

of noise type or intensity, leading to lower scores. 426

Similarly, Prompt 4 is the best-performing prompt 427

for EuroLLM and Qwen 2.5, but makes Gemini 428

more likely to produce translations into languages 429

other than the target. We thus conclude that using 430
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the same prompt to compare the performance of431

multiple models is unfair, especially if the prompt432

tuning was done using one model.433

5.5 Off-Target Outputs434

We observe that a common error mode is respond-435

ing in a non-target language. Figure 4 shows the436

proportion of outputs in the target language by437

model and language pair. For all models and lan-438

guage pairs, high noise levels decrease the propor-439

tion of on-target outputs. Of the target languages,440

German has the highest proportion of on-target out-441

puts. For Czech-Ukrainian, TowerInstruct tends442

to output other languages even with an unnoised443

prompt, because the two languages are not well-444

supported by the model.445

Note also that COMET may still score off-target446

outputs highly, for instance, if the model outputs447

an English or Russian (for Czech-Ukrainian) trans-448

lation of the input, or copies the input to the output.449

These types of outputs have high semantic similar-450

ity to the correct translation, but COMET does not451

consider whether the translation is in the correct452

target language.453

5.6 Transferability to Quality Estimation454

Figure 5 shows that both quality estimation455

prompts are (weakly) affected by applying real-456

istic orthographic noise, with differences in both457

the base prompts’ performance and the effect of the458

noiser. This reinforces that prompt choice matters459

for quality estimation as for translation.460

Table 3 shows Pearson correlations of system-461

level correlations with the prompt similarity, per462

prompt. A higher correlation implies that decreas-463

ing prompt similarity also decreases quality esti-464

mation correlation with human judgments. We465

observe a similar effect of orthographic noise on466
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Figure 5: Changing model performance, as measured
by system-level correlation (y-axis), across orthographi-
cally noised quality estimation prompts, against seman-
tic similarity of the noised prompt to its original (x-axis).
The results suggest only a weak trend.

the system-level correlation of GEMBA across lan- 467

guages, with an overall correlation of 0.43, com- 468

pared to 0.49 for translation. This suggests the 469

effect of orthographic noise is transferable and 470

largely consistent across tasks. See Appendix Fig- 471

ure 9 for per-language results. 472

However, we observe a negative correlation 473

for Quality Estimation Prompt 1 at the segment 474

level. The unnoised prompt already achieves a poor 475

segment-level correlation of 0.16. This may be an 476

artefact of our strict setting which prohibits retries 477

and artificially sets the resulting score to 0. Further, 478

the shorter prompt may explain the reduced vari- 479

ance in outputs and therefore weaker correlations, 480

though additional testing is required to elucidate 481

this effect. 482

5.7 Qualitative Analysis 483

We performed qualitative analysis on the machine 484

translation outputs by manually inspecting a sam- 485
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Level Prompt 1 Prompt 2 All prompts

System- 0.15 0.71 0.43

Segment- -0.38 0.57 0.09

Table 3: Pearson correlation between system and
segment-level correlations and prompt similarity, for
the orthographic noiser and quality estimation prompts
(averaged across languages).

ple of the lowest-scoring translations in each set-486

ting. We also sampled 10 source segments per487

language pair with their translations from every488

setting, to understand how various noise types and489

levels change the translation of a given sentence.490

Gemini adds most supplementary information.491

In addition to providing the translation, Gemini492

frequently offers useful background information,493

such as multiple versions of the translation or the494

pronunciation of the Chinese translation explained495

in Latin script. These phenomena appear in the496

outputs regardless of the noise type or intensity.497

On the other hand, the model explains its choice498

of words more frequently with increasing noise499

intensity. This behavior may be beneficial for a500

user, but is difficult to parse in an automated setting.501

Lower scores are often due to redundant text.502

The translations by a single model tend to remain503

relatively stable across various noise types and lev-504

els. The main explanation for the differing scores505

is the presence of redundant text, such as adding506

the name of the target language, saying “here is507

your translation”, or repeating the source sentence.508

GPT-4o is a notable exception: It generates more509

diverse translations and less redundant text, unless510

subjected to a high level of random noise (p > 0.5).511

Up to that threshold, a lower metric score for GPT-512

4o is more likely to correspond to genuinely lower513

translation quality.514

This finding is also supported quantitatively in515

Figure 8. It shows that adding noise increases the516

average length of the LLM output and that there517

are frequently significant differences between tar-518

get and reference length. GPT-4o produces the519

shortest texts while Gemini produces the longest.520

The average length of Qwen2.5 outputs is the least521

affected by noise.522

LLMs can still translate with illegible prompts.523

Realistic noising scenarios produce prompts that524

are mostly legible to humans. However, applying 525

random noise with p > 0.46, exceeding the natural 526

error range, makes the prompts largely illegible to 527

humans (compare Table 1). 528

LLMs sometimes produce an error message or 529

request clarification without providing a translation 530

in response to an illegible prompt. However, they 531

frequently produce valid translations even when 532

given prompts with a high p = 0.78, which are non- 533

sensical to the human eye. These translations are 534

frequently accompanied by strategies such as copy- 535

ing the prompt verbatim, attempting to translate or 536

fix it, or treating the text as a cipher to decode. In 537

rare cases, they ignore the noise altogether and pro- 538

vide the expected translation. We show examples 539

of these outputs in Appendix Table 6. 540

6 Conclusions 541

In this work we describe the gap between academic 542

evaluations and real world LLM usage for machine 543

translation. We find that good prompts can be ru- 544

ined by making many errors, leading to worse trans- 545

lations than an otherwise subpar prompt. The ef- 546

fect seems to be largest when spelling is severely 547

affected, while phrasal substitutions may even help 548

in some cases. 549

Fortunately for the users, ‘imperfect’ English in 550

prompts most often does not lead to lower transla- 551

tion quality, but rather worse instruction following. 552

The actual translations are thus still retrievable by 553

humans and can be of appropriate quality, though 554

this would fail in an automated pipeline. This find- 555

ing reflects the gap between automated evaluation 556

and individual usage of models. 557

Furthermore, we find that LLMs can produce 558

translations even when prompted by instructions 559

illegible to humans. This suggests that if an LLM 560

is capable of performing a task, it can recognize 561

the task and perform it even with an objectively 562

bad prompt. We believe this finding may be helpful 563

for future research, as it implies that if an LLM 564

does not generalize to a task as demonstrated by 565

a handful of prompts, further prompt engineering 566

efforts are unlikely to change that outcome. 567

Limitations 568

This study was limited to only a small number of 569

language pairs. However, we observe very consis- 570

tent patterns across these language pairs, as well 571

as across multiple models, and are thus reasonably 572
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confident our findings will transfer to further lan-573

guage pairs.574

We used automatically generated noise rather575

than error data from real learners. One important576

reason for this is the difficulty of sourcing real ex-577

amples. Asking learners directly would produce578

observation effects which again distort the distribu-579

tion. While using generated errors may mean that580

some of the examples are less realistic, it allows581

for a broader statistical analysis and provides us582

with better control over our experimental variables.583

Our noising implementation is carefully designed,584

based on attested observations of common errors,585

to be close to realistic.586

Ethics Statement587

We do not anticipate any negative ethical implica-588

tions arising from this study. We took care to ensure589

realistic representations of errors without casting590

users in a negative light. The translation data we591

used is from WMT24 (Kocmi et al., 2024a), which592

is freely available to use for research purposes.593

The total inference cost for the two proprietary594

models (GPT-4o-mini and Gemini-2.0-flash) is less595

than USD 100. While we did run the other models596

locally, the overall cost for all the models likely597

does not exceed USD 200.598

The licenses for the open-weights models are:599

Llama 3.1 Community License for Llama 3.1;600

Apache 2.0 for EuroLLM and the Qwen model we601

used; and CC-BY-NC-4.0 for the Tower model we602

used (with its base model Llama 2 being licensed603

under the Llama 2 Community License). These604

licenses all permit our use of the model weights.605

We used AI-assisted coding (i.e. Copilot) with606

the bulk being human-written. For writing, AI was607

used to check grammar mistakes.608
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A Descriptions of Noising Functions849

A.1 Random noise850

This noiser, parameterized by probability p, intro-851

duces random perturbations into the prompt, mod-852

eling natural typos. The perturbations include ran-853

dom character transposition, omission, doubling,854

and substitution for neighbouring letters on the855

keyboard. The character-wise frequency of error856

is controlled by p, and the type of error is sampled857

uniformly from the above mentioned types.858

A.2 Orthographic noise859

This noiser models spelling errors, both due to im-860

perfect proficiency in written English as well as861

random typos. Cook (1997) provide a classifica-862

tion of the types of spelling errors made by both L1863

and L2 speakers, and report the relative frequency864

of these errors, finding higher error rates for L2865

speakers, but similar distributions over error cate-866

gories. Guided by this work, we define the follow867

classes of orthographic errors:868

• Natural typos: We re-use our random noiser as869

described above. This corresponds to the cate-870

gory “other” as defined by Cook (1997).871

• Omission: Omitting one of a non-word-initial872

consonant pair (e.g. ck→k), dropping r before873

a consonant, dropping e if it is word-final, or874

before ly.875

• Insertion: Doubling non-word-initial consonant.876

• Substitution: Confusing specific sets of conso-877

nants (such as s, c, z), confusing vowels with878

each other. For the latter, we generate errors con-879

sistently with the finding that confusions between880

a, e, i constitute 60% of vowel substitutions.881

• Transposition: Transposing consecutive vowels882

(ie→ei), transposing certain bigrams (er, ng).883

Similarly to the random noiser, the orthographic884

noiser is controlled by a parameter p, which corre-885

sponds to the probability of error on a given char-886

acter. Varying p allows us therefore to generate887

prompts over different intensities of noise. Given888

a character to be noised, we sample a type of error889

from the above list, as per the natural distribution890

over these categories of error described in Cook891

(1997). Given a type of error (e.g. substitution),892

we uniformly sample a subtype of error from all893

subtypes applicable to the character and its context.894

For example, the “a-e”-confusion subtype is only895

relevant for “a’s”. Note that a character may have896

no relevant subtypes under a given type: In this897

case, we simply skip the character.898

A.3 Phonetic LLM-generated noise 899

We also investigate the impact on LLM perfor- 900

mance of errors made by non-native speakers writ- 901

ing English sentences based on phonetic transcrip- 902

tions in their first languages. We prompt an LLM 903

to mimic these errors in various languages (Arabic, 904

Chinese, German, Polish and Spanish) spoken by 905

beginner English learners. According to our tests, 906

LLMs can simulate typical phonetic errors for a 907

particular language, despite not being fully fluent in 908

it. Example for a Polish person: Translate the fol- 909

lowing line from English to Chinese. → Translejt 910

de follouing lajn from English tu Chinese. 911

A.4 Phrasal simplification 912

We would like to study the effect of alternate lex- 913

ical/phrasal simplification, as possibly committed 914

by L2 speakers. Note that prompts generally use 915

largely restricted vocabulary, and potential phrasal 916

errors are therefore limited. We consider two levels 917

of L2 proficiency: Beginner and intermediate, and 918

prompt an LLM to mimic such errors made by L2 919

speakers of each level, generating k = 10 noised 920

candidates per prompt and level. We manually 921

examine the generations and discard implausible 922

options. We find that LLM-generated errors cover 923

a reasonable range of plausible errors of this type. 924

A.5 Register changes 925

We are also interested in the effect of informal reg- 926

isters of users, who may query LLMs similarly to 927

querying search engines, with non-standard casing, 928

dropping of articles and function words, and re- 929

framing for conciseness. For example, Translate 930

from de to en→translate de - en. This type of noise 931

also offers a limited number of possible transfor- 932

mations of a base prompt. Similarly to above, we 933

prompt an LLM to generate k = 10 informal ver- 934

sions of each base prompt with the above changes, 935

for two levels (medium and high) of informality, 936

and manually discard unlikely candidates. 937

B Implementation Details 938

For evaluation we use the following settings: 939

• nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1 940

(Post, 2018, sacrebleu) 941

• Python3.11.5|Comet2.2.5|fp32|Unbabel/wmt22-comet- 942

da|r1 (Rei et al., 2022a, sacrecomet Zouhar et al., 943

2024) 944

• sentence-transformers/all-MiniLM-L6-v2 (Reimers and 945

Gurevych, 2019b) 946
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Prompt 1: ### Instruction:\n Translate Input from {src_lang} to {tgt_lang} \n ### Input:\n {src_text}\n ### Response:\n
Prompt 2: Translate the following line from\n {src_lang} to {tgt_lang}.\n Be very literal, and only translate the content of the
line, do not add any explanations: {src_text}
Prompt 3: Translate this from {src_lang} to {tgt_lang}:\n {src_lang}: {src_text}\n {tgt_lang}:
Prompt 4: Translate the following text from {src_lang} to {tgt_lang}.\n {src_text}
Prompt minimal: {src_lang}: {src_text}\n {tgt_lang}:

Table 4: Base forms for investigated machine translation prompts.

QE Prompt 1: Score the following translation from {src_lang} to {tgt_lang} on a continuous scale from 0 to 100, where a score
of zero means ‘no meaning preserved’ and score of one hundred means ‘perfect meaning and grammar’.\n {src_lang} source:
‘{src_text}’\n {tgt_lang} translation: ‘{tgt_text}’\n Score:
QE Prompt 2: Please analyze the given source and translated sentences and output a translation quality score on a continuous
scale ranging from 0 to 100. Translation quality should be evaluated based on both fluency and adequacy. A score close to 0
indicates a low quality translation, while a score close to 100 indicates a high quality translation. Do not provide any explanations
or text apart from the score.\n {src_lang} Sentence: {src_text}\n {tgt_lang} Sentence: {tgt_text}\n Score:

Table 5: Base forms for investigating quality estimation prompts.
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Figure 6: Average performance (across models and languages) with respect to individual prompts and noisers. Each
shape is one of four prompts. Visualizes Table 2 in a single plot.
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Figure 7: Sensitivity of individual models to prompt noising, for each language pair and by model. x-axis: Prompt
similarity to base prompt (semantic). y-axes: Translation quality measured by ChrF (top) and COMET (bottom).
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EuroLLM Llama Qwen2.5 TowerInstruct Gemini GPT-4o
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Figure 8: Average length of generated outputs compared to the reference length. We compare the output lengths
given the base prompts to the aggregate of all noise variants, and observe that noised prompts lead to consistently
longer texts.

EuroLLM, Orthographic (0.7): Rrwnslswfee tn gplowwgn linnee ffro \n English t German.\n Bee yg oiiteerarl, ann olyn
rtnlqata thet cnotetn kff feg linns, ri ohtt adad anay exlqntaiiox:: Ich finde es sehr lebensbejahend; aus so einfachen Zutaten
etwas so Reichhaltiges und Komplexes zu machen. Wie bei der Geburt eines Kindes.
Qwen2.5, Orthographic (0.8): Hier ist die Übersetzung von Englisch ins Deutsche: Offensichtlich gibt es nur zwei Ebenen,
die im Original-Super-Mario-Maker noch nicht abgeschlossen wurden.
Gemini, Orthographic (0.8): Gerne, hier ist die Übersetzung des Satzes "I better get some motorbikes fixed, or else!" ins
Deutsche:\n \n Ich sollte besser ein paar Motorräder reparieren lassen, oder aber!
Llama, Orthographic (0.8): The encoded message is a cipher. It appears to be a simple substitution cipher, where each
letter has been shifted by a certain number of positions in the alphabet. After analyzing the text, I believe it is a Caesar
cipher with a shift of 13 positions. Here’s the decoded message: Original: Gafnsnlatae tet ffllwlif llnie gon Decoded:
"Fantastical life line gone" [...]
GPT-4o, Orthographic (0.9): It seems like there are some typos and formatting issues in your message. However, I can
help you translate the provided English text into German. Here’s the translation: **English:** "I find it very life affirming;
transforming such simple ingredients into something so rich and complex. Like witnessing a birth." **German:** "Ich finde
es sehr lebensbejahend; so einfache Zutaten in etwas so Reichhaltiges und Komplexes zu verwandeln. Wie das Zeugnis
einer Geburt." If you need further assistance or corrections, feel free to ask!
TowerLLM, Orthographic (0.8): Gafnsnlatae tet ffllwlif llnie gon \n Deutsch gehen Englisch.\n Sehr traurig, wenn
man bedenkt, dass die Mieten in den letzten Jahren um durchschnittlich 6 Prozent pro Jahr gestiegen sind, aber diese
Vorschläge würden die Mieten um bis zu 15 Prozent erhöhen, was ironischerweise höher ist als die historischen jährlichen
Preissteigerungen. [...].

Table 6: Examples of LLM outputs when presented with perturbed prompts.
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Figure 9: Sensitivity of QE outputs to perturbations by language pair. System-level correlation is measured against
human evaluations on the test set, given a certain perturbation amount. Semantic prompt similarity measures the
inner product of noised and base sentence embeddings, while surface similarity measures ChrF between noised and
base prompts. The results show that effects are seen across language pairs, though the magnitude of the effect varies.
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English Czech Ukrainian German Chinese Open

Claude-3.5 Sonnet1

CommandR+ 2 2

GPT-4o

Gemini-1.5 Pro

Phi-3

Phi-4 14B

EuroLLM

Llama

Tower 3 3

Aya23

DeepSeek-V31

Qwen-2.5

Mistral

Table 7: List of models taken into consideration. The list of supported languages for the open-weight models is
taken from their Hugging Face model cards.
1: The model is multilingual but the list of supported languages is not available;
2: Languages included in the pre-training but not post-training (Cohere documentation);
3: Tower70B took part to WMT2024 on the Czech→Ukrainian language pair (Kocmi et al., 2024a), but the model
card for Unbabel/TowerInstruct-7B-v0.2 does not include it.
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