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Abstract

Model ensemble adversarial attack has become a
powerful method for generating transferable ad-
versarial examples that can target even unknown
models, but its theoretical foundation remains un-
derexplored. To address this gap, we provide
early theoretical insights that serve as a roadmap
for advancing model ensemble adversarial attack.
We first define transferability error to measure
the error in adversarial transferability, alongside
concepts of diversity and empirical model ensem-
ble Rademacher complexity. We then decompose
the transferability error into vulnerability, diver-
sity, and a constant, which rigidly explains the
origin of transferability error in model ensemble
attack: the vulnerability of an adversarial exam-
ple to ensemble components, and the diversity of
ensemble components. Furthermore, we apply the
latest mathematical tools in information theory to
bound the transferability error using complexity
and generalization terms, validating three practi-
cal guidelines for reducing transferability error:
(1) incorporating more surrogate models, (2) in-
creasing their diversity, and (3) reducing their
complexity in cases of overfitting. Finally, ex-
tensive experiments with 54 models validate our
theoretical framework, representing a significant
step forward in understanding transferable model
ensemble adversarial attacks.
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1 Introduction
Neural networks are highly vulnerable to adversarial exam-
ples (Szegedy et al., 2013; Goodfellow et al., 2014)—per-
turbations that closely resemble the original data but can
severely compromise safety-critical applications (Zhang &
Li, 2019; Kong et al., 2020; Bortsova et al., 2021). Even
more concerning is the phenomenon of adversarial transfer-
ability (Papernot et al., 2016; Liu et al., 2017): adversarial
examples crafted to deceive one model often succeed in
attacking others. This property enables attacks without re-
quiring any knowledge of the target model, significantly
complicating efforts to ensure the robustness of neural net-
works (Dong et al., 2019; Silva & Najafirad, 2020).

To enhance adversarial transferability, researchers have pro-
posed a range of algorithms that fall into three main cate-
gories: input transformation (Xie et al., 2019; Wang et al.,
2021), gradient-based optimization (Gao et al., 2020; Xiong
et al., 2022), and model ensemble attacks (Li et al., 2020;
Chen et al., 2024b). Among these, model ensemble attacks
have proven especially powerful, as they leverage multiple
models to simultaneously generate adversarial examples
that exploit the strengths of each individual model (Dong
et al., 2018). Moreover, these attacks can be combined with
input transformation and gradient-based optimization meth-
ods to further improve their effectiveness (Tang et al., 2024).
However, despite the success of such attacks, their theoreti-
cal foundation remains poorly understood. This prompts an
important question: Can we establish a theoretical frame-
work for transferable model ensemble adversarial attacks
to shape the evolution of future algorithms?

To conduct a preliminary exploration of this profound ques-
tion, we propose three novel definitions as a prerequisite of
our theoretical framework. Firstly, we define transferability
error as the gap in expected loss between an adversarial
example and the one with the highest loss within a feasi-
ble region of the input space. It captures the ability of an
adversarial example to generalize across unseen models,
representing its transferability. Secondly, we introduce pre-
diction variance across the ensemble classifiers. It offers a
novel perspective on quantifying diversity in model ensem-
ble attacks, providing a fresh approach to guide the selection
of ensemble components. Finally, we also introduce the em-
pirical model ensemble Rademacher complexity, inspired
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by Rademacher complexity (Bartlett & Mendelson, 2002),
as a measure of the flexibility of ensemble components.

With these three definitions, we offer two key theoretical
insights. First, we show the vulnerability-diversity decom-
position of transferability error (Figure 1), highlighting the
preference for ensemble components that are powerful at-
tackers and induce greater prediction variance among them-
selves. However, this also uncovers a fundamental trade-off
between vulnerability and diversity, making it challenging
to maximize both simultaneously. To mitigate this issue
and provide more practical guidelines, we present an up-
per bound for transferability error, incorporating empirical
model ensemble Rademacher complexity and a generaliza-
tion term. The primary challenge in proof lies in the appli-
cation of cutting-edge mathematical tools from information
theory (Esposito & Mondelli, 2024), which are crucial for
addressing the complex issue of relaxing the independence
assumption among surrogate classifiers. Our theoretical
analysis leads to a crucial takeaway for practitioners: In-
cluding more and diverse surrogate models with reduced
model complexity in cases of overfitting helps tighten the
transferability error bound, thereby improving adversarial
transferability. Finally, the experimental results support the
soundness of our theoretical framework, highlighting a key
step forward in the deeper understanding of transferable
model ensemble adversarial attacks.

2 Related Work

2.1 Transferable Adversarial Attack

Researchers have developed various algorithms to enhance
adversial transferability. Most of them fall into three cate-
gories: input transformation, gradient-based optimization,
and model ensemble attack. Input transformation tech-
niques apply data augmentation strategies to prevent overfit-
ting to the surrogate model. For instance, random resizing
and padding (Xie et al., 2019), downscaling (Lin et al.,
2019), and mixing (Wang et al., 2021). Gradient-based op-
timization optimizes the generation of adversarial examples
to achieve better transferability. Some popular ideas include
applying momentum (Dong et al., 2018), Nesterov acceler-
ated gradient (Lin et al., 2019), scheduled step size (Gao
et al., 2020) and gradient variance reduction (Xiong et al.,
2022). Model ensemble attack combine outputs from sur-
rogate models to create an ensemble loss, increasing the
likelihood to deceive various models simultaneously. It can
be applied collectively with both input transformation and
gradient-based optimization algorithms (Tang et al., 2024).
Some popular ensemble paradigms include loss-based en-
semble (Dong et al., 2018), prediction-based (Liu et al.,
2017), logit-based ensemble (Dong et al., 2018), and lon-
gitudinal strategy (Li et al., 2020). Moreover, advanced
ensemble algorithms have been created to ensure better ad-

versarial transferability (Li et al., 2023; Wu et al., 2024;
Chen et al., 2024b). An extended and detailed summary of
related work is in Appendix A.

Within the extensive body of research on model ensemble
attacks, two notable and intriguing observations stand out.
First, increasing the number of models in an ensemble im-
proves adversarial transferability (Liu et al., 2017; Dong
et al., 2018; Lin et al., 2019; Gubri et al., 2022b; Liu et al.,
2024). Second, using more diverse surrogate models with
varying architectures and back-propagated gradients (Tang
et al., 2024) further enhances transferability. However, to
our best knowledge, these intriguing phenomena have yet to
be fully understood from a theoretical perspective. In this
paper, we present the first theoretical framework to explain
these phenomena, providing actionable insights that pave
the way for future algorithm design.

2.2 Theoretical Understanding of Adversarial
Transferability

In contrast to the wealth of empirical and intuitive stud-
ies, research on the theoretical understanding of adversarial
transferability remains limited. Recent efforts have primar-
ily focused on aspects such as data (Tramèr et al., 2017),
surrogate model (Wang & Farnia, 2023), optimization (Yang
et al., 2021; Zhang et al., 2024a; Chen et al., 2024b; Fan
et al., 2024) and target model (Zhao et al., 2023). Tramèr
et al. (2017) investigates the space of transferable adversarial
examples and establishes conditions on the data distribu-
tion that suggest transferability for some basic models. In
terms of the surrogate model generalization, Wang & Farnia
(2023) builds the generalization gap to show that a surro-
gate model with a smaller generalization error leads to more
transferable adversarial examples. From an optimization
perspective, Yang et al. (2021); Zhang et al. (2024a) estab-
lish upper and lower bounds on adversarial transferability,
linking it to model smoothness and gradient similarity. They
suggest that increased surrogate model smoothness and less
loss gradient similarity improve transferability. Chen et al.
(2024b) provide theoretical evidence connecting transfer-
ability to loss landscape flatness and closeness to local op-
tima. Fan et al. (2024) decompose adversarial transferability
into local effectiveness and transfer-related loss, suggesting
that flatness alone is insufficient to determine the whole
picture of adversarial transferability. Regarding the target
model, Zhao et al. (2023) theoretically reveal that reducing
the discrepancy between the surrogate and target models
can limit adversarial transferability.

Despite these theoretical advances, to the best of our knowl-
edge, transferable model ensemble adversarial attacks re-
main unexplored. To address this gap, we take a pioneering
step by presenting the first theoretical analysis of such at-
tacks. Our work not only offers theoretical insights into
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Figure 1. Vulnerability-diversity decomposition of transferability error. (a) The transferability error is defined as the difference in expected
loss value between a given adversarial example and the most transferable one. (b) Vulnerability is the loss value of the expected ensemble
classifier on the adversarial example. (c) Diversity is the variance in model ensemble predictions that correspond to the correct class.

these attacks but also incorporates recent advancements in
information theory, laying the groundwork for future theo-
retical investigations into adversarial transferability.

3 Key Definitions: Transferability Error,
Diversity, and Ensemble Complexity

In this section, we first highlight the fundamental goal of
model ensemble adversarial attack (Section 3.1). Then we
define the transferability error (Section 3.2), diversity in
transferable model ensemble attack (Section 3.3) and empir-
ical model ensemble Rademacher complexity (Section 3.4).

3.1 Model Ensemble Adversarial Attack

Given the input space X ⊂ Rd and the output space Y ⊂ R,
we have a joint distribution PZ over the input space Z =
X×Y . The training set Ztrain = {zi|zi = (xi, yi) ∈ Z, yi ∈
{−1, 1}, i = 1, · · · ,K}, which consists of K examples
drawn independently from PZ . We denote the hypothesis
space by H : X 7→ Y and the parameter space by Θ. Let
f(θ; ·) ∈ H be a classifier parameterized by θ ∈ Θ, trained
for a classification task using a loss function ℓ : Y × Y 7→
R+

0 . Let PΘ represent the distribution over the parameter
space Θ. Define PΘN as the joint distribution over the
product space ΘN , which denotes the space of N such sets
of parameters. We use Ztrain to train N surrogate models
f(θ1; ·), · · · , f(θN ; ·) for model ensemble. The training
process of these N classifiers can be viewed as sampling

the parameter sets (θ1, . . . , θN ) from the distribution PΘN .
For a clean data ẑ = (x̂, y) ∈ Z , an adversarial example
z = (x, y) ∈ Z , and N classifiers for model ensemble
attack, define the population risk LP (z) and the empirical
risk LE(z) of the adversarial example z as

LP (z) = Eθ∼PΘ
[ℓ(f(θ;x), y)], (1)

and LE(z) =
1

N

N∑
i=1

ℓ(f(θi;x), y). (2)

Intuitively, a transferable adversarial example leads to a
large LP (z) because it can attack many classifiers with pa-
rameter θ ∈ Θ. Therefore, the most transferable adversarial
example z∗ = (x∗, y) around z is defined as

x∗ = arg max
x∈Bϵ(x̂)

LP (z), (3)

where Bϵ(x̂) = {x : ∥x− x̂∥2 ≤ ϵ} is an adversarial region
centered at x̂ with radius ϵ > 0. However, the expectation in
LP (z) cannot be computed directly. Thus, when generating
adversarial examples, the empirical version Eq. (2) is used
in practice, such as loss-based ensemble attack (Dong et al.,
2018). Therefore, the adversarial example z = (x, y) is
obtained from the following equation

x = arg max
x∈Bϵ(x)

LE(z). (4)

There is a gap between the adversarial example z we find
and the most transferable one z∗. It is due to the fact that the
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ensemble classifiers cannot cover the whole parameter space
of the classifier, i.e., there is a difference between LP (z)
and LE(z). Accordingly, the core objective of transferable
model ensemble attack is to design approaches that approxi-
mate LE(z) to LP (z), thereby increasing the transferability
of adversarial examples.

3.2 Transferability Error

Considering the difference between z and z∗, the transfer-
ability of z can be characterized as the difference in popula-
tion risk between it and the optimal one.

Definition 3.1 (Transferability Error). The transferability
error of z with radius ϵ is defined as:

TE(z, ϵ) = LP (z
∗)− LP (z). (5)

There always holds TE(z, ϵ) ≥ 0 as LP (z
∗) ≥ LP (z). The

closer TE(z, ϵ) is to 0, the better the transferability of z.
Therefore, in principle, the essential goal of various model
ensemble attack algorithms is to make transferability error
TE(z, ϵ) as small as possible. Moreover, if the distribution
over the parameter space PΘ, adversarial region Bϵ(x) and
loss function ℓ are fixed, then LP (z

∗) becomes a constant,
which means that the goal of minimizing TE(z, ϵ) becomes
maximizing LP (z).

In the following lemma, we will show how the difference
between empirical risk and population risk affects the trans-
ferability error of z. The proof is in Appendix C.1.

Lemma 3.2. The transferability error defined by Eq. (5) is
bounded by the largest absolute difference between LP (z)
and LE(z), i.e.,

TE(z, ϵ) ≤ 2 sup
z∈Z

|LP (z)− LE(z)| . (6)

The lemma strictly states that if we can bound the difference
between LP (z) and LE(z), the transferability error can be
constrained to a small value, thereby enhancing adversarial
transferability. This indicates that we can develop strate-
gies to make LE(z) closely approximate LP (z), ultimately
improving the transferability of adversarial examples.

3.3 Quantifying Diversity in Model Ensemble Attack

Before the advent of model ensemble attacks, the formal
definition of diversity in ensemble learning had remained
a long-standing challenge for decades (Wood et al., 2024).
While diverse intuitive definitions of diversity exist in the
model ensemble attack literature (Li et al., 2020; Yang et al.,
2021; Tang et al., 2024), we bridge the gap between trans-
ferable model ensemble attacks and recent advancements in
ensemble learning theory (Ortega et al., 2022; Wood et al.,
2024). Specifically, we propose measuring diversity among
ensemble attack classifiers through prediction variance.

Definition 3.3 (Diversity of Model Ensemble Attack). The
diversity of model ensemble attack across θ ∼ PΘ for a
specific adversarial example z = (x, y) is defined as the
variance of model prediction:

Varθ∼PΘ
(f(θ;x)) = Eθ∼PΘ

[f(θ;x)− Eθ∼PΘ
f(θ;x)]

2
.

(7)

It indicates the degree of dispersion in the predictions of
different ensemble classifiers for the same adversarial exam-
ple. The diversity of model ensemble attack is a measure of
ensemble member disagreement, independent of the label.
From an intuitive perspective, the disagreement among the
ensemble components helps prevent the adversarial example
from overfitting to the classifiers in the ensemble, thereby
enhancing adversarial transferability to some extent.

To calculate the diversity explicitly as a metric, we con-
sider a dataset of adversarial examples Zattack = {zi|zi =
(xi, yi), i = 1, · · · ,M} and N classifiers in the ensemble.
The diversity is computed as the average sample variance of
predictions for all adversarial examples in the dataset:

1

M

M∑
i=1

[
1

N

N∑
j=1

(
f(θj ;xi)−

1

N

N∑
j=1

f(θj ;xi)

)2
]
.

Remark. For multi-class classification problems, f(θ;x) is
replaced with the logit corresponding to the correct class
prediction made by the classifier.

3.4 Empirical Model Ensemble Rademacher
Complexity

We define the empirical Rademacher complexity for model
ensemble by analogy to the original empirical Rademacher
complexity (Koltchinskii & Panchenko, 2000; Bartlett &
Mendelson, 2002).

Definition 3.4 (Empirical Model Ensemble Rademacher
Complexity). Given the input space Z = X × Y and N
classifiers f(θ1; ·), · · · , f(θN ; ·). Let σ = {σi}i∈[N ] be a
collection of independent Rademacher variables, which are
random variables taking values uniformly in {+1,−1}. We
define the empirical model ensemble Rademacher complex-
ity RN (Z) as follows:

RN (Z) = E
σ

[
sup
z∈Z

1

N

N∑
i=1

σiℓ(f(θi;x), y)

]
. (8)

In conventional settings of machine learning, the empirical
Rademacher complexity captures how well models from
a function class can fit a dataset with random noisy la-
bels (Shalev-Shwartz & Ben-David, 2014). A sufficiently
complex function class includes functions that can effec-
tively fit arbitrary label assignments, thereby maximizing
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the complexity term (Mohri et al., 2018). Likewise, in
model ensemble attack, Eq. (8) is expected to measure the
complexity of the input space Z relative to the N classifiers.
Some extreme cases are analyzed in Appendix E.1.

4 Theoretically Reduce Transferability Error

4.1 Vulnerability-diversity Decomposition of
Transferability Error

Inspired by the bias-variance decomposition (Geman et al.,
1992; Domingos, 2000) in learning theory, we provide the
corresponding theoretical support for prediction variance
by decomposing the transferability error into vulnerability,
diversity and constants. The proof and the empirical version
of it is in Appendix C.2.

Theorem 4.1 (Vulnerability-diversity Decomposition). For
a data point z = (x, y), we consider the squared er-
ror loss l(f(θ;x), y) = [f(θ;x)− y]

2. Let f̃(θ;x) =
Eθ∼PΘf(θ;x) be the expectation of prediction over the dis-
tribution on the parameter space. Then there holds

TE(z, ϵ) = LP (z
∗)− l(f̃(θ;x), y)︸ ︷︷ ︸

Vulnerability

−Varθ∼PΘ
f(θ;x)︸ ︷︷ ︸

Diversity

.

(9)

Remark. A similar formulation also applies to the KL diver-
gence loss in the multi-class classification setting, which is
proved in Appendix C.3.

The “Vulnerability” term measures the risk of a data point z
being compromised by the model ensemble. If the model
ensemble is sufficiently strong to fit the direction opposite
to the target label, the resulting high loss theoretically re-
duces the transferability error. This insight suggests that
selecting strong attackers as ensemble components leads to
lower transferability error. The “Diversity” term implies that
selecting diverse attackers in a model ensemble attack theo-
retically contributing to a reduction in transferability error.
In conclusion, Theorem 4.1 provides the following guideline
for reducing transferability error in model ensemble attack:
we are supposed to choose ensemble components that are
both strong and diverse. Theorem 4.1 connects the existing
body of work and clarifies how each algorithm strengthens
adversarial transferability. For instance, some approaches
tend to optimizing the attack process (Xiong et al., 2022;
Chen et al., 2023) to improve “Vulnerability”, while others
aim to diversify surrogate models (Li et al., 2020; 2023;
Wang et al., 2024) to enhance “Diversity”. Also, there are
other definitions of diversity based on gradient in previous
literature (Yang et al., 2021; Kariyappa & Qureshi, 2019).
A more detailed discussion is presented in Appendix E.2.

However, due to the mathematical nature of Eq. (9), there
remains a vulnerability-diversity trade-off in model ensem-

ble attacks, similar to the well-known bias-variance trade-
off (Geman et al., 1992). This means that, in practice, it
is not feasible to maximize both “Vulnerability” and “Di-
versity” simultaneously. Recognizing this limitation, we
proceed with further theoretical analysis to propose more
guidelines for practitioners in the following section.

4.2 Upper Bound of Transferability Error

We develop an upper bound of transferability error in this
section. We begin by taking Multi-Layer Perceptron (MLP)
as an example of deep neural network and derive the upper
bound of RN (Z). The proof is in Appendix B.4.

Lemma 4.2 (Ensemble Complexity of MLP). Let H =
{x 7→ Wlϕl−1 (Wl−1ϕl−2 (. . . ϕ1 (W1x)))} be the class of
real-valued networks of depth l, where x ∈ Rd1 , Wi ∈
Rdi+1×di . Given N classifiers from H, where the param-
eter matrix is Wij , i ∈ {1, · · · , n}, j ∈ {1, · · · , l} and
T =

∏l
j=1 supi∈[n] ∥Wi,j∥F . Let ∥x∥F ≤ B. With 1-

Lipschitz activation functions ϕ1, · · · , ϕl−1 and 1-Lipschitz
loss function ℓ(yf(x)), there holds:

RN (Z) ≤

(√
(2 log 2)l + 1

)
BT

√
N

. (10)

Remark. We also derive the upper bound of RN (Z) for the
cases of linear model (Appendix B.2) and two-layer neural
network (Appendix B.3). These results are special cases of
the above theorem.

In particular, a larger N and smaller T will give RN (Z) a
tighter bound. Notice that T contains the norm of weight
matrices, which is related to model complexity (Bartlett
et al., 2017; Neyshabur et al., 2018). And a smaller model
complexity corresponds to a smaller T (Loshchilov & Hut-
ter, 2019). In summary, Lemma 4.2 mathematically shows
that increasing the number of surrogate models and reducing
the model complexity of them can limit RN (Z).

We now provide the upper bound of transferability error,
and the proof is in Appendix C.4.

Theorem 4.3 (Upper bound of Transferability Error). Given
the transferability error defined by Eq. (5) and general
rademacher complexity defined by Eq. (8). Let P⊗N

i=1 Θ be
the joint measure induced by the product of the marginals.
If the loss function ℓ is bounded by β ∈ R+ and PΘN is
absolutely continuous with respect to P⊗N

i=1 Θ for any func-
tion fi, then for α > 1 and γ = α

α−1 , with probability at
least 1− δ, there holds

TE(z, ϵ) ≤ 4RN (Z)+√√√√18γβ2

N
ln

22+
1
γ H

1
α
α

(
PΘN ∥P⊗N

i=1 Θ

)
δ

, (11)
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where Hα (·∥·) is the Hellinger integrals (Hellinger, 1909)
with parameter α, which measures the divergence between
two probability distributions if α > 1 (Liese & Vajda, 2006).

Remark 1. Our proposed setting where both the surrogate
model and the target model adopt the same parameter space
aligns with many realistic scenarios, as demonstrated in (Wu
et al., 2024; Tang et al., 2024; Li et al., 2023; Xiong et al.,
2022; Lin et al., 2019). However, Theorem 4.3 can be also
extended to scenarios where the parameter distributions of
surrogate model and target model differ. It is discussed in
Appendix C.5 via a redefinition of the model space.

Remark 2. We provide further explanation of the Hellinger
integral term Hα(PΘN ∥P⊗N

i=1 Θ) in Appendix C.6.

Remark 3. Theorem 4.3 is grounded in the empirical model
ensemble Rademacher complexity defined in Eq. (8). How-
ever, it can be extended to information-theoretic analysis
with similar conclusions, as demonstrated in Appendix C.7.

The first term in Eq. (11) suggests that incorporating more
surrogate models with less model complexity in ensem-
ble attack will constrain RN (Z) and enhances adversarial
transferability. Intuitively, incorporating more models helps
prevent any single model from overfitting to a specific adver-
sarial example. Such theoretical heuristic is also supported
by experimental results (Liu et al., 2017; Dong et al., 2018;
Lin et al., 2019; Li et al., 2020; Gubri et al., 2022b; Chen
et al., 2023; Liu et al., 2024), which also stress the advan-
tage of more surrogate models to obtain transferable attack.
Additionally, when there is an overfitting issue, models with
reduced complexity will mitigate it.

The second term also suggests that a large N (using more
models) can lead to a tighter bound. Furthermore, it mo-
tivates the idea that reducing the interdependence among
the parameters in ensemble components (i.e., increasing
their diversity) results in a tighter upper bound for TE(z, ϵ).
Recall that Hα(PΘN ∥P⊗N

i=1 Θ) represents the divergence
between the joint distribution PΘN and the product of
marginals P⊗N

i=1 Θ. The joint distribution captures depen-
dencies, while the product of marginals does not. Therefore,
Hα(PΘN ∥P⊗N

i=1 Θ) measures the degree of dependency
among the parameters from N classifiers. As a result, in-
creasing the diversity of parameters in surrogate models
and reducing their interdependence enhances adversarial
transferability. This theoretical conclusion is also supported
by empirical results (Li et al., 2020; Tang et al., 2024),
which also advocate for generating adversarial examples
from diverse models.

The trade-off between complexity and diversity. Reduc-
ing model complexity may conflict with increasing diver-
sity. We discuss this issue from two angles. On one hand,
when generating adversarial examples from simpler models
to attack more complex ones, the overall model complex-

ity is lower, but diversity may also be limited due to the
simpler structure of the ensemble attackers. On the other
hand, attacking simpler models with a stronger, more di-
verse ensemble may increase diversity but also raise model
complexity. In this scenario, reducing complexity can help
prevent overfitting and lead to a tighter transferability error
bound, albeit with a slight reduction in ensemble diversity.
In summary, striking a balance between model complexity
and diversity is crucial in practice.

From generalization error to transferability error. The
mathematical form of Eq. (11) is in line with the generaliza-
tion error bound (Bartlett & Mendelson, 2002). However,
we note that a key distinction between transferability error
and generalization error lies in the independence assump-
tion. Conventional generalization error analysis relies on
an assumption: each data point from the dataset is inde-
pendently sampled (Zou & Liu, 2023; Hu et al., 2023). By
contrast, the surrogate models for ensemble attack are usu-
ally trained on the datasets with similar tasks, e.g., image
classification. In this case, we cannot assume these surro-
gate models behave independently for a solid theoretical
analysis. To build the gap between generalization error and
transferability error, our proof introduces the latest tech-
niques in information theory (Esposito & Mondelli, 2024).
And refer to Appendix E.4 for a detailed discussion about it.
Thus, equipped with Theorem 1 from Esposito & Mondelli
(2024), we swap the role of the model and data in learn-
ing theory literature (Geman et al., 1992; Golowich et al.,
2018; Bartlett & Mendelson, 2002; Ortega et al., 2022) with
analogical proof steps and prove the results.

4.3 The Analogy between Generalization and
Adversarial Transferability

In addition to providing inspiration for model ensemble
attacks, the theoretical evidence in this paper also offers
new insights into another fascinating idea. Within the ex-
tensive body of research on transferable adversarial attack
algorithms accumulated over the years (Gu et al., 2024), we
revisit a foundational analogy that is universally applicable
in the adversarial transferability literature: The transfer-
ability of an adversarial example is an analogue to the
generalizability of the model (Dong et al., 2018). In other
words, the ideas that enhance model generalization in deep
learning may also improve adversarial transferability (Lin
et al., 2019). Over the past few years, this analogy has sig-
nificantly inspired the development of numerous effective
algorithms, which directly reference it in their papers (Lin
et al., 2019; Wang et al., 2021; Wang & He, 2021; Xiong
et al., 2022; Chen et al., 2024b). And some recent papers
are also inspired by it (Chen et al., 2023; Wu et al., 2024;
Wang et al., 2024; Tang et al., 2024). Thus, validating this
influential analogy is indispensable for defining the future
landscape of adversarial transferability. Interestingly, our
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Figure 2. Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs on the MNIST dataset.
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Figure 3. Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs on the Fashion-MNIST dataset.

paper sheds light on this insight in several ways.

First, the mathematical formulations in Lemma 3.2 is simi-
lar to generalization error (Vapnik, 1998; Bousquet & Elis-
seeff, 2002) , which also derives an objective as a differ-
ence between the population risk and the empirical risk.
Such similarity between transferability error and general-
ization error suggests the possible validity of the analogy.
Also, Lemma 4.2 is similar to the bound of the original
Rademacher complexity (Golowich et al., 2018), which also
suggests that obtaining a larger training set as well as a less
complex model contribute a tighter bound of Rademacher
complexity. Such similarities between transferability error
and generalization error suggests the possible validity of
the analogy. More importantly, if the analogy is correct,
then recall that in the conventional framework of learning
theory: (1) increasing the size of training set typically leads
to a better generalization of the model (Bousquet & Elis-
seeff, 2002); (2) improving the diversity among ensemble
classifiers makes it more advantageous for better general-
ization (Ortega et al., 2022); and (3) reducing the model
complexity (Cherkassky, 2002) benefits the generalization
ability. It is natural to ask: in model ensemble attack, do
(1) incorporating more surrogate models, (2) making them
more diverse, and (3) reducing their model complexity theo-
retically result in better adversarial transferability?

In this section, our theoretical framework provides consis-
tently affirmative responses to the above question as well as
the analogy. Considering a higher perspective, the theory
is also instructive in two ways. On the one hand, from the

perspective of a theoretical researcher, the extensive and
advanced generalization theory may yield enlightening in-
sights in the field of adversarial transferability. On the other
hand, from an practitioner’s point of view, ideas from deep
learning algorithms can also be leveraged to develop more
effective transferable attack algorithms.

5 Experiments
We conduct our experiments on three datasets, including the
MNIST (LeCun, 1998), Fashion-MNIST (Xiao et al., 2017),
and CIFAR-10 (Krizhevsky et al., 2009) datasets. We use
these datasets to empirically validate our theory and build a
powerful ensemble adversarial attack in practice.

We build six deep neural networks for image classifica-
tion, including three MLPs with one to three hidden layers
followed by a linear classification layer, and three convo-
lutional neural networks (CNNs) with one to three con-
volutional layers followed by a linear classification layer.
To ensure diversity among the models, we apply three
different types of transformations during training. Addi-
tionally, we set the weight decay under the L2 norm to
10−4, 10−3, 10−2, respectively. This results in a total of
6 × 3 × 3 = 54 models. To establish a gold standard for
adversarial transferability evaluation, we additionally train
a ResNet-18 (He et al., 2016) from scratch on three datasets
(MNIST, Fashion-MNIST, and CIFAR-10), respectively. We
will leverage the models at hand to attack this ResNet-18
for a reliable evaluation. For models trained on MNIST,
Fashion-MNIST, we set the number of epochs as 10. For

7



Understanding Model Ensemble in Transferable Adversarial Attack

0 5 10 15
# steps

0.4

0.5

0.6

0.7

0.8

0.9

AS
R

0 5 10 15
# steps

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

lo
ss

0 5 10 15
# steps

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

va
ria

nc
e

  = 0.0001   = 0.001   = 0.01

(a) MLP

0 5 10 15
# steps

0.6

0.7

0.8

0.9

1.0

AS
R

0 5 10 15
# steps

0.10

0.12

0.14

0.16

0.18

0.20

lo
ss

0 5 10 15
# steps

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

va
ria

nc
e

  = 0.0001   = 0.001   = 0.01

(b) CNN

Figure 4. Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs on the CIFAR-10 dataset.

models trained on CIFAR-10, we set the number of epochs
as 30. We use the Adam optimizer with setting the learning
rate as 10−3. We set the batch size as 64.

5.1 Evaluation on the Attack Dynamics

For each dataset (MNIST & Fashion-MNIST & CIFAR-10),
we record the attack success rate (ASR), loss value, and the
variance of model predictions with increasing the number
of steps for attack. We use MI-FGSM (Dong et al., 2018)
to craft the adversarial example and use the cross-entropy
as the loss function to optimize the adversarial perturbation.
Generally, the number of steps for the transferable adver-
sarial attack is set as 10 (Zhang et al., 2024b), but to study
the attack dynamics more comprehensively, we perform 20-
step attack. In our plots, we use the mean-squared-error to
validate our theory, which indicates the vulnerability from
the theory perspective better. The first metric exhibits an
inverse relationship with transferability error. And the latter
two metrics correspond to the vulnerability and diversity
components in the decomposition in Section 4.1. The num-
ber of steps for attack is indicated by the x-axis. And we
denote λ as the weight decay. We respectively report the
results on three datasets in Figure 2, Figure 3, and Figure 4.

Vulnerability-diversity decomposition. Across all three
datasets, we observe a consistent pattern: as the number of
steps increases, both ASR and loss values improve steadily,
meaning that transferability error decreases while vulner-
ability increases. Notably, the magnitude of variance is
approximately ten times smaller than that of the loss value,
indicating a much smaller impact on transferability error.
Thus, “vulnerability” predominantly drives the vulnerability-
diversity decomposition, and the upward trend in vulnera-
bility aligns with the reduction in transferability error.

The trend of variance. On the MNIST and Fashion-
MNIST datasets, diversity initially increases but later de-
clines. In contrast, on the CIFAR dataset, the variance for
MLP consistently increases, whereas for CNNs, it decreases
with a small regularization term but increases with a larger
one. This intriguing phenomenon is tied not only to the
trade-off between complexity and diversity discussed in

Section 4.2, but also to the complex behavior of variance. In
the bias-variance trade-off literature (Yang et al., 2020; Lin
& Dobriban, 2021; Derumigny & Schmidt-Hieber, 2023;
Chen et al., 2024c), different trends in variance have been
observed. For example, Yang et al. (2020) suggests that
variance may follow a bell-shaped curve, rising initially and
then falling as network width expands. While a full investi-
gation of variance behavior is beyond the scope of this work,
more discussion is provided in Appendix E.5.

The potential trade-off between diversity and complex-
ity. Our experimental results (specifically the “variance”
sub-figure), indicate the potential trade-off between diver-
sity and complexity. Consider two distinct phases in the
attack dynamics: 1) Initial phase of the attack (first few
steps): During this phase, the adversarial example strug-
gles to attack the model ensemble effectively (a low loss).
Consequently, both the loss and variance increase, aligning
with the vulnerability-diversity decomposition. 2) Potential
“over-fitting” phase of the attack (subsequent steps): In this
phase, the adversarial example can effectively attack the
model ensemble, achieving a high loss. Here, the trade-off
between diversity and complexity becomes evident, partic-
ularly at the final step of the attack. As the regularization
term λ increases (i.e., lower model complexity), the vari-
ance of the model ensemble may increase. For instance, in
the variance sub-figure, the red curve may exceed one of the
other curves, indicating this potential trade-off.

Additional experiments. Firstly, in Appendix D.1,
we present additional experimental results on the CIFAR-
100 (Krizhevsky et al., 2009) to reinforce the validity of
vulnerability-diversity decomposition. Secondly, in Ap-
pendix D.2, we introduce weight norm constraints and in-
vestigate how model complexity influences ensemble com-
plexity to support Lemma 4.2. Finally, in Appendix D.3,
we use the ImageNet dataset (Russakovsky et al., 2015) to
provide a straightforward demonstration of how controlling
model complexity enhances adversarial transferability.
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Figure 5. Evaluation of ensemble attacks with increasing the num-
ber of models using MLPs and CNNs on the three datasets.

5.2 Evaluation on the Ensemble Framework

We further validate the effectiveness of the vulnerability-
diversity decomposition within the ensemble framework.
Specifically, instead of focusing solely on the training dy-
namics, we progressively increase the number of models in
the ensemble attack to evaluate the decomposition’s impact.
We begin by incorporating MLPs with different architec-
tures and regularization terms, followed by CNNs. In total,
up to 18 models are included in a single attack. We depicted
the results in Figure 5.

We can consistently observe that increasing the number of
ensemble models improves the attack success rate, i.e., re-
duces the transferability error. On the MNIST and Fashion-
MNIST datasets, both vulnerability and diversity also in-
crease as the number of models grows. Although the diver-
sity sometimes shows a decreasing trend on the CIFAR-10
dataset, its magnitude is approximately 100 times smaller
than vulnerability, thus having a minimal impact on ASR.

6 Conclusion
This paper establishes a theoretical foundation for trans-
ferable model ensemble adversarial attacks. We introduce
three key concepts: transferability error, prediction variance,
and empirical model ensemble Rademacher complexity. By
decomposing transferability error into vulnerability and di-
versity, we reveal a fundamental trade-off between them.
Leveraging recent mathematical tools, we derive an upper
bound on transferability error, validating practical insights
for enhancing adversarial transferability. Extensive experi-
ments support our findings, advancing the understanding of
transferable model ensemble adversarial attacks.
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A More Related Work

A.1 Transferable Adversarial Attack

Input transformation. Input transformation-based attacks have shown great effectiveness in improving transferability and
can be combined with gradient-based attacks. Most input transformation techniques rely on the fundamental idea of applying
data augmentation strategies to prevent overfitting to the surrogate model (Gu et al., 2024). Such methods adopt various
input transformations to further improve the transferability of adversarial examples (Wang et al., 2023b;a). For instance,
random resizing and padding (Xie et al., 2019), downscaling (Lin et al., 2019), mixing (Wang et al., 2021), automated data
augmentation (Yan et al., 2023), block shuffle and rotation (Wang et al., 2024), and dynamical transformation (Zhu et al.,
2024).

Gradient-based optimization. The central concept of these methods is to develop optimization techniques in the
generation of adversarial examples to achieve better transferability. Dong et al. (2018); Lin et al. (2019); Wang & He
(2021) draw an analogy between generating adversarial examples and the model training process. Therefore, conventional
optimization methods that improve model generalization can also benefit adversarial transferability. In gradient-based
optimization methods, adversarial perturbations are directly optimized based on one or more surrogate models during
inference. Some popular ideas include applying momentum (Dong et al., 2018), Nesterov accelerated gradient (Lin et al.,
2019), scheduled step size (Gao et al., 2020) and gradient variance reduction (Wang & He, 2021; Xiong et al., 2022). There
are also other elegantly designed techniques in recent years (Gubri et al., 2022b; Wang et al., 2022; Xiaosen et al., 2023;
Li et al., 2024; Wu et al., 2024; Zhang et al., 2024b), such as collecting weights (Gubri et al., 2022b), modifying gradient
calculation (Xiaosen et al., 2023) and applying integrated gradients (Ma et al., 2023).

Model ensemble attack. Motivated by the use of model ensembles in machine learning, researchers have developed
diverse ensemble attack strategies to obtain transferable adversarial examples (Gu et al., 2024). It is a powerful attack that
employs an ensemble of models to simultaneously generate adversarial samples. It can not only integrate with advanced
gradient-based optimization methods, but also harness the unique strengths of each individual model (Tang et al., 2024).
Some popular ensemble paradigms include loss-based ensemble (Dong et al., 2018), prediction-based (Liu et al., 2017),
logit-based ensemble (Dong et al., 2018), and longitudinal strategy (Li et al., 2020). There is also some deep analysis to
compare these ensemble paradigms (Zhang et al., 2024b). Moreover, advanced ensemble algorithms have been created to
ensure better adversarial transferability (Zou et al., 2020; Gubri et al., 2022a; Xiong et al., 2022; Chen et al., 2023; Li et al.,
2023; Wu et al., 2024; Chen et al., 2024b).

A.2 Statistical Learning Theory

Statistical learning theory forms the theoretical backbone of modern machine learning by providing rigorous frameworks
for understanding model generalization (Vapnik, 1999). It introduces foundational concepts such as Rademacher complex-
ity (Bartlett & Mendelson, 2002), VC dimension (Vapnik & Chervonenkis, 1971), structural risk minimization (Vapnik,
1998) . It has also been instrumental in the development of Support Vector Machines (Cortes & Vapnik, 1995) and kernel
methods (Shawe-Taylor & Cristianini, 2004), which remain pivotal in supervised learning tasks. Recent advances extend
statistical learning theory to deep learning, addressing challenges of high-dimensional data and model complexity (Bartlett
et al., 2021). These contributions have significantly enhanced the capability to design robust learning algorithms that
generalize well across diverse applications (Du & Swamy, 2013). In addition, there are also some other novel theoretical
frameworks, such as information-theoretic analysis (Xu & Raginsky, 2017), PAC-Bayes bounds (Parrado-Hernández et al.,
2012), transductive learning (Vapnik, 2006), and stability analysis (Bousquet & Elisseeff, 2002; Shalev-Shwartz et al.,
2010). Most of them derive a bound of the order O( 1√

M
), while some others derive sharper bound of generalization (Li &

Liu, 2021) of the order O( 1
M ). Such theoretical analysis suggests that with the increase of the dataset volume, the model

generalization will become better.
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B Proof of Generalized Rademacher Complexity

B.1 Preliminary

For simplicity, denote f(θi;x) as fi(x). For 1-Lipschitz loss function ℓ(yf(x)) (for example, hinge loss ℓ(f(x), y) =
max (0, 1− yf(x)), there holds:

RN (Z) = E
σ

[
sup
z∈Z

1

N

N∑
i=1

σiℓ(fi(x), y)

]

≤ E
σ

[
sup
z∈Z

1

N

N∑
i=1

σiyfi(x)

]

= E
σ

[
sup
z∈Z

1

N

N∑
i=1

σifi(x)

]
:= ℜN (Z).

So we can bound ℜN (Z) instead of RN (Z).

B.2 Linear Model

Given Section B.1, we provide the bound below.

Lemma B.1 (Linear Model). Let H =
{
x 7→ wTx

}
, where x,w ∈ Rd. Given N classifiers from H, assume that ∥x∥2 ≤ B

and ∥w∥2 ≤ C. Then ℜN (Z) ≤ BC√
N

.

Proof.

ℜN (Z) = E
σ

[
sup

∥x∥2≤B

1

N

N∑
i=1

σifi(x)

]

= E
σ

[
sup

∥x∥2≤B

1

N

N∑
i=1

σiw
T
i x

]
(fi(x) = wT

i x)

= E
σ

[
sup

∥x∥2≤B

xT

(
1

N

N∑
i=1

σiwi

)]
(aT b = bTa)

=
B

N
E
σ

∥∥∥∥∥
N∑
i=1

σiwi

∥∥∥∥∥
2

(aT b ≤ ∥a∥2∥b∥2)

≤ B

N

E
σ

∥∥∥∥∥
N∑
i=1

σiwi

∥∥∥∥∥
2

2

 1
2

(Jensen inequality: Ex ≤
√
Ex2)

=
B

N

{
E
σ

[(
N∑
i=1

σiw
T
i

)(
N∑
i=1

σiwi

)]} 1
2

=
B

N

Eσ


N∑
i=1

σ2
i︸︷︷︸
1

wT
i wi +

N∑
i=1

N∑
j=1,j ̸=i

σiσjw
T
i wj︸ ︷︷ ︸

0




1
2

=
B

N

(
N∑
i=1

wT
i wi

) 1
2

≤ B

N

(
N max ∥w∥22

) 1
2
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≤ BC√
N

. (∥w∥2 ≤ C)

B.3 Two-layer Neural Network

Given Section B.1, we provide the bound below.

Lemma B.2 (Two-layer Neural Network). Let H = {x 7→ wTϕ(Ux)}, where x ∈ Rd, U ∈ Rm×d, w ∈ Rm, m is the
number of the hidden layer, and ϕ(x) = max (0, x) is the element-wise ReLU function. Given N classifiers from H, assume
that ∥x∥2 ≤ B, ∥w∥2 ≤ B′, and ∥Ui∥2 ≤ C, where Uj is the j-th row of U . Then ℜN (Z) ≤

√
mBB′C√

N
.

Proof.

ℜN (Z) = E
σ

[
sup

∥x∥2≤B

1

N

N∑
i=1

σifi(x)

]

= E
σ

[
sup

∥x∥2≤B

1

N

N∑
i=1

σiw
T
i ϕ(Uix)

]
(fi(x) = wT

i ϕ(Uix))

=
B′

N
E
σ

[
sup

∥x∥2≤B

∥∥∥∥∥
N∑
i=1

σiϕ(Uix)

∥∥∥∥∥
2

]
(∥w∥2 ≤ B′)

=
B′

N
E
σ

[
sup

∥x∥2≤B

∥∥∥∥∥
N∑
i=1

σiVi

∥∥∥∥∥
2

]
(Denote Vi =

ϕ(U1ix)
...

ϕ(Umix)

 ∈ Rm)

=
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N
E
σ

 sup
∥x∥2≤B

√√√√( N∑
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σiV T
i
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N∑
i=1
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=
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N
E
σ
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i︸︷︷︸
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(
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)

For Vi =

ϕ(U1ix)
...

ϕ(Umix)

 ∈ Rm, we have

sup
∥x∥2≤B

(
max

i
∥Vi∥2

)
= sup
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max
i

∥∥∥∥∥∥∥
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...
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∥∥∥∥∥∥∥
2


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≤ sup
∥x∥2≤B

max
i

∥∥∥∥∥∥∥
U1ix

...
Umix


∥∥∥∥∥∥∥
2

 (|ϕ(x)| ≤ |x|)

≤
√
m sup

∥x∥2≤B

(
max

i
max

j
∥Ujix∥2

)
≤

√
m sup

∥x∥2≤B

(
max

i
max

j
∥Uji∥2 ∥x∥2

)
=

√
mBC (∥x∥2 ≤ B and ∥Uji∥2 ≤ C)

Finally,

ℜN (Z) ≤ B′
√
N

sup
∥x∥2≤B

(
max

i
∥Vi∥2

)
≤

√
mBB′C√

N

The proof is complete.

B.4 Proof of Lemma 4.2

For simplicity, denote f(θi;x) as fi(x) and i ∈ {1, · · · , N} as i ∈ [N ].

First, we begin with a lemma, which is a similar version of Lemma 1 from (Golowich et al., 2018).
Lemma B.3. Let ϕ be a 1-Lipschitz, positive-homogeneous activation function which is applied element-wise (such as the
ReLU). Then for any class of vector-valued functions F , any convex and monotonically increasing function g : R → [0,∞)
and R ∈ R+, there holds:

Eσ sup
f∈F,W :∥W∥F≤R

g

(∥∥∥∥∥
N∑
i=1

σiϕ (Wfi (x))

∥∥∥∥∥
)

≤ 2 · Eσ sup
f∈F

g

(
R ·

∥∥∥∥∥
N∑
i=1

σifi (x)

∥∥∥∥∥
)

(12)

Proof. Let w1, · · · , wh be the rows of W , we have

∥∥∥∥∥
N∑
i=1

σiϕ (Wfi (x))

∥∥∥∥∥
2

=

h∑
j=1

[
N∑
i=1

σiϕ(wjfi(x))

]2

=

h∑
j=1

∥wj∥2
[

N∑
i=1

σiϕ

(
w⊤

j

∥wj∥
fi (x)

)]2
(ϕ(ax) = aϕ(x))

Therefore, the supremum of this over all w1, · · · , wh such that ∥W∥2F =
∑h

j=1 ∥wj∥2 ≤ R2 must be attained when
∥wj∥ = R for some j and ∥wi∥ = 0 for all i ̸= j. So we have

Eσ sup
f∈F,W :∥W∥F≤R

g

(∥∥∥∥∥
N∑
i=1

σiϕ (Wfi (x))

∥∥∥∥∥
)

= Eσ sup
f∈F,w:∥w∥=R

g

(∣∣∣∣∣
N∑
i=1

σiϕ
(
w⊤fi (x)

)∣∣∣∣∣
)
.

Since g(|z|) ≤ g(z) + g(−z), this can be upper bounded by

Eσ sup g

(
N∑
i=1

σiϕ
(
w⊤fi (x)

))
+ Eσ sup g

(
−

N∑
i=1

σiϕ
(
w⊤fi (x)

))
= 2 · Eσ sup g

(
N∑
i=1

σiϕ
(
w⊤fi (x)

))
,

where the equality follows from the symmetry in the distribution of the σi random variables. The right hand side in turn can
be upper bounded by

2 · Eσ sup
f∈F,w:∥w∥=R

g

(
N∑
i=1

σiw
⊤fi (x)

)
≤ 2 · Eσ sup

f∈F,w:∥w∥=R

g

(
∥w∥

∥∥∥∥∥
N∑
i=1

σifi (x)

∥∥∥∥∥
)
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= 2 · Eσ sup
f∈F

g

(
R ·

∥∥∥∥∥
N∑
i=1

σifi (x)

∥∥∥∥∥
)
.

With this lemma in hand, we can prove Lemma 4.2:

Proof. For λ > 0, the rademacher complexity can be upper bounded as

NℜN (Z) = Eσ sup
f1,··· ,fn

N∑
i=1

σifi(x)

≤ 1

λ
logEσ sup exp

(
λ

N∑
i=1

σifi(x)

)
(Jensen’s inequality)

≤ 1

λ
logEσ sup exp

 sup
i∈[n]

∥Wi,l∥F︸ ︷︷ ︸
Tl

∥∥∥∥∥∥∥λ
N∑
i=1

σiϕl−1 (Wi,l−1ϕl−2 (. . . ϕ1 (Wi,1x)))︸ ︷︷ ︸
fi,l−1(x)

∥∥∥∥∥∥∥


We write this last expression as

1

λ
logEσ sup exp

(
Tl · λ

∥∥∥∥∥
N∑
i=1

σiϕl−1 (fi,l−1(x))

∥∥∥∥∥
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λ
log

(
2 · Eσ sup exp

(
Tl · Tl−1 · λ

∥∥∥∥∥
N∑
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σifi,l−2 (x)

∥∥∥∥∥
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(Lemma B.3)

≤ · · · (Repeatedly apply Lemma B.3)
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λ
log
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2l−2 · Eσ sup exp
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λ ·
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∥∥∥∥∥
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∥∥∥∥∥
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∥∥∥∥∥
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∥∥∥∥∥
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∥∥∥∥∥
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.

Therefore,
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log
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∥∥∥∥∥
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∥∥∥∥∥
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∥∥∥∥∥
N∑
i=1

σiW
∗
i,1x

∥∥∥∥∥︸ ︷︷ ︸
Z




=
1

λ
log
(
2l−1 · Eσ exp (λZ)

)
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=
(l − 1) log(2)

λ
+

1

λ
log {Eσ exp (λZ)}

=
(l − 1) log(2)

λ
+

1

λ
log{E expλ(Z − EZ)}+ EZ

For EZ, we have

EZ =

l−1∏
i=1

Ti

√√√√√Eσ

∥∥∥∥∥
N∑
i=1

σiW ∗
i,1x

∥∥∥∥∥
2


=

l−1∏
i=1

Ti

√√√√√Eσ

 N∑
i=j

σiσj

(
W ∗

i,1x
)T (

W ∗
j,1x

)
≤

l−1∏
i=1

Ti

(
T1B

√
N
)

=B
√
N

l∏
i=1

Ti

Note that Z is a deterministic function of the i.i.d. random variables σ1, · · · , σN , and satisfies

Z(σ1, · · · , σi, · · · , σN )− Z(σ1, · · · ,−σi, · · · , σN ) ≤ 2B

l∏
i=1

Ti︸ ︷︷ ︸
T

.

This means that Z satisfies a bounded-difference condition. According to Theorem 6.2 in Boucheron et al. (2013), Z is
sub-Gaussian with variance factor

1

4

N∑
i=1

(2BT )2 = NB2T 2,

and satisfies
1

λ
log{E expλ(Z − EZ)} ≤ 1

λ
· λ

2

2
NB2T 2 =

λ

2
NB2T 2.

Choosing λ =

√
2 log(2)l

BT
√
N

and using the above, we get that

(l − 1) log(2)

λ
+

1

λ
log{E expλ(Z − EZ)}+ EZ ≤

(√
(2 log 2)l + 1

)
BT

√
N

Finally, we get

ℜN (Z) ≤

(√
(2 log 2)l + 1

)
BT

√
N

C Main Proof

C.1 Transferability Error and Generalization Error

For z = (x, y), there holds

TE(z) = LP (z
∗)− LP (z) ≤ LP (z

∗)− LP (z) + (LE(z)− LE(z
∗))
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= (LP (z
∗)− LE(z

∗)) + (LE(z)− LP (z))

≤ sup
x∈Bϵ(x)

(LP (z)− LE(z)) + sup
x∈Bϵ(x)

(LE(z)− LP (z))

≤ sup
z∈Z

(LP (z)− LE(z)) + sup
z∈Z

(LE(z)− LP (z)).

≤ 2 sup
z∈Z

|LP (z)− LE(z)| .

C.2 Proof of Theorem 4.1

We prove a general version of the theorem as follows:

Theorem C.1. Consider the squared error loss l(θ, x, y) = [f(θ;x)− y]
2 for a data point z = (x, y). Assume that the

data is generated by a function g(x) such that y = g(x) + ρ, where the zero-mean noise ρ has a variance of η2 and is
independent of x. Then there holds

TE(z, ϵ) = LP (z
∗)− η2 − Varθ∼PΘf(θ;x)︸ ︷︷ ︸

Diversity

− [g(x)− Eθ∼PΘf(θ;x)]
2︸ ︷︷ ︸

Attack

. (13)

Remark. The irreducible error η2 is constant because it arises from inherent noise and randomness in the data (Geman et al.,
1992).

Proof. Given Eq. (5), it is equivalent to prove

LP (z) = Varθf(θ;x) + [g(x)− Eθ∼PΘ
f(θ;x)]

2
+ η2. (14)

Note that

LP (z) = Eθ∼PΘ
[f(θ;x)− y]

2

= Eθ∼PΘ
[f(θ;x)− g(x) + g(x)− y]

2

= Eθ∼PΘ

[
(f(θ;x)− g(x))2 + (g(x)− y)2 + 2(g(x)− y)(f(θ;x)− g(x))

]
.

Recall that y = g(x) + ρ with E(ρ) = 0 and Var(ρ) = η2, we have

Eθ∼PΘ(g(x)− y)2 = η2,

and
Eθ∼PΘ

[2(g(x)− y)(f(θ;x)− g(x))] = −2E(ρ)Eθ∼PΘ
[f(θ;x)− g(x)] = 0.

Therefore,
LP (z) = Eθ∼PΘ

[f(θ;x)− g(x)]
2
+ η2. (15)

Likewise, we decompose the first term as

Eθ [f(θ;x)− g(x)]
2

=Eθ [f(θ;x)− Eθf(θ;x) + Eθf(θ;x)− g(x)]
2

=Eθ

[
(f(θ;x)− Eθf(θ;x))

2 + (Eθf(θ;x)− g(x))2

− 2(f(θ;x)− Eθf(θ;x))(Eθf(θ;x)− g(x))]

=Eθ(f(θ;x)− Eθf(θ;x))
2︸ ︷︷ ︸

Varθf(θ;x)

+Eθ(Eθf(θ;x)− g(x))2︸ ︷︷ ︸
(g(x)−Eθ(f(θ;x))

2

− 2Eθ [f(θ;x)− Eθf(θ;x))(Eθf(θ;x)− g(x)]︸ ︷︷ ︸
0

,

with the derivations for the second and third term:

Eθ(f(θ;x)− Eθf(θ;x))
2 = (Eθf(θ;x))

2 − 2g(x)Eθf(θ;x) + g2(x)
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= (g(x)− Eθ(f(θ;x))
2
,

and

Eθ [f(θ;x)− Eθf(θ;x))(Eθf(θ;x)− g(x)]

=(Eθf(θ;x))
2 − g(x)Eθf(θ;x)− (Eθf(θ;x))

2 + g(x)Eθf(θ;x)

=0.

As a result,
Eθ [f(θ;x)− g(x)]

2
= Varθf(θ;x) + [g(x)− Eθ∼PΘ

f(θ;x)]
2
. (16)

Combining the above results and we complete the proof.

To prove Theorem 4.1, we just set ρ = 0 in the above general version of theorem.

Similarly, consider the empirical version of Theorem 4.1, we decompose LE(z) as follows:
Theorem C.2 (Vulnerability-diversity Decomposition (empirical version)). Consider the squared error loss l(f(θ;x), y) =
[f(θ;x)− y]

2 for a data point z = (x, y). Let f̂(θ;x) = 1
N

∑N
i=1 f(θi;x) be the expectation of prediction over the

distribution on the parameter space. Then there holds

LE(z) =
1

N

N∑
i=1

ℓ(f(θi;x), y)

= l(f̂(θ;x), y)︸ ︷︷ ︸
Vulnerability

+
1

N

N∑
j=1

(
f(θi;x)−

1

N

N∑
j=1

f(θi;x)

)2

︸ ︷︷ ︸
Diversity

.

The proof is similar to the above:

LE(z) =
1

N

N∑
i=1

(f(θi;x)− y)
2

=
1

N

1

N

N∑
i=1

(
f(θi;x)−

1

N

N∑
i=1

f(θi;x) +
1

N

N∑
i=1

f(θi;x)− y

)2

=
1

N

N∑
i=1

[(
f(θi;x)−

1

N

N∑
i=1

f(θi;x)

)2

+

(
1

N

N∑
i=1

f(θi;x)− y

)2

+

2

(
f(θi;x)−

1

N

N∑
i=1

f(θi;x)

)(
1

N

N∑
i=1

f(θi;x)− y

)]

= l(f̂(θ;x), y)︸ ︷︷ ︸
Vulnerability

+
1

N

N∑
j=1

(
f(θi;x)−

1

N

N∑
j=1

f(θi;x)

)2

︸ ︷︷ ︸
Diversity

+

2

N

N∑
i=1

(
f(θi;x)−

1

N

N∑
i=1

f(θi;x)

)(
1

N

N∑
i=1

f(θi;x)− y

)
.

The last terms equals to 0 because

N∑
i=1

(
f(θi;x)−

1

N

N∑
i=1

f(θi;x)

)(
1

N

N∑
i=1

f(θi;x)− y

)
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=
1

N

(
N∑
i=1

f(θi;x)

)2

− y

N∑
i=1

f(θi;x)−
1

N

(
N∑
i=1

f(θi;x)

)2

+ y

N∑
i=1

f(θi;x)

=0.

The proof is complete.

C.3 Proof of Theorem 4.1 (KL Divergence Loss)

In this section, we consider a different problem setting and show how to extend Theorem 4.1 to KL divergence loss. We first
define multi-class classification in the context of transferable model ensemble adversarial attack.

Multi-class classification. Consider a k-classification problem. Given the input space X ⊂ Rd and the output space
Y ⊂ Rk, we have a joint distribution PZ over the input space Z = X × Y . The training set Ztrain = {zi|zi = (xi,yi) ∈
Z,yi ∈ {0, 1}k, ∥yi∥1 = 1, i = 1, · · · ,M}, which consists of M examples drawn independently from PZ . We denote
the hypothesis space by H : X 7→ Y and the parameter space by Θ. Let f(θ; ·) ∈ H be a classifier parameterized by
θ ∈ Θ, trained for a classification task using a loss function ℓ : Y × Y 7→ R+

0 . Let PΘ represent the distribution over the
parameter space Θ. Define PΘN as the joint distribution over the product space ΘN , which denotes the space of N such
sets of parameters. We use Ztrain to train N surrogate models f(θ1; ·), · · · , f(θN ; ·) for model ensemble. The training
process of these N classifiers can be viewed as sampling the parameter sets θN = (θ1, . . . ,θN ) from the distribution
PΘN , i.e., θN ∼ PΘN . For a data point z = (x,y) ∈ Z and N classifiers for model ensemble attack, let the model output
be normalized (i.e., ∥f(θ;x)∥1 = 1). Define the empirical risk LE(z) and the population risk LP (z) of the adversarial
example z as

LE(z) =
1

N

N∑
i=1

ℓ(f(θi;x),y), (17)

and LP (z) = EθN∼PΘN
LE(z). (18)

Intuitively, a transferable adversarial example leads to a large LP (z) because it can attack many classifiers with parameter
θ ∈ Θ. Therefore, the most transferable adversarial example z∗ = (x∗,y) around z is defined as

x∗ = arg max
x∈Bϵ(x)

LP (z), (19)

where Bϵ(x) = {x̂ : ∥x̂− x∥2 ≤ ϵ} is an adversarial region centered at x̂ with radius ϵ > 0. However, the expectation in
LP (z) cannot be computed directly. Thus, when generating adversarial examples, the empirical version Eq. (2) is used in
practice, such as loss-based ensemble attack (Dong et al., 2018). So the adversarial example z = (x,y) is obtained from

x = arg max
x∈Bϵ(x)

LE(z). (20)

There is a gap between the adversarial example z we find and the most transferable one z∗. It is due to the fact that the
ensemble classifiers cannot cover the whole parameter space of the classifier, i.e., there is a difference between LP (z) and
LE(z). Accordingly, the core objective of transferable model ensemble attack is to design approaches that approximate
LE(z) to LP (z), thereby increasing the transferability of adversarial examples.

Note that the training process of N classifiers can be viewed as sampling the parameter sets θ
N

= (θ1, . . . , θN ) from the
distribution PΘN , i.e., θ

N ∼ PΘN . We generate a transferable adversarial example using these N models and evaluate its
performance on another N models θN = (θ1, . . . , θN ), which is an independent copy of θ

N
. For a data z = (x, y) ∈ Z and

the parameter set θN , our aim is to bound the difference of attack performance between the given N models θN and N
unknown models θN . In other words, if

• An adversarial example z can effectively attack the given model ensemble, i.e., a large LE(z).

• There is guarantee for the difference of attack performance between known and unknown models, i.e., a small∣∣∣Ez,θN∼PZ,ΘN
[LP (z)− LE(z)]

∣∣∣.
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Then there is adversarial transferability guarantee for z. We perform the decomposition to analyze LE(z) in this section.
While we provide an information-theoretic analysis to deal with

∣∣∣Ez,θN∼PZ,ΘN
[LP (z)− LE(z)]

∣∣∣ in Appendix C.7.

Now we decompose LE(z) into vulnerability, diversity and constants. It is a similar version of Theorem 4.1 using KL
divergence loss.

Proposition C.3 (Vulnerability-diversity Decomposition). Consider KL divergence as the loss function, i.e., ℓ(f(θi;x),y) =∑k
j=1 f(θi;x) log

f(θi;x)
y . Let f(θ;x) be the normalized geometric mean of ensembles {fi}Ni=1. Then there holds

LE(z) = ℓ(y, f(θ;x))︸ ︷︷ ︸
Vulnerability

+
1

N

N∑
i=1

ℓ(f(θ;x), f(θi;x))︸ ︷︷ ︸
Diversity

. (21)

The “Vulnerability” term measures the risk of a data point z being compromised by the model ensemble. If the model
ensemble is sufficiently strong to fit the direction opposite to the target label, the resulting high loss theoretically improves
LE(z). This insight suggests that selecting strong attackers as ensemble components leads to lower LE(z). The “Diversity”
term implies that selecting diverse attackers in a model ensemble attack theoretically contributing to a increase in LE(z). In
conclusion, it provides similar guideline comparing to Theorem 4.1: we are supposed to choose ensemble components that
are both strong and diverse.

Proof. We first introduce Bregman divergence.

Definition C.4 (Bregman divergence). Let ϕ : Ω → R be a function that is: a) strictly convex, b) continuously differentiable,
c ) defined on a closed convex set Ω. Then the Bregman divergence is defined as

Bϕ(x,y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y),x− y⟩, ∀x,y ∈ Ω.

That is, the difference between the value of ϕ at x and the first order Taylor expansion of ϕ around y evaluated at point x.
Notice that let Ω = Y and KL divergence can be a special case of Bregman divergence if ϕ(x) =

∑
i(xi log xi − xi) or

ϕ(x) =
∑

i xi log xi, where xi (i ∈ 1, · · · , k) are the components of x.

Now we start the proof. It follows the Bregman ambiguity decomposition in Wood et al. (2024).

Denote fi = f(θi;x) ∈ Rk and

f = [∇ϕ]−1

(
1

N

N∑
i=1

∇ϕ (fi)

)
, (22)

which is the Bregman Centroid Combiner (Wood et al., 2024) of ensembles {fi}Ni=1. Therefore, we have

∇ϕ(f) =
1

N

N∑
i=1

∇ϕ (fi) ,

so that
1

N

N∑
i=1

⟨f − y,∇ϕ(fi)⟩ = ⟨f − y,∇ϕ(f)⟩.

In other words

Bϕ(y, f) = ϕ(y)− ϕ(f)− ⟨y − f ,∇ϕ(f)⟩

= ϕ(y)− ϕ(f) +
1

N

N∑
i=1

⟨f − y,∇ϕ(fi)⟩

=

[
ϕ(y)− 1

N

N∑
i=1

ϕ(fi)−
1

N

N∑
i=1

⟨y − fi,∇ϕ(fi)⟩

]
+

[
1

N

N∑
i=1

ϕ(fi)− ϕ(f) +
1

N

N∑
i=1

⟨f − fi,∇ϕ(fi)⟩

]
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=
1

N

N∑
i=1

Bϕ(y, fi)−
1

N

N∑
i=1

Bϕ(f , fi). (23)

Let ϕ(x) =
∑

i(xi log xi − xi) in Eq. (23) and we have

DKL(y, f) =
1

N

N∑
i=1

DKL(y, fi)︸ ︷︷ ︸
LE(z)

− 1

N

N∑
i=1

DKL(f , fi).

Replace DKL with ℓ and we can prove the result.

C.4 Proof of Theorem 4.3

We first define a divergence measure taken into account. Given a measurable space and two measures µ, ν which render it a
measure space, we denote ν ≪ µ if ν is absolutely continuous with respect to µ. Hellinger integrals are defined below:

Definition C.5 (Hellinger integrals (Hellinger, 1909)). Let ν, µ be two probability measures on (Ω,F) and satisfy ν ≪ µ,
and φα : R+ → R be defined as φα(x) = xα. Then the Hellinger integral of order α is given by

Hα(ν∥µ) =
∫ (

dν

dµ

)α

dµ.

It can be seen as a ϕ-Divergence with a specific parametrised choice of ϕ (Liese & Vajda, 2006). For α > 1, the
Hellinger integral measures the divergence between two probability distributions (Liese & Vajda, 2006). There holds
Hα(ν∥µ) ∈ [1,+∞), α > 1, and it equals to 1 if the two measures coincide (Shiryaev, 2016). Given such a divergence
measure, we now provide the proof.

Proof. From Section C.1, we know that

TE(z) = LP (z
∗)− LP (z) ≤ LP (z

∗)− LP (z) + (LE(z)− LE(z
∗))

= (LP (z
∗)− LE(z

∗)) + (LE(z)− LP (z))

≤ sup
x∈Bϵ(x)

(LP (z)− LE(z)) + sup
x∈Bϵ(x)

(LE(z)− LP (z))

≤ sup
z∈Z

(LP (z)− LE(z)) + sup
z∈Z

(LE(z)− LP (z)).

Let θN = (θ1, . . . , θN ), θ′N = (θ′1, . . . , θ
′
N ) that satisfy θN , θ′N ∼ PΘN , and the m-th member is different, i.e., θ′m ̸= θm.

We define

LE′(z) =
1

N

N∑
i=1

ℓ(f(θ′i;x), y),

and

Φ1(E) = sup
z∈Z

{LP (z)− LE(z)} ,

Φ1(E
′) = sup

z∈Z
{LP (z)− LE′(z)} .

We have

Φ1(E)− Φ1(E
′) = sup

z∈Z
{LP (z)− LE(z)} − sup

z∈Z
{LP (z)− LE′(z)}
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≤ sup
z∈Z

{LP (z)− LE(z)− (LP (z)− LE′(z))}

= sup
z∈Z

{LE′(z)− LE(z)}

=
1

N
sup
z∈Z

[
N∑
i=1

ℓ(f(θ′i;x), y)−
N∑
i=1

ℓ(f(θi;x), y)

]
.

By assuming that loss function ℓ is bounded by β, we have

|Φ1(E)− Φ1(E
′)| ≤ β

N
.

According to Theorem 1 in Esposito & Mondelli (2024), for all δ ∈ (0, 1) and α > 1, with probability at least 1− 1
4δ, we

have

Φ1(E) ≤ EθN [Φ1(E)] +

√√√√ αβ2

2(α− 1)N
ln

2
α−1
α H

1
α
α

(
PΘN ∥P⊗N

i=1 Θ

)
1
4δ

. (24)

Denote f(θi;x) as fi(x) and f(θ′i;x) as f ′
i(x). Then we estimate the upper bound of EθN∼PΘN

[Φ1(E)] as follows:

EθN [Φ1(E)] = EθN

[
sup
z∈Z

(LP (z)− LE(z))

]
= EθN

[
sup
z∈Z

E(θ′
1,··· ,θ′

N )∼P′
ΘN

(LE′(z)− LE(z))

]
≤ EθN ,θ′N

[
sup
z∈Z

(LE′(z)− LE(z))

]
(Jensen inequality)

= EθN ,θ′N

{
sup
z∈Z

1

N

[
N∑
i=1

ℓ(f(θ′i;x), y)−
N∑
i=1

ℓ(f(θi;x), y)

]}

= EσEθN ,θ′N

{
sup
z∈Z

1

N

[
N∑
i=1

σi [ℓ(f
′
i(x), y)− ℓ(fi(x), y)]

]}

≤ EσEθ′N

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(f
′
i(x), y)

]}
+ EσEθN

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(fi(x), y)

]}

= 2 · EσEθN

{
sup
z∈Z

1

N

N∑
i=1

σiℓ(fi(x), y)

}
= 2EθN [RN (F)] . (25)

Since changing one element in θN changes RN (F) by at most β
N , we again apply Theorem 1 in Esposito & Mondelli

(2024) and obtain that for all δ ∈ (0, 1), with probability at least 1− 1
4δ, we have

EθN [RN (F)] ≤ RN (F) +

√√√√ αβ2

2(α− 1)N
ln

2
α−1
α H

1
α
α

(
PΘN ∥P⊗N

i=1 Θ

)
1
4δ

. (26)

Likewise, if we define

Φ2(E) = sup
z∈Z

{LE(z)− LP (z)} ,

Φ2(E
′) = sup

z∈Z
{LE′(z)− LP (z)} ,
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then we have

Φ2(E)− Φ2(E
′) = sup

z∈Z
{LE(z)− LP (z)} − sup

z∈Z
{LE′(z)− LP (z)}

≤ sup
z∈Z

{LE(z)− LP (z)− (LE′(z)− LP (z))}

= sup
z∈Z

{LE(z)− LE′(z)}

=
1

N
sup
z∈Z

[
N∑
i=1

ℓ(f(θi;x), y)−
N∑
i=1

ℓ(f(θ′i;x), y)

]
.

According to the assumption that loss function ℓ is bounded by β, we have

|Φ2(E)− Φ2(E
′)| ≤ β

N
.

According to Theorem 1 in Esposito & Mondelli (2024), for all δ ∈ (0, 1) and α > 1, with probability at least 1− 1
4δ, we

have

Φ2(E) ≤ EθN [Φ2(E)] +

√√√√ αβ2

2(α− 1)N
ln

2
α−1
α H

1
α
α

(
PΘN ∥P⊗N

i=1 Θi

)
1
4δ

. (27)

We estimate the upper bound of EθN [Φ2(E)] as follows:

EθN [Φ2(E)] = EθN

[
sup
z∈Z

(LE(z)− LP (z))

]
= EθN

[
sup
z∈Z

E(θ′
1,··· ,θ′

N )∼P′
ΘN

(LE(z)− LE′(z))

]
≤ EθN ,θ′N

[
sup
z∈Z

(LE(z)− LE′(z))

]
(Jensen inequality)

= EθN ,θ′N

{
sup
z∈Z

1

N

[
N∑
i=1

ℓ(f(θi;x), y)−
N∑
i=1

ℓ(f(θ′i;x), y)

]}

= EσEθN ,θ′N

{
sup
z∈Z

1

N

[
N∑
i=1

σi [ℓ(fi(x), y)− ℓ(f ′
i(x), y)]

]}

≤ EσEθ′N

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(f
′
i(x), y)

]}
+ EσEθN

{
sup
z∈Z

1

N

[
N∑
i=1

σiℓ(fi(x), y)

]}

= 2 · EσEθN

{
sup
z∈Z

1

N

N∑
i=1

σiℓ(fi(x), y)

}
= 2EθN [RN (F)] . (28)

Likewise, we again apply Theorem 1 in Esposito & Mondelli (2024) and obtain that for all δ ∈ (0, 1), with probability at
least 1− 1

4δ, we have

EθN [RN (F)] ≤ RN (F) +

√√√√ αβ2

2(α− 1)N
ln

2
α−1
α H

1
α
α

(
PΘN ∥P⊗N

i=1 Θ

)
1
4δ

. (29)

Therefore, combining Eq. (24), Eq. (25), Eq. (26), Eq. (27), Eq. (28) and Eq. (29) with union bound, we obtain that, with
probability at least 1− δ, there holds
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TE(z, ϵ) = Φ1(E) + Φ2(E) ≤ 4RN (F) +

√√√√ 18αβ2

(α− 1)N
ln

22+
α−1
α H

1
α
α

(
PXn∥P⊗n

i=1 Xi

)
δ

.

The proof is complete.

C.5 Extension of Theorem 4.3

We consider N surrogate classifiers f1, · · · , fN trained to generate adversarial examples. Let D be the distribution over the
surrogate models (for instance, the distribution of all the low-risk models), and fi ∈ D, i ∈ [N ]. The low-risk claim is in
line with Lemma 5 in (Yang et al., 2021), which assumes that the risk of surrogate model and target model is low (have risk
at most ϵ). Therefore, the surrogate model and target model can be seen as drawing from the same distribution (such as a
distribution of all the low-risk models). For a data point z = (x, y) ∈ Z and N classifiers for model ensemble attack, define
the population risk LP (z) and the empirical risk LD(z) as

LP (z) = Ef∼D[ℓ(f(x), y)].

LD(z) =
1

N

∑
i∈[N ],fi∈D

ℓ(fi(x), y).

Now here is an extension of Theorem 4.3 based on the above definition.

Theorem C.6 (Extension of Theorem 4.3). Let PDN be the joint distribution of f1, · · · , fN , and P⊗N
i=1 D be the joint

measure induced by the product of the marginals. If the loss function ℓ is bounded by β ∈ R+ and PDN ≪ P⊗N
i=1 D for

any function fi, then for α > 1 and γ = α
α−1 , with probability at least 1− δ, there holds

TE(z, ϵ) ≤ 4RN (Z) +

√√√√18γβ2

N
ln

22+
1
γ H

1
α
α

(
PDN ∥P⊗N

i=1 D

)
δ

. (30)

The proof is almost the same as Appendix C.4, but the definition of distribution is different. The first term answers the
question that more surrogate models and smaller complexity will lead to a smaller RN (Z) and contributes to a tighter
bound of TE(z, ϵ). The second term motivates us that if we reduce the interdependency among the ensemble components,
then the upper bound of TE(z, ϵ) will be tighter. Recall that Hα(PDN ∥P⊗N

i=1 D) quantifies the divergence between the
joint distribution PDN and product of marginals P⊗N

i=1 D. The joint distribution captures dependencies while the product
of marginals does not. So the divergence between them measures the degree of dependency among the N classifiers
f1, · · · , fN . As a result, improving the diversity of f1, · · · , fN and reduce the interdependence among them is beneficial to
adversarial transferability.

C.6 Further Explanation of the Hellinger Integral Term

We provide two examples of the Hellinger integral term in Theorem 4.3.
Example 1 (Independent case). Suppose that the N surrogate models are independent. In this case, the hellinger integral
achieves its minimum 1. Therefore, let α = 2 and Theorem 4.3 becomes

TE(z, ϵ) ≤ 4RN (Z) +

√
36β2

N
ln

4
√
2

δ
.

This theoretical result is similar to the generalization error bound in the literature on statistical learning theory (Bartlett &
Mendelson, 2002) with different constant coefficients. The difference arises because (Bartlett & Mendelson, 2002) applies
the concentration inequality once, but our proof applies it several times.
Example 2 (Dependent case). For a more general case, the N surrogate models are interdependent to each other. While
it is hard to model the behavior of each model and the whole parameter space, we simplify the problem to make it clear
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to understand the hellinger integral Hα(PΘN ∥P⊗N
i=1 Θ). In particular, let P = PΘN and Q = P⊗N

i=1 Θ. We consider the
model parameters for a given precision so that P and Q are discrete distributions. Firstly, Equation (8) from (Esposito
& Mondelli, 2024) tells us that Hα(P∥Q) = e(α−1)Dα(P,Q), where Dα(P,Q) is the Rényi divergence. Secondly, let
β1 = mina∈A

Q(a)
P (a) be defined in Equation (8) from (Sason & Verdú, 2015), i.e., the minimum of the ratio of the probability

density function of distributions Q and P . Now we approximate β1. Consider there are t parameter configurations for each
model. For simplicity, we assume that part of the models (f(N) models) play a key role in adversarial transferability, and
the other N − f(N) models are random sampled from these f(N) models.

• For the product of marginal distribution Q, the parameters from each model are random. Consider the case of uniform
distribution, where every parameter in the N models share the same probability, i.e., Q(a) = 1

tN
.

• For the joint distribution P , we also consider the case of uniform distribution, where f(N) models are fixed and
N − f(N) models are randomly sampled, i.e., P (a) = 1

tN−f(N) .

Therefore, β1 = Q(a)
P (a) = t−f(N), which is less than 1. Substitute the above into Theorem 3 from (Sason & Verdú, 2015), we

have

Hα(P∥Q) ≤ 1 +
DTV(P∥Q) ·

(
β−1
1 − 1

)
1− β1

≤ 1 +

(
β−1
1 − 1

)
1− β1

≤ β−1
1 = tf(N).

Let α = 2 and substitute the above into Theorem 4.3 in our paper, we have

TE(z, ϵ) ≤ 4RN (Z) +

√
18β2 ln t · f(N)

N
+ 36β2 ln

4
√
2

δ
· 1

N

Here are several cases:

1. f(N) = O(Ns), where s ∈ (0, 1),

2. f(N) = O(lnN),

3. f(N) = sN , where s ∈ (0, 1).

For Cases 1 and 2, the above term asymptotically converges to zero as N becomes large. Notably, the true Hellinger
term may be smaller than our derived upper bound above. Quantifying the core subset of models f(N) that dominate
the performance of the ensemble attack presents a theoretically profound and practically significant research direction.
This problem is particularly well-suited for future exploration, as it could fundamentally advance our understanding of
transferable adversarial model ensemble attacks.

C.7 Information-theoretic Analysis

This section follows the multi-classification setting in Appendix C.3. Note that while we use a different theoretical framework
comparing to Theorem 4.3, the conclusion is consistent with it.

Firstly, we define the KL divergence, mutual information and TV distance.

Definition C.7 (Kullback-Leibler Divergence). Given two probability distributions P and Q, the Kullback-Leibler (KL)
divergence between P and Q is

DKL(P∥Q) =

∫
x∈X

P (x) log
P (x)

Q(x)
dx.

We know that DKL(P∥Q) ∈ [0,+∞], and DKL(P∥Q) = 0 if and only if P = Q.

Definition C.8 (Mutual Information). For continuous random variables X and Y with joint probability density function
p(x, y) and marginal probability density functions p(x) and p(y), the mutual information is defined as:

I(X;Y ) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy.
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We know that I(X;Y ) ∈ [0,+∞], and I(X;Y ) = 0 if and only if X and Y are independent to each other.

Definition C.9 (Total Variation Distance). Given two probability distributions P and Q, the Total Variation (TV) distance
between P and Q is

DTV(P∥Q) =
1

2

∫
x∈X

|P (x)−Q(x)| dx.

We know that DTV(P∥Q) ∈ [0, 1]. Also, DTV(P∥Q) = 0 if and only if P and Q coincides, and DTV(P∥Q) = 1 if and
only if P and Q are disjoint.

Here we provide further analysis from the perspective of information (Shwartz-Ziv & Tishby, 2017; Xu & Raginsky, 2017).

Theorem C.10. Given N surrogate models θN ∼ PΘN as the ensemble components. Let θ
N

= (θ1, . . . ,θN ) ∼ PΘN

be the target models, which is an independent copy of θN . Assume the loss function ℓ is bounded by β ∈ R+ and
PΘN is absolutely continuous with respect to P⊗N

i=1 Θ. For α > 1 and adversarial example z = (x,y) ∼ PZ , Let
∆N (θ, z) = LP (z)− LE(z). Then there holds∣∣∣Ez,θN∼PZ,ΘN

∆N (θ, z)
∣∣∣ ≤ 2β ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
+√

αβ2

2(α− 1)N

(
I
(
θN ; z

)
+

1

α
logHα

(
PΘN ∥P⊗N

i=1 Θ

))
,

where DTV(·∥·), I(·∥·) and Hα(·∥·) denotes TV distance, mutual information and Hellinger integrals, respectively.

In Theorem C.10: ∆N (θ, z) quantifies how effectively the surrogate models represent all possible target models. Taking the
expectation of ∆N (θ, z) over z and θN accounts for the inherent randomness in both adversarial examples and surrogate
models. The mutual information I

(
θN ; z

)
quantifies how much information about the surrogate models is retained in the

adversarial example. Intuitively, higher mutual information indicates that the adversarial example is overly tailored to the
surrogate models, capturing specific features of these models. This overfitting reduces its ability to generalize and transfer
effectively to other target models. By controlling the complexity of the surrogate models, the specific information captured
by the adversarial example can be limited, encouraging it to rely on broader, more transferable patterns rather than model-
specific details. This reduction in overfitting enhances the adversarial example’s transferability to diverse target models. The
TV distance DTV

(
PΘN ∥P⊗N

i=1 Θ

)
and the Hellinger integral Hα

(
PΘN ∥P⊗N

i=1 Θ

)
capture the interdependence among

the surrogate models.

Theorem C.10 reveals that the following strategies contribute to a tighter bound: 1) Increasing the number of surrogate
models, i.e., increasing N ; 2) Reducing the model complexity of surrogate models, i.e., reducing I

(
θN ; z

)
; 3) Making the

surrogate models more diverse, i.e., reducing DTV

(
PΘN ∥P⊗N

i=1 Θ

)
and Hα

(
PΘN ∥P⊗N

i=1 Θ

)
. A tighter bound ensures

that an adversarial example maximizing the loss function on the surrogate models will also lead to a high loss on the target
models, thereby enhancing transferability.

Proof. According to Donsker and Varadhan’s variational formula, for any λ ∈ R, there holds:

DKL(PZ,ΘN ∥PZ ⊗ PΘN ) ≥ λEz,θN∼PZ,ΘN
∆N (θ, z)− logEz∼PZEθN∼PΘN

[
eλ∆N (θ,z)

]
. (31)

Fix z ∈ Z ,

EθN∼PΘN

[
eλ∆N (θ,z)

]
=

∫
eλ∆N (θ,z)dPΘN

=

∫
eλ∆N (θ,z) dPΘN

dP⊗N
i=1 Θ

dP⊗N
i=1 Θ

≤
(∫

e
α

α−1λ∆N (θ,z)dP⊗N
i=1 Θ

)α−1
α

(∫ (
dPΘN

dP⊗N
i=1 Θ

)α

dP⊗N
i=1 Θ

) 1
α
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=

(∫
e

α
α−1λ∆N (θ,z)dP⊗N

i=1 Θ

)α−1
α

H
1
α
α (PΘN ∥P⊗N

i=1 Θ). (32)

The third line uses Hölder’s inequality, while the last line follows Definition C.5. Now we deal with the first term. Denote

∆1 = E
θ
N∼PΘN

[
1

N

N∑
i=1

ℓ(f(θi;x),y)

]
− E

θ
N∼P⊗N

i=1
Θ

[
1

N

N∑
i=1

ℓ(f(θi;x),y)

]
,

∆2 = E
θ
N∼P⊗N

i=1
Θ

[
1

N

N∑
i=1

ℓ(f(θi;x),y)

]
− 1

N

N∑
i=1

ℓ(f(θi;x),y).

Notice that

|∆1| =

∣∣∣∣∣
∫∫

· · ·
∫ [

1

N

N∑
i=1

ℓ(f(θi;x),y)

] [
PΘN (θ1, · · · ,θN )− P⊗N

i=1 Θ(θ1, · · · ,θN )
]
dθ1 · · · dθN

∣∣∣∣∣
≤ β

∫∫
· · ·
∫ ∣∣∣PΘN (θ1, · · · ,θN )− P⊗N

i=1 Θ(θ1, · · · ,θN )
∣∣∣ dθ1 · · · dθN

= β

∫ ∣∣∣PΘN

(
θ
N
)
− P⊗N

i=1 Θ

(
θ
N
)∣∣∣ dθN

≤ 2β ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
. (33)

Also, ∫ (
e

α
α−1λ∆2

)
dP⊗N

i=1 Θ =EθN∼P⊗N
i=1

Θ

[
e

α
α−1λ∆2

]
=

N∏
i=1

Eθi∼PΘ

[
exp

(
αλ

α− 1

(
Eθi∼PΘ

[
1

N
ℓ(f(θi;x),y)

]
− 1

N
ℓ(f(θi;x),y)

))]

≤
N∏
i=1

exp

(
α2

8(α− 1)2N2
λ2β2

)
.

≤ exp

(
α2

8(α− 1)2N
λ2β2

)
. (34)

The third line is due to Hoeffding’s Lemma (using it for each θi). Therefore, recall the fact that ∆N (θ, z) = ∆1 +∆2, we
have ∫

e
α

α−1λ∆N (θ,z)dP⊗N
i=1 Θ =

∫ (
e

α
α−1λ∆1 · e

α
α−1λ∆2

)
dP⊗N

i=1 Θ

≤ exp

(
2λαβ

α− 1
DTV

(
PΘN ∥P⊗N

i=1 Θ

))∫
e

α
α−1λ∆2dP⊗N

i=1 Θ (Using (33))

≤ exp

(
2λαβ

α− 1
DTV

(
PΘN ∥P⊗N

i=1 Θ

)
+

α2

8(α− 1)2N
λ2β2

)
(Using (34))

With the above results, we obtain the following:

logEz∼PZEθN∼PΘN

[
eλ∆N (θ,z)

]
≤ 2λβ ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
+

α

8(α− 1)N
λ2β2 + logH

1
α
α (PΘN ∥P⊗N

i=1 Θ).

Substitute the above into Eq. (31), we have

α

8(α− 1)N
β2λ2 +

(
2β ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
− Ez,θN∼PZ,ΘN

∆N (θ, z)
)
λ+

DKL(PZ,ΘN ∥PZ ⊗ PΘN ) + logH
1
α
α (PΘN ∥P⊗N

i=1 Θ) ≥ 0.
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(b) CNN

Figure 6. Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs on the CIFAR-100 dataset.

Let the discriminant of the quadratic function with respect to λ be less than or equal to 0, leading to:∣∣∣2β ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
− Ez,θN∼PZ,ΘN

∆N (θ, z)
∣∣∣ ≤√

αβ2

2(α− 1)N

(
DKL

(
PZ,ΘN ∥PZ ⊗ PΘN

)
+

1

α
logHα

(
PΘN ∥P⊗N

i=1 Θ

))
. (35)

In other words,∣∣∣Ez,θN∼PZ,ΘN
∆N (θ, z)

∣∣∣ ≤ 2β ·DTV

(
PΘN ∥P⊗N

i=1 Θ

)
+√

αβ2

2(α− 1)N

(
DKL

(
PZ,ΘN ∥PZ ⊗ PΘN

)
+

1

α
logHα

(
PΘN ∥P⊗N

i=1 Θ

))
.

Finally, substitute I
(
θN ; z

)
= DKL

(
PZ,ΘN ∥PZ ⊗ PΘN

)
into above and we can get the desired result.

D Further Experiments

D.1 Evaluation on CIFAR-100

Following the same setting in our experiments, we further validate the vulnerability-diversity decomposition on the CIFAR-
100 (Krizhevsky et al., 2009) dataset. The results are shown in Figure 6. As the model becomes stronger (i.e., a smaller λ),
the three metrics (ASR, loss and variance) increases, validating the soundness of vulnerability-diversity decomposition.

D.2 Further Investigation into Model Complexity

We conduct a deeper investigation into the role of model complexity by applying a max norm constraint to the model
parameters. Specifically, we constrain the L2 norm of each weight vector to a predefined threshold, effectively limiting the
model’s capacity. Empirically, larger max norm values allow for more expressive feature representations but may increase
the risk of overfitting. In contrast, smaller max norms encourage simpler models and reduce overfitting but may also lead to
underfitting due to restricted representational power. The validation of this trade-off is illustrated in Table 1, which shows
the classification accuracy across a range of max norm values for both MLP and CNN architectures with varying depths.
Lower accuracy values indicate stronger adversarial attack performance.

The results reveal a consistent trend: as the max norm constraint is relaxed from a highly restrictive value (e.g., 0.1) to a
moderate level (e.g., 5.0), the effectiveness of adversarial attacks improves and then declines. This observation indicates that
overly tight constraints can impair model expressiveness, while moderately relaxed constraints can achieve a better trade-off
between simplicity and capacity. These findings empirically support our theoretical claim that weight regularization, e.g.,
via weight decay or norm bounds, directly influences model complexity and, consequently, adversarial transferability.

D.3 Experiments on ImageNet

To further investigate how appropriately controlling the complexity of surrogate models contributes to effective adversarial
attack algorithms—in line with our theoretical insights—we conduct additional experiments on ImageNet (Russakovsky
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Table 1. Effect of varying max norm constraints on adversarial attack performance, measured by classification accuracy (%, lower is
better). FC and CNN denote fully connected and convolutional networks with increasing layers.

Max Norm FC1 FC2 FC3 CNN1 CNN2 CNN3 Avg

0.1 84.66 87.80 85.39 97.57 98.31 98.59 92.05
0.5 59.37 68.31 74.05 96.50 97.66 98.34 82.37
1.0 64.31 55.27 57.12 95.37 97.08 97.93 77.85
2.0 68.00 57.40 57.86 95.41 97.04 97.87 78.93
4.0 68.19 57.94 58.12 95.53 97.00 97.85 79.11
5.0 69.68 59.40 59.26 97.48 98.02 98.87 80.45

et al., 2015). For model ensemble attacks, we fine-tune several surrogate models, including VGG16 (Simonyan & Zisserman,
2014), Inception-V3 (Szegedy et al., 2016), and Visformer (Chen et al., 2021), using a sparse Softmax cross-entropy
loss (Martins & Astudillo, 2016). This modification encourages sparsity in the model’s output distribution. As shown in
Table 2, this approach leads to a reduction in model complexity, as indicated by the decreased L2 norm of the weights.

Table 2. Comparison of model complexity between original and sparse Softmax loss variants on different backbones. Lower values
indicate reduced L2 norm of weights.

VGG16 Visformer InceptionV3

Original 37.37 25.94 49.24
Sparse Softmax Loss 33.12 20.60 48.53

We then leverage these sparsified models for ensemble attacks by applying MI-FGSM (Dong et al., 2018), SVRE (Xiong
et al., 2022), and SIA (Wang et al., 2023a) to both the original and sparsified versions, resulting in MI-FGSM-S, SVRE-S,
and SIA-S, respectively. The transferability of these attacks is evaluated on a range of target models, and the results are
presented in Table 3. As observed, these sparsified variants consistently outperform their standard counterparts in most cases,
validating the advantage of model complexity control for enhancing adversarial transferability. This improvement holds
across both CNN-based and transformer-based architectures. Beyond this example, our findings may inspire the design of
stronger adversarial attack strategies that systematically exploit sparsity and simplicity in surrogate modeling.

Table 3. Transferability results of different attack methods across various target models. Bold entries indicate improved or top-performing
variants.

ResNet50 VGG16 MobileNetV2 InceptionV3 ViT-B16 PiT-B Visformer Swin-T

MI-FGSM 66.0 99.9 76.8 97.5 37.3 53.8 88.9 66.7
MI-FGSM-S 68.9 99.7 79.2 99.1 39.0 54.5 90.6 68.1
SVRE 65.2 99.9 79.0 98.6 32.4 49.2 90.3 64.3
SVRE-S 66.9 99.9 81.2 98.9 34.2 51.3 93.0 65.9
SIA 97.2 100.0 98.4 99.7 75.9 91.9 90.0 96.1
SIA-S 98.1 100.0 98.2 99.6 79.2 93.2 99.5 97.5

E Further Discussion

E.1 Analyze Empirical Model Ensemble Rademacher Complexity

In particular, we present detailed analysis for the simple and complex cases below, within the context of transferable model
ensemble attack.

The simple input space. Firstly, consider the trivial case where the input space contains too simple examples so that
all classifiers correctly classify (x, y) ∈ Z . Then there holds RN (Z) = ℓ(y, y)E

σ

[
1
N

∑N
i=1 σi

]
= 0. In this case, Z

is simple enough for f1, · · · , fN . Such Z corresponds to a RN (Z) close to 0. However, it is important to note that an
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overly simplistic space Z may be impractical for model ensemble attack: the adversarial examples in such a space may not
successfully attack the models from D, leading to a small value of LP (z

∗). In other words, the existence of transferable
adversarial examples implicitly imposes constraints on the minimum complexity of Z .

The complex input space. Secondly, we consider the complex case. In particular, given arbitrarily N models in H and
any assignment of σ, a sufficiently complex Z contains all kinds of examples that make RN (Z) large: (1) If σi = +1,
there are adversarial examples that can successfully attack fi and leads to a large σiℓ(fi(x), y); (2) If σi = −1, there exists
some examples that can be correctly classified by fi, leading to σiℓ(fi(x), y) = 0. However, such a large RN (Z) is also
not appropriate for transferable model ensemble attack. It may include adversarial examples that perform well against
f1, · · · , fN but are merely overfitted to the current N surrogate models (Rice et al., 2020; Yu et al., 2022). In other words,
these examples might not effectively attack other models in H, thereby limiting their adversarial transferability. The above
analysis suggests that an excessively large or small RN (Z) is not suitable for adversarial transferability. So we are curious
to investigate the correlation between RN (Z) and adversarial transferability, which comes to the analysis about the general
case in Section 3.4.

Explain robust overfitting. After a certain point in adversarial training, continued training significantly reduces the robust
training loss of the classifier while increasing the robust test loss, a phenomenon known as robust overfitting (Rice et al.,
2020; Yu et al., 2022) (also linked to robust generalization (Schmidt et al., 2018; Yin et al., 2019)). From the perspective in
Section 3.4, the cause of this overfitting is the limited complexity of the input space relative to the classifier used to generate
adversarial examples during training. The adversarial examples become too simple for the model, leading to overfitting. To
mitigate this, we could consider generating more “hard” and “generalizable” adversarial examples to improve the model’s
generalization in adversarial training. For a less transferable adversarial example (x, y), it is associated with a small LP (z),
which in turn makes TE(z, ϵ) large.

E.2 Other Opinions on “Diversity”

E.2.1 OTHER DEFINITIONS

There are other definitions of “Diversity” in transferable model ensemble adversarial attack. For example, in Yang et al.
(2021), gradient diversity is defined using the cosine similarity of gradients between different models, and instance-level
transferability is introduced, along with a bound for transferability. They use Taylor expansion to establish a theoretical
connection between the success probability of attacking a single sample and the gradients of the models. In Kariyappa &
Qureshi (2019), inspired by the concept of adversarial subspace (Tramèr et al., 2017), diversity is defined based on the
cosine similarity of gradients across different models. The authors aim to encourage models to become more diverse, thereby
achieving “no overlap in the adversarial subspaces,” and provide intuitive insights to readers. Both papers define gradient
diversity and explain its impact.

In contrast, our definition of diversity stems from the unified theoretical framework proposed in this paper. Specifically:
(1) We draw inspiration from statistical learning theory (Shalev-Shwartz et al., 2010; Bartlett & Mendelson, 2002) on
generalization, defining transferability error accordingly. (2) Additionally, we are motivated by ensemble learning (Abe
et al., 2023; Wood et al., 2024), where we define diversity as the variation in outputs among different ensemble models.
(3) Intuitively, when different models exhibit significant differences in their outputs for the same sample, their gradient
differences during training are likely substantial as well. This suggests a potential connection between our output-based
definition of diversity and the gradient-based definitions in previous work, which is worth exploring in future research.

E.2.2 CONFLICTING OPINIONS

We observe a significant and intriguing disagreement within the academic community concerning the role of “diversity” in
transferable model ensemble attacks: Some studies advocate for enhancing model diversity to produce more transferable
adversarial examples. For instance, Li et al. (2020) applies feature-level perturbations to an existing model to potentially
create a huge set of diverse “Ghost Networks”. Li et al. (2023) emphasizes the importance of diversity in surrogate models
and promotes attacking a Bayesian model to achieve desirable transferability. Tang et al. (2024) supports the notion of
improved diversity, suggesting the generation of adversarial examples independently from individual models. In contrast,
other researchers adopt a diversity-reduction strategy to enhance adversarial transferability. For example, Xiong et al. (2022)
focuses on minimizing gradient variance among ensemble models to improve transferability. Meanwhile, Chen et al. (2023)
introduces a disparity-reduced filter designed to decrease gradient variances among surrogate models in ensemble attacks.
Although all these studies reference “diversity,” their perspectives appear to diverge. In this paper, we advocate for increasing
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the diversity of surrogate models. However, we also recognize that diversity-reduction approaches have their merits. For
instance, consider the vulnerability-diversity decomposition of transferability error presented in Theorem 4.1. It suggests
the presence of a vulnerability-diversity trade-off in transferable model ensemble attacks. In other words, we may need to
prioritize either vulnerability or diversity to effectively reduce transferability error. Diversity-reduction approaches aim
to stabilize the training process, thereby increasing the “bias.” In contrast, diversity-promoting methods directly enhance
“diversity.” This analysis, framed within our unified theoretical framework, provides insight into the differing opinions
regarding adversarial transferability in the academic community.

E.3 Compare with A Previous Bound

Lemma 5 in Yang et al. (2021) offer complementary perspectives in the analysis of transferable adversarial attack. We
first restate Lemma 5 in Yang et al. (2021) and our Theorem 4.1. Our theoretical results and theirs offer complementary
perspectives in the analysis of transferable adversarial attack.

Lemma 5 (Yang et al. (2021)). Let f, g : X → Y be classifiers, δ, ρ, ϵ ∈ (0, 1) be constants, and A(·) be an attack strategy.
Suppose that f, g have risk at most ϵ. Then

Pr(F(A(x)) ̸= G(A(x))) ≤ 2ϵ+ ρ,

for a given random instance x and A(·) is ρ-conservative (TV distance between the adversarial example distribution and
clean data distribution is less than ρ, which is defined as Definition 7 and 8 in Yang et al. (2021)).

Lemma 5 states an intriguing conclusion: if two models exhibit low risk on the original data distribution and the distributional
discrepancy between adversarial examples and the original data is small, the predictions of the two models on the same
input will be close. In other words, for two well-performing models, if an attack strategy successfully targets one model, it
is highly likely to succeed on the other. Lemma 5 thus describes the success rate of transferring an attack from one model to
another. In contrast, Theorem 4.1 demonstrates that if the ensemble models exhibit significant output differences on the
same input, the resulting diverse ensemble is more effective at generating adversarial examples with reduced transferability.

To better clarify, let A denote the ensemble models generating adversarial examples and B the model being attacked.
Comparing Lemma 5 and our work leads to the following reasoning: Suppose A and B both fit the original data distribution
well (i.e., the risk of A and B is bounded by ϵ, as in Lemma 5). As shown in our work, increasing ensemble diversity
while keeping vulnerability constant reduces the transferability error of adversarial examples generated by the ensemble.
Many models in parameter space, such as A and B, are vulnerable to these adversarial examples. However, fitting both the
original data distribution and the adversarial example distribution simultaneously becomes challenging, leading to a large
distributional discrepancy. This discrepancy enlarges ρ in Lemma 5, thereby loosening its “conservative condition” and
weakening its theoretical guarantee of successful transferability. Consequently, adversarial transferability decreases, which
could be interpreted as a potential contradiction.

No actual contradiction exists between Lemma 5 and our work. Instead, they provide complementary analyses. Lemma
5 provides an upper bound rather than an equality or lower bound. While an increase in ρ loosens this upper bound, it
does not necessarily imply that the left-hand side (i.e., transferability success) will increase. The significance of an upper
bound lies in the fact that a tighter right-hand side suggests the potential for a smaller left-hand side. However, a looser
upper bound does not necessarily imply that the left-hand side will increase. Therefore, while increasing ensemble diversity
may loosen the upper bound in Lemma 5, it does not contradict the fundamental interpretation of it. While Lemma 5
analyzes the trade-off between ϵ (model fit to the original data) and ρ (distributional discrepancy), our work focuses on the
trade-off between vulnerability and ensemble diversity. Together, they provide a comprehensive understanding of the factors
influencing adversarial transferability.

We now further elucidate the relationship between our results and Lemma 5. To minimize transferability error (as in our
work), the adversarial transferability described by Lemma 5 may have stronger theoretical guarantees, requiring its upper
bound to be tighter. To tighten the bound in Lemma 5, either ϵ or ρ must decrease. However, the two exhibit a trade-off:

• If ϵ decreases, A and B fit the original data distribution better. However, beyond a certain point, the adversarial
examples generated by A diverge significantly from the original data distribution, increasing ρ.

• If ρ decreases, the adversarial example distribution becomes closer to the original data distribution. However, beyond a
certain point, A exhibits similar losses on both distributions, resulting in a higher ϵ.
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Therefore, Lemma 5 indicates the potential trade-off between ϵ and ρ in adversarial transferability, while our Theorem 1
emphasizes the trade-off between vulnerability and diversity. By integrating the perspectives from both Lemma 5 and our
findings, these results illuminate different facets of adversarial transferability, offering complementary theoretical insights.

E.4 Compare with Generalization Error Bound

We note that a key distinction between transferability error and generalization error lies in the independence assumption.
Conventional generalization error analysis relies on an assumption: each data point from the dataset is independently
sampled (Zou & Liu, 2023; Hu et al., 2023). By contrast, the surrogate models f1, · · · , fN for ensemble attack are
usually trained on the datasets with similar tasks, e.g., image classification. In this case, such models tend to correctly
classify easy examples while misclassify difficult examples (Bengio et al., 2009). Consequently, such correlation indicates
dependency (Lancaster, 1963), suggesting that we cannot assume these surrogate models behave independently for a solid
theoretical analysis. Additionally, there are alternative methods for analyzing concentration inequality in generalization
error analysis that do not rely on the independence assumption (Kontorovich & Ramanan, 2008; Mohri & Rostamizadeh,
2008; Lei et al., 2019; Zhang et al., 2019). However, such data-dependent analysis is either too loose (Lampert et al., 2018)
(because it includes an additional additive factor that grows with the number of samples (Esposito & Mondelli, 2024)) or
requires specific independence structure of data (Zhang & Amini, 2024) that may not align well with model ensemble
attacks. Therefore, we uses the latest techniques of information theory (Esposito & Mondelli, 2024) about concentration
inequality regarding dependency.

E.5 Vulnerability-diversity Trade-off Curve

The relationship between vulnerability and diversity, as discussed in Section 5, merits deeper exploration. Drawing on the
parallels between the vulnerability-diversity trade-off and the bias-variance trade-off (Geman et al., 1992), we find that
insights from the latter may prove valuable for understanding the former, and warrant further investigation. The classical
bias-variance trade-off suggests that as model complexity increases, bias decreases while variance rises, resulting in a
U-shaped test error curve. However, recent studies have revealed additional phenomena and provided deeper analysis (Neal
et al., 2018; Neal, 2019; Derumigny & Schmidt-Hieber, 2023), such as the double descent (Belkin et al., 2019; Nakkiran
et al., 2021). Our experiments indicate that diversity does not follow the same pattern as variance in classical bias-variance
trade-off. Nonetheless, there are indications within the bias-variance trade-off literature that suggest similar behavior might
occur. For instance, Yang et al. (2020) proposes that variance may exhibit a bell-shaped curve, initially increasing and then
decreasing as network width grows. Additionally, Lin & Dobriban (2021) offers a meticulous understanding of variance
through detailed decomposition, highlighting the influence of factors such as initialization, label noise, and training data.
Recent studies have even revealed that bias and variance can exhibit a concurrent relationship in deep learning models (Chen
et al., 2024c). Overall, the trend of variance in model ensemble attack remains a valuable area for future research. We
may borrow insights from machine learning literature (see the above papers and the references therein) to get a better
understanding of this in future work.

E.6 Insight for Model Ensemble Defense

While our paper primarily focuses on analyzing model ensemble attacks, our theoretical findings can also provide valuable
insights for model ensemble defenses: (1) From a theoretical perspective, the vulnerability-diversity decomposition
introduced for model ensemble attacks can likewise be extended to model ensemble defenses. Mathematically, this results in
a decomposition similar to conclusions in ensemble learning (see Proposition 3 in Wood et al. (2024) and Theorem 1 in Ortega
et al. (2022)), which shows that within the adversarial perturbation region, Expected loss ≤ Empirical ensemble loss −
Diversity. Thus, to improve model robustness (reduce the expected loss within the perturbation region), the core strategy
involves minimizing the ensemble defender’s loss or increasing diversity. However, there is also an inherent trade-off
between these two objectives: when the ensemble loss is sufficiently small, the model may overfit to the adversarial region,
potentially reducing diversity; conversely, when diversity is maximized, the model may underfit the adversarial region,
potentially increasing the ensemble loss. Therefore, from this perspective, our work provides meaningful insights for
adversarial defense that warrant further analysis. (2) From an algorithmic perspective, we can consider recently proposed
diversity metrics, such as Vendi score (Friedman & Dieng, 2022) and EigenScore (Chen et al., 2024a). Following the
methodology outlined in Deng & Mu (2023), diversity can be incorporated into the defense optimization objective to strike a
balance between diversity and ensemble loss. By finding an appropriate trade-off between these two factors, the effectiveness
of ensemble defense may be enhanced.
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