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ABSTRACT

Acoustic properties of objects corresponding to scattering characteristics are fre-
quently used for 3D audio content creation, environmental acoustic effects, lo-
calization and acoustic scene analysis, etc. The numeric solvers used to compute
these acoustic properties are too slow for interactive applications. We present a
novel geometric deep learning algorithm based on discrete-laplacian and implicit
encoders to compute these characteristics for general 3D objects at interactive
rates. We use a point cloud approximation of each object, and each point is en-
coded in a high-dimensional latent space. Our multi-layer network can accurately
estimate these acoustic properties for arbitrary topologies and takes less than 1ms
per object on a NVIDIA GeForce RTX 2080 Ti GPU. We also prove that our learn-
ing method is permutation and rotation invariant and demonstrate high accuracy
on objects that are quite different from the training data. We highlight its applica-
tion to generating environmental acoustic effects in dynamic environments.

1 INTRODUCTION

Acoustic scattering corresponds to the disturbance of a given incident sound field due to an object’s
shape and surface properties. It can be regarded as one of the fundamental characteristics of an
object. The effect of scattering can be expressed in terms of a scattered sound field, which satis-
fies Sommerfield’s radiation condition. There is considerable work on modeling and measuring the
acoustic scattering properties in physics and acoustics and these characteristics are widely used for
sound rendering in games and virtual reality (Mehra et al., 2015; Rungta et al., 2018), noise analysis
in indoor scenes (Morales & Manocha, 2018), acoustic modeling of concert halls (Shtrepi et al.,
2015), non-line-of-sight (NLOS) imaging (Lindell et al., 2019), understanding room shapes (Dok-
manić et al., 2013), receiver placement (Morales et al., 2019), robot sound source localization (An
et al., 2019), 3D mapping (Kim et al., 2020), audio-visual analysis (Sterling et al., 2018), etc.

Acoustic scattering of objects can be modeled accurately using the theory of wave acoustics (Kut-
truff, 2016). The scattering characteristics of objects are widely used for sound propagation, which
reduces to solving the wave equation in large environments. Given a sound source location and its
vibration patterns, acoustic simulation methods are used to predict the perceived sound at another
specified location considering the medium it passes through and objects/boundaries it interacts with.
While the wave behavior of sound is well understood in physics, it is much more difficult to com-
pute acoustic scattering and sound propagation effects, especially for higher frequencies. Even with
state-of-the-art acoustic wave solvers, it can take from hours to days to solve a moderately modeled
room environment on a powerful workstation. One of the contributing factors to this difficulty is that
wave behaviors are frequency dependent, so many frequency bands need to be analyzed separately.

Current methods for computing the acoustic scattering characteristics can use numeric solvers like
boundary-element methods (BEM). However, their complexity increases as a cubic function of the
frequencies and most current implementations are limited to static scenes or environments. No
good or practical solutions are known to compute the acoustic scattering properties for dynamic
environments or when objects move or undergo deformation.

Main Results: We present novel techniques based on geometric deep learning on differential co-
ordinates to approximate the acoustic scattering properties of arbitrary objects. Our approach is
general and makes no assumption about object’s shape, genus, or rigidity. We approximate the
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objects using point-clouds, and each point in the point cloud representation is encoded in a high-
dimensional latent space. Moreover, the local surface shapes in the latent space are encoded using
implicit surfaces. This enables us to handle arbitrary topology. Our network takes the point cloud as
an input and outputs the spherical harmonic coefficients that represent the acoustic scattering field.

We present techniques to generate the ground truth data using an accurate wave-solver on a large
geometric dataset. We have evaluated the performance on thousands of objects that are very different
from the training database (with varying convexity, genus, shape, size, orientation) and observe high
accuracy. We also perform an ablation study to highlight the benefits of our approach. The additional
runtime overhead of estimating the scattering field from neural networks is less than 1ms per object
on a NVIDIA GeForce RTX 2080 Ti GPU. We also prove that our learning method is permutation
and rotation invariant, which is an important characteristic for accurate computation of acoustic
scattering fields.

2 RELATED WORKS

2.1 WAVE-ACOUSTIC SIMULATION

Wave-acoustic simulation methods aim to solve the wave equation that governs the propagation and
scattering of sound waves. Some conventionally used numeric methods include the finite-element
method (Thompson, 2006), the boundary-element method (Wrobel & Kassab, 2003), and the finite-
difference time domain (Botteldooren, 1995). The common requirement of these methods is the
proper discretization of the problem domain (e.g., spatial resolution, time resolution), which means
the time complexity of them will scale drastically with the simulation frequency. Recent works man-
age to speed up wave simulations by parallelized rectangular decomposition (Morales et al., 2015) or
by using pre-computation structures (Mehra et al., 2015). An alternative way to use wave simulation
results in real-time applications is to pre-compute a large amount of sound fields in a scene and com-
pressing the results using perceptual metrics (Raghuvanshi & Snyder, 2014). While pre-computation
methods can save significant runtime cost, they still require non-trivial pre-computation efforts for
unseen scenarios, restricting their use cases.

2.2 LEARNING-BASED ACOUSTICS

Machine learning techniques have been widely applied in many popular computer science research
areas. There is considerable work on developing machine learning methods for applications cor-
responding to audio-visual analysis (Zhang et al., 2017) and acoustic scene classification (Abeßer,
2020) (see Bianco et al. (2019) for a thorough list of work). In comparison, there are much fewer
works studying the generation of acoustic data from a physical perspective. Therefore, methodolo-
gies from existing popular domains often do not directly apply to our problem of interest. Some more
relevant works focus on estimating room acoustics parameters from recorded signals (Eaton et al.,
2016; Genovese et al., 2019; Tsokaktsidis et al., 2019; Tang et al., 2020), which can help physically-
based simulators to model real-world acoustics more faithfully. Pulkki & Svensson (2019) propose
to use a neural network to model the acoustic scattering effect from rectangular plates without run-
ning simulation. This is closely related to our goal of bypassing expensive wave simulation while
generating plausible sound, although we aim to model objects of more general shapes. Recently,
Fan et al. (2020) train convolutional neural networks (CNNs) to learn to map planar sound fields in-
duced by convex scatterers in 2D, which provides promising results. Motivated by the last method,
we aim to develop networks that can deal with object geometry in 3D and extend the generality of
this learning-based approach.

2.3 GEOMETRIC DEEP LEARNING AND SHAPE REPRESENTATION

There is considerable recent work on generating plausible shape representations for 3D data, includ-
ing voxel-based (Zhou & Tuzel, 2018; Sindagi et al., 2019; Meng et al., 2019; Wu et al., 2015),
point-based (Charles et al., 2017; Qi et al., 2017; Wang et al., 2019; Li et al., 2018a; Monti et al.,
2017; Li et al., 2018b; Yi et al., 2017) and mesh-based (Hanocka et al., 2019) shape representations.
This includes work on shape representation by learning implicit surfaces on point clouds (Smirnov
et al., 2019), designing a mesh Laplacian for convolution (Tan et al., 2018), hierarchical graph
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convolution on meshes (Mo et al., 2019), encoding signed distance functions for surface reconstruc-
tion (Park et al., 2019), etc. However, previous methods on point cloud shape representations learn
by designing loss functions to constrain surface smoothness on global Cartesian coordinates. Such
functions only provide spatial information of each point and lack information about local shape of
the surface compared to the explicit discretization of the continuous Laplace-Beltrami operator and
curvilinear integral (Do Carmo, 2016). Instead, we use point cloud based learning algorithms, which
do not require mesh Laplacians for graph neural networks. This makes our approach applicable to
all kind of dynamic objects, including changing topologies.

3 OUR APPROACH

3.1 OVERVIEW

Our goal is to directly predict the acoustic scattering field (ASF) resulting from an incident wave and
a sound scatterer of known shape (described by a triangle mesh). A set of frequency dependent ASFs
are visualized in Figure 1 on a disk plane. The two key steps are defining a compact and efficient
way to encode the ASF, and designing a neural network architecture that can effectively exploit the
3D geometric information so as to establish the mapping between the object shape and the ASF. In
this section, we provide necessary background on wave acoustics and explain the mechanism of our
approach. Our notations are summarized in Table 1.

Table 1: Notation and symbols used in this section.

x 3D Cartesian coordinates. m, l Order and degree of basis functions.
v acoustic particle velocity. Y m

l (θ, φ) Spherical harmonics basis function.
ω Frequency of sound. k Wavenumber.
(r, θ, φ) Spherical coordinates. cml (ω) Spherical harmonics coefficients.
c Speed of sound in air. hl(kr) Hankel function.

Figure 1: Acoustic scattering of the same object at four different frequencies, assuming a plane wave travelling
to the −x direction and a sound-hard boundary condition for the object/scatterer in the center. The scattering
patterns are significantly different among frequency bands. Our learning method can compute them with high
accuracy for arbitrary objects at interactive rates, including high-genus and deforming objects.

3.2 ACOUSTIC SCATTERING FIELDS

We are interested in knowing how the incident sound field will be scattered when it acts on an object
surface. Let the sound pressure at location x and time t be P (x, t), and the wave equation describes
the propagation of sound:

(∇2 − 1

c2
∂2

∂t2
)P (x, t) = 0, (1)

where c is the speed of sound, which is commonly assumed to be constant in non-large scale indoor
environments. Transforming into the frequency domain, we obtain the homogeneous Helmholtz
equation:

(∇2 + k2)p(x, ω) = 0, (2)
where ω is the wave frequency and k = ω

c is the wavenumber. When a specific boundary condition
is given, its solution in 3D spherical coordinates can be decomposed as

p(r, θ, φ, ω) =

∞∑
l=0

hl(kr)

+l∑
m=−l

cml (ω)Y m
l (θ, φ), (3)
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where hl(kr) is the Hankel function which encodes the radial pressure changes, Y m
l (θ, φ) is the

spherical harmonics term which represents the angular part of the solution, and cml (ω) is the spheri-
cal harmonics coefficients for frequency ω. For a maximum order L, there are (L+ 1)2 coefficients.
Since the Hankel and the Spherical Harmonics functions are easy to evaluate, we only need to find
the coefficients cml (ω) to fully describe the acoustic scattering field.

3.3 NETWORK INFERENCE

Our goal is to use an appropriate geometric representation for the underlying objects in the scene
so that we can apply geometric deep learning methods to infer the acoustic scattering field from the
object shape. It is also important that our approach should be able to handle highly dynamic scenes
with general objects (i.e., no assumption on their convexity or genus). Moreover, our approach can
still produce plausible ASFs results for changing typologies. The input to our system will be the
point cloud representation (N × 3 matrix, N being the number of 3D points) of an object. We
represent each point and its local surface by a higher dimension implicit surface in the latent space
formed by an implicit surface encoder. [Thanks to Kolmogorov–Arnold representation theorem, we
can represent the pressure field function as a function defined on a set of points (N × 3), which is
a multivariate continuous function composed of continuous functions of one variable encoded in a
higher dimension. Moreover, borrowing the power of the De Finetti Theorem, our pressure field
function is further formulated as Eq. 8. Please refer to § 4.4 for more details of our design.]The
desired output is the spherical harmonic coefficients vector up to order L = 3 described in § 3.2.
In practice, acoustic scattering corresponding to different frequencies can exhibit different distri-
butions. Therefore, we train several networks for different frequency bands and in this paper we
present the results for 125Hz ∼ 1000Hz. However, this range is not a limit of our approach, as
we can handle a wider frequency range, though the complexity of computing the training data can
increase as a cubic function of the frequency. We present a novel network architecture to compute
these characteristics for arbitrary or deforming objects.

4 NETWORK DESIGN AND PROPERTIES

In this section we introduce our shape Laplacian based point representation using implicit surface
functions. For predicting ASF, [the detailed geometric characteristics of object representation play
an essential role with respect to the simulation frequency.]This motivates our design in terms of
differential coordinates (Sorkine, 2006; Do Carmo, 2016), which describe the discretization of the
curvilinear integral around a given point. Moreover, we also provide the proof of its permutation
invariant property via Newton’s identities in the appendix, [as that is important in the context of
our sound propagation algorithm]. Finally, following de Finetti theorem (Heath & Sudderth, 1976),
we justify our design of implicit surface functions and [show its benefits in terms of accurately
computing the acoustic scattering functions for arbitrary objects].

4.1 LOCAL SURFACE SHAPE AND IMPLICIT SURFACE ENCODER

Previous works on point cloud learning algorithms mostly focus on designing per-point opera-
tions (Charles et al., 2017), encoding per-point features to estimate continuous shape functions (Park
et al., 2019; Xu et al., 2019), or minimizing loss between a point normal vector and its connected
vertices (Liu et al., 2019). We extend these ideas to compute the acoustic scattering functions.

[R3Q1: For each point in the input cloud and its neighborhood in the Euclidean space, we assume
that it can form a piecewise smooth surface around the point.]Each point is encoded by the shared
multi-layer perceptron (MLP) (Rumelhart et al., 1985) and can be represented by a vector in the
higher dimensional latent space Z ∈ R128(see Figure 2) [R3Q1: Thus, a piecewise-linear approx-
imation of the surface around a given point can be used to estimate the local surface shape, where
the differential coordinate] (Sorkine, 2006; Do Carmo, 2016) (i.e., δ− coordinates) of each vertex
vi can be expressed as:

−→
δi =

1

di
Σj∈N (i)(

−→vi −−→vj ). (4)

Here δi encapsulates the local surface shape, N (i) represents the K nearest neighbors of vertex vi
in the Euclidean space, and di = |N (i)| is the number of immediate neighbors of vi. To estimate
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the mean curvature of the local surfaces formed by each point and its spatial neighbors, we use the
radial basis function (RBF) ϕ(·) = exp−||·||

2

to weigh each vector, rather than using the uniform
weight shown in Equation (4). Since there are N ! permutations for a point cloud with N vertices,
every operation on point clouds should be permutation invariant (i.e., the permutation of input points
should not change the output of our network). [Therefore, we design an algorithm based on discrete
laplacian and prove its permutation invariance property in § 4.4. ]Our weight function is designed
to be positive definite and symmetric for any choice of data coordinates.

4.2 [R1Q4,R3Q3-4:IMPLICIT SURFACES AND DISCRETE LAPLACIAN]

To encapsulate the local surface shape, each point vi is projected onto a higher dimensional space
using MLPs, and the implicit surface is defined on the latent space z as shown on the top of Figure 2.
Specifically, for one layer MLP, the representation is zi = relu(−→w ·

−→
δi + b), where −→w and b are

learnable parameters in our network. To calculate the δ− coordinates of a point vi and the closed
simple surface curve around it, its immediate neighbors in the Euclidean space (i.e., N (vi)) is used
to evaluate Equation (5).

−−−−−→
δimplicit
i (vi) = Σj∈N(i)

ϕ(−→vi −−→vj )(−→vi −−→vj )

Σj∈N(i)
ϕ(−→vi −−→vj )

. (5)

In the latent space, the local surface shape is encoded as an implicit surface where N (zi) is evalu-
ated. The direction of the differential coordinate vector, also defined in Equation (5), approximates
the local normal direction. Following Taubin (1995), the discrete Laplacian of a point vi is given by
the weighted average over the neighborhood is represented as:

To compare the two δ− coordinate representations, we highlight the error in decibel (dB) between
the pressure fields reconstructed from groundtruth spherical harmonics term and the predicted ones
using different neural networks in Table 2. We observe that δimplicit− coordinates result in smaller
errors. This indicates that our formulation provides a better approximation of ASFs.

4.3 [R1Q6-7, R3Q3-4: NEURAL NETWORK DESIGN]

Our neural network takes the point cloud as anN×3 input whereN represents the number of points
in the point cloud. The output is the spherical harmonic coefficients cml ,−l ≤ m ≤ l, 0 ≤ l ≤ 3,
resulting a vector of length 16. The network is illustrated in Figure 2.

[ For each point vi in the N × 3 point cloud, the discrete laplacian is evaluated on its immediate
neighbors N (vi) according to Equation (5). Then one layer of CNN and three layers of MLP are
used to encode the piecewise-smooth local shape around vi into a latent space Z ⊂ R128. For each
zi ∈ Z , the discrete laplacian Equation (5) is further evaluated where N (vi) (i.e. neighbors of vi
in the Euclidean space R3) and N (zi) (i.e. neighbors of zi in the latent space Z128) scales the δ−
coordinatesR128, respectively, yielding a 2K × 128 matrix. The final representation of vi is shown
below: ]

feature(vi) =

(
zTi ,

ϕ(−→vi −−→v1)(−→zi −−→z1)

Σj∈N (vi)ϕ(−→vi −−→vj )

T

, . . . ,
ϕ(−→vi −−→vK)(−→zi −−→zK)

Σj∈N (vi)ϕ(−→vi −−→vj )

T

,

ϕ(−→zi −−→z1)(−→zi −−→z1)

Σj∈N (zi)ϕ(−→zi −−→zj )

T

, . . . ,
ϕ(−→zi −−→zK)(−→zi −−→zK)

Σj∈N (zi)ϕ(−→zi −−→zj )

T)
,

(6)

where K = 5 is the number of the nearest neighbors and 128 is the dimension of the latent space.
Now we have the piecewise approximation of the local shape around vi as described in Equation 6,
which is composed of the center point zi ∈ R128 and the 2K × 128 weighted discrete laplacian
matrix. The vectors are concatenated and convolved with kernels of size [1, (1 + 2K)], followed by
two layers MLP and four fully connected layers with tanh activation functions since the value of
cml ranges from [−1, 1]. The output of the network is the spherical harmonics coefficients cml and
the loss function is the L2− norm of the difference between the predicted cml and the ground truth
calculated using FastBEM Acoustics solver 1.

1https://www.fastbem.com/
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Figure 2: Network architecture: The input of our neural network is a N × 3 point cloud (N = 1024) and the
output of our network is the spherical harmonic coefficients as a vector of length 16 (up to 3rd order spherical
harmonics). [R1Q6-7, R3Q3-4 : We encode the piecewise smooth local shape around every point in the point
cloud, forming a high dimensional latent space in R128. The δ− coordinates where neighbors are found in
the Euclidean space and the latent space are concatenated to represent the per-point feature. We leverage the
geometric details by several Conv2D and MLP layers and output 16 spherical harmonics coefficients cml .]

4.4 [R1Q2-5, R2: DISCRETE LAPLACIAN AND PERMUTATION INVARIANCE]

In this section we provide the proof of the permutation invariant property of the RBF-weighted
discrete Laplacian Equation (6). We only discuss the function composed of vectors in the high
dimensional latent space projected by the implicit surface encoder shown on the top of Figure 2.

Let fi(v1, . . . , vN ) = Σj∈N(vi)ψ(vi − vj), where ψ is a continuous function composed of MLP
layers. According to Kolmogorov–Arnold representation theorem (or superposition theorem) and
its relationship to multi-layer neural networks (Kůrková, 1992), which states that every multivariate
continuous function can be represented as a superposition of continuous functions of one variable,
fi(v1, · · · , vN ) can rewritten as: Φ

(
ΣN

j=1Ψ(vj)
)
, where Ψ : R3 → R2N+1 and Φ : R2N+1 → R3.

In this paper, we do not project v ontoR2N+1; instead, we encode the v as z ∈ R128. First of all, we
show that fi can be regarded as a sum-of-power mapping defined by the coordinate functions. Sec-
ond, we show that such mapping is injective and has continuous inverse mapping. The domain of
fi is a compact set, and thereby the image of fi is a compact set as well. Thus fi is homeomorphism
between its domain and its image. Further, we demonstrate that fi is a permutation invariant
continuous function since it can be considered as compositions of sum-of-power mappings.

Consider Ψ(v) := [1, v, v2, · · · , vM ],Ψ : R3 → RM+1, where M is the dimension of our implicit
surface encoder space. Let E(v) = ΣM

j=1Ψ(vj)

E(v) =
[
M,

M∑
m=1

vm,

M∑
m=1

v2m, · · · ,
M∑

m=1

vMm
]

=
[
M,p1(v1, v2, · · · , vM ), p2(v1, v2, · · · , vM ), · · · , pM (v1, v2, · · · , vM )

]
,

=
[
E0(v1, v2, · · · , vM ), E1(v1, v2, · · · , vM ), E2(v1, v2, · · · , vM ), · · · , EM (v1, v2, · · · , vM )

]
,

(7)

where p is the power-sums (defined in Equation (12), Appendix A) and we can observe that p is
symmetric (i.e., does not change if we permute v1, · · · , vM ) and homogeneous of degree M . Eq is
defined in Lemma 4.1 (Appendix A). According to Lemma 4.1, each element in E(v) is injective.
Then by Lemma A.2, E(v) has inverse continuous mapping. Therefore, E is homeomorphism be-
tween R3 and RM+1. Since Φ is the composition of several continuous functions ψ, the continuity
of Φ holds as well.

Lemma 4.1. Let X = {(x1, · · · , xM ) ∈ [0, 1]M : x1 ≤ x2 ≤ · · · ≤ xM}. The sum-of-power
mapping E : X → RM+1 defined by the coordinate functions :Eq(X) :=

∑M
m=1(xm)q, q =

0, · · · ,M is injective.

6



Under review as a conference paper at ICLR 2021

The proof of the lemma is in Appendix A. We can conclude that there are Φ and Ψ such that fi is
permutation invariant as long as Ψ and Φ are continuous functions. To compute the acoustic scatter-
ing functions, we further introduce the De Finetti Theorem and exhibit the connection between our
design of Discrete Laplacian based implicit surface functions and pressure field approximation.

4.5 DE FINETTI THEOREM AND IMPLICIT SURFACE FUNCTIONS

Our idea is to approximate the pressure field defined by a set of points. And we borrow power from
the following theorem (Heath & Sudderth, 1976):
Theorem 4.2 (De Finetti Theorem). A sequence (x1, x2, . . . , xn) is infinitely exchangeable iff

p(x1, . . . , xn) =

∫ n∏
i=1

p(xi|θ)P (dθ), (8)

for some measure P on θ.

Thanks to the continuity nature of neural networks, we replace P (dθ) in Theorem (8) with a more
general form P (θ)dθ since we assume that the underlying latent layer is absolute continuous ac-
cording to Radon–Nikodym theorem (i.e., the distribution on θ has density. [R1Q5: Note that some
singular measures such as Dirac delta does not have density (Radon–Nikodym derivative). For ex-
ample, each Radon measure (including Lebesgue measure , Haar measure, Dirac measure) can be
decomposed into one absolutely continuous measure and one mutually singular measure.]). Then
we derive that the acoustic scattering function of a given set of points X = {x1, x2, ..., xn} and the
underlying latent space Z can be formulated in the form:

fscatter(X ) =

∫
dz

∫ n∏
i=1

p(xi|θ)P (θ|z)dθ. (9)

[Since our latent space vector z can be regarded as compositions of sum-of-power mappings (Equa-
tion (12), Appendix A), the output pressure field of our network is permutation invariant.]

5 EVALUATION

5.1 DATA GENERATION AND TRAINING

We need a sufficiently large dataset for training and evaluating our method. We sample 100,000 3D
objects from the ABC Dataset (Koch et al., 2019). All mesh files are pre-processed to be randomly
rotated, scaled between 1 ∼ 2m and centered. The FastBEM Acoustics 2 is used to generate accurate
acoustic scattering fields. Specifically, we simulate a plane wave travelling to the −x axis direction,
and all objects are assumed to have a zero Neumann boundary condition to solve Equation (2).
While other boundary conditions are possible, we do not extensively study this variable in this work.
After the acoustic scattering field has been solved at frequencies bands of {125, 250, 500, 1000}Hz,
we use the pyshtools 3 package (Wieczorek & Meschede, 2018) to project the directional field to
spherical harmonic coefficients cml . By using a maximum order of L = 3, we are able to maintain
a relative projection error below 2%. The original object meshes are also converted to point clouds
using furthest sampling for 1024 points. The data generation pipeline takes about 12 days using a
desktop with 32 Intel(R) Xeon(R) Gold 5218 CPUs.

We split our dataset into training, validation and test set following a 8 : 1 : 1 ratio. Our neural
network is trained on a NVIDIA GeForce RTX 2080 Ti GPU and takes less than 1ms per object
for inference. The Adam algorithm is used in optimizer and it decays exponentially with decay rate
and decay step equal to 0.9 and 10× #training examples, respectively. Our code and data will be
released upon publication.

5.2 RESULTS AND COMPARISONS

We evaluate our network performance on unseen objects from the ABC dataset, perform ablation
study on RBF-weighted δ− coordinates and implicit surface encoders, and show that our network

2https://www.fastbem.com/
3https://shtools.oca.eu/shtools/public/index.html
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is robust to Gaussian noise (∼ N(0, 0.05)). We compare our results with PointNet (Charles et al.,
2017) and DGCNN (Wang et al., 2019) in Table 2 and Table 3. We justify the design of our network
with this ablation study, including the use of δ− coordinates, RBF-weighted function as well as the
implicit surface encoder, as highlighted in Figure 2. We use PointNet, where only per-point MLP
layers are applied on each point in the point cloud, and DGCNN, which dynamically build graphs
according to K nearest neighbors, as the baseline. RBF-weighted δ− coordinates (as described in
Equation (5)), uniformly weighted δ− coordinates (described in Equation (4)), and implicit surface
encoder shown at the top of Figure 2 are considered as subjects of ablation studies. We observe that
our fine-grained geometric feature representation in Equation (6) results in larger reduction in dB
error. Moreover, our discrete Laplacian based representation is more robust to the Gaussian noise in
the test set compared to DGCNN.

Figure 3: ASF prediction and groundtruth comparison: We expand the predicted spherical harmonics co-
efficients onto a latitude-longitude (lat-long) map, representing the directional distribution of the scattering
field. We randomly choose 6 point clouds from the test dataset, which have not been seen during training.
Each point cloud is visualized from two viewing angles, followed by their groundtruth/target, predicted, and
error/difference lat-long maps in four frequency bands. We see a good match between our predicted fields and
the groundtruth fields.

5.3 APPLICATION IN INTERACTIVE SOUND RENDERING

[R1Q1: Our geometric deep learning scheme facilitates a wide range of applications related to
wave acoustics simulation. Pre-computed acoustic transfer (James et al., 2006; Wang & James,
2019), wave acoustics perceptual encoding (Raghuvanshi et al., 2016) and wave-ray sound propaga-
tion (Yeh et al., 2013), which heavily rely on extensive simulation using accurate wave solvers, can
all benefit from our efficient learning-based approach. Our method utilizes the connection between
an object’s shape and its scattering property to remove the pre-computation overhead in existing
wave acoustics rendering methods. Our additional spherical harmonics encoding makes it suitable
to be integrated into most wave-ray hybrid sound rendering engines.

To illustrate one such application, we integrate our predicted ASFs into a state-of-the-art ray-tracing
based acoustic simulator (Schissler & Manocha, 2017). The ray-tracing based simulator assumes
all sound waves travel as rays. This works well for high-frequency sounds but do not hold for low-

8



Under review as a conference paper at ICLR 2021

Table 2: Ablation study: In this evaluation, we compare the performance on uniform δ− coordinate in Eq. (4),
weighted δ− coordinates in Eq. (5) and implicit surface estimation in Eq. (6) on our test dataset (including
10k objects) at frequency bands {125Hz, 250Hz, 500Hz, 1000Hz}. The best result for each frequency is
highlighted in bold (lower error is better). We alter between choosing Eq. (4) and Eq. (5) that results in four
different combinations: Row 1 and 2, 3 and 4. Next, we experiment the use of implicit surface encoder (Row 3
and 4). Our proposed network design (Row 4) shows superior performance in terms of ASF approximation for
all four frequencies. A lower value indicates a better result.

Methods Error in dB #Params Inference Time
{RBF-weighted δ-coord — implicit surface} 125Hz 250Hz 500Hz 1000Hz sec. per 10000frames

{7— 7} 3.49 3.56 3.71 4.23 30k x
{X— 7} 3.38 3.41 3.57 4.47 30k x
{7— X} 3.28 3.38 3.52 3.85 30k x

{X— X} (ours) 2.98 3.06 3.22 3.76 34k 47.10
PointNet (Charles et al., 2017) 3.66 3.44 3.43 4.16 80k 8.95
DGCNN (Wang et al., 2019) 3.71 3.56 3.59 4.21 103k 26.80

Table 3: Robustness test: In this robustness test, we add i.i.d. noise to every point in the point cloud, which
followsN(0, 0.05), to the test set. Note that DGCNN findsK− neighbors at each iteration as we did. However,
our algorithm is more robust to the noisy data input thanks to the design of the shape Laplacian based point
representation.

Methods Error in dB
125Hz 250Hz 500Hz 1000Hz

PointNet 5.88 5.50 6.02 8.37
DGCNN 7.91 6.65 7.31 11.32

Ours 5.20 5.09 4.70 5.51

frequency sounds. Instead, our goal is to use our wave-based simulator to better capture the sound
propagation effects corresponding to low frequency sounds in dynamic scenes. Therefore, we have
simulated wave acoustics up to 1000Hz to compensate the low-frequency effects like sound diffrac-
tion using our learning method and compute the acoustic scattering functions of each object in the
scene. This choice of the simulation frequency of 1000Hz is similar to Mehra et al. (2013), Raghu-
vanshi & Snyder (2018), Rungta et al. (2018) and Morales et al. (2019), as they can provide plausible
effects for games, virtual reality, and computer-aided design applications.

The specific wave-ray coupling scheme we use resembles Rungta et al. (2018) but can be switched
to other compatible rendering engines. We use our trained network at runtime to predict ASFs of
static and dynamic objects, and evaluate the spherical harmonic expansion in Equation (3). Then the
sound is rendered at given listener locations. A summary of details is also provided in Appendix B.
We demonstrate the final audio-visual rendering in our supplemental video. ]

6 CONCLUSION AND LIMITATIONS

We present a novel geometric deep learning approach that infers the 3D acoustic scattering field
induced by an object from its shape. Our algorithm uses discrete-laplacian based implicit function
encoders to better capture the geometric properties of an object and achieves lower error compared
with existing general point-based frameworks. Our shape and sound field representation are well-
suited for applications that require real-time wave acoustics characteristics.

Currently we study the case of sound-hard surfaces and a limited range of simulation frequencies,
but these are not an inherent limitation of our method. The simulation time needed to create a
large training set can grow as a cubic function of the sound frequency. Incorporating more types of
sound surfaces can further increase the training overhead of all geometric deep learning methods,
including ours. In the future, we propose to extend these methods to real-world objects and use them
for localization and non-line-of-sight computations.
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and perceptual assessment of the scattered sound field in a simulated concert hall. The Journal of
the Acoustical Society of America, 138(3):1485–1497, 2015.

Vishwanath A. Sindagi, Yin Zhou, and Oncel Tuzel. Mvx-net: Multimodal voxelnet for 3d object de-
tection. 2019 International Conference on Robotics and Automation (ICRA), May 2019. doi: 10.
1109/icra.2019.8794195. URL http://dx.doi.org/10.1109/ICRA.2019.8794195.

Dmitriy Smirnov, Matthew Fisher, Vladimir G. Kim, Richard Zhang, and Justin Solomon. Deep
parametric shape predictions using distance fields, 2019.

Olga Sorkine. Differential representations for mesh processing. In Computer Graphics Forum,
volume 25, pp. 789–807. Wiley Online Library, 2006.

Auston Sterling, Justin Wilson, Sam Lowe, and Ming C Lin. Isnn: Impact sound neural network
for audio-visual object classification. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 555–572, 2018.

Qingyang Tan, Lin Gao, Yu-Kun Lai, Jie Yang, and Shihong Xia. Mesh-based autoencoders for
localized deformation component analysis. In Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.

Zhenyu Tang, Nicholas J Bryan, Dingzeyu Li, Timothy R Langlois, and Dinesh Manocha. Scene-
aware audio rendering via deep acoustic analysis. IEEE Transactions on Visualization and Com-
puter Graphics, 2020.

Gabriel Taubin. A signal processing approach to fair surface design. In Proceedings of the 22nd
annual conference on Computer graphics and interactive techniques, pp. 351–358. ACM, 1995.

Lonny L Thompson. A review of finite-element methods for time-harmonic acoustics. The Journal
of the Acoustical Society of America, 119(3):1315–1330, 2006.

Dimitrios Tsokaktsidis, Timo Von Wysocki, Frank Gauterin, and Steffen Marburg. Artificial neural
network predicts noise transfer as a function of excitation and geometry. In Proc. International
Congress on Acoustics (ICA), pp. 4392–4396, 2019.

Jui-Hsien Wang and Doug L James. Kleinpat: optimal mode conflation for time-domain precompu-
tation of acoustic transfer. ACM Trans. Graph., 38(4):122–1, 2019.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics,
38(5):1–12, Oct 2019. ISSN 0730-0301. doi: 10.1145/3326362. URL http://dx.doi.
org/10.1145/3326362.

12

http://doi.acm.org/10.1145/2601097.2601184
http://dx.doi.org/10.1109/ICRA.2019.8794195
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1145/3326362


Under review as a conference paper at ICLR 2021

Mark A Wieczorek and Matthias Meschede. Shtools: Tools for working with spherical harmonics.
Geochemistry, Geophysics, Geosystems, 19(8):2574–2592, 2018.

Luiz C Wrobel and AJ Kassab. Boundary element method, volume 1: Applications in thermo-fluids
and acoustics. Appl. Mech. Rev., 56(2):B17–B17, 2003.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. Disn: Deep
implicit surface network for high-quality single-view 3d reconstruction. In Advances in Neural
Information Processing Systems, pp. 490–500, 2019.

Hengchin Yeh, Ravish Mehra, Zhimin Ren, Lakulish Antani, Dinesh Manocha, and Ming Lin.
Wave-ray coupling for interactive sound propagation in large complex scenes. ACM Transac-
tions on Graphics (TOG), 32(6):1–11, 2013.

Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Syncspeccnn: Synchronized spectral cnn for
3d shape segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2282–2290, 2017.

Zhoutong Zhang, Jiajun Wu, Qiujia Li, Zhengjia Huang, James Traer, Josh H McDermott, Joshua B
Tenenbaum, and William T Freeman. Generative modeling of audible shapes for object percep-
tion. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1251–1260,
2017.

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 2018. doi: 10.
1109/cvpr.2018.00472. URL http://dx.doi.org/10.1109/CVPR.2018.00472.
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Appendices
A PERMUTATION INVARIANCE

In this section we provide the proof of permutation invariant property of the RBF-weighted discrete
Laplacian Equation (6) thanks to Newton’s identity. First of all, Sec. A.1 serves as a recap of
Newton’s identity, which is applied in the proof of Lemma 4.1. Lemma A.2 shows that the sum-
of-power mapping defined in Lemma 4.1 has continuous inverse mapping. Both of the lemmas
provide the background for the permutation invariance of our Discrete Laplacian in Equation (6).
Furthermore, we demonstrate with the De Finetti Theorem that the acoustic scattering functions can
be approximated using the underlying latent space.

A.1 NEWTON’S IDENTITIES

Newton’s identities formulas, also known as theory of equations, build bridge between elementary
symmetric polynomials and power sums. Consider a polynomial f of degree n with roots x1, · · · , xn.
Assume that s0 = 1, f is monic.

f(x) = s0x
n + · · ·+ sn−1x+ sn

=

n∏
i=1

(x− xi)

sr = (−1)r
∑

j1<···<jr

xj1 · · ·xjr

s′r = sr · (−1)r

(10)

Note that sr and s′r are symmetric (i.e. does not change if we permute x1, · · · , xn) and homoge-
neous of degree r.

These s′r polynomials, often called elementary symmetric polynomials, form a bases for all sym-
metric polynomials.

For example,

s1 = (−1) ∗
(
x1 + · · ·+ xn

)
s2 = x1x2 + x1x3 + x1x4 + · · ·
s3 = (−1) ∗

(
x1x2x3 + x1x2x4 + x1x2x5 + · · ·

)
...

sn = (−1)n ∗
(
x1x2x3 · · ·xn

)
(11)

Another family of symmetric polynomials are power sums, which form a basis for the space of all
symmetric polynomials:

pr(x1, · · · , xn) = xr1 + · · ·+ xrn (12)

The transition formulas between power sums and elementary symmetric polynomials are called
Newton’s identities.

Lemma 4.1 Let X = {(x1, · · · , xM ) ∈ [0, 1]M : x1 ≤ x2 ≤ · · · ≤ xM}. The sum-of-power
mapping E : X→ RM+1 defined by the coordinate functions :

Eq(X) :=

M∑
m=1

(xm)q, q = 0, · · · ,M (13)

is injective.
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Proof: For some u, v ∈ X, E(u) = E(v), show u = v.

Let u, v be the roots of polynomial of degree M , we have:

fu(x) =

M∏
m=1

(x− um)

= xM + a1x
M−1 + · · ·+ aM−1x+ aM

fv(x) =

M∏
m=1

(x− vm)

= xM + b1x
M−1 + · · ·+ bM−1x+ bM

(14)

a, b are elementary symmetric polynomials as described in Equation (10). Elementary polynomi-
als(i.e. a, b) can be expressed by power sums.

aM =
1

M !

∣∣∣∣∣∣∣
E1(u) 1 0 0 · · · 0
E2(u) E1(u) 2 0 · · · 0

EM−1(u) EM−2(u) EM−3(u) EM−4(u) · · · M − 1
EM (u) EM−1(u) EM−2(u) EM−3(u) · · · E1(u)

∣∣∣∣∣∣∣
bM =

1

M !

∣∣∣∣∣∣∣
E1(v) 1 0 0 · · · 0
E2(v) E1(v) 2 0 · · · 0

EM−1(v) EM−2(v) EM−3(v) EM−4(v) · · · M − 1
EM (v) EM−1(v) EM−2(v) EM−3(v) · · · E1(v)

∣∣∣∣∣∣∣
(15)

E(u) = E(v) implies that a = b, and therefore u = v.
Theorem A.1. The function f : CM → CM , f(c) = xM + c1x

M−1 + · · · + (−1)M−1cM−1x +
(−1)McM , c ∈ CM , is homeomorphism (Ćurgus & Mascioni, 2006).
Lemma A.2. The sum-of-power mapping defined in Lemma 4.1 has continuous inverse mapping.

The domain of E is a compact set, and E is a continuous function. Therefore, the image of E is a
compact set. From Lemma 4.1, a is a continuous function of the power sums E.

Goal: Show continuity of inverse mapping of E.

Proof: From Theorem A.1, the continuity of roots u depends on the coefficients a. W.L.G, show
continuity from a to u. Due to the nature of homeomorphism, the mapping from u to a as well as
its inverse mapping from a to u are both continuous.

B HYBRID WAVE-RAY SOUND RENDERING

Figure 4: Pure geometric ray-tracing (left) vs hybrid wave-ray coupling (right).

Conventional ray-tracing algorithm finds many ray paths from a sound source to a receiver/listener,
and a time delay and energy damping is calculated according to the path length and the order of
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reflections of each path. These information can be used to compose an acoustic impulse response
for sound rendering in real-time (Kuttruff, 1993).

The core of the ray-tracing process is to sample a large number of reflection directions and their
corresponding energy when a ray hits a surface. A pure geometric sound propagation system as-
sumes specular and diffuse reflections (Figure 4 left). In this setup, the reflected rays can only be in
directions which have a positive dot product with the normal direction of the hitting point. There-
fore, it is impossible for rays to “bypass” an obstacle, while for wave acoustics, such a phenomenon
(diffraction) always happens. As an alternative, the acoustic scattering field (ASF) we computed can
be used to model diffraction effects. Specifically, when an incoming ray hits a sound scatterer, we
sample outgoing directions among all directions, and calculate the energy decay by evaluating the
ASF at each direction (θi, φi) for frequency ω (Figure 4 right). This hybrid wave-ray propagation
formulation is general enough to be used with most sound propagation engines.

(a) Floor: One static sound
scatterer in open space.
10.65ms/frame.

(b) Havana: Two moving
walls in half-open space.
6.78ms/frame.

(c) Trinity: Six flying ob-
jects in a large indoor
room. 12.95ms/frame.

(d) Sibenik: Two dis-
joint revolving objects in a
church. 6.87ms/frame.

Figure 5: Benchmark scenes used for audio-visual rendering in our supplemental video. These are dynamic
scences where objects come in close proximity and change topologies. Our learning methods can compute
accurate scattering fields for such real-time applications.

We also test sound rendering on four benchmark scenes of different complexity in Figure 5 to per-
ceptually show the smooth and realistic sound rendering results of our method.
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