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Abstract

Various forms of sparse attention have been explored to mitigate the quadratic
computational and memory cost of the attention mechanism in transformers. We
study sparse transformers not through a lens of efficiency but rather in terms of
learnability and generalization. Empirically studying a range of attention mecha-
nisms, we find that input-dependent sparse attention models appear to converge
faster and generalize better than standard attention models, while input-agnostic
sparse attention models show no such benefits — a phenomenon that is robust across
architectural and optimization hyperparameter choices. This can be interpreted as
demonstrating that concentrating a model’s “semantic focus” with respect to the
tokens currently being considered (in the form of input-dependent sparse attention)
accelerates learning. We develop a theoretical characterization of the conditions
that explain this behavior. We establish a connection between the stability of
the standard softmax and the loss function’s Lipschitz properties, then show how
sparsity affects the stability of the softmax and the subsequent convergence and
generalization guarantees resulting from the attention mechanism. This allows us
to theoretically establish that input-agnostic sparse attention does not provide any
benefits. We also characterize conditions when semantic focus (input-dependent
sparse attention) can provide improved guarantees, and we validate that these
conditions are in fact met in our empirical evaluations.

1 Introduction

Transformers [1] are expressive set encoders, which when paired with positional encodings, can serve
as sequence encoders. The attention mechanism in a transformer block allows us to model the long and
short term dependencies in a sequence in an input-dependent manner instead of relying on handcrafted
dependency modeling as in recurrent (uni-directional and bi-directional) and convolutional models.
The single hidden layer multi-layered perceptron (or MLP) in the transformer block introduces non-
linearities enabling further expressivity. Transformers have been extremely successful in modeling
natural language, and are the core blocks of various large language models or LLMs. They have also
been successful in vision, tabular data, and time series among various other applications.

The expressivity of attention-based transformers [2] comes with a computational overhead where the
attention mechanism requires time and memory quadratic in the sequence length. To address this,
various efficient transformers have been developed [3], utilizing various techniques such as fixed
sparse attention patterns, low rank approximations of the attention matrix, and input-dependent sparse
attention patterns. In this work, we focus on sparse attention mechanisms, both input-dependent and
input-agnostic. Existing literature has studied sparse attention as a way to speed up the forward pass
(inference), which in turn can speed up each training step [4]. However, sparse attention has always
been viewed as an approximation of the gold standard full attention.

Contributions. One can view sparse attention as a form of sensory gating, and this is considered
an essential component of biological cognitive systems, allowing rapid learning [5, 6], and the
absence of it is often considered a marker for schizophrenia [7]. The gating is often achieved via
inhibitory signals. Related observations made by Bengio [8] suggest some motivations. He makes
a connection between a form of input-dependent sparse attention and the global workspace theory
of consciousness in cognitive science, as well as the properties of natural language sentences and
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symbolic Al representations used in planning and reasoning [9], “stipulating that elements of a
conscious thought are selected through an attention mechanism (such as the content-based attention
mechanism we introduced in Bahdanau et al. [ 10]) and then broadcast to the rest of the brain, strongly
influencing downstream perception and action as well as the content of the next conscious thought”.
As the “elements” or weight vectors being attended to are often discussed as semantic concepts, one
can refer to the same phenomenon as “semantic focus” and explore its possible benefit to learning
efficacy. Motivated by this, we consider the following question in this paper: “Can sparse attention in
transformers be beneficial in terms of learning convergence and generalization, in comparison to full
attention?”. To this end, we share the following findings:

* (§3) Focusing on benchmarks of structured languages designed to evaluate capabilities of transform-
ers [4, 11], and controlling for all involved hyperparameters, we make two empirical observations:
— Sparse attention with input-agnostic sparsity patterns empirically struggles with expressivity (as

implied by Yun et al. [2, 12]), and does not show benefits in terms of learning convergence and
generalization even when equipped with enough expressivity (via global tokens [13, 14]).

— Sparse attention with a specific form of input-dependent sparsity pattern that limits the attention
to the top attention scores — the heavy-hitters (such as top-k attention [15, 16]) — are empirically
as expressive as the standard full attention, and can converge significantly faster during training,
while generalizing as well as, and at times better than, the full attention model. These improve-
ments hold across various hyperparameters, both related to the architecture (such as the number
of heads per transformer block, the number of transformer blocks, the MLP activation function),
and the optimizer (such as the initial learning rate, and the learning rate decay).

* (§4) We then try to theoretically understand why this might be happening, and characterize
conditions under which sparse attention can provide better learning convergence and generalization
guarantees. Our analysis is based on two critical insights:

— For any A-Lipschitz learning objective (with respect to the learnable parameters), the convergence
rate and algorithmic stability [17] of (stochastic) gradient-descent based algorithms are dependent
on Lipschitz constant A, with smaller values implying better convergence and stability guarantees;
better stability implies better generalization [18]. We show that the Lipschitz constant of a
transformer-based model is tied to the input-stability of the softmax in the attention mechanism —
better input-stability implies better Lipschitz constant. Thus, we establish how the input-stability
of softmax directly affects the learning convergence and generalization.

— The sparsity pattern of the sparse attention affects the overall learning convergence and general-
ization through its effect on the input-stability of the softmax. The input-stability of the (sparse)
softmax is closely tied to the range or the semantic dispersion of the values (the query-key
dot-products) over which the softmax is applied (formally discussed in definition 2) — larger
dispersion implies worse input-stability. While input-agnostic sparsity patterns do not neces-
sarily improve the dispersion over the full-attention model, input-dependent sparsity that only
focuses on the heavy-hitters can significantly improve this dispersion, thus implying improved
input-stability. This effectively translates to an improved Lipschitz constant, thus convergence
and generalization guarantees. We also empirically validate that the dispersion and the estimated
Lipschitz constant of input-dependent sparse attention show improvements over full attention.

Related Work. Transformers have been studied from various aspects since their conception. Various
sparse attention transformers have been developed to improve their computational complexity [3, 19]
with both input-agnostic sparsity [20-23, 14, 13] and input-dependent ones that focus the attention
on the keys with the highest dot-product scores — the heavy hitters — while explicitly ignoring the
rest [15, 24, 25, 16]. Various benchmarks empirically study the efficiency [4] and capabilities [11, 26,
27] of transformers. These capabilities are also theoretically characterized under various computation
models [28, 29]. Please see a more detailed literature survey around transformers in appendix C.

2 Problem Setup

In this section, we detail the problem setup, introducing the notation, and presenting the details of the
transformer-based model, the training data and the learning loss.

Notation. We denote the index set as [n] £ {1,...,n} for any natural number n € N. We use
X for input sequences of token indices v € [D] in a vocabulary V of size D, and y for labels or
targets. We use x € R? for a token embedding vector and X € R%*% for the sequence (matrix)
of L token embeddings. For any vector v, we use v; to denote its i-th entry, and ||v|| to denote



its Euclidean norm. For a matrix W, we denote its (, j)-th entry as Wij, i-th column as W ; and
i-th row as W;.. We use ||W]|| and ||[W||2 1 to denote the spectral and ¢ ; norms of W. For a
tuple § = (W), W) of n matrices, we let ||0]| = MaX;e|n] |[W ) ||. We consider a learning
problem with input sequences X = [v1,...,vz] € [D]” of length exactly L with its i-th entry
v; denoting the v;-th token in a vocabulary V, with outputs y € ). ! For a learnable function
f: X = Y with learnable parameters 6, we explicitly write the function as fp(X) with X € X.

Transformer block. For a L length sequence of token embeddings X € R?*F with the i-th token
embedding denoted as X.; € R?, let TF : R¥*X — R¥*L denote a transformer block with learnable
parameters § = (W, V, P, R) with W,V € R¥*4 P R € R™»xd defined as:

TFe(X) = LN(X +RT0(PX)), and X = LN(X + VXsoftmax(X'WX)), (1)
———

MLPp g (X) Aw,v(X)

where LN : R? — R? is the token-wise (columnwise) layer normalization (or LayerNorm), and
R "o(PX) denotes the token-wise single hidden layer MLP : R? — R<, The columnwise softmax(-)
of the dot-products D = X T WX between the query and key matrices, > combined with the value
matrix VX, denotes the dot-product self-attention A : R4*L — R4*L We consider single head
attention here for the ease of exposition, but our analysis can be easily extended to multi-headed
attention (see appendix F.4). While Vaswani et al. [1] utilized ReLU as the activation ¢ in the MLP,
subsequent works [30] have used other activations such as GELU [31] and ELU [32]. Furthermore,
many different variations of the transformer block has also been utilized in literature.

Masked softmax. A common modification of this transformer block is the replacement of the softmax
with a sparse masked softmax which has an associated masking function m : R/*L — {0, 1}ExE
with M = m(D) for a dot-product matrix D. The (j,7)-th entry A;; of the post-activation attention
matrix A = softmax(D) for standard and masked attention is given as follows:

Ay — LeXp(Dji) , Aji = LeXP(Dji) - Mji ' 2)
Zj’:l exp(Djri) Zj’:l exp(Djri) - M

Complete model. The model is defined as fo : [D]” — Y with token and position embed-
dings T € R¥*P and E € RY*L respectively, 7 transformer blocks each with parameters
0 = (WO v® PO RM) ¢ € [r], and a readout linear layer with weights & € RY *¢ us-
ing token projection vector w € R, where Y is the dimensionality of the output Y (for example, the
number of classes in output domain ))). The i-th token v; € [D] in the input X is initially embedded
as X:(ZQ) = T.,, + E.; using the token and position embeddings:

fo(X) = @(XDw), XM =TFyu (X), vt € [r]. 3)

Here w € R¥ is the (fixed) token projection vector — we can set the w = [0,0,...,0,1]T to select the
last token to make the final prediction, and w = (/L)1 uses the average of the L tokens (along the
sequence length dimension), where 1y, is the all-one L dimensional vector. The © in fg(-) denotes
the tuple of all the (learnable) model parameters, that is © £ (T,0() ... (") &). Here we are
assuming that the position encodings are not learned, but that can also be incorporated in our study.

Training. Given a set S of n sequence-output pairs (X, y), X € [D]",y € Y for training, and a

per-sample loss function £ : ) x Y — R, the learning involves solving the following empirical risk
minimization or ERM problem:

1
min LO)E = > Uy, fo(X)) (fol) defined in equation (3)).  (4)
O&(T,01,...,0(") @) " (X pes

In the sequel, we will study, first empirically and then theoretically, (i) the convergence rate of
stochastic gradient descent for this learning problem, and (ii) the generalization of the learned model.

'In our experiments, we consider supervised learning with ) as a set of labels, but our analysis applies to any
Y where we have a scalar loss £ : ) x )7 — R, where )> is the model output space: )A} c RV for multi-class
classification with cross-entropy loss, and Y = Y C R™ for m-output regression with mean-squared loss.

2With queries QX keys KX, the scores (QX) " (KX) = X" (Q"K)X; we denote W = QK .

3For example, instead of the transformer block described in equation (1), there are versions that modify the
location where the LayerNorm is applied: TFg(X) = X + MLPp r(LN(X)) and X = X + Aw v (LN(X)).
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We present our first set of experimental results in figure 1, comparing the overall learning convergence
and generalization of full attention based models to those using sparse attention. Here we use ReLU
for the MLP in the transformer block as in the original configuration [1]. These results are aggregated
over 10 repetitions, and we present the median performance and its inter-quartile range. We present
results for a single sparsity level (mask size) here; please see appendix E.1 for more variations.

Observation I. Input-dependent heavy-hitter sparse attention speeds up learning convergence
while input-agnostic sparse attention do not show any improvement over full attention.

The results in figure 1 (top row) show that the input-agnostic sparse attention often converges slower
than full attention. They also often struggle with expressivity in the absense of the global tokens,
as seen for both block local and banded attention with Even Pairs and Missing Duplicates. This is
expected as per the expressivity results of Yun et al. [12]. The inclusion of the global token addresses
this issue. In contrast, the training loss of top-k attention converges significantly faster than full
attention. Top-k attention shows improvements (in terms of achieving 95% training accuracy) over
full attention ranging between 1.37x (121 epochs vs 167 epochs) with ListOps to 8.83 x (6 epochs
vs 53 epochs) with Even Pairs (see table 4 in appendix E.1). In all cases, top-k attention is able to be
as expressive as full attention without the need for any global tokens. This consistent faster training
of top-k attention in terms of the number of optimization steps needed to converge is not something
discussed in existing literature to the best of our knowledge.

Observation II. Input-dependent heavy-hitter sparse attention generalizes faster during learning.

The results in figure | (bottom row) show that the input-dependent sparse attention achieves similar
(Even Pairs and Missing Duplicates) or better (ListOps) holdout accuracy when compared to full
attention. Furthermore, it attains this generalization level much earlier during the training process.
Note that input-dependent heavy-hitter top-k achieves better empirical generalization performance
both in terms of the highest holdout accuracy during the training trajectory, and the final holdout
accuracy. The latter highlights that the faster ERM convergence of input-dependent sparse attention
does not lead to overfitting. In fact, with the ListOps task, the final holdout accuracy with full
attention drops from around 35.1 + 0.6% to 28.9 & 1.4%, while the drop with top- attention is only
from 36.3 4= 0.3% to 31.3 & 0.9% (see table 3 in appendix E for complete results). In general, the
top-k attention based transformers also have comparitively lower variations in their performance as
evidenced by the fairly tight inter-quartile ranges of the trajectories of the loss and accuracy.
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We present the performances of
the different attention mecha-
nisms with the GELU activation [31] in figure 2 (top 2 rows) and with the Mish activation [33]
in figure 2 (bottom 2 rows), while keeping all other hyperparameters exactly the same as in figure 1
to ablate the effect of the change in the MLP activation. Comparing these results to figure 7, we
see that there is not a lot of qualitative difference in the performances both in terms of learning
convergence and generalization, indicating that the difference in performance is due to the difference
in the attention mechanism of the transformer block.

Observation I'V. The improvement of input-dependent heavy-hitter sparse attention over full
attention is not affected by the number of transformer blocks, and increases with the number of
heads in each transformer block.

We study the effect of varying the number of transformer blocks (figure 3a) and the number of attention
heads per transformer block (figure 3b). We have again fixed all other hyperparameters as in figure |
to ablate the effect of the considered architectural changes. Here we focus on learning convergence of
full and top-k attention (with & = 5) for ListOps. The results indicate: (i) Top-k attention continues
to converge faster than full attention across all number of blocks 7 tried (7 € {6, 10, 15,22}). The
relative performance is not affected by the number of blocks. (ii) Top-k attention continues to
converge faster than their full attention variants as the number of heads increase from 1 to 4 and 8.
The convergence of the full attention model slows down while the convergence of top-k attention
stays almost the same, thus increasing the relative improvement with the number of heads.

Observation V. The improvement of the input-dependent heavy-hitter sparse attention holds
across varying optimizer hyperparameters, especially for hyperparameters that have the most
promising convergence.

We present the effect of varying SGD parameters for full and top-k attention on ListOps. In figure 3c,
we fix the decay rate to 0.99 (as in figure 1) and vary the initial learning rate. Smaller initial learning
rates (0.66 and 1) have the best convergence for both full and top-% attention, with top-k converging
faster. For larger initial learning rates (1.5 and 2.25), convergence slows down for both, and the
difference between full and top-k attention is less pronounced, though top-k appears to be slightly
better, especially initially. In figure 3d, we fix the initial learning rate to 1.0, and vary the decay rate.
For slower decay rates (0.9999 and 0.999), the overall convergence for both methods slow down
though top-k continues to converge faster. For faster decay rate of 0.9, top-k initially appears to
outperform full attention with a big margin. However, both methods prematurely stall as the learning
rate becomes too small.
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Figure 3: Comparison of full and top-k attention training loss trajectories for varying hyperparameters,
both architectural (number of transformer blocks and attention heads), and optimization (initial
learning rate, learning rate decay, and optimizer) with the List Ops task.

Observation VI. The improvement of the input-dependent heavy-hitter sparse attention over
full-attention also holds for the Adam optimizer with varying learning rates, especially for
hyperparameters that have the most promising convergence.

While all our previous results use SGD, in figure 3e we evaluate whether the relative performances
translate to the more widely used Adam optimizer [34] on ListOps. We evaluate various learning
rates, and see that the learning rate that provided convergence for SGD (initial learning rate around
0.1-1.0) lead to divergence with Adam (see 4th column in figure 3e). With smaller learning rates, we
see that the improved convergence of the input-dependent heavy-hitter sparse attention persists.

4 Theoretical Understanding

The empirical observations in the previous section demonstrate that input-agnostic sparse attention
can struggle with expressivity, and does not show any consistent benefit over full attention. In contrast,
input-dependent heavy-hitter top-£ attention shows significant advantages. In this section, we want
to theoretically understand why this might be happening. We begin by considering the factors that
affect the convergence and generalization of SGD based training.

@)}



Standard SGD analysis show that, for a o1 -Lipschitz and as-smooth finite-sum (non-convex) ob-
jective, with learning rates 7; at the -th step, learning converges to a e-stationary point in 7' steps
where € ~ O(aza3 (X5 1)/(7" n:)). Different choices of ;,i € [T (such as 1/ or /+/i for
some constant 77 > 0) provide different convergence rates (such as O(1/log(T)) or O(1/v/T)). As
we control for the learning rate and its scheduling in our experiments, and ensure that all models
start learning from the same initial parameters, the main distinction between the different forms
of attention could be the Lipschitz constant ;; and the smoothness constant ais. Note that, with
non-smooth activation function like ReLU, we are effectively performing stochastic sub-gradient
descent, where the guarantees are much weaker but still depend on the Lipschitz constant.

Generalization error is the difference between empirical risk (on the training samples) and the true risk
(over the population). A low training error combined with a low generalization error implies strong
performance on unseen data. Utilizing the seminal work [17] on algorithmic stability, Hardt et al.
[18, Theorem 2.2] show that learning with a e-stable randomized algorithm guarantees an expected
generalization error of at most €. Furthermore, for o -Lipschitz and aa-smooth finite-sum nonconvex
objective, the T' step SGD algorithm with per-step learning rate 7; < 7/i is e-uniformly stable with
e ~ O ((na3)"/'*227(1 + 1/an)T*"/**+*27) [18, Theorem 3.12]. As before, the distinguishing
factors between our models pertinent to generalization are the Lipschitz and smoothness constants.

Based on this intuition, we will focus on the Lipschitz constant. First, we will try to characterize how
the behavior of the softmax — specifically the input stability of softmax — in the attention mechanism
of the transformer block affects the Lipschitz continuity of the overall learning objective.

Definition 1. A masked softmax is &-input-stable if ¥z, 7z € RY, ||softmax(z) — softmax(z)||; <
€|z — z||1. The attention A with parameters W, 'V is stable with respect to its input and parameters
ifvX, X € R W, W, V.,V € R4 with constants \x (€), \w (€) depending on &:

AW v(X) — Aw,v(X)[l2,1 < Ax(O)]IX — X]|2,1, (5)
1AW v (X) = Aw v(X)l2,0 < Aw (€)W — W], (6)

[Aw v (X) = Aw v (X)[[21 < Av [V = V. (7

We will precisely characterize the values of the constants in the above definition (£, Ax (§), Aw (£),
Ay ) for the different (masked) softmax and corresponding (masked) self-attention in the sequel.
However, we define them here to highlight how the stability of softmax affects the stability of the
self-attention A, and how this affects the Lipschitz continuity of the learning objective in equation (4)
with respect to the model parameters © = (T, 0", ..., 6(7) &®). For completeness, we first need to
establish the stability properties of the MLP component of a TF block (see proof in appendix F.1):
Lemma 1. Assuming that the MLP activation o is \,-Lipschitz with c(0) = 0, and the MLP
parameters have norms bounded by B > 0, that is |P|| < B and |R|| < B, the token-wise MLP
and LN operations are stable with respect to their input and model parameters as follows Vx,x' €
R, ||x|, [%]| < =, P, P € Rexd R, R € RMPX4, with 1jx = B2\, p = 1 = Ay BE:

IMLPp & (x) — MLPp r(%)]| < nx X — %], [MLPp r(x) ~ MLPp 5 (x)| < np||P — PJ,
IMLPp g (x) — MLPp g (x)|| < na|R ~ RIl, [LN(x) — LN(R)]| < Gunllx — . ®)
The Lipschitz continuity of the LayerNorm has been previously established in Kim et al. [35]. Given

this, we can establish the following results for a transformer block (see proof in appendix F.2):

Theorem 1. Given definition | and lemma 1, a transformer block TF with learnable parameters
0 = (W, V,P R)is \g(§)-stable with respect to its learnable parameters 0 with

Ao(€) = Cun (Gn (L +1x)(Aw (§) + Av) + L(np +1r)) , )

and TF is Ax (§)-stable with respect to its input X with A\x (€) = (Zy(1 +nx)(1 + Ax (£)), where
we explicitly note the dependence on the stability & of the (masked) softmax operation. Thus, for any
parameter tuples 6,0 and input X, X, we have

ITFo(X) = TFa(X)ll21 < X6(§)10 = 0], [TFo(X) = TFp(X)[l21 < Ax ()X = X]. (10)

Thus, we establish the following for our model with 7 transformer blocks (proof in appendix F.3):
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Figure 4: Semantic dispersion § (definition 2) and heavy-hitter (HH) attention semantic separation A
(definition 3): For a sequence of length L = 10, we demonstrate the concepts for query token X.¢. Let
Zj = X LWX. ; denote the j™ query-key dot-product. (a) Figure 4a shows that in full attention, the
z;s (M) can range between —'=2 and +1'=? (theorem 1), giving us a semantic dispersion §5 ~ 2I'=2,
In general, we cannot expect a tighter bound on J5. (b) Figure 4b shows the same example for an
input-agnostic banded masked attention, where the query token X. only attends to succeeding key
tokens X.g, X.7, X.s (M), while the rest are masked ((J). Here, the dispersion 6, ~ §, ~ 2I'Z2, no
better than full-attention. (c) Figure 4c shows the example with an input-agnostic causal banded
attention mask where token X.4 only attends to the preceding key tokens X5, X.4, X.3. Here, this
masked attention has a small dispersion §, < 2T'=2 better than that of full-attention §, ~ 2I'=2.
However, there is usually no way to ensure that a condition where §,. < §, will exist. (d) Figure 4d
shows the example with an input-dependent HH attention, where only the high values are unmasked,
and there is a significant semantic separation A, between the masked and unmasked dot-products.
Here, we can expect significantly smaller semantic dispersion &;, < 2I'=2 implying 6;, < .

Theorem 2. Assuming that the per-sample loss function € in (4) is a-Lipschitz and | ®| < 1 with
w = (/1)1 under the conditions of definition 1 and theorem 1, the learning objective L in (4) is
Az (€)-Lipschitz with respect to the learnable parameters © = (T,01) ... (") &), where

ael€) = (2 (@) (14 pns ). (an

and |L(©) — L(O)| < Az(6)|© — || for any set of model parameters ©, O.

This characterizes how the Lipschitz constant of the learning loss, and thus the convergence rate of
the SGD based ERM, is tied to the input-stability constant £ of the (masked) softmax. Thus, based
on theorem 1, the larger the values of Ay (£), Ax(£) and Ay in definition 1, the larger the Lipschitz
constant of the training loss. We will characterize these quantities in the sequel. To understand the
effect of sparsity on the stability of softmax, we begin with the stability of the standard full softmax
and the standard full attention in the following (see lemma 4 in appendix G.1):

Lemma 2 (adapted from Li et al. [36] Lemma B.1). For any z,z € R* with max; jer)(z; —2;) < 6,
and max; jc(r)(Z — Z;) < 0, for a positive constant 6 > 0, we have the following:

[|softmax(z)||ec < €°/L, ||softmax(z) — softmax(z)||; < (¢°/L)||z — z|;. (12)

A critical factor in the softmax stability is this quantity ¢ that is the upper bound on the difference
between the largest and smallest values over which the softmax is applied. In the context of dot-
product self-attention, it corresponds to the difference between the largest and smallest query-key
dot-products for any query. We term this as semantic dispersion, and define it precisely as follows:
Definition 2. For a (sparse) attention transformer block with L length input sequences X € R<L,
and a mask M € {0, 1Y% (input dependent or input agnostic), we define the per-query semantic
dispersion as a scalar § > 0 such that, for any query token X ;,i € [L] the maximum difference
between the largest and smallest unmasked query-key dot-products is bounded from above by o. That
is, for any input sequence of token representations X € R’ mask M € {0, 1}2*% and attention
parameters W € R4, for all query tokens i € [L], we have

5 > max (XITWX,; - XIWX,j). (13)
Jj' €[L):Mj;=M;s;=1 : :

We discuss this definition with examples in figure 4. We now establish the stability of standard
softmax and self-attention A by characterizing &, Ax (), A\w (§) in definition | in terms of the
semantic dispersion as follows (see theorem 7, appendix G.!1 for details):



Theorem 3 (partially adapted from [36] Lemma B.2). Assuming that the per-token Euclidean norms
are bounded as || X ;|| < ZVi € [L], and the parameter norms are bounded at |W| < T and
IVl <Y, and the per-query semantic dispersion is bounded by 55 > 0. Then the standard softmax
is &-stable with £, = % /L, and the standard attention is stable as in definition I with (i) Ax (&) =
EYL(2TE2 + 1) = 2 Y (2TE2 4 1), (ii) Aw (&) = &Y L?E3 = % YLE3, (iii) \y = LZ.

The semantic dispersion 05 plays a significant role in Ax (€5) and Ay (€ ), with larger values implies
higher per-transformer-block stability constants Ay(&s) and Ax (&) in theorem 1. As discussed in
figure 4a, we cannot expect this dispersion 4, to be significantly smaller than 2I'=2.

Next we study the stability of input-agnostic regular k-sparse attention transformers, where each query
attends to exactly k keys, and each key is attended to by exactly k queries. This form includes banded
attention [20], block-local attention [21] and strided attention [22, 23]; random attention [14] satisfies
this only in expectation. We establish its properties as follows (see theorem 8 in appendix G.2):

Theorem 4. Consider self-attention with a k-regular input-agnostic mask M. Assume that the
per-token Euclidean norms are bounded as || X ;|| < ZVi € [L], the parameter norms are bounded at
W] < T, ||V|| <7, and the per-query semantic dispersion is bounded by §,. Then the masked
softmax is &,.-stable with &, = e°" |k, and the attention is stable as in definition | with (i) Ax (&,) =
EYE(2IE2 + 1) = O Y (2T22 + 1), (ii) \w (&) = &, YLkE3 = " Y L=3, (iii) \y = LE.

This shows that this input-agnostic sparse attention provides guarantees very similar to full attention
except for the e’ term, implying significant improvement in stability only if the per-query semantic
dispersion §,. is sufficiently small relative to the full attention dispersion d5; see one such situation in
figure 4c. In general, the dispersion J,- would be small only if the per-query dot-products somehow
align with the sparsity patterns — with temporal locality based patterns (banded, block-local), the
dot-products for nearby keys (in terms of sequence position) would require to have a small dispersion;
with strided patterns, the dot-products for keys matching the stride regularity should span a small
range. These conditions are too restrictive, and thus, in general 6, £ §, ~ 2I'=2 (see figure 4b).

In input-dependent heavy-hitter sparse attention, for any query token ¢ € [L], we mask all but
the highest values of X | WX, and there is a significant gap between the unmasked dot-product
XIWX:]» for the unmasked keys j with M;; = 1, and the masked dot-product XIWX;j/ for
the masked keys j’, M;/; = 0. Unlike the regular k-sparse attention, here each query attends to k
keys, but each key can be attended to by anything between 0 and L queries, making the analysis of
input-agnostic regular sparse attention (theorem 4) inapplicable. To study these heavy-hitter sparse
attentions, we formalize a notion of semantic separation between the masked and unmasked keys:

Definition 3. For a sparse attention transformer block with L length input sequences X € R¥>E, and
an input-dependent heavy-hitter mask M € {0, 1}, we define the per-query semantic separation
as a scalar A > 0 such that, for any query token X.;,i € [L] the minimum difference between the a
pair of masked and unmasked query-key dot-products is bounded from below by A. That is, for all
query tokens i € [L], with unmasked key j and masked key j', we have

A< min (XIWX,; - X WX,;/). (14)
V4,4’ €[L): M =1,M/,=0 ’ ’

The notion of semantic separation is visualized in figure 4d. We present the stability of the heavy-hitter
attention in the following (see theorem 9 in appendix G.3):

Theorem 5. Consider the self-attention with a k-heavy-hitter input-dependent masking function m,
applied columnwise to the dot-product matrix to get a mask matrix M € {0, 1}1*L. Assuming the
following: (i) For any query-key pairs X, X € R™E and parameter W € RY¥9, the k-heavy-hitter
mask M = m(X T WX) (applied columnwise) has a minimum per-query semantic separation of Ap,
(ii) A maximum of Bk, B > 1 query tokens attend to a single key token, (iii) The per-token Euclidean
norms are bounded as || X.;|| < EVi € [L], and the parameter norms are bounded at |W| < T,
V| <7, and (iv) The per-query semantic dispersion is bounded by 6y, Then the masked softmax
is Ep-stable with &, = (eéh/k) (14 1/Ay), and the sparse attention is stable as in definition 1 with

(@) =Tk (2026 1)+ 5

M (&) = 26, YLEE? = 2 YLE3 (1 + 1/a,), Ay = LE.

— on =2
) =Y (B+2I2%(B+ 1)(1 4+ Yan)) , as)
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Figure 5: Top and middle rows: Loss surfaces of the models with
full attention (top row) and top-k attention (middle row) for the tasks
considered in figure 7 with the corresponding hyperparameters utilizing
the filter-normalized version of the loss landscape visualization. The
(0,0) grid point corresponds to the final trained model — the optimum.
Bottom row: Distribution of the estimated Lipschitz constants com-
puted in the random directions used to generate the loss landscapes. We
report the distributions on the vertical axis in terms of the 50-th (dot-
ted), 75-th (dash-dotted), 95-th (dashed) and 99-th (solid) percentiles
(lower is better). On the horizontal axis, we denote the distance of
the parameters from the optimum on the grid, and visualize how the
distributions vary with the distance.

We also utilize the loss surface to approximately estimate the Lipschitz constant across the loss
landscape (see details in appendix G.5). We plot the distribution of these estimates in the bottom
row of figure 5 for varying distance from the optimum. We see that near the optimum (the final
trained model), the distributions of these estimates are close for both the models. However, as
we move farther away from the trained model, the distributions change significantly, and top-k
attention provides a smaller Lipschitz constant estimate compared to full attention all percentiles of
the distribution. This indicates that, empirically, the loss for top-k attention has a more favorable
Lipschitz continuity compared to full attention, which in turn implies both faster convergence and
better generalization guarantees. Thus, our stability-based theoretical investigation in this section
appears to align with our empirical observations in section 3.

5 Conclusion

In this paper, we study the potential advantages and drawbacks of sparse attention over standard atten-
tion beyond the currently studied computational perspective. Our empirical findings, characterized by
our theory, show that (i) input-agnostic sparse attention can in general only provide computational ben-
efits, but (ii) input-dependent heavy-hitter sparse attention can provide significant improvements over
full attention in terms of learning convergence and generalization. We hope that this motivates further
use of heavy-hitter sparse attention at scale with transformer based models. We discuss the limitations
of our work in appendix A.
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Answer: [Yes]
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Justification: We will provide the code with necessary documentation to reproduce the
experimental results.
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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* At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
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. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details for the empirical evaluation are provided in appendix D. We will
also provide the code with necessary documentation to reproduce the experimental results.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the experiments are repeated 10 times, and we present all results with
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
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* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss the computational resources required in appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper studies properties of learning with transformers and the effect of
sparse attention both theoretically and empirically, and conforms with the NeurIPS Code of
Ethics.
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» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper studies properties of learning with transformers and the effect of
sparse attention. This has no direct societal impact.
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* The answer NA means that there is no societal impact of the work performed.
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or why the paper does not address societal impact.
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» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
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out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no risks of misuse as it focuses on empirical behaviour and
theoretical analyses.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of the original models were appropriately cited, and the libraries
used for the implementations briefly discussed in appendix D.

Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: The code used for the empirical evaluations will be provided with appropriate
documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research that requires IRB approvals or equivalents.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the Neur[PS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used nor were a core component of this paper.

Guidelines:
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* The answer NA means that the core method development in this research does not involve
LLM:s as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Discussion of Limitations

Our results imply that there is value in pursuing input-dependent sparse attention [25, 24, 15] in
real world LLMs given that they would be both computationally cheaper while having improved
generalization guarantees. However, we would like to list some limitations of our work:

ey

Our empirical results are limited to benchmarks developed to study transformers under a controlled
setup, and do not speak of their capabilities (in terms of improved training speed, equivalent
expressivity and improved generalization) in the wild as we are unable to perform such experiments
at scale. The potential advantages of this input-dependent sparse attention at scale remains an
open question, though our theoretical results and accompanying preliminary experiments provide a
strong motivation.

(2) We study transformers in a supervised learning setup with an encoder-only architecture, where

3

“

&)

the models are trained from scratch. We do not consider the effect of pretraining, which has been
shown to be quite useful with transformers [38], and we do not cover how our results would transfer
to a sequence-to-sequence learning setup with an encoder-decoder architecture (though the now
common decoder-only architecture can be easily analyzed in our framework).

In our empirical evaluations, we have considered a few representative input-dependent and input-
agnostic sparse attention to validate our theoretical results. However, there are various other sparse
attention mechanisms [3] that we have not considered in our empirical evaluations.

Our analyses establish upper bounds for the worst case performance (convergence rate or general-
ization error) for various forms of full and sparse attention, and we compare these upper bounds
in our discussion to understand relative behavior. We do support our discussion with empirical
evaluations. Furthermore, our study is focused on in-distribution generalization, and does not
consider the commonly studied problem of length generalization.

As with any theoretical analysis involving neural networks, we acknowledge that there might a gap
between the theoretical constants (such as Lipschitz constant or weight norm upper bounds) we
utilize and the practical estimates of those constants empirically seen with these models. However,
much of our analysis is adaptive in nature, where an improved value of such a constant can be
directly incorporated for improved guarantees.
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B Table of Symbols

Table 1: Problem and transformer model specific symbols discussed in section 2.

Symbol Meaning

Input string of token indices
Ground truth function

Output f(X)

Vocabulary

Number of tokens in the vocab
Sequence length

Sequence embeddings

Query-key projection matrix
Value projection matrix

MLP first layer weights

MLP second layer weights

Layer normalization

MLP activation

Mask matrix

Initial token embeddings
Positional embeddings

Token projection vector

Readout layer weights

t-th transformer block parameters
Full model parameters

Learned model with parameters ©
Number of unmasked keys per query in sparse attention
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Table 2: Analysis specific symbols discussed in the theoretical analysis in section 4.

Symbol  Meaning

13 (Sparse) softmax input stability

Ax (§) Input stability constant for self-attention

Aw (&) Stability constant w.r.t. to parameter W for self-attention

Av Stability constant w.r.t. parameter V for self-attention

Ao(€) Per-transformer-block parameter stability

Ax (€) Per-transformer-block input stability

Az(§) Learning objective Lipschitz constant

s Per-query maximum semantic dispersion for standard softmax attention

O Per-query maximum semantic dispersion for regular input-agnostic k-sparse attention
on Per-query maximum semantic dispersion for heavy-hitter k-sparse attention
Ay, Per-query minimum semantic separation for heavy-hitter k-sparse attention
Bk The maximum number of queries that attend to a specific key

I5) The “sink ratio”

= Per token embedding Euclidean norm upper bound

r Maximum spectral norm of the query-key projection matrix W
T Maximum spectral norm of the value projection matrix V

26



(a) Full (b) Banded (c) Strided (d) Block-local  (e) Banded+G (f) top-k

Figure 6: Visualizations of dot-product based attention scores matrices, which along with the value
matrix VX, gives us the attention-based token updates A(X) (see equation (1) in section 2). The
horizontal axis denotes keys and the vertical axis queries. The color intensities denote the value of
the attention scores (higher intensities denote higher scores), and the white entries in the matrices
corresponds to masked entries. Figure 6a depicts standard full attention score matrix; figure 6b,
figure 6¢ and figure 6d depict various input-agnostic sparse attention score matrices. Figure 6e shows
the use of global tokens (attention scores are shown in ) in conjunction with banded attention
(scores are shown in blue), with the last two tokens being the global tokens — all tokens attend to and
are attended by these global tokens. Note that the per-query semantic dispersion (see definition 2,
figure 4) of the unmasked attention scores in the input-agnostic masks would be similar in general
to that of standard attention. Input-dependent masked attention such as top-£ attention (shown in
figure 6f) can have a much smaller semantic dispersion compared to standard attention.

C Related Work

In this section, we cover literature on efficient transformers, and the theoretical and empirical
investigations on the capabilities and limitations of transformers. Finally, we will also briefly discuss
the existing research on optimization with transformers.

Efficient transformers with sparse attention. The transformer architecture [1] has had tremendous
impact in various fields such as language modeling, vision and tabular data, and spurred new
research into the development of architectural variants or X-formers [3, 39, 19]. Many of these
have been developed to address the quadratic computational complexity of the attention mechanism
in a transformer block with respect to the context length (the number of tokens in the context),
with the goal of increasing the context length. One common technique is to sparsify the attention
mechanism. Usually each (query) token in the context attends to all other (key) tokens as in figure 6a,
leading to the quadratic cost. Instead, we can limit the set of key tokens attended to by any particular
query token. Input-agnostic sparsification strategies include attending (i) within a window as in
figure 6b [20] or a block as in figure 6d [21], (ii) in a strided manner as in figure 6¢ [22, 23], (iii) to
random tokens [14], or (iv) to only a small number of global tokens and these global tokens attend
to all other tokens [13, 14]; this is often used in conjunction with other forms of sparse attention as
shown in figure 6e. Input-dependent sparsification strategies include (i) using a scoring mechanism
and attending only to the highest scoring tokens as in figure 6f [40, 15], or (ii) clustering [24] or
hashing [25] tokens into buckets and attending only to in-bucket tokens. Surveys such as Tay et al.
[3] and Lin et al. [19] cover various other forms. These input-dependent sparse attention mechanisms
focus the attention on the keys corresponding to the highest dot-product scores — the heavy hitters —
while explicitly ignoring the remaining keys. Sparse attention is considered in all these cases as a
way to speed up the attention mechanism in the transformer block during the forward pass without
significantly deteriorating the downstream performance, with the standard full attention being the
gold-standard. The Long-range Arena or LRA [4] serves as one such benchmark comparing different
efficient transformers to the standard transformer.

In contrast to above, we theoretically study the effect of sparse attention based transformers on
the learning or empirical risk minimization (ERM) convergence of the whole model (containing
multiple transformer blocks), and the in-distribution generalization of the model obtained via ERM.
We attempt to characterize conditions under which sparse attention might show improvements over
full attention.

Empirical evaluations of transformer capabilities. While benchmarks such as the LRA [4]
focus on the efficiency and in-distribution generalization, transformers have also been thoroughly
evaluated on benchmarks studying specific forms of out-of-distribution generalization such as
compositional generalization and length generalization. Compositional generalization benchmarks
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such as COGS [27] and SCAN [26] consider sequence-to-sequence translation problems, and they
have been used to highlight the inability of transformers to systematically generalize [41]. However,
subsequent work such as Csordas et al. [42], Ontanon et al. [43] have demonstrated ways in which
transformers can systematically generalize. The Neural Networks and Chomsky Hierarchy or NNCH
benchmark [11] considers language transduction tasks from different formal language classes such as
regular, deterministic context-free and context-sensitive languages. This benchmark studies the ability
of various models (including transformers) to length generalize — that is, generalize to longer input
sequences when being trained in a length limited manner. There has also been a lot of research on
improving the performance of transformer based models on these out-of-distribution generalization
benchmarks leveraging auxiliary tasks [44] and chain-of-thought prompting [45].

In our work, we focus on the theoretical analysis of the ERM convergence and the in-distribution
generalization of models based on multiple transformer blocks, and empirically validate our theoretical
insights utilizing these above benchmarks. We consider one multiclass classification task from the
LRA benchmark [4] and a subset of the tasks from the NNCH benchmark [11] that can be posed as
supervised classification problems.

Theoretical treatment of transformer capabilities. Given the widespread success of transform-
ers, there have been various theoretical studies on the capabilities and limitations of transformers.
One line of research focuses on the ability of transformers to express (and thus recognize) formal
languages [28]. Some of these works study transformers with hard attention [46—49], while others
consider the more commonly used softmax attention [50, 51]. Another line of research has focused
on understanding the capabilities of transformers as algorithms [36], demonstrating how transformers
can, under specific parameter settings, perform in-context gradient descent for linear regression [52]
or in-context clustering [53], and how easily can such parameters can be found [36, 54, 55]. Yun
et al. [12] focus on universal approximation of sparse attention transformer for sequence-to-sequence
problems, and establish conditions on the sparsity pattern that ensure desired expressivity given
enough number of transformer layers.

Viewing hard-attention as a form of input-dependent sparse attention, these existing expressivity
results [28] are complementary to our focus on learning convergence and in-distribution generaliza-
tion for models using multiple sparse attention based transformer blocks — existing hard-attention
expressivity results discuss whether sparse attention transformers are expressive enough for the task
at hand. Our study here focuses on how quickly and sample efficiently can such transformers learn
the task, and how the attention sparsity pattern plays a role.

Optimization with transformers. There has been a lot of work on understanding the optimization of
transformers in terms of the benefit of adaptive methods such as Adam over non-adaptive SGD [56—
60]. However, the focus there is to understand why optimizers such as Adam converge significantly
faster than SGD with transformer models; no such consistent difference has been established for
previous architectures such as convolutional or residual. Li et al. [61] recently present an analysis of
the training dynamics with SignGD for a single transformer block model for a specific noisy binary
classification problem, working in the “feature learning framework”, and empirically demonstrating
that the dynamics of SignGD and Adam are quite similar, thus making SignGD a useful proxy for
analyzing Adam.

Our study is complementary to this line of work where we study the effect of sparsity in attention
to non-adaptive SGD convergence and generalization. We also consider a more general sequence
learning problem with multiple transformer blocks.

28



D Details on Experimental Setup

The code and results for the paper are available in this GitHub repository.

Tasks. We consider the List Operations or ListOps task [62] from the LRA benchmark [4] with
sequence lengths between 500 and 600 both for training and testing because we are evaluating
in-distribution learning and generalization. This is a 10-class classification problem. We select this
task over the other tasks in the LRA benchmark because (i) this is a task where transformers have
better than random performance (around 30-40% compared to a random 10% performance), but there
is still a significant room for improvement, and (ii) we can control the length of the input sequences
and still have a meaningful problem, which is not as straightforward with the other document or
image processing tasks in LRA. From the NNCH benchmark [11], we consider 3 tasks that can be
solved as a binary classification problem — Parity, Even Pairs, and Missing Duplicates, and 4 tasks
that can be solved as a multi-class classification problem — Cycle Navigation, Stack Manipulation,
Modular Arithmetic with Brackets and Solve Equation. Parity, Even Pairs and Cycle Navigation are
regular languages. Stack Manipulation, Modular Arithmetic and Solve Equation are deterministic
context-free languages, while Missing Duplicates is a context-sensitive language. For the NNCH
tasks, we consider input sequences of length 40 both for training and testing; Deletang et al. [11]
train on the same length but test on longer to evaluate out-of-distribution length generalization. For
all the tasks, we utilize a training / holdout sets of sizes 5000 / 2000.

Sparse attention. While there are various sparse attention mechanisms (as we discussed in ap-
pendix C), we will consider a representative subset for our empirical evaluations. For input-agnostic
sparse attention, we choose banded attention (figure 6b [20]) and block-local attention (figure 6d [21]),
with varying band and block sizes respectively. For input-dependent heavy-hitter sparse attention, we
choose top-k attention (figure 6f [15]). The main motivation for selecting top-k over LSH based [25]
or clustering based [24] input-dependent sparse attention is that we can then easily ensure that the
input-dependent sparse attention attends to exactly the same number of tokens as in the input-agnostic
ones — that is, the number of nonzeros in each column of the attention score matrix is exactly the same
across all sparse attention patterns we consider. We also consider versions of these input-agnostic
sparse attention with varying number of global tokens (figure 6e). Note that, as we have highlighted
before, the number of learnable parameters is exactly the same between the model using stan-
dard full attention and the one using sparse attention. A minor difference is with global tokens
where we also learn their initial global token embeddings. For this reason, we use exactly the same
hyperparameters for the full and sparse attention versions of the same model to ablate the effect of
the sparse attention.

Compute resources and experimental setup. All our empirical evaluations are performed on a Intel
i7 Core CPU (16 threads, 64GB memory), and a Nvidia V100 GPU (8 GB memory). Each experiment
was executed with 10 random seeds and all results are aggregated across these 10 trials. Each trial
took around 55 hours — ListOps: 21.5, Parity: 10, Missing Duplicates: 2.5, Even Pairs: 1, Stack
Manipulation: 2, Modular Arithmetic: 6, Solve Equation: 6, Cycle Navigation: 7.5 — for a total of
550 hours for each of the 3 activation functions considered. Ablation of additional hyperparameters
took another 160 hours. The implementation is in Pytorch 2.2 with CUDA 12.4. We implement our
own attention block to handle different forms of sparse attention.

Hyperparameters. For the NNCH tasks, we considered the transformer architecture used in Deletang
etal. [11] with (i) T' = 5 transformer blocks, (ii) embedding dimension d = 64 and (iii) the MLP
hidden layer dy p = 64, but with a single head (instead of 8) and a dropout of 0.01. The final
classification layer uses the average of all the token representations after the final transformer block.
For the ListOps task, we utilize the same architecture but use 7' = 10 transformer blocks for the
initial experiment. We also consider varying number of heads and blocks in our experiments studying
the effect of hyperparameters. For all problems, we use the SGD optimizer and the StepLR learning
rate scheduler with a decay rate of 0.99 for ListOps and 0.9995 for NNCH tasks and a decay period of
1 epoch. For the NNCH tasks, we use an initial learning rate of 0.1, while we use 1.0 for ListOps. The
number of epochs is selected to ensure that standard full attention transformer is able to consistently
achieve 100% training accuracy (and thus, the ERM has converged). Thus, we use 100 epochs for
Even Pairs, 200 epochs for ListOps and Stack Manipulation, 250 epochs for Missing Duplicates, 600
epochs for Modular Arithmetic and Solve Equation, 750 epochs for Cycle Navigation, and 1000 for
Parity.
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Figure 7: Learning convergence and generalization curves for full attention and various sparse
attention based models. Each column corresponds to a task; we present 4 tasks here and 4 more in
figure 8. The legend is the same across all datasets — BAND(5) denotes banded attention (figure 6b)
with a band size of 5; BAND(5):1 denotes the same with a single global token (figure 6e). BLOC(5)
denotes block local attention (figure 6d) with a block size of 5; BLOC(5):1 denotes the same with
single global token. TOPK(S) is top-k attention with k£ = 5. Top row: Training cross-entropy loss
trajectories — lower is better. Bottom row: Generalization performance on held-out set as training
progresses — higher is better. Further results with different mask sizes and different number of
global tokens is presented in figure 9 (training cross-entropy), figure 10 (training accuracy), table 3
(generalization) and table 4 (convergence). T For the Parity task, all forms of attention have poor
generalization, with a held-out accuracy as low as random guessing (50% for binary classification).

E Additional Empirical Results

E.1 Detailed Evaluation

In this subsection, we present a detailed view of the results presented in figure 7 and figure 8, where
we evaluate different mask sizes (number of nonzeros in each column of the attention matrix) and
the number of global tokens included with the input-agnostic sparse attention patterns. We present
the trajectories of the training cross-entropy loss in figure 9 and figure 11, and the trajectories of the
training accuracies in figure 10 and figure 12. In table 3, we present the best accuracy on the held-out
set for each of the sparse attention patterns and contrast it with that of the full attention model. Table 4
presents the number of epochs (aggregated over the 10 repetitions of each experiments) required by
each attention pattern to (i) achieve at least 95% training accuracy for the first time (if at all), and
(i) achieve the best held-out accuracy.

The results in figure 9 and figure 11 (along with figure 10 and figure 12) show that the input-agnostic
sparse attention has a slower ERM convergence than standard full attention, being unable to reach even
95% training accuracy with the ListOps and Even Pairs tasks. With the input-agnostic sparse attention,
having the global tokens helps convergence in almost all cases, being critical for convergence in
the NNCH binary classification tasks (Parity, Even Pairs and Missing Duplicates), especially with
the block local attention. In contrast, the ERM convergence of the top-k attention is significantly
improved over the standard full attention in all 8 tasks, with improvements (in terms of achieving
95% training accuracy) over standard attention ranging between 1.37x (121 epochs vs 167 epochs)
with ListOps to 9.5 (6 epochs vs 53 epochs) with Even Pairs (see table 4 for further results on this).

The results in table 3 show that, in almost all cases, the input-dependent sparse attention has similar
(Even Pairs and Missing Duplicates) or better (ListOps) holdout accuracy than the standard full
attention. This is true both in terms of the highest holdout accuracy during the training trajectory, and
the final holdout accuracy. The latter highlights that the faster ERM convergence of input-dependent
sparse attention does not lead to overfitting. In fact, with the ListOps task, the final holdout accuracy
with standard attention drops from around 35.1 & 0.6% to 28.9 + 1.4%, while the drop with top-k
attention is only from 36.3 +0.3% to 31.3 £ 0.9%. In general, the top-k attention based transformers
also have comparitively similar or lower variations in their performance. This set of results align with
our theoretical result that the improved stability of the input-dependent sparse attention translates
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Figure 8: Same as figure 7 with 4 more NNCH tasks. Further results with different mask sizes and
different number of global tokens is presented in figure 11 (training cross-entropy) and figure 12
(training accuracy). T For the Modular Arithmetic, Solve Equation and Cycle Navigation tasks, all
forms of attention have poor generalization, with a held-out accuracy as low as random guessing
(20% for each of these S-class classification tasks).

Table 3: Generalization performance (higher is better) for standard full attention (highlighted in
green) and sparse attention. We report the mean. g aggregated over the 10 trials (same as figure 9
and figure 10). The first set of columns show the best holdout accuracy obtained across the training
trajectory, while the second set show the holdout accuracy at the end of training. We highlight
methods that have not reached 95% training accuracy at the end of training in blue; among the
remaining methods, the highest mean in each column is shown in bold. See figure 9 for the naming
of the attention mechanisms.

Attention Best holdout accuracy Final holdout accuracy

ListOps MissingDups EvenPairs ListOps MissingDups EvenPairs
Standard | ‘ 35.09+0.60 100.00 1 oo 100.00 ¢ o | ‘ 28.924 140 99.98 1 0.02 100.00 - ¢ oo
Banded(5) 34.47 055 58354134 52.574 096 28254170 54.04 4183 50.344 142
Banded(9) 34.824051 96.53 4 1.99 52.064 107 28.404 109 95354219 50424 108
Banded(5)+G1 34734043 99.78 +0.34 81.86+ 2236 30.5040.58 99.621035 81.40427 88
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to matching or better generalization error. This does not hold with the Parity, Modular Arithmetic,
Solve Equation and Cycle Navigation tasks. However, note that these are tasks for which al forms of
attention have very close to random performance (which is 50% for a balanced binary classification
problem and 20% for a 5-class classification problem), and thus none of the attention mechanisms are
generalizing well. The inability of the input-agnostic sparse attention to obtain high training accuracy
within the training budget translates to low holdout error, especially with the Even Pairs task.

E.2 Effect of MLP Activation Function

Here, we present a detailed view of the results presented in figure 2, where we evaluate different mask
sizes (number of nonzeros in each column of the attention matrix) and the number of global tokens
included with the input-agnostic sparse attention patterns. We present the trajectories of the training
cross-entropy loss with the GELU activation [31] in figure 13 and figure 17 for all 8 tasks, and their
corresponding training accuracy trajectories in figure 14 and figure 18. Similar results for 4/8 tasks —
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Figure 9: Training cross-entropy (vertical axis, lower is better) vs number of epochs (horizontal axis)
across different tasks and sparse attention forms aggregated across 10 repetitions. Each plot contains
the training curve for the standard transformers (in black). Sparse attention: Banded (column 1),
banded with 1 global token (column 2), banded with 3 global tokens (column 3), block-local (column
4), block-local with 1 global token (column 5), block-local with 3 global tokens (column 6), top-k
attention (column 7).

namely ListOps, Parity, Even Pairs and Missing Duplicates — with the Mish activation [33] in the
MLP block are presented in figure 15 (training cross-entropy) and figure 16 (training accuracy).

In all cases, the qualitative results do not seem the change much from the previous results with the
ReLU activation in the MLP block presented in figure 9 and figure 11 (and corresponding figure 10
and figure 12). The overall trend continues to be that (i) input-agnostic sparse attention models
continue to train and generalize comparitively to the full attention model, and (ii) input-dependent
heavy-hitter sparse attention models continue to converge faster (and generalize similarly or better)
than the full attention model.

The input-agnostic sparse attention models continue to converge comparably to full attention with
ListOps and Missing Duplicates while falling behind in Even Pairs. One marked difference here is
that, with ListOps, the full attention model initially converges slower than the other sparse attention
models (compare figure 7a with figure 2a and figure 2d). This is more marked with the Mish activation.
However, finally the full attention model convergence catches up to the input-agnostic sparse attention
models. This initial slowdown in the convergence is also reflected in the initial lower generalization
accuracy. In contrast, the input-dependent heavy-hitter top-£ attention continues to consistently
converge faster than full attention in terms of the training loss for both these MLP activations, with
very little differences from the results with ReLU activation. This form of sparse attention also
achieves better generalization performance earlier in the training process. This indicates that the
difference is performance is probably due to the differences in the attention mechanism and not an
artifact of the MLP block configuration.
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Figure 10: Training accuracy (vertical axis — higher is better) vs number of epochs (horizontal
axis) across different tasks and sparse attention aggregated across 10 repetitions (median (line) and
inter-quartile range (shaded region)). Each plot contains the training curve for the standard full
attention transformer (in black). Sparse attention are as follows with each with kK = 5and &k = 9
nonzeros in each row of the attention score matrix — column 1: banded, column 2: banded with 1
global token, column 3: banded with 3 global tokens, column 4: block-local, column 5: block-local
with 1 global token, column 6: block-local with 3 global tokens, column 7: top-k attention.

E.3 Natural Language Processing Evaluations

We consider a preliminary experiment with the Penn Tree Bank [63] natural language dataset where
we use the context of tokens to predict the next token. The text is tokenized using the SentencePiece
tokenizer [64] with BPE (byte-pair encoding) [65] and a vocabulary size of 4096. We consider a
transformer with embedding size of 32 and MLP hidden dimensionality of 128, varying the number
of transformer blocks with a single attention head per block. We train the model for 50 epochs with
SGD. We consider full attention and top-k attention with £ = 5 and report the token misclassification
cross-entropy on the training set at increasing number of epochs in figure 19.

As the results indicate, the top-£ attention mechanism continues to converge faster that full attention
even in this NLP task for varying number of transformer blocks. We also consider a more challenging
version of Penn Tree Bank with a larger vocabulary of 10000 tokens. Here we also consider a larger
transformer model with an embedding dimension of 128 and MLP hidden dimensionality of 512, and
vary the number of transformer blocks with 4 attention heads in each block. The training loss curves
are presented in figure 20, and demonstrate that the input-dependent sparse attention continues to
converge faster than the full attention transformer model.
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Table 4: Additional generalization/convergence results: We note the number of iterations required
during the training (i) to reach 95% training accuracy, with a ‘-> denoting that we do not reach that
training accuracy, and (ii) to reach the highest holdout accuracy. For training that reach 95% training
accuracy, the smallest in each column is highlighted in bold.

Attention Iterations to 95% training accuracy Iterations to best holdout accuracy
ListOps MissingDups EvenPairs ListOps MissingDups EvenPairs
Standard [| 167418 96121 53415 || 6248 174455 6440
Band(5) - - - 63419 38169 66128
Bd.nd(9) - 114:t30 - 68i17 236i 6 45i35
Band(5)+G1 - 114413 - 594023 23646 83103
Band(9)+G1 - 72411 - T4+ 231412 51437
Band(5)+G3 - 137116 - 62120 227 424 81427
Band(9)+G3 - 804+ 9 - 69424 224416 7043
Blklocal(5) - - - T4 S4+4 67126
Blklocal(9) - - - 57411 3492 5742
Blklocal(5)+G1 - - - 5349 23847 85418
Blklocal(9)+G1 - 154426 - 54415 235412 67136
Blklocal(5)+G3 - 134450 - 69421 230419 86112
Blklocal(9)+G3 - 146415 - 6017 23449 62136
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Figure 11: Training cross-entropy (vertical axis, lower is better) vs number of epochs (horizontal axis)
across different tasks and sparse attention forms aggregated across 10 repetitions. Each plot contains
the training curve for the standard transformers (in black). Sparse attention: Banded (column 1),
banded with 1 global token (column 2), banded with 3 global tokens (column 3), block-local (column
4), block-local with 1 global token (column 5), block-local with 3 global tokens (column 6), top-k
attention (column 7).
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Figure 12: Training accuracy (vertical axis — higher is better) vs number of epochs (horizontal
axis) across different tasks and sparse attention aggregated across 10 repetitions (median (line) and
inter-quartile range (shaded region)). Each plot contains the training curve for the standard full
attention transformer (in black). Sparse attention are as follows with each with k = 5and £ = 9
nonzeros in each row of the attention score matrix — column 1: banded, column 2: banded with 1
global token, column 3: banded with 3 global tokens, column 4: block-local, column 5: block-local
with 1 global token, column 6: block-local with 3 global tokens, column 7: top-k attention.
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Figure 13: Same as figure 9 with GELU activation in the MLP component of the transformer block.
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Figure 14: Same as figure 10 with GELU activation in the MLP component of the transformer block.
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Figure 15: Same as figure 9 with Mish activation in the MLP component of the transformer block.
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Figure 16: Same as figure 10 with Mish activation in the MLP component of the transformer block.
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Figure 17: Same as figure 11 with GELU activation in the MLP component of the transformer block.
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Figure 18: Same as figure 12 with GELU activation in the MLP component of the transformer block.
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Figure 19: Training loss convergence for full attention and top-k attention with a small transformer
for 50 epochs with Penn Tree Bank on a vocabulary of size 4096.
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Figure 20: Training loss convergence for full attention and top-k attention with a larger transformer
for 120 epochs with Penn Tree Bank on a vocabulary of size 10000.
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F Softmax to Lipschitz Continuity: Technical Details

F.1 Proof of Lemma 1

Lemma 3. Consider the following assumptions:

* (M1) The MLP activation o is A, Lipschitz with o(0) = 0.
* (M2) The MLP parameters have norms bounded by B > 0, that is |P|| < B and |R|| < B.
* (M3) The input x to the MLP is bounded by = > 0, that is =

Then the token-wise MLP and LN operations are Lipschitz with respect to their input and model
parameters as follows ¥x,x' € R?, ||x||, x| < Z,P,P € Riwexd R R € Rmexd;

[MLPp g (x) — MLPp r(X)[| < nx|x — X, (16)
IMLPp r(x) — MLPp g (x)|| < np|P - P||, (17
IMLPp (%) — MLPp g (x)[| < nr|R - R, (18)

[LN(x) — LN(X)| < (unllx — x|, (19)

where nx = B?\,, np = Mg = Ao BE.

Proof. First, the Lipschitz property of the LayerNorm (and the corresponding value of (| y) has been
previously established in Kim et al. [35, Appendix N]. With LayerNorm LN : R? — R< defined as

X = %(Zie[d] i)

\/e+ % (:cl — é(zie[d] xl))Q

where a and b are the scale and shift hyperparameter. Then LayerNorm is Lipschitz with (| y =
¢ 2||a| o0 (¢°~2)/d in equation (19).

LN(x) = ©a+b, (20)

For equation (16), we have the following:
IMLPp r(x) = MLPp r(%)]| = [R"o(Px) - RTo(Px)| < |R||o(Px) —o(Px)|  (21)
< BAo|[P(x = %)|| < BA|P|l[lx — %]| < B*Ao|lx — %[, (22)
where we use the assumption (M1) that ||o(z) — 0(z)|| < As||z — Z||, and assumption (M2) that
|P|| < Band R < B.
For equation (17), we have the following:
IMLPp r(x) = MLPp g (x)|| = [RT0(Px) - RTo(Px)| < |R|[[o(Px) — o(Px)| (23)
< BA||(P - P)x|| < BAE||P - P, 24)

since ||x|| < = for all tokens as per the assumption (M3).

For equation (18), we have the following:

IMLPp & (x) = MLPp g (x)[| = [R"o(Px) - R "o(Px)| (25)

< (R = R)o(Px)[| < R — R|[[lo(Px)|| (26)

= [|R — R[l[|o(Px) — o(0)]] (27)

= [|R = R[A|Px[, < A\, BE[|R — R, (28)

since ||x|| < = for all tokens as per assumption (M3) and ¢ (0) = 0 as per assumption (M1). ]

Note that the o(0) = 0 holds for standard activations such as ReLU(x) = max(z,0) and GELU(z) =
x®(z) where @ : R — [0, 1] is the cumulative density function of the standard Gaussian distribution.

With activations such as ReLU, the MLP(x) = R.T o(Px) are often positive homogeneous such that,
for any o # 0, we have R 0(Px) = aR " 0(a~'Px), leading to symmetries in the paramter space,
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and making analysis of optimization algorithms challenging [66—69], and some results focus on the
convergence under specific conditions. However, most convergence rates depend on the Lipschitz-
ness of the ReL U network, and the Lipschitz constant is not affected by this positive homogeneity as
long as we assume that the matrices R, P have bounded norms (which we do). As an example, note
the following for the Lipschitz-ness with respect to P:

IMLPp r(x) = MLPp g ()| < max [MLP,-1p ar (%) = MLP,-1p or (X)|| (29)
= max [aRTo(a " 'Px) — aR (e Px)| (30)
< max laR||||o(a ' Px) — o(a'Px)|| (3D
< max o R[|Aq o™ (P — P)x|| (32)
< maxaBA,a 'SP - P| (33)
— B)\E|P - P, (34)

where we see that the effect of the « is cancelled out and we get the result in lemma 3. Similar result
can be shown for Lipschitz-ness with respect to R.

F.2 Proof of Theorem 1

Theorem 6. Given definition | and lemma 1, a transformer block TF with learnable parameters
0 = (W, V,P,R) is \g(§)-Lipschitz with respect to its learnable parameters 0 with

Ao (€) = G (Gn (1 +1x) (Aw () + Av) + L(np +nr)) , 35)
and TF is Ax (§)-Lipschitz with respect to its input X with
Ax(€) = CEn (L +mx) (1 + Ax (€)), (36)

where we explicitly note the dependence of the Lipschitz constant with respect to learnable parameters
Ao (€), and input Ax (§) to the Lipschitz constant § of the (masked) softmax operation.

Proof. Letf = (W, V,P,R)and § = (W,V,P,R). Then, we have the following:

[TFo(X) = TFs(X) |21 = ITFw v pr(X) = TFw vpr(X) 2.1 (37)
<|TFwvepr(X) = TFw v pr(X)21 (T1)

+ITFw v e r(X) = TFw v p r(X) 2,1 (T2)

+ ITFw v, pr(X) — TFw v p.r(X)[21 (Ts)

+ ITFw vp.r(X) — TFw v p.r(X)[l2,1- (T4)

First, processing equation (77), let us denote with X = LN(X + Aw v (X)), then

(1) =[TFw v p,r(X) = TFw v p r(X)[21 (38)
= |LN(X + MLPp (X)) — LN(X + MLPp ¢ (X))]l2,1 (39)
=> ILN(X.; + MLPp r(X.)) — LN(X,; + MLPp (X))l (40)
i€[L]

< ) GnIMLPp r(X.;) = MLPp 5(X.))||  (using equation (19)) (41)
i€[L]

< Y GnnrlR - R[| = L{nnr|R — R|  (using equation (18)). (42)
i€[L]

Handling equation (75) in a similar fashion, we have
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(1) = |TFw vpr(X) — TFw v pr(X)
= [[LN(X + MLPp g (X)) — LN(X + MLPp g (X))|l2,1
- Z ”LN(X:i + MLPP,R(X:i)) - LN(X:i + MLPP,R(X:i))||

2,1

=

< Z CLNHMLPP’R(X%) — MLPp’R(X:,’))H (using equation (19))
i€[L]

< Z annp||P —P|| = Lénnp||P — P||  (using equation (17)).
i€[L]

For equation (7%), let us denote with X’ = LN(X + Aw v (X)). Then we have

(I3) = [[TFwvpr(X) = TFw vp r(X) |21
= |LN(X + MLPp (X)) — LN(X' + MLPp (X))|2,1

= ) LN(X.i + MLPp g (X.:)) — LN(X; + MLPp ¢ (X))
i€[L]

< ) (X = XL) + (MLPp g (X.i) — MLPp g(X/,))||  (using equation (19))

i€[L]

< Z Cn(1 4 7x)]|(Xe — X%)| - (using equation (16))

1€[L]

= an(+nx)[LN(X;; + Aw v(X).) = LN(X; + Ay v (X)) |
i€[L]

< Z QN1+ nx)CnlAW v (X).i — Aw v (X).]|  (using equation (19))
i€[L]

= QN1+ nx)an AW, v (X) = Aw v (X) |21
< ON(1+1x)aNAV][V = V|| (using equation (7) in definition 1).

(43)
(44)
(45)

(46)

(47)

(43)
(49)
(50)

(G

(52)

(53)

(54)

(55)
(56)

For equation (7}), let us denote with X = LN(X + Aw v(X)). Then we can follow the same

procedure as for equation (75) and get the following:

(I') = |TFw v p,r(X) = TFw v e r(X)|21
ILN(X’ + MLPp g(X')) = LN(X” + MLPp 5 (X")) 2.1

> IN(X]; + MLPp g(X[;)) — LN(X[; + MLPp ¢ (X1))|
i€[L]

< 3 QX = X2) + (MLPp (X)) — MLPp 5 (X22)||  (using equation (19))

< Z n( +nx)I(X), = X”)||  (using equation (16))
i€[L]

= an(+nx)[LN(X; + Aw v (X):) — LN(X; + Ay v (X)) |
i€[L]

< > an(@ +mx)GnllAw v (X) — Aw v (X).ill  (using equation (19))
i€[L]
= QN1+ nx)Cnl[Aw, v (X) — Aw v (X)

2,1
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(60)

(61)

(62)

(63)
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< AN +7x)anAw ()W — W (using equation (6) in definition 1). (65)

Putting these all together, we have

[ TFo(X) — TFg(X)|l2,1 (66)
< GnL (nRIR = R +np|[P - P|)

+ 1+ 1x) AV = V][ + Aw (&)W - W) (67)

< GNL (g)10 = 0l +npll6 = 0]1) + (1 +1x) (Av [0 = 0l + Aw (€)[160 - 0])  (68)

= Gin (N 4 nx) Aw () + Av) + L(np +1r)) 16 — 6], (69)

where we used the definition that, for matrix tuples 6, 8, | — || = max{|W - W|,[|[V-=V|, [P —
P|, IR — R||}. This gives us the desired result in equation (35).

For inputs X, X, let X = LN(X + Aw v (X)) and X’ = LN(X + Aw v (X)). Then we have the
following:

ITFo(X) — TFg(X)[l21 = [LN(X + MLPp g(X)) — LN(X' + MLPp &(X"))||2.1 (70)
= Y ILN(X.; + MLPp r(X.3)) — LN(X); + MLPp (X1))I| (71)

i€[L]
< 3 Gnll (X = X)) + (MLPp r(Xei) — MLPp(X0)) ) || (72)

i€[L]

(using equation (19))

< ) Gn(1+nx)[ Xy — XY (using equation (16)) (73)
i€[L]
= Z An(T +nx)ILN(X; + Aw v(X).i) — LN(X; + Aw v(X).)]|
i€[L]
(74)
<) A+ (X — X)) + (Awv(X): — Aw,v (X)) (75)
i€[L]

(using equation (19))
< v +nx) (X = X) + (Awv(X) — Aw v (X)) 2.1 (76)
= A+ nx) (IXK = X210 + Aw,v(X) = Awv(X)[21) 77D

< G+ nx) (14 Ax () 1X = X2, (78)
(using equation (5) in definition 1),

which gives us the desired result in equation (36). O

F.3 Proof of Theorem 2

Corollary 1. Consider the following assumptions:

* (L1) The sample wise loss { in equation (4) is a-Lipschitz.

* (L2) The final readout layer weights are norm-bounded as | ®| < 1 and the per-token output of
each transformer block is norm bounded as ||X(f) | <Eforallic[L]andt € [7].

* (L3) The sequence aggregator is w = (1/L)1p,.

Under the above assumptions and the conditions of definition 1 and theorem I, the learning
objective L in equation (4) is Az (€)-Lipschitz with respect to the learnable parameters © =
(T,00,...,007) ®), where

Ae(§) =a <E+)\X(§)T (1+L(Ai‘)(g)1)>) (79)
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Proof. Let us first denote the model parameter tuples as © = (T, om0 ®) and © =
(T,00,...,0 &) LetX® = [T, +E4,..., T,, +E;]and X(® = [T, +E;,..., T,, +E;]
denote the initial token embeddings for the same input X = [v1,...,v.],v; € [D], with model
parameters © and O respectively. Note that we are not learning the position encoding E in our
setup. Forany t = 1,..., 7, let X(*) = TF()(X*~1D) and X = TFy.,) (X*~1), both defined
recursively.

Then, using the loss function £ in equation (4), we have the following:

1

£©) = L©O) =|~ > (Uy fo(X)) — Ly, fo(X))) (80)
(X,y)es

<Y alfe(X) - fa(X), (81)
(X,y)es

where we utilized the assumption that ¢ is a-Lipschitz. Focusing on the | fo(X) — fg(X)| term in
equation (81), we see the following:

fo(X) = fo(X)| = |@(XVw) - B(X"w)| (52

1 () () - (1G o

L L
1 . _ (1 o (r
<@ (LZIX& : —X&’|> +2 -2 (LZ ||XF3||> (84)
i=1 i=1
1 - _ _
< EHX(T) =X lg1 + 2@ — 2], (85)

where we utilized the assumption that ||®|| < 1 and ||X;|| < ZVi € [L]. Considering the || X(7) —
X in the right-hand-side of equation (85), and noting the recursive definition of X =
TFyc (X*=1), we have the following:

XM — Xy, (86)
= HTFQ(T) (TF@(T—l) ( - (TFg(l) (X(O))))) —TFzn (TF5(771) ( .. (TF§(1) (X(O)))))H2 ) (87)

< HTFQ(T) (- (TFyq) (X(O)))) = TFyer (- (TFp) (X(O))))Hz 1 "
T—1
+ Z HTFam (- (TFpeo (X)) = TFyio (- (TFge0 (X(til))))Hz 1 )
t=1 |
o+ |[TFon (XED) = TRa (X1 o
2,1

Utilizing the Ax (£)-Lipschitzness of each transformer block with respect to the input (as per theo-
rem 0, equation (36)), and applying it recursively through the 7 transformer blocks, we can bound
equation (/7)) as:

L
(P) < Ax(©)TIIX® = XDy y = Ax ()7 T, — T | (88)
i=1
L — —
<A T =T = Ax("L|T - T|. (89)
=1

For equation (%), we will again utilize the Ax (&)-Lipschitzness of each transformer block with
respect to the input recursively to get the following:

T—1
(o) = 37 || TR (- (TR0 (D)) = TRy (- (TFgn D) 00)
t=1 )
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T—1
<D (O [ TR0 (X)) = TRy, (X0 | on
t=1 ?

7—1
<) AT (10D — 81|, (92)
t=1

where we utilize the A\g(&)-Lipschitzness of the transformer block with respect to the parameters in
the last inequality.

We can use Ag(€)-Lipschitzness of each transformer block with respect to the parameters (as per
theorem 1, equation (9)) to bound equation (P3) with /\9(£)||9(T) — 6 Il

Substituting this, equation (89) and equation (92) in equation (85), we have

|fo(X) = fo(X)| ©3)
<7 (AXWLHT — T + (Ae(f)g)\X(E)T_t||9(t) - ewn) + 20 (€)1 e<ﬂ||>
+Z||® — P 94)
< % (Ax(ﬁ)TLH@ -6 + <>\9(£) f Ax ()76 - @) + (9] — @||>
+Ze -0 - 5)
— (2@ (14 i) ) e - ol 6)

Finally, substituting the above in equation (81) gives us:

c© L@ <t a(E—H\x(f)T (1+M))n9—@u ©7)

" (X yes x(8)
- Ao(§) )) -
<alZ+A 14 0 —-09|. 98
(24t (1+ e =y ) )10 - @l ©8)
This gives us equation (79) in the statement of the corollary. O

F.4 Multi-headed Attention

As per Yun et al. [2, Section 2, equation 1], we can write multi-headed (self) attention A heads in our

notation as: 4
MHA{W(i>7V(i)’H(i)}i€[h,] (X) = Z H(l)AW(i)’V(i) (X), (99)
1€[h]

where H(®) € R%*4 are the head-aggregator matrices. Here we are assuming that each head is of size
d, same as the dpoge1. This is for ease of exposition, as we can introduce a new variable for head size
and get the same guarantees.

Now, for each of the heads i € [h], let us assume the following (as in definition 1):

AW v (X) = Awe v (X)[l21 < Ax (OIIX = Xl,1, (100)
1AW v (X) = A vor (X) 21 < Aw ()W — W|. (101)
Then, we can show the following for multi-headed attention, assuming ||H?|| < A for all i € [h]:
|| MHA{W(i)7V(i)7H(i)}iE[h] (X) — MHA{W(i)7V(i),H(i)}i€[’I] (X)| 2,1 (102)
h
= D> HY (Awo v (X) = Awe, v (X)) (103)
i=1 2,1

h . — —

< D IHD[Awo v (X) = Awe v (X) 21 < ABAX (©)]X = X]21. (104)

i=1
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Thus, the stability of multi-headed attention with respect to its input is preserved as with a single
head, but with additional constant factors.

Furthermore, in terms of Lipschitz-ness with respect to its parameters, such as W, we can see that

||MHA{W(1‘)7V(i),H(i)}i€[h] (X) — MHA{W(i)7V(i)7H(i)}ie[h] (X)”QJ (105)
h
= ID_HY (Awo v (X) = Awe v (X)) (106)
i=1 2,1
h .
<Y IHOAwo v (X) = Awe v (X) 2.1 (107)
=1
< A (€) Y W =W, (108)

1€[h]

where we utilize equation (101) for the W(?) parameters for each of the heads. This shows us that we
can establish results for multi-headed attention analogous to those we study for single head attention.
The driving factors continue to be Ax (£) and Ay (£) which are tied to the properties of the masked
softmax functions. However, both the terms get multiplicatively magnified with increasing number
of heads, and thus any improvement in the stability of the masked softmax function will get more
pronounced as the number of heads increase. This intuition is supported by our results in figure 3b.

G Role of Sparse Softmax: Technical Details

G.1 Standard Softmax based Attention

Lemma 4 (adapted from Li et al. [36] Lemma B.1). For any z,z € RY with

max z; —z; <60, and max z; —Zz; <9, (109)
i,j€[L] i,j€[L]

for a positive constant § > 0, we have the following:

4 1

softmax(z)]|ee < % ||softmax(z) — softmax(z)||; < %Hz — .. (110)

Proof. For any z € RE, without loss of generality, let the first entry z; be the largest, and the second
entry z5 be the smallest. By equation (109), z; — 25 < §. With s = softmax(z), the first entry s;
will be the largest. Thus:

exp(z1)
o e (111)
|Isoftmax(z)]| s1 exp(zl)—kZiL:Qexp(zi)
exp(z1) exp(z1 — 22) exp(d)
< _ < a1z
RETE s e R e R (2 VA A

Now we can write softmax(z) —softmax(z) as an aggregation of infinitesimal steps along the gradient
of the softmax in the direction zZ — z:

1
softmax(z) — softmax(z) = / V.softmax(z + ¢(z — z))de (113)
0
1
|lsoftmax(z) — softmax(z)||; < || / Vesoftmax(z + e(z — z))de||x (114)
0
1
< / ||V softmax(z + €(z — z))||1 de. (115)
0

Considering the ||V _softmax(z + £(z — z))||1 term, and denoting z(¢) = z + (z — z) and s(¢) =
softmax(z(g)), we have
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|V softmax(z()) | = [[diag(s(e)) — s(e)s(e) T1(z — ) (116)

= |50 —s@DE —z) — D s(e)is(e)i(z —z)| A1)

=1 jelll iz
L
< Z Is(e)i(zi — )], (118)

since all the s(¢);, s(¢); € [0, 1]. Noting that s(¢); < ||softmax(s(¢)||s < exp(d)/L, we have

L
exp(d
[Vesoftmax(z(e)) [ < 3 [(w0/e)(z — 2) = T2 g g o)
i=1
Thus
1
|lsoftmax(z) — softmax(z)||; < / I Vesoftmax(z + €(z — z))||1de (120)
0
Lexp(d exp(d
</ POy e = 2z, a2
thus giving us equation (110). O

Theorem 7. Consider the self-attention operation A : R>*L — RYXL with input X of L token
representations and parameters W,V € RX<_ Consider the following assumptions:

* (S1) The per-token Euclidean norms are bounded as || X.;|| < EVi € [L], and the parameter norms
are bounded at ||W|| <T and |V| < T.
* (S2) The per-query semantic dispersion (definition 2) is bounded by ds, that is:

Vi € [L], max (XWX, — X[, WX,;) <4,. (122)
JJ'€elLl ’
Then the standard softmax is £s-Lipschitz with £, = e’ /L, and the standard attention is Lipschitz

with respect to its input and parameters as follgwing for any input pair X, X € RIXL with ||X:i | <
Vi € [L), and parameter pairs W, W, V,V € R¥>4 ywith [W| < T,|W| < T and |V|| <
T,V <T:

AW v(X) — Aw.v(X)|l2.1 < ETLIE? 4+ 1) ||X — X]|2.1, (123)
[Aw v(X) — Aw v (X) |21 < &EYLPER W — W, (124)
[Aw,v(X) = Aw v(X)[l21 < LE[V = V| (125)

Proof. Now, given the upper bound on the per-query semantic dispersion J, in equation (122), we
can apply Lemma 4 with § = §;, giving us a &s-Lipschitz softmax with £ = exp(ds)/L.

Next, we can show equation (123) utilizing lemma 4 and adapting Li et al. [36, Lemma B.2].

AW v(X) — Aw v (X) 2.1 = || VXsoftmax(XTWX) — VXsoftmax(X WX)|lo;  (126)
< [[VXsoftmax(X ' WX) — VXsoftmax(X' WX) a1 (A1)

+ ||[VXsoftmax(X TWX) — VXsoftmax(X TWX)|l2.1 (Ag)

+ [[VXsoftmax(X TWX) — VXsoftmax(XTWX)|la.1. (A3)

We will handle each of the equation (A;), equation (A5), and equation (As) individually. We
will use a;; to denote the j-th entry of softmax(X' WX,;), and aj;, a,; to denote the j-th entry
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of softmax(XTWX_;) and softmax(XT WX_) respectively. Note that, by lemma 4 and equa-

tion (122), all Ajiy Aji, éji < €s = exp(§s)/L.

L

(A1) = [V(X = X)softmax(X WX) 2, = Y [ V(X — X)softmax(X WX, )|

i=1

L L
= Z Z )il

B B B L L B
<Vl Z [ Z(X:j =X j)agill < VI Y IX — Xlagil

i=1 j=1 i=1 j=1
L L B L B B

SYEY Y X =Xl =T D X = X]lo1 = TELX = X 2,1,
i=1j=1 i=1

where we utilize the fact that | V]| < .

(As) = | VX [softmax(X T WX) — softmax(X WX)] |21
L
= | VX[softmax(XTWX;) — softmax(X WX,)]|
i=1

=2 IV

i=1 7

L L
<V ZZ 1Xjlllaji —ajil <TED D laji — ajil
e

= i=1 j=1

Mh

jlagi —ag)ll
1

~
~

~

=TE ||softmax(XTWX ;) — softmax(XTWX;Z-)Hl
1

1=

L L
< TEE, Z IXTW (X, — Xa)[1 = YEL D D XWX, — X))

i—1 i=1j=1
L L
< TS S IRTWIIK - X = 726 30 X - Xl [ S0 IXTw
i=1j=1 =1 7=1
L L
< TEEG YK = Xl W I1X51)
i=1 Jj=1

L
STEXTLY X — Xl = TE2GTLIX — X2,

i=1

utilizing equation (110) and the assumption that || W{| < T and || X ;|| < E forall i € [L].

(43) = ||[VX [softmax(XTWX) - softmax(XTWX)] [l2,1

L
= Z | VX [softmax(X T WX_;) — softmax(X WX.,;)]||
L L
=Y VY X5 — a5
=1 =1

47

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

137)

(138)

(139)

(140)

(141)

(142)



L L _ L L
<IVID D D IX gl — a5l < TED D " fag — a4l (143)

i=1 j=1 i=1 j=1
L
=TE ) [lsoftmax(XTWX,;) — softmax(X  WX.;)|1 (144)
=1
<LgSZHXTWX ~XTWX,|; = Hgszz X.;)TWX,| (145)
= i=1 j=1
STEstZI\X - XWX = _stHWX | ZHX =Xyl (1406
i=1 j=1
L — —
= T2 [WX[[IX = X|21 (147)
=1
— L — —
< YEGIWIIX = Xloa Y Xl < YE2ETLX = X2, (148)
i=1

Combining the individual bounds on equation (A;), equation (As), and equation (A3), we have the
following bound as per equation (123):

AW v(X) — Aw v(X)l2,1 < ETLETE2 4+ 1)||1X — X|l2.1, (149)

For equation (124), we note the following:

[Aw v (X) = Aw v (X) |21

= ||[VXsoftmax(X ' WX) — VXsoftmax(X WX) |2 (150)
L
= Z | VX (softmax(X TWX,;) — softmax(XTWX_;))| (151)
=1
L
< VI X (softmax(X TWX.;) — softmax(XTWX.))]. (152)
=1

Denoting aj; as the j-th entry of softmax(XTWXn-) and aj;; as the j-th entry of
softmax(X TWX_;), and using the assumption that | V|| < Y, we have

L L
AW v (X) — Aw v(X)[l21 < TZ HZ aji — ;)Xo <TI0 l(azi —az) X))
=1 j=1

i=1 j=1
(153)
L L
<T ZZawaﬁmX:jH (154)
L
< EZ [|softmax(X TWX.;) — softmax(X TWX_;)|l1, (155)

where we use the assumption that ||X.;|| < Z. Now, utilizing lemma 4, we have

L
AW v (X) = A v(X)]l21 < TEY &IIXTWX,; — XTWX,|y (156)

i=1
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L L

= YE¢, Z Z XWX, — X WX, (157)
i=1 j=1
L L
<TEE Y D IXIW - XWX, (158)
i=1 j=1
L L
<TE Y Y IXGW X W] (159)
i=1 j=1
L L
STE D Y IXGW = W < &LPTE? [W — W, (160)
i=1 j=1

where we utilize ||X.;|| < Z twice, thus giving us equation (124).

For equation (125), we note that

AW, v(X) = Aw v (X) ]2 = [[VXsoftmax(X T WX) — VXsoftmax(X WX)l2,;  (161)

L
=Y (V= V)Xsoftmax(X WX,,)|| (162)
=1
L
<V = V[ [ Xsoftmax(X WX.;)|. (163)

i=1

Noting the fact that Xsoftmax(X T WX;) is a convex sum of the columns of X, its maximum
Euclidean norm is bounded by maximum Euclidean norm of the individual columns, max; || X.,||,
which itself by bounded from above by Z. This simplifies the right-hand-side above to LZ[|V — V||,
giving us equation (125). O

Remark 1. For the Lipschitz constants in definition 1, Ax(&) = &LT(2IE2 + 1) =
exp(8s)T(2IZ2 + 1), A\w (&) = ETL?E? = exp(ds)YLE? and Ay = L= with & = exp(ds)/L
and 8 defined in equation (122). Under the assumption (S2) of theorem 7, 65 < 2I'=Z2,

G.2 Regular Input-agnostic Sparse Softmax based Attention

Lemma 5. Given a maskb € {0, 1}* with k nonzeros, define the i-th entry of the masked softmax
softmaxy, : REY — Sy, for an input z € R as:

softmaxp (z); = _oplab (164)

L
Zj:l exp(2;)b;
Now, for any z,% € R¥ with

max zi—2; <0, and max Zi —%; <0, (165)
i,5€[L]:b=b;=1 i,j€[L]:b;=b;=1
for a constant § > 0, we have the following:

el

|Isoftmaxp (z) ||ec < —,
i (166)

& &
e e
||softmaxy (z) — softmaxp (z)]|1 < ?Hb ©(z-2)|) < ?Hz — 7|1,
where © denotes the elementwise multiplication of two vectors.
Proof. For any z,7 € RL and a fixed mask b € {0, 1} with k nonzeros, let z[b], z[b] € R¥ denote

the k-dimensional vectors corresponding to the unmasked entries of z, z. Then, utilizing lemma 4 for
a softmax operation over a k-length vector with equation (165), we have the following:
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exp(d)

Jsoftmars () = [softmax(z[b])] < < (167)
Furthermore,
softmaxs (z) — softmaxi (2)1 = ||softmax(z[b]) — softmax(z[b])|l1 (168)
< 2P0 1) — b, (169)
= 6 (2 -2 (170)
< exz(é)nz_znl, (171)

where the last inequality is from the fact that ¢; distance between masked vectors is smaller than the
/1 distance over the full vectors. O

Theorem 8. Consider the self-attention operation A : R — RIXL with input X of L token

representations and parameters W,V € R ytilizing a k-regular input sparse agnostic masking
function m : REXE — {0, 1}E2%L ywhere m(D) = MVD € REXL. Consider the following
assumptions:

* (R1) The per-token Euclidean norms are bounded as | X.;|| < EVi € [L], and the parameter norms
are bounded at ||W|| <T and ||V] < T.
* (R2) The per-query semantic dispersion (definition 2) is bounded by 6, that is:

Vi € [L], max (XWX, — X[, WX,;) <6, (172)
34" €lL),Myi=M;r; =1~ ’

Then the masked softmax is &,.-Lipschitz with &, = " /k, and the masked attention is Lipschitz with
respect to its input and parameters as following for any input pair X,X € R™E with | X.;| <
Vi € [L), and parameter pairs W, W, V,V € R¥>4 with [W| < T,||W| < T and |V| <
T, VI <T:
AW, v(X) = Aw,v(X)[l21 < &TE(QRIE? + 1) || X — X]|2,1, (173)
HAW,V(X) - AV_V,V<X)H2,1 < 5TTLI€E3HW - V_VH’ (174)
AW v(X) = Aw,v (X)[21 < LE[V = V. (175)

Proof. Now, given the upper bound on the per-query semantic dispersion d,. in equation (172), we
can apply Lemma 5 with § = §,., giving us a &,-Lipschitz softmax with &, = exp(d,.)/k.

Note that, given a k-regular input agnostic masking function m and the corresponding mask
matrix M, we know that, for any column M.;,i € [L],Zle Mj; = k, and for any row
M,.,i € [L], Zle M;; = k — the mask matrix has k nonzeros in each row and each column. We de-

note the masked softmax with a mask matrix M of a dot-product matrix D € RZ*Z as softmaxpg (D),
defined as the columnwise masked softmax, which itself is denoted as softmaxy, (D.;) and defined
in equation (164).

For equation (173), we proceed as follows:

[Aw,v(X) — Aw,v(X)]|2,1

= || VXsoftmaxy (X WX) — VXsoftmaxp (X TWX) |21 (176)
< || VXsoftmaxpy (X T WX) — VXsoftmaxp (X T WX)||2.1 (B1)
+ || VXsoftmaxp (X TWX) — VXsoftmaxpye (X T WX)|2.1 (B2)
+ ||[VXsoftmaxp (X T WX) — VXsoftmaxp (X TWX) o1 (B3)
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We will handle each of the equation (/3), equation (535), and equation (33) individually. We will
use aj; to denote the j-th entry of masked softmaxny,, (X WX,;), and aj;, a;; to denote the j-th
entry of softmaxy,, (X WX;) and softmaxys,, (X T WX_;) respectively. Note that, by lemma 5
and equation (172), all a;;, @;s, 354,35 < & = exp(6r)/k.

L
(B1) = V(X = X)softmaxy (X TWX) [l = Y [|[V(X — X)softmaxpr,, (X WX,;)|
=1
(177)
L L B L L B
=YV Y X =Xyaull <IVIYC I DD (X —Xy)al (178)
i=1 j=1,M;;=1 i=1 j=1,M;;=1
L L L L
<IVIYS D0 Xy —Xylllaul Y6 > IIX, =Xl (179)
i=1j=1,M;;=1 =1 j=1,M;;=1
—T@ZZH DX, — Xy ||fmzzﬂ ji = DXy =Xyl (180)
i=1 j=1 j=11i=1
= T@Z IX.; — X ||<Z (Mj; = 1)) (181)
j=1 =1
= T&Z\\X:j — X,jllk = T&EX — X]|21 (182)
j=1

where we utilize the fact that || V|| < T, and the row sum of the mask matrix is exactly equal to k.

(B2) = ||VX [softmaxy (X T WX) — softmaxa (X' WX)] |21 (183)

—ZHVX [softmaxng . (X TWX.;) — softmaxar, (X WX.,)]|l (184)
=1

L L
=> v > X:j(aji_aji)HSHV”Z Z 1Xjllazi — ajil (185)
=1

j=1,M;;= i=1 j=1,M;;=1
L L
< TEZ Z |CLji —aji\ (186)
i=1 j=1,M;;=1
L
=TE ) |[softmaxpr, (X WX.;) — softmaxpr,, (X WX.;)|1 (187)
1=1
L
<TEG Y M, 0 XTW(X, — X)) (188)
i=1
L L
= TE¢, Z Z IXIW(X,; — X)) (189)
i=1 j=1,M;;=1
L L
<STEGY . > IXITWIX — Xl (190)
i=1j=1,M;;=1
L L
=TEGY IXa - Xl | DD IXIW (191)
i=1 J=1,M;i=1
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L L
<TESY X —XaIWIH DD 1%y
i=1 jzl,Mjizl
L

< TYERGT D (X — Xl = TE2,TR||X = X]2,1,

=1

(192)

(193)

utilizing equation (166), the assumption that |W|| < T, ||X|| < = for all ¢ € [L], and that the

column sum of M is k.

(B3) =||[VX [softmaxM(XTWX) — softmaxM(XTWX)] ll2.1

L
= | VX[softmaxr,, (XTWX.;) — softmaxyr, (X TWX,;)]|
=1
L L L L
=3V Y Xy@i—a)l <IVID. Y. I1Xgllag —ajl
i=1 j=1,M;;=1 i=1 j=1,M;;=1
L L
<STEY . D laji—al
i=1 j=1,M;;=1

L
=T= Z [|softmaxyr, (X TWX.;) — softmaxyr, (X T WX.) |1

i=1

L
<TEE Y IML @ (XTWX,; — XTWX)|)

i=1

L L 3
=T > (X - X)) WX

i=1 j=1,M;;=1

L L

=TEGY WXl | Y] I1Xy =Xy
i=1 j=1,M;;=1
L L

STEG WXl | DD I1Xy =Xy
i=1 J=1,M;;=1

L

L
STEGIWIY [ Y I1Xy —Xyll

i=1 \j=1,M;;=1

L L
< TEQQFZZH(Mﬂ =X, — X,

i=1 j=1
L L
=TT X — Xy < I(M;; = 1))
j=1 i=1
L
= T2, T Y X, — X,k = TE6,TE|X — Xl
=1

(194)

(195)

(196)

(197)

(198)

(199)

(200)

(201)

(202)

(203)

(204)

(205)

(206)

(207)

Combining the individual bounds on equation (), equation (53-), and equation (/33), we have the

following bound as per equation (173):
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1AW v(X) = Aw,v(X)l21 < &TRE2IE? + 1)[[X = X2,1,

For equation (174), we note the following:

[Aw v (X) = Aw v(X)[[2,1
= ||[VXsoftmaxy (X' WX) — VXsoftmaxy (X WX)||21

L
= [[VX(softmaxn,, (X WX.;) — softmaxn,, (X WX.;))|
=1
L

< |V]] Z | X (softmaxnr,, (X TWX.;) — softmaxp, (X WX.;))].

i=1

(208)

(209)

(210)

@211)

Denoting aj; as the j-th entry of masked softmaxng,, (X WX.;) and @;; as the j-th entry of the

masked softmaxyy, (X T WX;), and using the assumption that || V|| < Y, we have

AW v (X) = Aw v (X)||2.1

L L L L
<STY Y (ap—a) Xyl <Y > e — @)Xy
i=1  j=1,M;;=1 i=1j=1,M;;=1
L L
ST Y ey —agl| Xy
i=1 j=1,M;;=1
L
< EZ [|softmaxp,, (X TWX.;) — softmaxyr, (X WX.)|1,

where we use the assumption that ||X.;|| < 1. Now, utilizing lemma 5, we have

L
IAw v (X) = A v(X)ll21 < TEY &M, © (XTWX,; — XTWX)|[)
=1
L L
=TEE Z Z X WX, — X WX,
i=1j=1,M;;=1
L —
<SYEGY Y IXIW - XIW[IX]

i=1 j=1, M,,:l

T=2¢ Z Z IXIW - X W]

i=1 j=1,M;,=1

L L
STEGDY . Y IXGlIW-W|

i=1j=1,M;;=1

where we utilize || X.;|| < E twice, thus giving us equation (174).

For equation (175), we note that

212)

213)

(214)

(215)

(216)

217)

(218)

219)

(220)

AW, v(X) — Aw v (X)l2,1 = [|[VXsoftmaxy (X T WX) — VXsoftmaxy (X WX) |21
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L
Z |(V — V)Xsoftmaxpr, (X T WX.,)|| (222)

<|IV-V]| Z [ Xsoftmaxnr, (X WX.;)]|. (223)
i=1

Noting the fact that Xsoftmaxyr,, (X WX_;) is a (sparse) convex sum of the columns of X, its
maximum Euclidean norm is bounded by maximum Euclidean norm of the individual columns,
max; || X.;||, which itself by bounded from above by =. This simplifies the right-hand-side above to
LE||V — V||, giving us equation (175). O

Remark 2. For the Lipschitz constants in definition 1, A\x (&) = &EYT(2IE2 + 1) =
exp(0,) YT (2I'Z2 + 1), A\w (&) = & YLEZ? = exp(d,)YLE3 and \y = LE with &, = exp(6,.)/k
and §,. defined in equation (172). Under the assumption (R2) of theorem 8, §, < =2,

Remark 3. Note that, with k — L, which corresponds to standard-softmax based attention, 6, — s,
and the results in theorem 8 reduce to the results in theorem 7.

G.3 Heavy-hitter Input-dependent Sparse Softmax based Attention

Lemma 6. Given a k-heavy-hitter masking function m : R — {0,1} such that, for any z € R”,
with the corresponding mask b = m(z), the number of nonzeros in b is exactly k, and
min zi — 25 > A, (224)
i,je[L]:bizl,b]‘:O
where A > (0 denotes the smallest gap between the k heavy-hitter unmasked values in z and remaining
masked values. Furthermore, for any z,%z € RY with corresponding input dependent masks b = m(z)
and b = m/(z) respectively,

max zi —2; <0, and max_ % — 2 <0, (225)
i,jE[L]:b;=b;=1 i,j€[L]:b;=b;=1

for a constant § > 0. Denoting the combined masked vector as ¢ = bVb with ¢; = I(b; = 1Vvbh; = 1),
we have the following:

) §
softmaxp ()] e < % |[softmaxy (z) — softmaxg (2)|l; < (1+ 1/a) %Hc@ (z— %) (226)

where © denotes the elementwise multiplication of two vectors.

Proof. For any z,z € R with input dependent masks b,b € {0,1}* with k nonzeros, let
z[b],z[b] € R* denote the k-dimensional vectors corresponding to the unmasked entries of z, Z.
Then, utilizing lemma 4 for a softmax operation over a k-length vector with equation (165), we have
the following:

|softmaxp (2)]| s = ||softmax(z[b])||ee < ex‘;ﬂ. (227)
Furthermore,
|lsoftmaxy (z) — softmaxg(z)||1
< |lsoftmaxy, (z) — softmaxp(z)||1 + ||softmaxy (z) — softmaxg (z)||1 (228)
< EXp( XPO) 1 & (5 — 3)1 + [[softmaxs (2) — softmaxg (21, (229)

where we utilized lemma 5 with the fixed mask b. Now the second term is the masked softmax
with two different masks b and b on the same input z. Then the maximum change between the two
masked softmax occurs when the entries that go from being masked to being unmasked (or vice
versa) — the ¢ € [L] such that b; ® b; = 1 — have the highest values. That is,
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||softmaxy, (z) — softmaxg (2)|1 < Z |softmaxy,(z); — softmaxg (z);] (230)
i€[L]:b;@b;=1

< > |lsoftmaxy(2)]| (231)
i€[L]:b;@b;=1
< ||b — b)|1||softmax (Z)]| co- (232)
Let k' = ||b — b||; denote the change in the mask when the input to the mask changes from z to z.

Without loss of generality, assume that z is such that b; = 1, Vi € [k] — that is the first k entries of z
are the heavy-hitters. Similarly, assume that for z, the corresponding mask b overlaps with the last
k" entries of band b, = 1Vi € [k — k" + 1,2k — k”']. Given that &’ = ||b — b||; = 2(k — k"), we
can show that k"' = (k — k'/2).

Note that, by equation (224), we know that there exists thresholds ¢, € R such that
” zi > t,i € [K] _ zi>tielk—k +1,2k—k"]
zi<t—Ajielk+1,L]° zi<t—Ajie|l,k—k'TURk—kK"+1,L]"

Now we will just consider the first (2k — k') entries of z and Z. We see that

o Tk -k
(2 Zz){ <(—t+A—-1),ielk+1,2k— k" e

Thus the ¢; norm between such two z and z is lower bounded as

2k—k"
lc® (z—2)|h = Z B (234)
k” k —k"
=Z| Z —zz|+Z| (235)
k—k”+1 i=k+1
k—k" 2k—k"
> Ha—z)+ Y |z — %) (236)
=1 i=k+1
k—k" 2k—k"
> th—5>+A|+ Yo lt-5 -4 (237)
1=k-+1
=(k—k”)(l(t—fHAlJr\(t—ﬂ—Al)- (238)

Denoting (¢t — t) as ¢, consider the term (Je + A| + |¢ — Al) and note that A > 0. We can see
that, if |¢] < A, the term is equal to A + |¢| + A — |e] = 2A. If |¢| > A, then term is equal to
le] + A+ |e] — A = 2|¢| > 2A.

Thus we have

le®(z—2)lh = (k= E") (It =) + Al +[(t = 1) — A]). (239)
>2(k —k")A =k'A=|b-b|A, (240)

giving us ||b — b||; < (1/A)||c ® (z — 2)||;. Utilizing this in combination with equation (229) and
equation (232), we have

exp( )

Ibo @2+ 1/8)22 e o @ -2,

[|softmaxi, (z) — softmaxg (z)[|1 < k
(241)
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exp(d)
=k

1+1/A)|co (z—12)|1, (242)

since ||[b ® (z — z)||1 < |lc ® (z — 2)]1 as b is contained with c. This gives us the desired result in
equation (226). O

Theorem 9. Consider the self-attention operation A : R>*E — RIXL with input X of L token
representations and parameters W,V € R4*? utilizing a k-heavy-hitter input-dependent masking
function m : RY — {0, 1}~, applied columnwise to the dot-product matrix to get a mask matrix
M € {0, 1}E*E, Consider the following assumptions:

s (HI) For any query-key pairs X, X € R¥L, the k-heavy-hitter mask M = m(X " WX) (applied
columnwise) has a minimum per-query semantic separation (definition 3) of Ay, > 0, that is

Vi€ [L], min (XWX, — X[ WX,) > Ay (243)
4,4’ €[L),Mj;=1,M;,=0" ~ -

* (H2) A maximum of Bk, 3 > 1 query tokens attend to a single key token, that is, |M,.||1 < Bk for
any i € [L].

* (H3) The per-token Euclidean norms are bounded as || X ;|| < EVi € [L], and the parameter norms
are bounded at |W|| < T and |V| < T.

* (H4) The per-query semantic dispersion (definition 2) is bounded by 6y, that is:

Vi € [L], max (X WX, — X[, WX,;) < 6. (244)
JJ' L], My =M, =1" ~ ’

Then the masked softmax is &,-Lipschitz with &, = (" /k) (1 + 1/a,.), and the masked attention

is Lipschitz with respect to its input and parameters as following for any input pair X, X € RxL
with ||X ;|| < 1Vi € [L], and parameter pairs W, W, V,V € R with [W| < T,||[W| <T
and |[V]| <1, ||V] < T

IAw v (X) - Awy(X)lar < 61k (20226 1)+ 0= ) IX - Ky, 249
h

[Aw, v (X) = Aw v (X)[l2,1 < 26, YLEZ?|W — W], (246)

[Aw v(X) — Aw v(X)[l21 < LE[V = V. (247)

Proof. Now, given the upper bound on the per-query semantic dispersion &y, in equation (244), and
the per-query semantic separation Ay, in equation (243), we can apply Lemma 6 with § = §;, and
A = Ay, giving us a &,-Lipschitz softmax with &, = exp(d)(1 + 1/a,)/k.

Note that, given a k-heavy-hitter input-dependent masking function m and the corresponding mask
matrix M, we know that, for any column M;, i € [L], Zle M;; = k. However, unlike the k-regular
input-agnostic mask, for any row M., € [L], Zle M;; # k. Here, we will utilize assumption H2
which states that, for any row M., Zle M;; < BEk.

For equation (245), we note that the mask matrix is input-dependent, and thus will denote as mask
matrices M, M, M for the following dot-product matrices (XTWX), (X" WX) and (X" WX)
respectively. That is, M = m(XTWX),M = m(X"WX),M = m(X"TWX), where the

masking function m is applied columnwise to the dot-product matrices. Given this, we proceed as
follows:

[Aw,v(X) — Aw,v(X)]|2,1

= || VXsoftmaxy (X WX) — VXsoftmaxyy (X TWX) |21 (248)
< || VXsoftmaxpy (X T WX) — VXsoftmaxp (X T WX)||2.1 (Cy)
+ || VXsoftmaxp (X T WX) — VXsoftmaxy (X WX) |21 (Cy)
+ || VXsoftmaxy, (X WX) — VXsoftmaxy (X WX)|[2,1. (Cs)
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We will handle each of the equation (C1), equation (C5), and equation (C5) individually. We will
use aj; to denote the j-th entry of masked softmaxn,, (X WX,;), and aj;, a;; to denote the j-th

entry of softmaxy; (X" WX.;) and softmaxy; (X WX.;) respectively. Note that, by lemma 6
and equation (244) in assumption H4, all a;;,a;;,3,; < exp(0p)/k = &, /(1 + 1/A).

L
(C1) = V(X — X)softmaxpg (X TWX)||21 = Z [V(X — X)softmaxny, (XTWX.;)|| (249)
=1
L L B L L ~
=3IV D> Xy =Xpau < IVIDC I YD (X —X)ajill (250)
i=1 j=1,M;;=1 =1 j=1,M;;=1
L L 5 L L
_ . _
<IVIYS D> IXy = Xylllagl < Tm oD X=Xyl @sh
i=1 j=1,M;;=1 Mi=1j=1,M;;=1
5}1 L L
=r—>r M;; =1)|X,; — X,
v ggﬂ i = DXy =Xy (252)
5 L L
— h L= L — X s
=T, 2 2 M0 = DI — X (253)
5 L
. _
= Tm Z 1% = X5l (Z I(M;; = 1)) (254)
j=1 i=1
L
&n - Y& 8k _
<r—" N7 IX, - X8k = —M X - X 2
<Yy, 2 1%~ X8k = 5 T - X 255)

where we utilize the fact that ||V|| < T, and the row sum of the mask matrix is upper bounded by Sk
from assumption H2.

We handle equation (C') in the following manner:

(C5) = || VX [softmaxy (X T WX) — softmaxy, (X WX)] ||,1 (256)
L
= [ VX[softmaxpr,, (X WX,;) — softmaxy; (X WX,;)]]| (257)
=1
L L B
=> v > X.j(azi —aji)|| (258)
i=1

j:l,Mjizl\/Mjizl

L L
< VI > 1Xjllagi — ajil (259)

=1 j:l,]V[jizlvz\;[jizl

L L
> > |aji — aji (260)

<7T=
1=1 j:l,Mj,;:lV]\hljizl
L
=T= Z |softmaxys, (X TWX.;) — softmaxM:i(XTWX:i)Hl (261)
=1
L ~ —
<TEG D M VM) 0 XTW(X,; — X)) (262)
i=1
L L B
= T2, ) > XWX, — X)) (263)

1=1 j=1, M;;=1VM;;=1
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L L
<YEG Y >, XWX = Xl

=1 =1 M;;=1VM;;=1

. L
=126, > X — Xl > X5 Wi
=1 j:l,Mjizliji:]-
. ] L
<126, 31X - Xa|[[W] 2. Xl
i=1 j:l,MjizlvM]’iil
L ) _
< TE&IZ X = Xl - (2KF) = 27 TRE? X = X][2,1,
i1

column sum of M is £, thusX:_1 (Mz—l\/Mz_l)<2k

We handle equation (C's) in the following manner:

(C3) = |[VX [softmaxy, (X T WX) — softmaxy (X WX)] [|21

L
= Z ||VX[softmaxM:i (XTWX,;) — softmaxM:i(XTWX:i)] I
i=1
L

L
=20V Y Xy -a)l
i=1

j:l,Mj,;:lVMjizl

L L
<V > 1X5 01l — ajil

i=1j=1, Mjizlij,-:l

L

T2 Z laji — ajil
i=1j=1 Mj;=1 ji=1
L
2

I/\
[I]

v—‘
=
;_4

[Isoftmaxy, (X" WX.;) — softmaxy, (X WX.i)|lx
L
< TEE, Z (M. VM) o (XTWX,; - XTWX.,)|

L L
= TE¢, Z Z (X — X)) WX,

=1 j=1,M;;=1vM;;=1

L L
<126, Z 1Xe5 = X5 [TWXei|
=1 j=1 Ni;;=1V ;=1
L - L _
i=1 j=1,M;;=1VM;;=1
L - L _
<126, Y WX, > X=Xyl
i=1

Gj=1,M;;=1VM;;=1
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(264)

(265)

(266)

(267)

< Eforall i € [L], and that the

(268)

(269)

(270)

Q271)

272)

(273)

(274)

(275)

(276)

277)

(278)



L L
< T2, W) S S X, Xy (279)

=1 \j=1,M;;=1VM;;=1

L L
< YEZ,T Z Z I(Mj; =1V My; = 1)||X; — X, (280)
i=1 j=1
L B L . B
=TE2T ) Xy — X (Z I(Mj; =1V Mj; = 1)) (281)
j=1 i=1
L B L L B
STYEGDY X, — Xy (Z I(Mji = 1) + > I(M;; = 1)) (282)
J=1 i=1 =1
L —
S TEXGT Y |IX.; — Xyl (B + k) (283)
j=1
L — —
= 2YE6 T8k Y [|X.; — X[k = 2YE2ETBK(|X — X|2,1 (284)
j=1

Combining the individual bounds on equation (C'), equation (C5), and equation (C'3), we have the
following bound as per equation (245):

B

_ X < =2 P
v v (X) - Awy(X)la < Tk (202205 + 1)+ 1

) 1X = X][2,1. (285)

First, let us denote the input-dependent mask matrices as M and M for the dot-product matrices
(XTWX) and (XTWX) results. Thus M = m(XTWX) and M = m(X TWX). Utilizing this
for the left-hand-size of equation (246), we note the following:

[Aw v (X) = Aw v (X) |21

= ||[VXsoftmaxy (X' WX) — VXsoftmaxy; (X' WX)||21 (286)
L
= Z [VX (softmaxnm,, (X WX.;) — softmaxy; (X' WX,,))|| (287)
=1
L
< VI X (softmaxa,, (XTWX.;) — softmaxyy,, (X WX.;))]. (288)
=1

Denoting a;; as the j-th entry of masked softmaxyr,, (XTWX:i) and a;; as the j-th entry of the
masked softmaxy; . (X" WX,;), and using the assumption that [ V|| < T, we have

AW v (X) — Aw v (X)l|2,1
L

L
<T> > (aji — a;i) Xy (289)

=1 j=1,M;;=1VM;;=1

L L

<T), > [(aji — @)Xl (290)
=1 jil,Mjiil\/M]’iil
L L

<1 laji — ail[1X.4] 291)
i=1 j=1,M;;=1VM;;=1
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L
TE Z [softmaxn,, (X T WX.;) — softmaxy; (X WX,;)||1, (292)

where we use the assumption that ||X.;|| < E. Now, utilizing lemma 6, we have

L
1AW v(X) = Aw v (X)[210 S TED & [(M vV M) © (XTWX,; — XTWX )|l (293)
i=1

L —

= TE¢, Z Z XWX, - XWX, (294)
i=1 j:l,Mjizl\/Mjizl

L L B

<YEG Y > IXGW = XWXl (295)
=1 jzl,]\/fjizl\/]\jfji:].
L L B

<TE Y > IXJW - X W] (296)

i=1 j=1,M;;=1VM;;=1

L L B

<TEX Y > 1X51[|W — W] (297)

=1 jil,Mjiilijiil

B L L
<HYE W - W > X0, 298
=1 j:l,MJizl\/Mjizl
— L —
<YW — W Y (2kE), = 2k, TLE? W — W, (299)
=1

where we utilize ||X.;|| < E twice, thus giving us equation (246).

Denote the input-dependent mask matrix as M = m(X " WX) for the dot-product matrix (X WX),
we can express equation (247) as following:

AW, v(X) — Aw v (X)l2,1 = [|[VXsoftmaxy (X T WX) — VXsoftmaxy (X WX) |21

(300)
L
Z |(V = V)Xsoftmaxy, (X TWX.,)|| (301)
- L
<[V =V [ Xsoftmaxy, (X WX,;)]]. (302)
1=1

Noting the fact that Xsoftmaxp,, (XTWX:Z-) is a (sparse) convex sum of the columns of X, its
maximum Euclidean norm is bounded by maximum Euclidean norm of the individual columns,
max; ||X.;||, which itself by bounded from above by =. This simplifies the right-hand-side above to
LE||V — V|, giving us equation (247). O

Remark 4. For the Lipschitz constants in definition 1,

)‘X(gh) (1+1/Ah)

= exp(8,) Y (1 + 1/a,) (ZFEQ(l +6) + (1+61/A,,)> )

&Yk (2r52(1 +8)+ B)
(303)
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Table 5: Bounds for &, Ax (£), Aw (), Ay from definition 1 for different forms of attention. Note that
Ay = LZ for all forms of attention, and thus elided from this table.

Attention £ Ax (&) Aw (&)
Full (theorem 3) el efsT(2r=2 + 1) SsrLE?
k-regular (theorem 4) e(’i" eSrY(2re? +1) eSrrre?

k-heavy-hitter (theorem 5) S (1+1/a,) €Y (B+20Z2(B + 1)(1 + 1/a,)) 260 TLE (1 +1/ay)

and M\ (€) = 26, YLEZ3 = 2exp(8,)YLZE3(1 + 1/ay) and Ay = LZ with &, = exp(6,)(1 +
1/AL)/k and 6y, defined in equation (244). Under the assumptions (HI) and (H3) of theorem 9,
op < 2T'E2 — Ay,

G.4 Comparison of Bounds between Full and Heavy-hitter Attention

To compare the stability constants for all different forms of attention, we have put them together
in table 5. To characterize the conditions when the stability constants for the heavy-hitter sparse
attention provides improved guarantees over full attention, we have the following result:

Corollary 2. Consider the definitions and conditions of theorem 3 and theorem 5. Further assume
that (i) the maximum per-query semantic dispersion for standard attention is 8, < 2I'22, while
that of heavy-hitter attention is 0p, = 105, and (ii) the heavy-hitter minimum per-query dot-product
separation is A, = cod5 for some positive constants c1, ca. Then Aw (&) < Aw (&s) when

1

01+5S

1
log 2 (1 + ) <1, (304)
6253

and Ax (&) < Ax (&) when

1+ 6i1og <2r52(1 +5) (1 + ) + 5) — Llog(@ar=2 + 1) < 1. (305)

6253 55

Proof. We arrive at equation (304) by comparing Ay (&s) = exp(d,)YLZ? in remark | with
Aw (€n) = 2exp(8,)YL=3(1 + 1/a,). We arrive at equation (305) by comparing Ay (£,) =
exp(d,)(2I'=2 + 1) in remark | with A\ x (¢) defined in equation (303) in remark 4. O

Based on this result, we want the constant c¢; (corresponding to the 10 5 |
semantic dispersion) to be small and the constant c, (corresponding to the 0.8 g

semantic separation) to be large. However, this condition also depends on 064 = 5

the full attention dispersion 5. We present this relationship for Ay (§5) & 0] - %;30
vs Aw (&) in figure 21. For small values of d5, co needs to be quite ’ = 324
large and ¢; needs to be quite small for Ay (&) < Aw (€5). However, 021 JJ
once J; is large enough, the condition in equation (304) holds for almost =

all values of cq,cs. This indicates that it is relatively easy to satisfy &
the condition for heavy-hitter sparse attention to have better stability Fjgure 21: ~ Relation-
constant Ay (&},) with respect to the learnable attention parameter W ship of ¢y, ¢, 0, in equa-
than the Ay () for full attention. However, the conditions for Ax (§x) < tion (304). For any
Ax (&s) in equation (305) are bit more restrictive as it depends on 3 which  yalue of §,, the region
corresponds to the number of query tokens that might attend to the same spove the line denotes
key — the attention sink ratio. This relationship is visualized in figure 22. yaJues of ¢y, ¢5 for which
While for small values of 5 (column 1-3) and large enough §;, almost M (&) < Aw (&s).

all values of ¢y, co satisfy equation (305). However, as the value of 3

increases, the conditions are only satisfied for large values of §, and small enough ¢;. We present
the distribution of the semantic dispersions, semantic separations and sink ratios different datasets
computed over the whole training set with the trained model in table 6. Overall, it shows that the
full attention dispersion d; is usually significantly larger than the heavy-hitter attention dispersion
0r. We present different percentiles of the values seen over all queries in all training points across
all transformer blocks in the model. Based on these values, we also plug them into the conditions
equation (304) and equation (305) in corollary 2 and report the left-hand-side values in the table. We
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B=16 B=32

0.25 0.50 0.75 1.00 0.‘25 0}50 0.‘75 1.00 O.‘25 0‘50 0.‘75 1.00 0.‘25 0150 O.‘75 1.00 0}25 0.‘50 0.‘75 1.00 0‘25 0.‘50 0}75 1.0
C1 C1 C1 C1 C1 C1
Figure 22: Relationship of ¢1, co, d, 5 in equation (305). For any value of §, and (3, the region above
the line denotes values of ¢y, co for which Ax (£,) < Ax (€s). In these figures, we assume 5, = 2I'=2
so that we just need to vary d; without considering different values of I and =.

see that, in almost all cases, the left-hand-side values are lower than 1, implying that the heavy-hitter
attention has better guarantees, which aligns with the empirical results we see in figure 7. This
is especially true when we only consider the values using the 95-th percentile values for semantic
dispersions, sink ratios, and the 5-th percentile values for the semantic separations, which is the most
relevant quantity as we have been studying the worst-case stability constants. There is one case where
the values are not less than 1, counter to what we see in the empirical evaluations of figure 7. Note
that we are evaluating these conditions at the optimum (the final trained model) instead of over the
whole parameter space. For that reason, it is important to look at the whole loss surface which we do
in the sequel.

Table 6: Empirical distribution of the semantic dispersions d;, §5,, semantic separations Ay, and 3
for different datasets. For each metric, we report the 75-th, 90-th, 95-th and 100-th (maximum)
percentile (except for Ay, for which we report the 25-th, 10-th, 5-th, O-th (minimum) percentile as
it is a lower bound). The left-hand-side (LHS) of equation (304) and equation (305) are computed
using the corresponding percentile values. Note that for this set of results, k& = 5 in heavy-hitter
sparse attention.

Dataset Full attn dispersion §¢ HH attn dispersion dp, HH separation Ay, Sink ratio 8
ListOps [8.61, 18.5,29.4, 87.8] [3.51,6.74,9.67, 28.2] [0.016, 0.005, 0.002, 1e-9] [0.2, 0.6, 3.0, 119.6]
Parity [8.30, 10.1, 11.2, 19.4] [2.31,3.13 3.78,9.16] [0.062, 0.022, 0.011, 1e-6] [1.6,2.6,3.2,6.6]
EvenPairs [2.03,4.73,9.44, 14.6] [1.03, 2.84, 5.50, 8.25] [0.009, 0.003, 0.002, 3e-8] [1.2,3.4,5.2,8.0]
MissDup [4.63,9.25,17.1,23.9] [2.36,4.25, 4.88, 10.5] [0.018, 0.006, 0.003, 1e-7] [1.4,3.0,4.2,8.0]

Dataset LHS (304) LHS (305)

ListOps [0.97, 0.69, 0.56, 0.57] [0.90, 0.67, 0.59, 0.61]

Parity [0.70, 0.76, 0.80, 1.22] [0.72, 0.81, 0.86, 1.29]

EvenPairs [3.17,1.98, 1.31, 1.80] [3.02,2.10, 1.42, 1.90]

MissDup [1.53,1.09,0.67, 1.41] [1.53,1.15,0.71, 1.20]

G.5 Loss Surfaces and Estimated Lipschitz Constants

Beyond understanding the relative behavior of the aforementioned stability (and thus Lipschitz)
bounds, we also empirically visualize the training loss landscapes for 4 of the tasks in figure 23. We
use the version of transformer block with the ReLU activated MLP (for loss surfaces of transformer
blocks with GELU activated MLPs see appendix G.5 in figure 25). We utilize the techniques
proposed in Li et al. [37]. Given the training model parameters ©, we pick two random directions
Y1 and 92, and then plot the training loss £(© + 211 + y¥s) at the grid point (z,y), z,y €
[~1,1]. * The grid points are computed as a granularity of ¢ = 0.005 in both axis, that is,
z,y € {-1,-1+¢,—-1+42¢,...,1 —g,1}. We utilize the computed loss at each grid point to
generate contour plots (a heatmap visualization of the loss surface is provided in appendix G.5 in
figure 24). Note that the grid point (0, 0) corresponds to the loss £(©) of the trained model. The
contours on the loss surfaces of full attention model are somewhat asymmetric — see for example,
around the center in figure 23c, figure 23d, and moderately in figure 23a. In contrast, the loss surfaces
of the heavy-hitter top-£ attention model are quite symmetric, especially around the center.

“Note that the random directions are “filterwise normalized”, which means that each matrix of parameters is
normalized independently.
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Figure 23: Loss surfaces of the models with full attention (top row) and top-k attention (bottow row)
for each of the 4 tasks considered in figure 7 with the corresponding hyperparameters utilizing the
filter-normalized version of the loss landscape visualization techniques proposed in Li et al. [37].
Note that the (0,0) grid point corresponds to the final trained model.
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(a) ListOps (b) Parity (c) Even Pairs (d) Missing duplicates

Figure 24: Loss surfaces as in figure 23 but in the form of heatmaps instead of contour plots.

Beyond visualizing the loss surface in 2-dimensions, we also utilize the loss surface to approximately
estimate the Lipschitz constant of the model in the selected random directions €1, ¥2. Given the
loss values £(6 + x191 + y¥J2) at grid points (z, y), we compute the following ratios at neighboring
horizontal and vertical grid points as an estimate of the Lipschitz constant A, in theorem 2:

[£(© 4+ a1 + yv2) — L(O + (x4 )01 + yVa)]

el|da ]|
|£(© + 291 + yda) — L(O + 291 + (y + €)Y2)|

el|9z|]
We plot the distribution of these estimates in figure 27 for the loss surfaces in figure 23 of 4 of the
tasks for varying grid ranges r € (0, 1] with z, y € [—r, r]. We plot the 50-th, 75-th, 95-th and 99-th
percentile values of these estimates of the full attention model and the heavy-hitter top-k attention
model. We see that near the trained model (small values of the grid range r), the distributions of these

and

(306)
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Figure 25: Loss surfaces as in figure 23 of the models with full attention (top row) and top-k attention
(bottow row) for each of the 4 tasks considered in figure 7 and table 4. Note that both forms of
attention now utilize the MLP with GELU activation for all tasks (as opposed to ReLU activation in

figure 23).
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(a) ListOps
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STANDARD
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(d) Missing duplicates

Figure 26: Loss surfaces as in figure 25 but in the form of heatmaps instead of contour plots.

estimates are close for both the models. However, as we move farther away from the trained model
(large values of r in the horizontal axis), the distributions change significantly, and the top-k attention
model provides a smaller Lipschitz constant estimate compared to the full attention model across all
percentiles. This indicates that, at least empirically, the loss for the top-k attention model has a much
more favorable Lipschitz constant compared to that of the full attention model, which in turn implies
both faster convergence and better generalization guarantees. Thus, our stability-based theoretical
investigation in this section appears to align with our empirical observations in section 3.
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Figure 27: Distribution of the estimated Lipschitz constants computed in the random directions
utilized to visualize the loss landscape in figure 23 for full attention and top-k attention each of the 4
tasks considered in figure 7 with the corresponding hyperparameters. We report the distributions of
the estimated Lipschitz constants in the vertical axis in terms of the 50-th (dotted), 75-th (dash-dotted),
95-th (dashed) and 99-th (solid) percentiles (lower is better). On the horizontal axis, we denote the
radius of the ball around the parameters of the final learned model, and visualize how the distributions
vary as the ball radius is increased.
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