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ABSTRACT

Leveraging video pre-trained models has led to significant advancements in video
understanding tasks. However, due to the inherent bias towards temporal learn-
ing in video pre-training, these models fail to capture comprehensive spatial cues.
Additionally, the widely-used supervised adaption methods lack fine-grained se-
mantic guidance as single action labels cannot precisely depict the intra-class di-
versity. To address these challenges, we incorporate the general capabilities of
large Vision Language Models (VLMs) and propose a cross-modal collaborative
knowledge transfer method to enhance video understanding. First, we propose an
attentive spatial knowledge transfer method that distills spatial knowledge from
the VLM’s image encoder, enabling the precise capture of spatial information.
Next, we design a contrastive textual knowledge transfer approach that achieves
detailed video representations through fine-grained text-video alignment. Owing
to the cross-modal knowledge transfer, the video representations are capable of
attending to informative spatial regions and aligning with fine-grained texts that
carry rich semantics. Extensive experiments demonstrate that our method achieves
state-of-the-art performance across various datasets, validating its effectiveness.

1 INTRODUCTION

Video action recognition is a fundamental task in the pursuit of intelligent video understanding.
Conventional methods focus on spatio-temporal representation learning by designing exquisite back-
bone architectures, including convolutional neural networks (CNNs) (Arnab et al., 2021; Carreira
& Zisserman, 2017) and Transformers (Fan et al., 2021; Bertasius et al., 2021; Liu et al., 2022).
However, these methods typically follow a supervised learning paradigm, which comes with high
costs due to the need for large-scale video data curation and labeling. Recently, there is a new re-
search shift in improving representation modeling that relies on self-supervised techniques to learn
the inherent property in videos prior to downstream adaption. By effectively utilizing uncurated
video data during pre-training, these video pre-trained models exhibit powerful temporal encoding
capability, facilitating various downstream tasks with remarkable performance (Tong et al., 2022;
Feichtenhofer et al., 2022a; Huang et al., 2023; Zhao et al., 2024b; Li et al., 2023a). Despite these
advancements, there are still some limitations. Firstly, video pre-trained models often lack suffi-
cient spatial understanding due to their video-centric pre-training objectives, making their direct
adaptation to downstream tasks suboptimal especially when actions differ in subtle spatial cues (as
illustrated in Fig. 1 (a), those actions such as ‘rock scissor paper’ and ‘dunking basketball’ require
precise spatial cues for identification). To enhance the spatial understanding, some methods (Wang
et al., 2024; Zhao et al., 2024a) scale the video pre-training dataset to an extremely large size. Al-
though achieving excellent results, they suffer from significant training costs (e.g. (Wang et al.,
2024) needs over 8,000 A100 GPU days). While the other line enjoys the strong spatial encoding
ability of an off-the-shelf image pre-trained model and adapt it to video tasks (Pan et al., 2022;
Yang et al., 2023). Recently, with the success of vision-language models (VLM), transferring from
VLM has become a more effective approach to enhance spatial representation learning (Lin et al.,
2022; Qing et al., 2023; Chen et al., 2024; Zhang et al., 2024). Despite the expressive results, they
require meticulously designed temporal fusion modules, yet solely training these modules on video
downstream datasets is still weak at achieving comprehensive temporal understanding (Lee et al.,
2024).
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Figure 1: (a) Illustration of the actions that need subtle spatial cues to identify. It shows the model
must either distinguish the action subject from a confusing background or localize the small but
critical area where the action occurs, both of which demand precise spatial cues. (b) Illustration
of the limitation of single-label supervision. We observe that examples are semantically closer to
different descriptions rather than the single action name, highlighting the incompleteness of using
a single action label. (c) Illustration of the spatial capture ability of different models. The example
shows the video-based transfer is weak at fully focusing on the foreground, while VLM (e.g. CLIP)
is capable of encoding the critical area but prefers a broader attention pattern, and our model utilize
such advantage with minor revision that leads to a precise spatial representation.

Additionally, transfer learning methods typically adopt a supervised fine-tuning strategy to adapt
the pre-trained model to downstream tasks. However, these approaches often rely on a single label
for supervision, providing limited semantic guidance, particularly in video tasks (as illustrated in
Fig. 1(b), although the samples belong to the same action ‘somersault’, they exhibit various action
forms and occur in diverse scenarios, making it insufficient for a single action label to capture
the full semantics of all samples.). Training with such supervision indeed leads to the incomplete
representation. Recently, with the strong text encoding capabilities of VLM, some VLM-based
transfer methods have begun using action names or fine-grained descriptions as stronger supervision
signals. They either use single description (Qing et al., 2023; Ahmad et al., 2023; Huang et al.,
2024) or average multiple description at the text space (Zhang et al., 2024). However, the single text
feature is still incomplete to describe all possible scenarios where and how an action occurs.

Based on the investigation above, we attribute these issues to a lack of spatial and semantic un-
derstanding. To address these, we propose a cross-modal collaborative knowledge transfer method
based on the video pre-trained model, leveraging VLM to enhance spatial and semantic learning
while preserving the temporal understanding capabilities of the video pre-trained model. Firstly,
we leverage the powerful capabilities of VLM in encoding spatial details (illustrated in Fig. 1 (c))
to enhance the spatial understanding of video pre-trained models. Specifically, we propose an at-
tentive spatial knowledge transfer module to enhance the generalization of video features through
feature distillation. To address the domain gap between VLM and video features—where VLM of-
ten captures broader content, inevitably including irrelevant information to confuse video classifica-
tion—we design a gating mechanism that filters out unnecessary information, making the distillation
process more focused and effective. Secondly, to comprehensively understand the actions beyond
class labels, we propose a contrastive textual knowledge transfer module to learn the general seman-
tic knowledge based on the text-side of VLM. Apart from the previous methods that utilize single
action name or single description (Qing et al., 2023; Ahmad et al., 2023; Huang et al., 2024; Chen
et al., 2024), we propose a decompose-expand prompting method to create a description bank that
stores fine-grained and diverse description candidates for each action. To fully harness the seman-
tics of these descriptions, we introduce a visual-guided assignment method to generate customized
supervision signals for each sample. Moreover, a cross-modal contrastive loss is deployed to guide
the video pre-trained model to learn the complete action concept.

We summarize the contributions as follows:

• We offer a novel perspective of collaborating VLM and video pre-trained model for video
understanding, leveraging their complementary abilities to achieve the comprehensive
video representation.
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• To fully harness the potential of VLM, we propose an attentive spatial and constrastive
textual knowledge transfer method to augment the spatial and semantic learning during
transfer learning.

• Experiments on various downstream tasks demonstrate the superiority of our method.

2 RELATED WORK

Video Action Recognition. Conventional methods focus on spatio-temporal learning under fully-
supervised settings, where all categories are predefined. These approaches have achieved remark-
able performance using various architectures, including convolution networks (Carreira & Zisser-
man, 2017; Feichtenhofer et al., 2019) and transformers (Arnab et al., 2021; Bertasius et al., 2021;
Fan et al., 2021). In addition to the architecture design, self-supervised video representation learn-
ing (Diba et al., 2021; Feichtenhofer et al., 2019; 2022a; Jenni & Jin, 2021; Zhao et al., 2024b) has
also gained popularity. Recently, more and more works focus on the zero-shot setting (Lin et al.,
2023; Huang et al., 2024), which aims constructing a model with strong generalization ability to
recognize unseen categories. These models often utilize large vision-language model to help align
text-video feature so as to easily retrieve the unseen categories by their texts. In this work, we utilize
both video and image-language model to achieve considerable performance under both settings.

Vision-Language Model. In recent years, vision-language models (VLM) (Chen et al., 2022b; Jia
et al., 2021; Li et al., 2023b) have made remarkable progress. One of the most remarkable and
influential works is CLIP (Radford et al., 2021), which is trained on 400M data following a con-
trastive manner, and shows remarkable performance on zero-shot image classification. The success
of VLM inspires the “fine-tuning” trend on multiple downstream tasks, such as open-vocabulary
detection (Gu et al., 2021), segmentation (Liang et al., 2023), caption (Mokady et al., 2021). In the
video-related tasks, it also has been explored to various tasks, such as video action recognition (Chen
et al., 2024; Zhang et al., 2024), action localization (Ju et al., 2023). Previous works usually treat
the VLM as part of backbones. In this work, we utilize the VLM as a powerful book that absorbs its
knowledge but doesn’t apply it as our backbones.

Transfer Learning. Transferring useful knowledge from large foundation models has achieved
remarkable performance for various downstream tasks, including video action recognition (VAR).
Conventional transfer learning for VAR utilizes video pre-trained model by employing fine-tuning
or linear-probe (Kumar et al., 2022; Feichtenhofer et al., 2022a; Zhao et al., 2024b). Besides,
knowledge distillation is another effective way for transfer learning, such as logits and feature distil-
lation (Yang et al., 2024). Recently, adapting VLM to VAR has achieved outstanding performance.
Some of them mainly revise the image encoding mechanism by inserting exquisite temporal-fusion
module to transfer knowledge from image domain (Chen et al., 2022a; Yang et al., 2023; Pan et al.,
2022), while others dedicate to align text-video feature space to best leverage the language super-
vision ability of VLM. In addition to simply using action names as text supervision (Qing et al.,
2023; Ni et al., 2022), (Chen et al., 2024) and (Zhang et al., 2024) employ LLM to generate fine-
grained descriptions for each action. In this paper, we construct an effective transfer mechanism to
incorporate video pre-trained model and VLM to VAR task.

3 METHOD

As illustrated in Fig. 2, our framework is composed of three key components: (1) Video Adap-
tation to transfer the spatio-temporal information from a video pre-trained model. (2) Attentive
Spatial Knowledge Transfer to help obtain more generalized spatial feature with the aid of the
spatial knowledge of VLM. (3) Contrastive Textual Knowledge Transfer to provide fine-grained
language supervision based on semantic knowledge of VLM.

3.1 VIDEO ADAPTATION

Video adaptation aims to adapt a video pre-trained model to downstream task, which is typically
performed in a fully-supervised way. Specifically, given a video clip Xv ∈ RT×H×W×3 (T, H
and W represent the frame number, height, and width, respectively). Following UMT (Li et al.,
2023a), each frame is divided into K = H

P × W
P patches, and the size of each patch is denoted as

3
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Figure 2: The overall framework of our method. It consists of three key components: The video
adaptation uses cross-entropy loss on a trainable video encoder to create temporal-sensitive fea-
tures. The attentive spatial knowledge transfer component integrates spatial information from the
image encoder through gated distillation, for which we propose two types of gating mechanisms
to enhance exploration. The contrastive textual knowledge transfer component leverages cross-
modal contrastive loss with a large set of precise and diverse description candidates.

P × P . These patches are then projected by 3D convolution. Thus the projected embeddings can

be formulated as Z(0)
v =

{
z
(0)
v,i

}N

i=1
, where N = T ×K represents the total patch number within a

video clip. Assuming that the video encoder has L transformer blocks, the embeddings of the l-th
layer can be extracted by:

Z(l)
v = Video-Block(l)(Zl−1

v ) ∈ RT×K×D, (1)

where D refers to the feature dimension. Notably, the spatio-temporal attention mechanism is used
to encourage the interactions among all the tokens.

To transfer the spatio-temporal information to the downstream datasets, the patch-level tokens Z(L)
v

from the last layer are first converted to the video-level token Z(cls)
v ∈ RD by average pooling at the

spatial dimensions, followed by a linear projection layer Φ to obtain the classification logits. Finally
the cross entropy loss is adopted for training. The process can be formulated as:

pv = Φ
(
Zcls
v

)
∈ RC , (2)

pv,j =
exp(pv,j)∑C

j′=1 exp(pv,j′)
, (3)

Lce = −
∑C

j=1 yj log(pv,j), (4)

where C represents the number of the class and yj ∈ {0, 1} denotes the ground-truth label.

3.2 ATTENTIVE SPATIAL KNOWLEDGE TRANSFER

To guide the video features to attend to the informative spatial regions, we inject the spatial knowl-
edge from VLM to the video encoder. As VLM is trained by massive image-text pairs (e.g., 400M
for CLIP), the image encoder of VLM comprehends a wide range of visual concepts and exhibits
advantages in capturing spatial details. Previous works (Yang et al., 2023; Pan et al., 2022; Lin et al.,
2022) tend to directly adapt the image encoder to video tasks by equipping with various temporal-
interaction modules. However, these approaches are insufficient for fully exploring spatio-temporal
learning. Hence, we opt to freeze the image encoder to keep the generalization abilities and treat it

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

as an external knowledge resource. Based on the observation that the last layer obtains high-level
spatial information (Hajimiri et al., 2024), we propose a distillation approach to transfer the spatial
knowledge on the last layer.

Specifically, given a video clip Xv , we use the video encoder to obtain the video patch features ZL
v ∈

RT×K×D, and use image encoder to obtain the frame patch features ZL
m ∈ RT×K′×D′

. Considering
the video features and frame features has different number of patches we firstly interpolate the video
feature up to the same patch number as the image feature, which is denoted as ZL

v̂ ∈ RT×K′×D.
A straightforward way is to use feature distillation between ZL

v̂ and ZL
m, but we find such approach

fail to largely boost the performance, which is attributed to the domain gap between video and
image (Huang et al., 2024). Thus, we propose a gated feature distillation method. The motivation
is that the image encoder contains sufficient spatial information but not all of them are necessary
for video action recognition. For example, it is required to encode the spatial information about
‘hands’,‘ball’,‘hoop’ for the action ‘basketball dunk’, but the image encoder of VLM will focus on
all the object information such as ‘sky’ and ‘ground’.

Self-Attention. Attention layer (Vaswani, 2017) plays the role of gate in self-Attention uses atten-
tion layer (Vaswani, 2017), where the spatial information is extracted by the interaction within the
image patch tokens, formulated as:

Gm = Softmax(
QKT

√
D

)V, Zg
m = MLP (LN (Gm)) + Gm, (5)

where Q, K, V refer to the image patch tokens ZL
m that after the linear projection layer. Then, we

use L1 loss to narrow the gap between video and image tokens: Limage =
∣∣Zg

m − ZL
v̂

∣∣.
Cross-Attention. This gate mechanism utilizes the extra text information for precise distillation.
To be specific, the ideal spatial information is located in the foreground area. As we has gotten the
keywords for each action from GPT-4o, we utilize an open-vocabulary semantic Segmentation model
(e.g. NACLIP (Hajimiri et al., 2024)) to excavate the area that is corresponding to the keywords.
Then merging them as the foreground area. The process can be formulated as:

At,w = NACLIP(Tw,Xv,t), w = 1, 2, ..W (6)

Rt,w =
(
Zcls
m,t · Tw

)
(7)

Ãt,w =

{
1 if At,w >= thr1 and Rt,w > thr2

0 otherwise
, (8)

where Xv,t represents t-th frame, Zcls
m,t represents frame-level embedding for the t-th frame, Tw

represents the keyword text, w represents the number of keywords and At,w represents an attention
map reflecting the key area. We use max-pooling operation alone the w dimension on Ãt,w to get the
overall foreground mask Ãt for each frame, and concat the mask as Ã. Notably, here we use a image-
guided strategy to filter out the attention map of the keyword that may not exist. Finally, we apply
the L1 loss between the video feature and the gated image feature: Limage =

∣∣∣Zg
m − ZL

v̂ ⊗ Ãt

∣∣∣.
In the ablation study, we experiment the two gate strategies and find the self-attention gate mecha-
nism achieves slightly higher performance than the cross-attention gate mechanism. We conjecture
that the current open-vocabulary semantic segmentation model performs badly due to the large do-
main shifts between image and video datasets.

3.3 CONTRASTIVE TEXTUAL KNOWLEDGE TRANSFER

In cases where actions involve the large intra-variance, relying solely on cross-entropy loss makes
it challenging to capture this variance, leading to suboptimal adaption. Motivated by the fact that
the text component of VLM enables to encode fine-grained semantic knowledge learned from the
pre-training on large-scale image-text pairs, we aim to transfer this advantage to guide the compre-
hensive learning of video semantics. To the end, we first introduce a decompose-expand prompting
method that generates precise and diverse descriptions for each class beyond the action label. Sub-
sequently, we explore a visual-guided text assignment method to select high-quality positive and
negative texts, which are then utilized in cross-modal contrastive loss.
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3.3.1 DECOMPOSE-EXPAND PROMPTING

To depict the large intra-variance in video, we aim to provide fine-grained and diverse descriptions
for each class. To inspire the comprehensive text generation ability in large language model (LLM),
we design a decompose-expand prompting approach. The motivation is that each action could be
depicted in different ways but should contain some certain key words.

We first query a large language model (e.g., GPT-4o) to extract the key words for each action, then
we ask the language model to generate the diverse descriptions based on these keywords. Please
refer to appendix A.2 for more detail.

In this way, given a dataset of C categories, we obtain C×M descriptions. Besides, we ask GPT-4o
to provide a longer description. Then we pass all the descriptions into the text encoder and obtain
their text embeddings Tdes =

{
Ti ∈ RM×D |i = 1, 2, ..C

}
for each class.

3.3.2 CROSS-MODAL CONTRASTIVE LOSS

Base on the diverse descriptions for each action, we exploit them for text-video alignment through
a cross-modal contrastive loss. The intuition is that a video should be matched to the most similar
description and be far way from the dissimilar descriptions. In order to mine the descriptions that
meet the conditions, we propose a visual-guided assignment strategy. Specifically, given a video clip
Xv , we firstly obtain the frame-level embeddings of all frames through the image encoder of VLM.
Assuming the image encoder turns each frame into K ′ patches and has L′ transformer blocks, we
could get T CLS tokens in total, which can be expressed as:

Z(l)
m,t = Image-Block(l)

(
Z(l−1)
m,t

)
∈ RK′×D. (9)

Zcls
m,t = Z(

L′)
m,t,0. (10)

We then compute the cosine similarity between frame-level embeddings Zcls
m,t and all text embed-

dings Tdes. To select the conceptually correct positive description, we consider the union of gen-
erated descriptions and the original ground-truth action names as text candidates. From these, we
choose the one with the highest image-text similarity score as positive text defined as Tpos. This
strategy ensures that the selected positive description has a similarity score equal to or higher than
that of the original action name. For creating negative descriptions, we select the bottom-k can-
didates with the lowest similarity scores as Tneg , excluding the ground-truth descriptions. This
ensures that the selected negative descriptions are irrelevant to the training sample.

Finally, we utilize a cross-modal classification loss for fine-grained text-video alignment.

Zm
v = Φm(Zcls

v ) (11)

Ltext = −log

∑
Ti′∈Tpos

exp(Zm
v · Ti′/τ)∑

Ti′∈Tpos∪Tneg
exp.(Zm

v · Ti′/τ)
(12)

3.4 TRAINING AND INFERENCE

During the training stage, the overall framework is trained based on three losses: L = Lce +
Ltext + α · Limage. where α is a hyper-parameter. During the inference stage, for fully-supervised
experiments, we directly use Eq. 2 as the output logits, and for zero-shot experiments, we use the
similarity score between the video feature and action descriptions as the output logits.

4 EXPERIMENTS

Datasets. Our proposed method is evaluated on three widely used video action recognition datasets:
Kinetics-400 (Carreira & Zisserman, 2017), HMDB51 (Kuehne et al., 2011), UCF101 (Soomro
et al., 2012). Kinetics-400 consists of approximately 240k training and 20k validation videos, cov-
ering 400 classes, with each clip spanning around 10 seconds. UCF101 contains 13,320 video clips
with 101 classes, and HMDB51 consists of 7000 videos with 51 classes.
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Table 1: Comparison with the state-of-the-art methods on Kinetics-400. We here report the volume
of the parameter that is used during inference. Bold indicates the best result, and underline represents
the second-best result.

Method Backbone Frames FLOPs/View(T) Views Params(M) Top-1

Video based transfer
SIFA (Long et al., 2022) Swin-B 64 0.27 3×4 - 83.1
ST-MAE (Feichtenhofer et al., 2022b) ViT-B 16 0.18 3×7 87 83.3
VideoMAE (Tong et al., 2022) ViT-B 16 0.18 3×5 87 81.5
MGMAE (Huang et al., 2023) ViT-B 16 0.18 3×2 87 81.7
AMD (Zhao et al., 2024b) ViT-B 16 0.18 3×5 87 82.2

VLM-based transfer
AIM (Yang et al., 2023) ViT-B 16 0.40 1×3 97 84.5
DiST (Qing et al., 2023) ViT-B 16 0.32 1×3 112 84.4
ALT (Chen et al., 2024) ViT-B 16 0.22 1×3 134 84.8
MoTED (Zhang et al., 2024) ViT-B 16 0.34 1×3 116 85.4
Qian et al. (2024) ViT-B 16 0.19 1×3 93 86.1
AIM (Yang et al., 2023) ViT-B 32 0.81 1×3 97 84.7
DiST (Qing et al., 2023) ViT-B 32 0.65 1×3 112 85.0
ALT (Chen et al., 2024) ViT-B 32 0.33 1×3 134 85.5
MoTED (Zhang et al., 2024) ViT-B 32 0.68 1×3 116 86.2
Qian et al. (2024) ViT-B 32 0.38 1×3 93 86.2

Ours ViT-B 16 0.46 1×3 87 86.3
Ours ViT-B 32 1.10 1×3 87 86.9

Implementation Details. We employ UMT-B (Li et al., 2023a) as the video pre-trained model,
which utilizes ViT-B as its backbone. For VLM model, we choose CLIP-L that is pre-trained by
CLIP-400M as our text and image encoder. We follow the same training settings as (Li et al.,
2023a). For Kinetics-400, we adopt an AdamW optimizer with the learning rate of 1.5× 10−4. The
network is trained with 40 epochs (including a five-epoch warmup) and a weight decay of 0.05. We
conduct all experiments on with 7 NVIDIA 3090 GPUs. We empirically set α as 10 and τ as 0.07.
We achieve the best results in case of selecting one positive text for both Kinetics-400 and UCF101,
and 3,500 and 1,200 negative texts for Kinetics-400 and UCF101, respectively.

Table 2: Generalization Evaluation of our method.

Video pre-trained Dataset Method Top-1model

VideoMAE (Tong et al., 2022) UCF101 Baseline 90.30
Ours 91.67

AMD (Zhao et al., 2024b) UCF101 Baseline 97.14
Ours 98.09

(a) Performance evaluation on varied backbones.

Video pre-trained Dataset Method Top-1model

UMT (Li et al., 2023a) K400 Baseline 84.82
Ours 86.30

UMT (Li et al., 2023a) UCF101 Baseline 95.37
Ours 96.93

(b) Performance evaluation on varied datasets.

4.1 FULLY SUPERVISED COMPARISON

Results on Kinetics-400. In Table 1, we compare our method with state-of-the-art approaches. It
outperforms both video-based and VLM-based transfer methods across 16 and 32 frame settings.
Specifically, compared to video-based transfer methods, our approach surpasses the SOTA by 4.1%.
We attribute this improvement to the semantic and spatial enhancements provided by VLM. When
compared to VLM-based methods, our approach outperforms the SOTA by 0.7%. Notably, our
approach with 16 frames surpass all VLM-based methods utilizing 32 frames, underscoring the
superiority of our approach, which incorporate the complementary ability of video pre-trained model
and VLM . In addition, to clearly demonstrate the effectiveness of our method, we compare it with
the baseline in Table 2b, which uses the same pre-trained model but is trained solely with Ltext.
Our method outperforms the baseline by 1.48%, validating the VLM-guided enhancement for video
understanding. Moreover, thanks to our distillation strategy, our method achieves relatively high
classification accuracy with fewer parameters for inference compared to VLM transfer methods.
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4.2 GENERALIZATION EVALUATION

As our method enhances the action recognition performance without any restrictions on video pre-
trained models or video datasets, we apply our method to various backbones and datasets to verify
the generalization ability of our method. As is shown in Table 2a, we first apply our approach to
different video pre-trained models. We test our approach on VideoMAE (Tong et al., 2022) and
AMD (Zhao et al., 2024b) on UCF101. We set the transfer training with only Lce as the baseline. It
can be seen that our approach boosts the VideoMAE baseline by 1.37% and the AMD baseline by
0.95%. We then test our approach on different datasets: K400 and UCF101 under the same backbone
in Table 2b. Our method consistently achieves significant improvements across both datasets, with
a particularly notable 1.48% boost on the large K400 dataset, highlighting the strong enhancements
provided by the vision and language integration from VLM.

4.3 ABLATION

We conduct ablation study on UCF101 with 8 frames to verify our proposed method. We utilize
video pre-trained model UMT-B (Li et al., 2023a) trained with only Lce as our baseline.

Table 3: Contributions of different
components.

Lce Ltext Limage Top-1

✓ 95.37

✓ 95.82
✓ ✓ 96.56
✓ ✓ 96.27

✓ ✓ 96.06
✓ ✓ ✓ 96.93

Contributions of each component. Our method mainly con-
tains two auxiliary components to enhance video understand-
ing: Contrastive Textual Knowledge Transfer and Attentive
Spatial Knowledge Transfer. To clearly asses the contribution
of each component, we provide comprehensive experiments
of all possible combinations. As shown in Table 3, solely
using Ltext achieves a Top-1 accuracy of 95.82%, that out-
performs the baseline of 95.37% Top-1 accuracy, demonstrat-
ing the effectiveness of the cross-modal contrastive loss. Be-
sides, incorporating both the conventional classification loss
Lce and fine-cross-modal contrastive loss Ltext further boosts
the accuracy to 96.56%, indicating a semantic enhancement.
Combining Lce and Limage (the fourth row) could also signif-
icantly improve classification accuracy over the baseline with only Lce. Interestingly, we found that
simply using Ltext and Limage leads to fewer improvements on accuracy, indicating these losses
are not orthogonal. The best performance is observed when all three losses are combined, achieving
a Top-1 accuracy of 96.93%. This indicates that leveraging both textual and spatial information in
conjunction with the cross-entropy loss significantly enhances the model’s performance.

Figure 3: Ablation on the number of negative
text selected for Ltext.

Number of negative Texts. The proposed Con-
trastive Textual Knowledge Transfer branch in-
cludes a hyper-parameter k that controls the num-
ber of negative texts. We conducted experiments
using all three losses, varying only k. Besides, we
run the experimens with multiple randomseeds to
obtain stable results. As shown in Fig. 3, The box
plot reveals slight fluctuations when k < 1000 and
a noticeable increase as k > 1000, which can be
attributed to the inclusion of more hard negative
descriptions. Based on these results, we select the
optimal k = 1200 for all experiments.

Gate Mechanisms. We perform an ablation study
on three types of gate mechanisms: Identity, self-
attention, and cross-attention. The Identity mecha-
nism directly uses image patch features in Limage,
while the other two methods represent the mech-
anisms described in the Method section. Without
any gate mechanism, we achieve a Top-1 accuracy
of 96.56%. The cross-attention mechanism improved accuracy to 96.80%. The introduction of
self-attention further enhances Top-1 accuracy to 96.93%, matching the best performance. Visual-
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Inputs with action bbox

Our method

Our method w/o gate mechanism

Baseline (training only with ℒ𝑐𝑒)

Inputs with action bbox

Baseline (training only with ℒ𝑐𝑒)

Our method

Our method w/o gate mechanism

Figure 4: Left: Visualization of attentive area of the action “Dunking basketball”. Right: Visualiza-
tion of attentive area of the action “Cricket Bowling”. We use bounding boxes to highlight the areas
where actions occur. It can be seen that our method shows superior ability in capturing the critical
areas through semantic and visual enhancement.

izations in Fig. 4 show that the self-attention method effectively reduces background distractions,
highlighting the necessity of the gate mechanism.

Additionally, the performance of self-attention slightly surpasses that of cross-attention. To explore
the cause of this discrepancy, additional experiments are conducted in Appendix A.2. Appendix
A.2 reveals that the suboptimal performance of the Cross-Attention method arises from unstable
segmentation results, particularly when the objects are either too small or obscured.

Table 4: Zero-shot results on HMDB51 and
UCF101. Bold indicates the best result, and
underline represents the second-best result.

Method HMDB51 UCF101

ActionCLIP (Wang et al., 2021) 40.8±5.4 58.3±3.4
X-CLIP (Ni et al., 2022) 44.6±5.2 72.0±2.3

Vita-CLIP (Wasim et al., 2023) 48.6±0.6 75.0±0.6
DiST (Qing et al., 2023) 55.4±1.2 72.3±0.6
ALT (Chen et al., 2024) 52.9±1.0 79.4±0.9

MoTED (Zhang et al., 2024) 58.2±1.1 78.3±0.6
Ours 56.5±1.0 79.9±0.5

Zero-shot performance. We present the zero-
shot results in Table 4. We follow the proto-
col outlined in (Ni et al., 2022): We use ViT-
B as backbone. We first train our model on
Kinetics-400 data with 32 frames and conduct
the zero-shot evaluation on two unseen datasets
(HMDB51 and UCF101). Compared to VLM-
based transfer methods, our approach achieves
a comprehensive optimal result, securing the
second-best performance on HMDB51 and the
best on UCF101. The consistently strong re-
sults demonstrate the practicality and effective-
ness of our method. We attribute this superior-
ity to the incorporation of diverse textual data
and the comprehensive spatio-temporal understanding capabilities, which together alleviate the chal-
lenges of adapting to new scenarios.

Visualization Analysis. As shown in Fig. 4, we illustrate the effectiveness of semantic and visual
enhancement through visualizing the important area by GradCAM (Selvaraju et al., 2017). In the
left, we find the UMT (baseline) is confused by the complex background, while our method suc-
cessfully capture action area: basketball hoop and the player. We attribute such success to the aid
of text supervision and spatial enhancement, as the text provide detailed description which would
help model to understand the abstract action, while the spatial enhancement helps to capture the
critical cues. In the right the UMT (baseline) is dominated by the background area, we attribute
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to the difficulty of capturing small area, while our method, thanks to the visual enhancement from
image encoder, our method is capable of capturing precise area regardless of their sizes.

5 CONCLUSION

In this paper, we propose a cross-modal collaborative knowledge transfer method for video under-
standing. We introduce an Attentive Spatial Knowledge Transfer method for transferring spatial
information from the image-side of VLM. Experiments verify a more precise spatial capture ability
after the distillation. On the other hand, we enhance the semantic understanding ability by Con-
trastive Textual Knowledge Transfer. Experiments show the diverse descriptions could cover the
large intra-variance within an action, helps build a fine-grained video feature space. Our method
achieves the state-of-the-art results under different settings which validates the effectiveness of our
method.
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A APPENDIX

A.1 ABLATION STUDY ON KINETICS-400.

Contribution of each component. We conduct ablation experiments on Kinetics-400 to verify the
effectiveness of each component. We utilize UMT-BLi et al. (2023a) as our baseline model trained
with 16 frames and only Lce.

As shown in Table 5, incorporating the cross-modal contrastive loss Ltext results in 85.97% Top-1
accuracy, surpassing the baseline by 1.15%, demonstrating the effectiveness of textual knowledge
transfer in enforcing fine-grained text-video alignment. Additionally, we achieve the highest result
of 86.30% Top-1 accuracy by further adding the feature distillation loss Limage, suggesting that
general spatial knowledge from VLM enhances video adaptation.

Table 5: Contribution of each component on Kinetics-400.

Lce Ltext Limage Top-1

✓ 84.82

✓ ✓ 85.97
✓ ✓ ✓ 86.30

Class-level performance analysis. As our method boosts performance across over 100 classes, we
highlight in Fig. 5 the classes where accuracy improvements exceed 10% compared to the baseline.
We observe that our method significantly enhances the performance of classes requiring precise un-
derstanding of small objects, such as ‘drinking beer’, ‘dunking basketball’, and ‘applying cream’,
demonstrating the effectiveness of distilling video features from the image encoder of VLM. Ad-
ditionally, classes with large intra-variance, such as ‘slapping’ and ‘somersaulting’, also show sub-
stantial improvements, showcasing the efficacy of the textual contrastive loss.

Figure 5: Class-level improvements on Kinetics-400.

A.2 DETAILS OF DECOMPOSE-EXPAND PROMPT METHOD.

Prompts used for GPT-4o. We first extract the key words for each class. Given a large language
model (e.g., GPT-4o), we query it with the following prompt:

Here is the action list [action name1, action name2,...].what are
the most identifying visual characteristics such as object,body
parts to distinguish them?

Next, we ask GPT-4o to generate the diverse descriptions based on these keywords by using the
following prompt:

Here is the identifying visual characteristics for the action
[action name]: keyword1, keyword2, keyword3. Please describe the
action in different sentences by using the keywords above.
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(b) Label: Brushing Teeth. Segmentation text: Toothbrush, Teeth (+7.0%)

(a) Label: Long Jump. Segmentation text: Leg, Runway (+9.1%)

Segmentation Mask CAM of Cross-Attention CAM of Self-AttentionInputs

(d) Label: Typing. Segmentation text: Screen, Keyboard (-7.0%)

(c) Label: Hammering. Segmentation text: Hammer, Nail (-9.1%)

Segmentation Mask CAM of Cross-Attention CAM of Self-AttentionInputs

Figure 6: Left: Visualization of the classes that cross-attention methods outperforms the self-
attention method. Red number indicates the relative performance gain. Right:Visualization of the
classes that the cross-attention method underperforms the self-attention method. Green number in-
dicates the relative performance drop.

Example of descriptions generated by the prompts In Table 6, we provide several class descrip-
tions. It is evident that our descriptions encompass more details and demonstrate greater semantic
diversity.

Table 6: Examples of generated descriptions on Kinetics-400.

Action Descriptions

Applying Cream

Squeezing lotion from a bottle and
applying it to the skin.
Moisturizing skin by applying lotion
from a bottle.
Gently rubbing cream onto the skin
using a lotion bottle.

Slapping
Delivering a sharp slap with hand.
Hand swinging in motion of slap.
Hand delivering a stinging slap.

A.3 EXPLORATION OF THE PERFORMANCE DISCREPANCY BETWEEN TWO GATE METHODS.

In the ablation study of the gate mechanism, we observe that the cross-attention method performs
slightly worse than the self-attention method. To investigate the reasons behind this discrepancy, we
compare the CAMs of the two attention mechanisms on four test videos. The results are presented
in Fig. 6.

As shown in Fig. 6, segmentation quality plays a crucial role in learning comprehensive representa-
tion. When the segmentation mask successfully captures the region corresponding to the keyword,
it guides the model to highlight attention on the correct areas. In contrast, the self-attention method
tends to misinterpret unrelated regions. However, when the segmentation mask fails to accurately
capture the keyword’s region, the model is misled by the erroneous segmentation, resulting in incor-
rect predictions.

Unfortunately, we observe that segmentation results are more likely to become unstable or disorga-
nized when the objects of interest are either too small or obscured, , while the self-attention method
generally demonstrates robust spatial representation learning.

A.4 VISUALIZATION OF THE SPATIAL UNDERSTANDING CAPABILITIES OF DIFFERENT
MODELS
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(b) Label: Drinking Beer

(a) Label: Lunge

Video-based Transfer CLIP Our MethodInputs

(d) Label: Somersault

(c) Label: Rock Scissors Paper

Video-based Transfer CLIP Our MethodInputs

Figure 7: Illustration of spatial understanding capabilities of different models.

We provide supplementary examples in Fig. 7 to further illustrate the spatial understanding capa-
bilities of video pre-trained models, VLMs (e.g., CLIP), and our proposed method. These examples
demonstrate that CLIP exhibits superior spatial understanding, excelling at focusing on foreground
objects compared to video pre-trained models, which is consistent the conclusion in Fig. 1(c). This
highlights the rationale for leveraging VLMs to enhance the spatial understanding of video pre-
trained models. The results from our method (the last column) further validate this motivation.

A.5 TRAINING CONFIGURATIONS

In Table 7, we present the detailed training configurations used in the experiments of the main
manuscript. Notably, we exclude the strong augmentations—Mixup (Zhang et al., 2017), Cut-
Mix (Yun et al., 2019), and label smoothing (Müller et al., 2019)—as these techniques inevitably
alter the semantics of each sample. This allows us to more clearly evaluate the performance of our
method.

Table 7: The training configurations on Kinetics-400 and UCF101.

Settings Kinetics-400 UCF101

Optimization
Optimizer AdamW AdamW
Optimizer betas (0.9,0.999) (0.9,0.999)
Batch size 192 48
Lr. schedule cosine decay cosine decay
Warmup schedule linear linear
Base lr 1.5e-4 9.4e-5
Minimal lr 7.5e-7 1.9e-7
Layer-wise lr decay 0.75 0.75
Weight decay 0.05 0.05
Epochs 40 40

Data augmentations
flip augmentation yes yes
repeated augmentation 2 2
label smoothing 0.0 0.0
Mixup 0.0 0.0
Cutmix 0.0 0.0
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