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Abstract

We provide a unifying framework for the design and analysis of multicalibrated
predictors. By placing the multicalibration problem in the general setting of multi-
objective learning—where learning guarantees must hold simultaneously over a
set of distributions and loss functions—we exploit connections to game dynamics
to achieve state-of-the-art guarantees for a diverse set of multicalibration learning
problems. In addition to shedding light on existing multicalibration guarantees and
greatly simplifying their analysis, our approach also yields improved guarantees,
such as error tolerances that scale with the square-root of group size versus the
constant tolerances guaranteed by prior works, and improving the complexity
of k-class multicalibration by an exponential factor of k versus Gopalan et al.
[17]. Beyond multicalibration, we use these game dynamics to address emerging
considerations in the study of group fairness and multi-distribution learning.

1 Introduction

Multicalibration has emerged as a powerful tool for addressing fairness considerations in machine
learning. Based on calibrated forecasting [6, 12]—which requires among instances x a predictor
h predicts the probability h(x) = v, a fraction v have a positive outcome—multicalibration yields
more fine-grained guarantees by seeking calibration across large and possibly overlapping collections
of sub-populations [21]. Multicalibration has been studied in numerous settings, including those
with rich label sets (multi-class multicalibration [17]), adversarial rather than stochastic data (online
multicalibration [18]), and problems where no Bayes classifier exists (agnostic multicalibration [38]).
The concept of multicalibration has also been applied to estimate other quantities, such as higher
moments [22], and been strengthened in various ways, such as providing conditional guarantees [2].

Multicalibration’s versatility has led to the development of numerous specialized algorithms, each
tailored to a unique multicalibration problem and requiring its own individualized analysis. Promising
attempts to provide an overarching conceptual framework for multicalibration, such as outcome
indistinguishability [7], have had limited success in unifying these various algorithms. In this paper,
we tackle this challenge, developing a general-purpose algorithmic framework to guide the design of
multicalibrated learning algorithms for a wide range of settings and considerations.

Our approach is a dynamical systems and game-theoretic approach [see, e.g., 13, 9]. We demonstrate
that many multicalibration algorithms can be formulated as particular instances of two-player zero-
sum games where players independently either run no-regret algorithms or best-response algorithms.
A wide range of multicalibration algorithms that exhibit varying trade-offs can be obtained by
plugging in different no-regret and best-response algorithms. This unified framework both recovers
existing guarantees and in many cases improves upon them.
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Problem Complexity Dynamic Previous Results Our Results Reference

MC (Det) Oracle NRBR O(kε−2) [17] O(ln(k)ε−2) Thm 4.2
MC (Sqrt Err, Det) Sample NRBR Õ(ε−6

√
k ln(k |S|)) Õ(ε−4 ln(k |S|)) Thm 4.4

Agnostic MC (Det) Oracle NRBR O(|X | ε−2) [38] O(ε−2) Thm E.9
Agnostic MC Sample NRNR O(|X | ε−2) [38] O((d+ k)ε−2) Thm E.10
Cond. MC (Det) Oracle NRBR O(|S|2 ε−2) O(|S| ε−2) Thm E.3
Cond. MC Sample NRNR O(|S|2 (d+ k)ε−2) O(|S| (d+ k)ε−2) Thm E.4

MC (Succinct) Sample NRNR Õ((d+ k)ε−3) [17] O((d+ k)ε−2) Thm 4.1

Online MC Regret BRNR O(
√

log(|S|)T ) [18] (Matching) Thm 4.3
rth Moment MC Oracle NRBR O(rε−4) [22] (Matching) Thm E.13

Table 1: This table summarizes the sample complexity and agnostic learning oracle complexity rates we obtain
for multicalibration (MC), compared with the previous state of the art. S denotes the set of groups one wants
multicalibration on, d the VC dimension of S , k the number of label classes, and ε the error tolerance. (Det) and
(Succinct) respectively denote when only deterministic or only succinct predictors are acceptable. “Sqrt Err”
refers to requiring an error tolerance of ε

√
Pr(x ∈ S) for each group rather than ε.

Although approaching multicalibration—a min-max optimization problem—with game dynamics
seems like an obvious approach, no prior work has succeeded in using a game dynamics framing to
unify multicalibration algorithms. The primary challenge is not reducing multicalibration to min-max
optimization, which is straightforward (Facts 2.5,2.6), but rather solving the resulting equilibrium
computation problem in a way that connects to practical algorithms. The needs of multicalibration
(such as determinism, large and complex predictor spaces, etc.) differ significantly in this regard
from earlier applications of general-purpose no-regret algorithms and game dynamics.

Our primary contributions can be categorized into three areas.

1) Unifying framework. In Section 3, we give an overview of game dynamics as a concise but
general framework for obtaining multi-objective learning guarantees. To use these dynamics as
a generic solution to various multicalibration problems, we introduce a powerful general-purpose
no-regret algorithm (Theorem 3.7) and a distribution-free best-response algorithm (Theorem 3.8),
for calibration-like objectives. This approach allows us to unify the diverse—and often, seemingly
unrelated—algorithms that have been studied in the multicalibration literature, offering a general
template for their derivation and analysis.

2) New guarantees. In Sections 4, we use our framework to improve guarantees for various
multicalibration settings (see Table 1) by simply plugging in different no-regret and best-response
algorithms. These improvements include an exponential (in k) reduction in the complexity of k-class
multicalibration over Gopalan et al. [17], a polynomial (in 1/ε) reduction in the complexity of learning
a succinct multicalibrated predictor over Dwork et al. [7], the first conditional multicalibration results
for the batch setting, the first agnostic multicalibration guarantees that beats uniform convergence, and
a multicalibration algorithm that efficiently guarantees an error tolerance that scales with square-root
of each group’s probability mass. In Section 5, we demonstrate that our framework can be extended
to analyze problems beyond multicalibration, such as multi-group learning [39].

3) Simplified analyses. We also demonstrate that our framework can recover the guarantees of
various existing multicalibration algorithms, including online multicalibration [18] and moment
multicalibration [22], while avoiding intricate and problem-specific arguments.

1.1 Related Work

The study of calibration originated in online (adversarial) forecasting [6, 20], with classical literature
having also studied calibration across multiple sub-populations [11]. Multicalibration, on the other
hand, is classically studied in the stochastic setting; i.e., where (xi, yi) ∼ D, in which case calibration
is trivially satisfied by the predictor h(x) = E [y]. Due to this difference in formulation in the literature
on calibration and that on multicalibration, the specific technical tools that have been developed in
these areas have largely remained distinct. Our work can be viewed as bridging this gap by showing
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that game-theoretic dynamics provides a unified foundation for studying multicalibration, just as
no-regret learning underpins the study of calibration.

Motivated by fairness considerations, a formal definition of multicalibration was presented by
[21], and has found a wide range of applications and conceptual connections to Bayes optimality,
conformal predictions, and computational indistinguishability [21, 22, 16, 18, 7, 23]. Algorithms
for multicalibration have largely developed along two lines: one studying oracle-efficient boosting-
like algorithms [see, e.g., 21, 25, 17, 7] and another studying algorithms with flavors of online
optimization [see, e.g., 18, 35]. Our work establishes that the contrast between these lines of work
and the algorithms they develop are entirely attributable to different choices of game dynamics.

Multi-objective and multi-distribution learning are concepts that have found broad applications in
addressing fairness, collaboration, and robustness challenges. Blum et al. [4] initiated the study
of learning predictors with near-optimal accuracy across multiple populations (distributions), with
later works attaining tight bounds [19, 34, 31]. Recently, multi-objective learning has been applied
to settings where sub-populations are mutually compatible [37, 39, 3]. In Section 5, we use our
framework to match and improve guarantees relative to this literature.

2 Preliminaries

We use X to denote a feature space and Y a label space, where Y = [k] in k-class classification. A
data distribution D is a probability distribution supported on labeled datapoints X × Y . We use H to
denote a set of hypotheses and G a set of objectives, where an objective—or equivalently, a loss—is a
function ` : H× (X × Y) → [0, 1] that takes a hypothesis and datapoint and returns a penalty value.
We denote expected objective values by LD,`(h) := E(x,y)∼D [` (h, (x, y))]. For non-deterministic
p ∈ ∆(H) and q ∈ ∆(D × G), we overload notation to write Lq(p) := Eh∼p,(D,`)∼q [LD,`(h)]. We
often use the shorthands x(1:T ) := x(1), . . . , x(T ) and {f(x(t))}(1:T ) = f(x(1)), . . . , f(x(T )). We
also write f(a, ·) to denote the function x 7→ f(a, x) or f(·)(a) to denote x 7→ fx(a). For y ∈ [k],
δy ∈ {0, 1}k denotes its one-hot delta function, while for y ∈ [k], j ∈ [k] we write δy,j = 1[y = j] .

2.1 Multicalibration

We use P = (∆Y)X to denote the set of all k-class predictors which are maps from features
to label distributions. To differentiate between predictors and distributions over predictors, we
refer to h ∈ P as a deterministic predictor, and p ∈ ∆(P), as a non-deterministic predictor.2
Calibration is a property of predictors h ∈ P requiring, for example in binary classification, that
among instances x assigned prediction probability h(x) = [1 − v, v] a fraction v are truly labeled
1. Multicalibration [21] is the finer-grained notion that requires calibration on subgroups of one’s
domain. This set of subgroups is typically finite or of finite VC dimension. In practice, we work
with approximate notions of calibration/multicalibration and discretize the range of probability
assignment. In k-class prediction, we partition the k-dimensional hypercube into λk equal cubes V k

λ ,
where Vλ := {[0, 1/λ), [1/λ, 2/λ), . . . }. For any interval v ∈ V k

λ , we use h(x) ∈ v to denote that
prediction h(x) falls pointwise in the buckets of v, i.e., h(x)j ∈ vj for all j ∈ [k]. We next formally
define multicalibration.3

Definition 2.1. Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X . A (possibly non-deterministic)
k-class predictor p ∈ ∆(P) is (S, ε, λ)-multicalibrated for some data distribution D if

∀S ∈ S, v ∈ V k
λ , j ∈ [k] :

∣∣∣∣ E
(x,y)∼D,h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣ ≤ ε.

That is, p is calibrated on every level set v ∈ V k
λ of every group S ∈ S for every class j ∈ [k]. We

are often specifically interested in a deterministic solution; that is, where p ∈ P .

2Importantly, determinism of a predictor h does not imply that h ∈ YX as opposed to ∆(Y)X .
3This discretized (binned) definition of multicalibration follows convention and can be readily translated into

others [21]. We also follow convention in measuring in the `∞ norm, the `2 norm is also commonly used in
calibration. Some definitions of multicalibration [e.g., 21] appear as conditional expectations, but for constant
probability domain subgroups, which makes them equivalent to our definition.
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The batch setting, where we want to find a multicalibrated predictor for some fixed data distribution
D, is the most commonly studied. Multicalibration can also be defined for online settings where the
data distribution changes adversarially over time.
Definition 2.2 (Online multicalibration). Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X . In
online multicalibration, at every timestep t ∈ [T ], a learner chooses a k-class predictor p(t) ∈ ∆(P).
Nature, which observes p(1:t), responds with any choice of data distribution D(t). The learner’s
predictors p(1:T ) are (S, ε, λ)-online multicalibrated on D(1:T ) if

∀S ∈ S, v ∈ V k
λ , j ∈ [k] :

∣∣∣∣∣ 1T
T∑

t=1

E
h∼p(t)

(x,y)∼D(t)

[1[x ∈ S] · 1[h(x) ∈ v] · (h(x)j − δy,j)]

∣∣∣∣∣ ≤ ε.

2.2 Multi-Objective Learning

We use multi-objective learning (a generalization of multi-distribution learning introduced by [19]) as
a tool for studying multicalibration and other related problems. The goal of multi-objective learning
is to find a hypothesis that simultaneously minimizes a set of objective values.
Definition 2.3 (Multi-objective learning). A multi-objective learning problem (D,G,H) consists of a
set of objectives G, a hypothesis class H, and a set of data distributions D. An ε-optimal solution to
(D,G,H) is a (potentially non-deterministic) hypothesis p ∈ ∆(H) where

max
D∈D,`∈G

LD,`(p) ≤ min
h∗∈H

max
D∗∈D,`∗∈G

LD∗,`∗(h
∗) + ε. (1)

We usually prefer a deterministic solution p ∈ H over a non-deterministic solution p ∈ ∆(H).

We mainly consider single-distribution multi-objective problems, where D = {D}, though multi-
distribution multi-objective learning arises in conditional multicalibration (Section E.1) and group
fairness (Section 5). We can also consider multi-objective learning in online adversarial settings.
Definition 2.4 (Online multi-objective learning). An online multi-objective learning problem
(D,G,H) consists of a set of distributions D, objectives G and hypothesis class H. At each timestep
t ∈ [T ], a learner first picks a hypothesis p(t) ∈ ∆(H). Nature, who sees p(1:t), responds with a data
distribution D(t) ∈ D. We say the hypotheses p(1:T ) are ε-optimal on the distributions D(1:T ) if

1

T
max
`∈G

T∑
t=1

LD(t),`(p
(t)) ≤ max

D∗∈D
min
h∗∈H

max
`∗∈G

LD∗,`∗(h
∗) + ε. (2)

In many problems we consider, like online multicalibration, Nature can pick from any data distribution;
that is, D is unrestricted. Let us also note that the baseline in the right-hand-side of (2) differs from
that of (1). This is intentional: when D is unrestricted, the min-max baseline of (1) may be large, since
there may be no hypothesis that is simultaneously good for all distributions. Instead, the max-min
baseline of (2) is the best hypothesis h∗ for the most difficult distribution D∗.

Multicalibration as multi-objective learning. (Batch) Multicalibration is a single-distribution
multi-objective learning problem, whose objectives penalize over-estimation and under-estimation of
label probabilities on subsets of the domain.
Fact 2.5. Let D be a data distribution for some k-class prediction problem and fix ε > 0, λ ∈ Z+,
and a set of groups S ⊆ 2X . For every direction i ∈ {±1}, level set v ∈ V k

λ , group S ∈ S , and class
j ∈ [k], we define an objective `i,j,S,v : P → [0, 1] where

`i,j,S,v(h, (x, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v, x ∈ S] · (h(x)j − δy,j) (3)

and Gmc := {`i,j,S,v}i,j,S,v is the set of these objectives. Predictor p ∈ ∆(P) is a ε-optimal solution
to the multi-objective problem ({D},Gmc,P) if and only if p is (S, 2ε, λ)-multicalibrated for D.

Online multicalibration is similarly an online multi-objective learning problem.

Fact 2.6. Let D(1:T ) be data distributions for some k-class prediction problem, D be the set of all
data distributions, and Gmc be as defined in (3). Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X . A
sequence of predictors p(1:T ) ∈ ∆(P) is ε-optimal on D(1:T ) for the online multi-objective learning
problem (D,Gmc,P) if and only if p(1:T ) is (S, 2ε, λ)-online multicalibrated on D(1:T ).
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3 Tools for Solving Multi-Objective Learning using Game Dynamics

A common approach to multi-objective learning is to imagine a game between a minimizing player
who proposes hypotheses and a maximizing player who proposes objectives and data distributions. It
is well-established (inspired by min-max equilibria, e.g., [14]) that a solution can be obtained when
players use no-regret algorithms. However, considerations that arise in multicalibration motivate us
to study a broader range of dynamics and their implications than has been commonly explored.

Online learning. In an online learning problem, at each timestep t ∈ [T ], a learner chooses an action
a(t) ∈ A which an adversary observes and responds to with a cost function c(t) : A → [0, 1]. We
will usually assume costs to be linear maps. The learner’s regret is defined as Reg(a(1:T ), c(1:T )) :=∑T

t=1 c
(t)(a(t))−mina∗∈A

∑T
t=1 c

(t)(a∗), which no-regret algorithms like Hedge [14] can bound.
Lemma 3.1 (Hedge Regret [24]). In an online learning problem where the action set is the simplex
A = ∆k and costs are linear, the actions chosen by Hedge have a regret of at most 2

√
ln(k)T .

We write no-regret algorithms as a function of a sequence of cost functions Alg : ([0, 1]A)∗ → A.
For example, when A = ∆k, the output of the Hedge algorithm is defined as Hedge(c(1), . . . , c(t)) =
[w1/ ‖w‖1 , . . . , wk/ ‖w‖1] where wi = exp(−η

∑t
τ=1 c

(t)(δi)), for a specific choice of η.

We sometimes define regret against a different baseline B ∈ R, with RegB(a
(1:T ), c(1:T )) :=∑T

t=1 c
(t)(a(t)) − B. For example, we often consider the min-max baseline Bweak := T ·

mina∗∈A maxc∗∈C c
∗(a∗), where C is the set of cost functions that the adversary chooses from.

We also often encounter stochastic cost functions, functions of form c : A× (X × Y) → [0, 1] for
which we want to minimize expected value LD,c := E(x,y)∼D [c(·, (x, y))] on some distribution D.
A stochastic cost c is linear if, for every x ∈ X , y ∈ Y , c(·, (x, y)) is a linear map. The regret of
online learning algorithms on stochastic costs concentrates quickly.
Lemma 3.2 (Stochastic Approximation [33], Lemma 3.1). Consider an online learning
problem on the simplex ∆k with linear stochastic costs. Suppose, after each timestep
t ∈ [T ]—that is, after picking the action a(t)—we estimate the expected cost LD,c(t) with

ĉ(t)(a) := c(t)(a, (x(t), y(t))), where (x(t), y(t))
i.i.d.∼ D. With probability at least 1 − δ,∣∣Reg(a(1:T ),

{
LD,c(t)

}
(1:T ))− Reg(a(1:T ), ĉ(1:T ))

∣∣ ≤ O(
√
T ln(k/δ)).

We say an action a is an ε-best response to a cost c if c(a) ≤ mina∗∈A c(a∗) + ε. Similarly, an
action a is a distribution-free ε-best response to a stochastic cost c if maxx∈X ,y∈Y c(a, (x, y)) ≤
maxx∈X ,y∈Y mina∗∈A c(a∗, (x, y)) + ε. We sometimes express the sample complexity of an al-
gorithm in terms of the number of calls made to an agnostic learning oracle, which can compute
ε-best-responses to stochastic cost functions using few samples. See Appendix A for a discussion.

Game dynamics. We consider no-regret dynamics between a learner (minimizing player) who
chooses hypotheses p(t) ∈ ∆(H) and an adversary (maximizing player) who chooses data distribu-
tions and objectives q(t) ∈ ∆(D × G) where the learner’s loss is Lq(t)(p

(t)). When both players are
no-regret, the time-average actions they picked quickly converge to an approximate solution for the
multi-objective learning problem (D,G,H). This method of no-regret dynamics has long played a
role in empirical convergence to notions of equilibria [14]. Here, we review these dynamics and their
convergence guarantees. While the proofs of these lemmas are standard at a high level (and deferred
to Appendix C.1), they differ in fundamental ways from past work. In particular, these lemmas
consider weak regret, single timestep solutions (instead of time-averaged ones), and the consequences
of having distribution-free best responses, all of which play important roles in multicalibration.
Lemma 3.3 (No-Regret vs. No-Regret (NRNR)). Consider a multi-objective learning problem
(D,G,H), where a learner and adversary chose p(1:T ) ∈ ∆(H) and q(1:T ) ∈ ∆(D×G). If both play-
ers are no-regret, Regweak

(
p(1:T ), {Lq(t)(·)}(1:T )

)
≤ Tε and Reg(q(1:T ),

{
−L(·)(p

(t))
}

(1:T )) ≤
Tε, then the non-deterministic hypothesis p = Uniform(p(1:T )) is a 2ε-optimal solution.

The next dynamic focuses on obtaining a solution from a single timestep, rather than time-averaged
solutions. To obtain this, we consider a dynamics in which the learner goes first and is no-regret, the
adversary observes the learner’s action and then best responds.
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Lemma 3.4 (No-Regret vs. Best-Response (NRBR)). Consider a multi-objective learning problem
(D,G,H), where a learner chose p(1:T ) ∈ ∆(H) and an adversary chose q(1:T ) ∈ ∆(D × G). If the
learner is no-regret, Regweak

(
p(1:T ), {Lq(t)(·)}(1:T )

)
≤ Tε, and the adversary ε-best-responded to

the costs
{
−L(·)(p

(t))
}

(1:T ) using q(1:T ), then there is a t ∈ [T ] where p(t) is a 2ε-optimal solution.

Once the existence of a single-round solution p(t) is established by Lemma 3.4, it is easy to find
which time step corresponds to this solution by using a few samples and testing all p(1:T ), as follows.

Lemma 3.5. Suppose a set of hypotheses p(1:T ) contains an ε-optimal solution. We can find a
5ε-optimal solution p(t) ∈ p(1:T ) using O(ε−2 |D| ln(|D| |G|T/δ)) samples with probability 1− δ.

The next dynamic considers difficult distribution-free problems, such as online multi-objective
learning. To enable learning in these scenarios, we consider a no-regret adversary that chooses
objectives q(1:T ) ∈ ∆(G) and a learner who first observes q(t) and plays a distribution-free best-
response. The following lemma considers the consequences of these interactions.

Lemma 3.6 (Best-Response vs. No-Regret (BRNR)). Consider an online multi-objective
learning problem (D,G,H), where a learner chose p(1:T ) ∈ ∆(H), an adversary chose
q(1:T ) ∈ ∆(G), and D(1:T ) ∈ D is any sequence. Assume that the adversary is no-
regret, i.e., Reg(q(1:T ), {−LD(t),(·)(p

(t))}(1:T )) ≤ Tε, and the learner’s actions p(1:T ) are
distribution-free ε-best-responses to the stochastic costs q(1:T ), i.e., maxx,y L(x,y),q(t)(p

(t)) ≤
maxx,y minp∗ L(x,y),q(t)(p

∗) + ε. Then, the hypotheses p(1:T ) are 2ε-optimal on D(1:T ).

The question of which dynamic should be used and their implementation hinges on the type of
solution desired and what online learning and best-response guarantees are possible for each player.
NRNR dynamics often offer maximum sample efficiency, since calculating ε-best-responses may be
more sample intensive, but produce a time-averaged solution. NRBR dynamics, though less sample-
efficient due to the adversary’s repeated best-response computation, provides a single timestep
solution and is crucial for, e.g., deterministic multicalibration. BRNR dynamics, where learners
follow (act after the adversary) and have greater ease being no-regret, are crucial for online settings.

3.1 No-regret and Best Response Computation in Multicalibration

In this section, we introduce algorithms for obtaining (weak) no-regret and best response guarantees
in multicalibration, so that we can apply the previously discussed dynamics.

Since the adversary picks from the—usually, small—set of objectives Gmc, it can be no-regret using
standard algorithms like Hedge. However, the learner picks from the—very large—space of all
predictors P ; if it used Hedge, its regret would grow linearly in domain size |X |. An important aspect
of multicalibration is that its complexity must be independent of the domain size X (while it can
depend on the complexity of the subgroups S). We leverage structural properties of multicalibration
objectives (see Appendix C.2 for formal treatment) to obtain generic no-regret and best response
algorithms that give the learner domain-independent guarantees. Our first theorem gives a no-(weak)-
regret learning algorithm for the learner that provides three important properties simultaneously: 1)
domain-independent regret-bound that is also logarithmic in k, 2) uses no samples (or knowledge of)
the underlying distribution D, and 3) deterministically outputs a deterministic predictor per round.
Properties 1-2 lead to fast convergence and low sample complexity in the aforementioned dynamics
and property 3 is key for obtaining deterministic multicalibration guarantees (via NRBR).

Theorem 3.7. Consider P the set of k-class predictors and any adversarial sequence of stochastic
costs q(1:T ) ∈ ∆(Gmc), where Gmc are the multicalibration objectives (3). There is a no-regret algo-
rithm that outputs (deterministic) predictors h(1:T ) ∈ P such that Regweak(h

(1:T ),
{
LD,q(t)

}
(1:T )) ≤

2
√
ln(k)T for every data distribution D. The algorithm does not need any samples from D.

Proof. Consider the following algorithm. At each feature x ∈ X , initialize a Hedge algorithm that
picks an action h(t)(x) ∈ ∆(Y) at each timestep t ∈ [T ]. Aggregating each algorithm’s action yields
our learner’s overall action h(t) ∈ P . For each x ∈ X , let h(t+1)(x) be the outcome of Hedge at step
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t+ 1 after observing linear loss functions f (τ)

h(τ),x
: Rk → [0, 1] for τ ∈ [t]:

f
(τ)

h(τ),x
(z) := 0.5 + 0.5

∑
i∈{±1},j∈[k],S∈S,v∈V k

λ

zj · q(τ)i,j,S,v · i · 1[h
(τ)(x) ∈ v, x ∈ S], (4)

where q
(τ)
i,j,S,v is the probability q(τ) assigns to loss `i,j,S,v. Hedge gives

∑T
t=1 f

(t)

h(t),x
(h(t)(x)) −

minz∗∈∆(Y)

∑T
t=1 f

(t)

h(t),x
(z∗) ≤ 2

√
ln(k)T (Lemma 3.1). Since this inequality holds for all x ∈ X ,

2
√
ln(k)T ≥ E

(x,y)∼D

[
T∑

t=1

f
(t)

h(t),x
(h(t)(x))

]
− E

(x,y)∼D

[
min

z∗∈∆(Y)

T∑
t=1

f
(t)

h(t),x
(z∗)

]
(5)

= E
(x,y)∼D

[
T∑

t=1

f
(t)

h(t),x
(h(t)(x))

]
− min

h∗∈P
E

(x,y)∼D

[
T∑

t=1

f
(t)

h(t),x
(h∗(x))

]
by law of total expectation, where the last transition is by defining h∗ such that h∗(x) = z∗ for every
x-dependent choice of z∗ in (5). Add and subtract

∑T
t=1 E(x,y)∼D

[
f
(t)

h(t),x
(δy)

]
to obtain

T∑
t=1

E
(x,y)∼D

[
f
(t)

h(t),x
(h(t)(x)−δy)

]
≤2
√
ln(k)T + 0.5T, (6)

where the last transition is by the fact h∗(x) = E [δy |x ],
∑T

t=1 E
[
f
(t)

h(t),x
(h∗(x)− δy)

]
= 0.5T .

Next, we show the LHS of (6) is equivalent to Regweak(h
(1:T ),

{
LD,q(t)

}
(1:T )). First recall from

multicalibration objectives that `i,j,S,v(h, (x, y)) = 0.5+0.5 · i · 1[h(x) ∈ v, x ∈ S] · (h(x)j − δy,j).
Since q

(t)
i,j,S,v is the probability q(t) assigns to `i,j,S,v(·) in (4), we have that q(t)(h(t), (x, y)) =

f
(t)

h(t),x
(h(t)(x)− δy). Therefore, (6) implies that

∑T
t=1 LD,q(t)(h

(t)) ≤ 0.5T +2
√

ln(k)T . It is left
to establish that the min-max baseline of these losses is indeed at least 0.5. This is implied by Fact 2.5
and its proof is deferred to Appendix C.2. Thus Regweak(h

(1:T ),
{
LD,q(t)

}
(1:T )) ≤ 2

√
ln(k)T .

Our second theorem proves the existence of a distribution-free best-response algorithm for the
learner, which is key for obtaining online multicalibration guarantees (via BRNR). Note that, as a
distribution-free algorithm, it requires no samples to compute these best-responses.

Theorem 3.8. Consider the set of k-class predictors P . Fix an ε > 0 and let q ∈ ∆(Gmc) be
a mixture of multicalibration objectives (3). There always exists a (non-deterministic) predictor
p ∈ ∆(P) that is a distribution-free ε-best-response (7) to the stochastic cost function q(·, (x, y)).

Proof Sketch. At a high level, this statement and proof are similar to the min-max proof
of calibration [10, 20], with additional details in Appendix C.2. Let ∆̃(Y) be a finite ε-
covering of ∆(Y) and φx : ∆(∆̃(Y)) × ∆(Y) → [−1, 1] the bilinear function φx(a, b) =
E(i,j,S,v)∼q,â∼a [i · 1[â ∈ v, x ∈ s] · (âj − bj)]. Consider p(x) = argmin

a∈∆(∆̃(Y))

max
b∈∆(Y)

φx(a, b). By

the minmax theorem, max
b∈∆(Y)

φx(p(x), b) = max
b∈∆(Y)

min
a∈∆̃(Y)

φx(a, b) ≤ max
b∈∆(Y)

min
a∈∆(Y)

φx(a, b) + ε.

Thus, maxy∈Y q(p, (x, y)) ≤ 0.5 · ε+maxy∈Y minh∗∈P q(h∗, (x, y)) for all x ∈ X .

4 Multicalibration with Game Dynamics

We match and improve a broad set of previous results in multicalibration (See Table 1) that had
received individualized and ad hoc treatments in the past. Our work establishes that not only is there
a unified approach for obtaining these results but that it all comes back to game dynamics empowered
by our no-regret and distribution-free-best response results for multicalibration—Theorems 3.7 and
3.8. Below we focus on three main results highlighting NRNR, NRBR, and BRNR dynamics. We
defer the proofs, formal statement of algorithms, and additional results to Appendix D and E.
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Multicalibration. Our first algorithm uses no-regret no-regret (NRNR) dynamics to find non-
deterministic multicalibrated predictors. This algorithm matches the fastest known sample complexity
rates for multicalibration [18, 35] of order O(ln(|S|λk)/ε2). It also improves upon existing fast-rate
algorithms of Gupta et al. [18], Noarov et al. [35] by producing predictors with a succinct support
and small circuit size. These properties were previously only known to be attained by the less sample
efficient multicalibration algorithms of [21]. In this way, Algorithm 1 simultaneously attains the best
aspects of the algorithms of [18] and [21].
Theorem 4.1. Fix ε > 0, λ, k ∈ Z+, set of groups S ⊆ 2X , and data distribution D. The below
algorithm, with probability 1 − δ, returns a non-deterministic k-class predictor that is (S, ε, λ)-
multicalibrated on D and takes no more than O

(
ε−2(ln(|S| /δ) + k ln(λ))

)
samples from D.

No-Regret vs No-Regret

Construct the problem ({D},Gmc,P) from Fact 2.5 and let T = Cε−2 ln(|S|λk/δ) for some uni-
versal constant C. Over T rounds, have an adversary choose q(1:T ) ∈ ∆(Gmc) by applying Hedge
to the costs {1− `(·)(h

(t), (x(t), y(t)))}(1:T ) where (x(t), y(t))
i.i.d.∼ D. In parallel, have a a learner

choose predictors h(1:T ) ∈ P by applying the no-regret learning algorithm of Theorem 3.7 to the
stochastic costs `(1:T ), where `(t) i.i.d.∼ q(t). Return the predictor p = Uniform(h(1:T )). This algorithm
is written explicitly in Algorithm 1.

Theorem 4.1—along with all other results in this section—can be rewritten with VC(S) log(1/ε)
replacing ln(|S|); this is done by taking a cover of S. We further note that Algorithm 1 can be
instantiated with different choices of no-regret algorithms for the adversary and different versions of
Theorem 3.7 for the learner. In Section 6, we empirically compare such variants of Algorithm 1.

Our second algorithm uses no-regret best-response (NRBR) dynamics to find deterministic multicali-
brated predictors. This algorithm improves on Gopalan et al. [17]’s oracle complexity of O

(
k/ε2

)
with O

(
ln(k)/ε2

)
, an exponential reduction of the dependence on the number of classes k.4

Theorem 4.2. Fix ε > 0, λ, k ∈ Z+, a set of groups S ⊆ 2X , and a data distribution D. The
following algorithm returns a deterministic k-class predictor that is (S, ε, λ)-multicalibrated on D
and makes O(ln(k)/ε2) calls to an agnostic learning oracle. Moreover, with probability 1− δ, the

oracle calls can be implemented with Õ
(

1
ε3 (
√

ln(k) ln(k |S| /δ) + k ln(λ))
)

samples from D.

No-Regret vs Best-Response

Construct the problem ({D},Gmc,P) from Fact 2.5 and let T = Cε−2 ln(|S|λkδ) for some uni-
versal constant C. Over T rounds, have a learner choose predictors h(1:T ) ∈ P by applying the
no-regret learning algorithm of Theorem 3.7 to the stochastic costs `(1:T ). Have an adversary choose
`(1:T ) by calling an agnostic learning oracle at each t ∈ [T ]: `(t) = Aε/8(1− LD,(·)(h

(t))). Using
C ln(T/δ)/ε2 samples from D, return the predictor h(t∗) with the lowest empirical multicalibration
error. This algorithm is written explicitly in Algorithm 2.

Online multicalibration. Our next algorithm uses best-response no-regret (BRNR) dynamics for
online multicalibration, matching the best known regret bounds for online multicalibration [18, 35].
As with Theorem 4.1, our analysis simplifies that of [18, 35] by avoiding exponential potential
arguments in favor of no-regret dynamics. We state the following result for binary classification,
where Y = {0, 1} but note it trivially extends to multi-class settings. For convenience, we will
say that predictors P for binary classification output real-valued h(x) ∈ [0, 1], where h(x) is the
predicted probability of class 1 and 1− h(x) is the predicted probability of class 0.
Theorem 4.3. Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X . The following algorithm guarantees
(S, ε, λ)-online multicalibration with probability 1− δ.

Best-Response vs No-Regret

Construct the online multi-objective learning problem (D,Gmc,P) in Fact 2.6 and let
T = Cε−2 ln(|S|λδ) for some universal constant C. Over T rounds, have an adversary
choose q(1:T ) ∈ ∆(Gmc) by applying Hedge to the costs {1− `(·)(p

(t), (x(t), y(t)))}(1:T ), where

4In concurrent work, Dwork et al. [8] also showed that O
(
ln(k)/ε2

)
oracle calls are sufficient for multi-class

multicalibration, with an algorithm similar to Algorithm 2.
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(x(t), y(t))
i.i.d.∼ D(t). Have a learner best-respond to each stochastic cost q(t) with the (ε/2)-

distribution-free best-response p(t) ∈ ∆(P) of Theorem 3.8. This algorithm is written explicitly in
Algorithm 3.

The high-probability condition of Theorem 4.3 can be removed if we assume nature presents data-
points rather than data distributions, as is assumed in prior works. Interestingly, Algorithm 3’s use of
best-response no-regret dynamics exactly recovers the online multicalibration algorithm of [18, 35].
The analysis of Theorem 4.3 is, however, significantly simpler because we make explicit the role
of the no-regret dynamics, whereas [18, 35] use potential arguments that ultimately prove no-regret
dynamics and the multiplicative weights algorithm from scratch.

Additional results. We can also use game dynamics to improve guarantees for various other
multicalibration settings and considerations. We can use Algorithms 1 and 2 to achieve domain-
independent sample complexity rates for agnostic multicalibration (Theorem E.9), improving upon
Shabat et al. [38]’s uniform convergence guarantees. Plugging in an online learning algorithm with
second-order regret bounds allows us to achieve the first non-trivial sample complexity guarantees
for conditional multicalibration in the batch setting (Theorem E.3) and a multicalibration algorithm
that—with a minor less than cube-root increase in sample complexity—guarantees an error tolerance
for each group that scales with the square-root of the group’s probability mass (Theorem 4.4). We
highlight the latter result in the following theorem.
Theorem 4.4. Fix ε > 0, λ, k ∈ Z+, two sets of groups S ⊆ 2X , and a data distribution D. There is
an algorithm that, with probability at least 1−δ, takes O(ln(k) · (ln(|S| /εδ)+k ln(λ))/ε4) samples
from D and returns a deterministic k-class predictor h satisfying∣∣∣∣ E

(x,y)∼D,h∼p
[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣ ≤ ε
√
Pr(x ∈ S),

for all S ∈ S, v ∈ V k
λ , j ∈ [k].

Plugging in an online learning algorithm with strongly adaptive regret bounds allows us to parallelize
the moment multicalibration algorithm of Jung et al. [22] (Theorem E.13).

5 Other Fairness Notions

This general framework of approaching multi-objective learning with game dynamics can be extended
beyond multicalibration to derive results on multi-group learning. Recall that, in agnostic multi-
objective learning, the trade-off between objectives is arbitrated by the worst-off objective, which can
be suboptimal when some objectives are inherently more difficult. An alternative is to, given a problem
(D,G,H), define a competitor class H′ and try to learn a hypothesis h so that there is no objective
that a competitor performs significantly better on, i.e. L∗

H′(h)−minh∗∈H L∗
H′(h∗) ≤ ε where

L∗
H′(h) := maxD∈D max`∈G LD,`(h)−minh∗∈H′ LD,`(h

∗). We refer to such a solution h as being
ε-competitive. A simple modification to multi-objective learning can find such a solution: replace the
objectives G with new objectives G′ :=

{
1
2 (1 + `(·)− `(h′)) | ` ∈ G, h′ ∈ H′} and solve as usual.

Since the sample complexity of multi-objective learning is O(ε−2(ln(|H|) + |D| ln(|D| |G| /δ)))
[19], we have the below sample complexity bound on finding ε-competitive solutions.
Theorem 5.1. Consider a multi-objective learning problem (D,G,H) and competitor class H′. There
is an algorithm that takes O(ε−2(ln(|H|) + |D| ln(|D| |H′| |G| /δ))) samples and with probability
1− δ returns a solution p ∈ ∆(H) that is ε-competitive against H′.

Consider the multi-group learning problem, where we seek to simultaneously minimize a general
loss function on different subsets of the domain [37].
Definition 5.2. Fix ε > 0, a set of groups S ⊆ 2X , a hypothesis class H and a loss ` :
H × (X × Y) → [0, 1]. An ε-optimal solution to the multi-group learning problem (S,H) is
a randomized hypothesis p ∈ ∆(H) that satisfies, for all S ∈ S, E [`(p, (x, y)) · 1[x ∈ S]] ≤
minh∗∈H E [`(h∗, (x, y)) · 1[x ∈ S]] + ε. We always assume such a hypothesis p exists in class H.

A (near) optimal sample complexity for multi-group learning of O
(
ln(|S| |H|)/ε2

)
was attained by

[39] using a reduction to sleeping experts. [39] also asked whether there exists a simpler optimal
algorithm that does not rely on sleeping experts. We answer this affirmatively by designing an optimal
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algorithm that just runs two Hedge algorithms. The following is a direct implication of Lemma 3.3
and the observation that multi-group learning directly reduces to learning an ε-competitive solution.
Theorem 5.3. Fix a set of groups S ⊆ 2X , loss ` : Y × Y → [0, 1], hypothesis class H : X → Y ,
and distribution D. There is a no-regret no-regret algorithm that takes 2T = O

(
ln(|S| |H|)/ε2

)
samples from D and returns an ε-optimal solution to the multi-group learning problem (S,H).

6 Empirical Results

In this section, we study the empirical performance of multicalibration algorithms on the UCI Adult
Income dataset [26], a real-world dataset for predicting individuals’ incomes based on the US Census.
We defer additional results, datasets, and methods to the Appendix G.

Experiment setup. This experiment, summarized in Table 2, aims to learn a predictor on the UCI
dataset that predicts the ‘income’ label and is multicalibrated on the values of eight other labeled
attributes including ‘age’. We discretize with 0.1-width bins (λ = 10), and perform random 80-20
train/test splits of the dataset. This results in approximately 24000 training samples, 6000 test samples,
and 130 groups. Each multicalibration algorithm is evaluated on 10 seeds, each after 50 iterations,
with performance measured by their average iterate’s and last iterate’s multicalibration violations.

We study four multicalibration algorithms based on no-regret best-response dynamics, which use an
empirical risk minimizer as the adversary and implements either Hedge [14], Prod [28], Optimistic
Hedge (OptHedge) [36], or Gradient Descent (GD) as the learner. We study two algorithms based on
no-regret no-regret dynamics, which plays against itself either Hedge (Hedge-Hedge) or Optimistic
Hedge (OptHedge-OptHedge). Learning rate decay is tuned on the training set by sweeping over
[0.8, 0.85, 0.9, 0.95] for the learner and [0.9, 0.95, 0.98, 0.99] for the adversary.

Algorithm Train Error Test Error Test Error (Ergodic)

Hedge-Hedge (NRNR) 2.0e-2 ± 2.0e-3 3.0e-2 ± 3.0e-3 2.3e-4 ± 2.7e-5
OptHedge-OptHedge (NRNR) 7.0e-3 ± 0.0 2.7e-2 ± 3.0e-3 2.6e-4 ± 2.8e-5
OptHedge-ERM (NRBR) 0.0 ± 0.0 4.7e-2 ± 1.0e-3 4.8e-4 ± 9.0e-6
Hedge-ERM (NRBR) 0.0 ± 0.0 6.4e-2 ± 1.0e-3 6.4e-4 ± 1.1e-5
Prod-ERM (NRBR) 0.0 ± 0.0 5.3e-2 ± 4.0e-3 5.3e-4 ± 4.4e-5
GD-ERM (NRBR) 5.3e-2 ± 1.1e-2 8.3e-2 ± 3.0e-3 9.5e-4 ± 6.5e-5

Table 2: Average (± standard error) of multicalibration violations on UCI Adult Dataset. Train Error
and Test Error evaluate the last iterate (deterministic predictor) on training and test splits; Test Error
(Ergodic) measures the average iterate (non-deterministic predictor) on test split. GD-ERM (NRBR)
is worst and OptHedge-OptHedge (NRNR) is best on both deterministic and last iterates.

One’s choice of no-regret algorithm matters. The original multicalibration algorithm of [21], which
is based on gradient descent, consistently attains the worst multicalibration errors, both in terms of
average-iterate and last-iterate. This is consistent with gradient descent being a theoretically less
effective no-regret algorithm, due to instability near the boundaries of a probability simplex. Due to
the superficial similarity between boosting and multicalibration, the field has already begun adopting
multicalibration algorithms with Hedge’s multiplicative updates rather than gradient descent’s additive
ones [25]. Our findings offer the first theoretical and empirical endorsement of this shift.

The last iterates of no-regret no-regret dynamics are surprisingly multicalibrated. The al-
gorithms based on no-regret no-regret dynamics, namely Hedge-Hedge and OptHedge-OptHedge,
consistently yield not only among the most multicalibrated randomized predictors (with their average
iterate) but also the most multicalibrated deterministic predictors (with their last iterate). Note that
these algorithms only enjoy a theoretical advantage over no-regret best-response algorithms in terms
of average iterate guarantees. This does not appear to be an artifact of early stopping or learning rates
(Figure 1), but may rather indicate that their more stable adversary updates provide regularization.

Acknowledgements. This work was supported in part by the National Science Foundation under
grant CCF-2145898, a C3.AI Digital Transformation Institute grant, and the Mathematical Data
Science program of the Office of Naval Research. This work was partially done while Haghtalab and
Zhao were visitors at the Simons Institute for the Theory of Computing.

10



References
[1] R. Bassily, K. Nissim, A. D. Smith, T. Steinke, U. Stemmer, and J. R. Ullman. Algorithmic

stability for adaptive data analysis. Proceedings of the SIAM Journal on Computing, 50(3),
2021.

[2] O. Bastani, V. Gupta, C. Jung, G. Noarov, R. Ramalingam, and A. Roth. Practical adversarial
multivalid conformal prediction, 2022.

[3] A. Blum and T. Lykouris. Advancing subgroup fairness via sleeping experts. In T. Vidick,
editor, Proceedings of the ACM Conference on Innovations in Theoretical Computer Science
Conference (ITCS), 2020.

[4] A. Blum, N. Haghtalab, A. D. Procaccia, and M. Qiao. Collaborative PAC learning. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 2392–2401. Curran Associates,
Inc., 2017.

[5] A. Daniely, A. Gonen, and S. Shalev-Shwartz. Strongly adaptive online learning. In F. R. Bach
and D. M. Blei, editors, Proceedings of the International Conference on Machine Learning
(ICML), volume 37 of Proceedings of the Journal of Machine Learning Research, pages
1405–1411. JMLR.org, 2015.

[6] A. P. Dawid. The well-calibrated Bayesian. Journal of the American Statistical Association, 77
(379):605–610, 1982.

[7] C. Dwork, M. P. Kim, O. Reingold, G. N. Rothblum, and G. Yona. Outcome indistinguishability.
In Proceedings of the Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages
1095–1108. ACM, 2021.

[8] C. Dwork, D. Lee, H. Lin, and P. Tankala. New insights into multicalibration, 2023.

[9] D. Foster and R. Vohra. Calibrated learning and correlated equilibrium. Games and Economic
Behavior, 21:40–55, 1997.

[10] D. P. Foster. A proof of calibration via blackwell’s approachability theorem. Games and
Economic Behavior, 29(1-2):73–78, 1999.

[11] D. P. Foster and S. M. Kakade. Calibration via regression. In G. Seroussi and A. Viola, editors,
Proceedings of 2006 IEEE Information Theory Workshop, pages 82–86. IEEE, 2006.

[12] D. P. Foster and R. V. Vohra. Asymptotic calibration. Biometrika, 85(2):379–390, 1998.

[13] Y. Freund and R. E. Schapire. Game theory, on-line prediction and boosting. In A. Blum
and M. J. Kearns, editors, Proceedings of the Conference on Learning Theory (COLT), pages
325–332. ACM, 1996.

[14] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[15] P. Gaillard, G. Stoltz, and T. van Erven. A second-order bound with excess losses. In M. Balcan,
V. Feldman, and C. Szepesvári, editors, Proceedings of the Conference on Learning Theory
(COLT), volume 35 of Proceedings of the Journal of Machine Learning Research, pages
176–196. JMLR.org, 2014.

[16] P. Gopalan, A. T. Kalai, O. Reingold, V. Sharan, and U. Wieder. Omnipredictors. In M. Braver-
man, editor, Proceedings of the ACM Conference on Innovations in Theoretical Computer
Science Conference (ITCS), pages 79:1–79:21, 2022.

[17] P. Gopalan, M. P. Kim, M. Singhal, and S. Zhao. Low-degree multicalibration. In P.-L. Loh
and M. Raginsky, editors, Proceedings of the Conference on Learning Theory (COLT), pages
3193–3234. PMLR, 2022.

[18] V. Gupta, C. Jung, G. Noarov, M. M. Pai, and A. Roth. Online multivalid learning: Means,
moments, and prediction intervals. In M. Braverman, editor, Proceedings of the ACM Conference
on Innovations in Theoretical Computer Science Conference (ITCS), pages 82:1–82:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[19] N. Haghtalab, M. I. Jordan, and E. Zhao. On-demand sampling: Learning optimally from
multiple distributions. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, 2022.

11



[20] S. Hart. Calibrated forecasts: The minimax proof, 2022.
[21] U. Hebert-Johnson, M. P. Kim, O. Reingold, and G. N. Rothblum. Multicalibration: Calibration

for the (computationally-identifiable) masses. In J. G. Dy and A. Krause, editors, Proceedings of
the International Conference on Machine Learning (ICML), Proceedings of Machine Learning
Research, pages 1944–1953. PMLR, 2018.

[22] C. Jung, C. Lee, M. M. Pai, A. Roth, and R. Vohra. Moment multicalibration for uncertainty
estimation. In M. Belkin and S. Kpotufe, editors, Proceedings of the Conference on Learning
Theory (COLT), Proceedings of Machine Learning Research, pages 2634–2678. PMLR, 2021.

[23] C. Jung, G. Noarov, R. Ramalingam, and A. Roth. Batch multivalid conformal prediction, 2022.
[24] S. Kale. Efficient Algorithms Using the Multiplicative Weights Update Method. Princeton

University, 2007.
[25] M. P. Kim, A. Ghorbani, and J. Y. Zou. Multiaccuracy: Black-box post-processing for fairness

in classification. In V. Conitzer, G. K. Hadfield, and S. Vallor, editors, Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages 247–254. ACM, 2019.

[26] R. Kohavi and B. Becker. UCI adult dataset. UCI Machine Learning Repository, May 1996.
[27] M. Koklu and I. A. Ozkan. Multiclass classification of dry beans using computer vision and

machine learning techniques. Computers and Electronics in Agriculture, 174:105507, 2020.
[28] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold

algorithm (extended abstract). In Proceedings of the Symposium on Foundations of Computer
Science (FOCS), pages 68–77. IEEE Computer Society, 1987.

[29] S. Mannor and O. Shamir. From bandits to experts: on the value of side-observations. In
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, pages 684–692, 2011.

[30] F. McSherry and K. Talwar. Mechanism design via differential privacy. In Proceedings of the
Symposium on Foundations of Computer Science (FOCS), pages 94–103. Proceedings of the
IEEE Press, 2007.

[31] M. Mohri, G. Sivek, and A. T. Suresh. Agnostic federated learning. In K. Chaudhuri and
R. Salakhutdinov, editors, Proceedings of the International Conference on Machine Learning
(ICML), volume 97 of Proceedings of Machine Learning Research, pages 4615–4625. PMLR,
2019.

[32] S. Moro, P. Cortez, and P. Rita. A data-driven approach to predict the success of bank telemar-
keting. Decision Support Systems, 62:22–31, June 2014.

[33] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[34] H. L. Nguyen and L. Zakynthinou. Improved algorithms for collaborative PAC learning. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 7642–7650. Curran Associates,
Inc., 2018.

[35] G. Noarov, M. M. Pai, and A. Roth. Online multiobjective minimax optimization and applica-
tions, 2021.

[36] A. Rakhlin and K. Sridharan. Online learning with predictable sequences. In S. Shalev-Shwartz
and I. Steinwart, editors, Proceedings of the Conference on Learning Theory (COLT), volume 30
of Proceedings of the Journal of Machine Learning Research, pages 993–1019. JMLR.org,
2013.

[37] G. N. Rothblum and G. Yona. Multi-group agnostic PAC learnability. In M. Meila and T. Zhang,
editors, Proceedings of the International Conference on Machine Learning (ICML), volume
139 of Proceedings of Machine Learning Research, pages 9107–9115. PMLR, 2021.

[38] E. Shabat, L. Cohen, and Y. Mansour. Sample complexity of uniform convergence for multi-
calibration. In H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan, and H.-T. Lin, editors,
Advances in Neural Information Processing Systems, 2020.

[39] C. J. Tosh and D. Hsu. Simple and near-optimal algorithms for hidden stratification and multi-
group learning. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato,
editors, Proceedings of the International Conference on Machine Learning (ICML), volume
162 of Proceedings of Machine Learning Research, pages 21633–21657. PMLR, 2022.

12



Contents

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 3

2.1 Multicalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Multi-Objective Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Tools for Solving Multi-Objective Learning using Game Dynamics 5

3.1 No-regret and Best Response Computation in Multicalibration . . . . . . . . . . . 6

4 Multicalibration with Game Dynamics 7

5 Other Fairness Notions 9

6 Empirical Results 10

A Additional Background 14

B Proofs for Section 2 16

C Proofs for Section 3 17

C.1 Game Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.2 No-Regret and Best-Response Computation in Multicalibration . . . . . . . . . . . 19

D Proofs and Algorithms for Section 4 23

D.1 Batch Multicalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D.2 Online Multicalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E Additional Multicalibration Considerations 27

E.1 Conditional Multicalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E.2 Agnostic Multicalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

E.3 Moment Multicalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

E.4 Square-root Multicalibration Guarantees . . . . . . . . . . . . . . . . . . . . . . . 35

F Other Fairness Notions 38

G Empirical Results 40

G.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

G.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

G.3 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

13



A Additional Background

In this section, we supplement our discussion of online learning with some additional notations and
results.

No-regret algorithms. In the following lemma, we state the regret bound of the Hedge algo-
rithm [14] for general choices of the learning rate η ∈ (0, 1).

Lemma A.1 (Hedge [24]). Consider an online learning problem on the simplex ∆k and any adver-
sarial sequence of linear cost functions c(1:T ). If Hedge, with learning rate η ∈ (0, 1), outputs a(1:T ),
then Reg(a(1:T ), c(1:T )) ≤ Tη + ln(k)

η . If η =
√
ln(|A|)/T , Reg(a(1:T ), c(1:T )) ≤ 2

√
ln(k)T .

It is helpful to note that the learning rate of the Hedge algorithm also bounds how far its iterates move
in the primal space.

Lemma A.2 (Hedge Iterate Stability). Consider an online learning problem on the interval [0, 1] and
any sequence of linear costs. Let a(1:T ) ∈ [0, 1] be the actions that get picked by Hedge instantiated
with learning rate η ∈ (0, 1). Then, for every timestep t ∈ [T ],

∣∣a(1) − a(t)
∣∣ ≤ 2ηT .

Proof. By the triangle inequality, it suffices to prove that the learner’s actions move by at most 2η at
each timestep. That is,

∣∣a(t+1) − a(t)
∣∣ ≤ 2η at every timestep t ∈ [T ]. By definition of the Hedge

algorithm, the learner’s action at timestep t is given by

a(t+1) =
exp(−η

∑t
τ=1 c

(τ)(1))

exp(−η
∑t

τ=1 c
(τ)(0)) + exp(−η

∑t
τ=1 c

(τ)(1))
.

We can rearrange this as a(t+1) = a(t) ·α · exp(−ηc(t)(1)), where α is a ratio of normalization terms
defined as

α :=
exp(−η

∑t−1
τ=1 c

(τ)(0)) + exp(−η
∑t−1

τ=1 c
(τ)(1))

exp(−η
∑t−1

τ=1 c
(τ)(0)) · exp(−ηc(t)(0)) + exp(−η

∑t−1
τ=1 c

(τ)(1)) · exp(−ηc(t)(1))
.

Note that α ≥ 1. Let us write x1 = exp(−η
∑t−1

τ=1 c
(τ)(0)), x2 = exp(−η

∑t−1
τ=1 c

(τ)(1)), x3 =

exp(−ηc(t)(0)) and x4 = exp(−ηc(t)(1)), noting that the values x1, x2, x3, x4 are all positive.
Observe that x1+x2

x1·x3+x2·x4
≤ max{ 1

x3
, 1
x4
}. To see this, suppose without loss of generality that x4 ≥

x3. Then x2 ≤ x2·x4

x3
, which implies that x1 + x2 ≤ x1·x3+x2·x4

x3
, or equivalently, x1+x2

x1·x3+x2·x4
≤ 1

x3
.

Substituting in our values for x1, x2, x3, x4, we therefore have

1 ≤ α ≤ max{ 1

exp(−ηc(t)(0))
,

1

exp(−ηc(t)(1))
} ≤ 1

exp(−η)
.

The second inequality is because costs are bounded in [0, 1].

This gives the iterate movement bound of∣∣∣a(t+1) − a(t)
∣∣∣ ≤ max{

∣∣∣∣a(t) exp(−ηc(t)(1))

exp(−η)
− a(t)

∣∣∣∣ , ∣∣∣a(t) exp(−ηc(t)(1))− a(t)
∣∣∣}

≤ max
{∣∣∣a(t) exp(η)− a(t)

∣∣∣ , ∣∣∣ηc(t)(1)∣∣∣} .

Here, the second inequality applies the fact that |e−x − 1| ≤ |x| for any x ≥ 0 to the right-hand
value. Since η ∈ (0, 1), we can use the fact that |exp(η)− 1| ≤ 2η. Thus, we attain the desired
bound

∣∣a(t+1) − a(t)
∣∣ ≤ 2η.

We can modify the Hedge algorithm to obtain strongly adaptive regret bounds that provides guarantees
for every contiguous interval.

Lemma A.3 (Strongly Adaptive Regret [5]). Consider an online learning problem on the simplex
∆k. There is a modified Hedge algorithm [5] that, for any adversarial sequence of linear costs c(1:T ),
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outputs actions a(1:T ) such that, for every interval T1 < T2 ≤ T ,

Reg(a(T1:T2), c(T1:T2)) :=

T2∑
t=T1

c(t)(a(t))− min
a∗∈A

T2∑
t=T1

c(t)(a∗)

≤ O
((√

ln(k) + ln(T )
)√

T2 − T1

)
.

There are also online learning algorithms that provide second-order regret bounds. We present the
regret bound of one such algorithm, Prod [15].
Lemma A.4 (Second-Order Regret Bound of Prod [15]). Consider an online learning problem on
the simplex A = ∆k and any adversarial sequence of linear costs c(1:T ). If the Prod algorithm of
[15] is used and outputs the actions a(1:T ), then

Reg(a(1:T ), c(1:T )) ≤ O

max
a∗∈A

√√√√ln(k)

T∑
t=1

(c(t)(a(t))− c(t)(a∗))2

 .

We also know that there are adversarial bandit algorithms with sublinear regret guarantees.
Lemma A.5 (Semi-Bandit Regret Bounds [19]). Consider an online learning problem on the simplex
∆k, and any adversarial sequence of linear costs c(1:T ). Let I be a partition of [k] into r groups.
There is a high-probability variant of [29]’s ELP algorithm that, for any adversarial sequence of
costs c(1:T ), outputs a sequence of mixtures a(1:T ) ∈ ∆k such that, with probability at least 1− δ,

Reg(a(1:T ), c(1:T )) ≤ O
(√

r ln(k/δ)T
)
.

Moreover, after each time the algorithm chooses a(t), the algorithm samples an integer i(t) ∼ a(t)

(unseen by the adversary). Let I(i(t)) is the group in I that i(t) belongs to. The algorithm will only
ever observe the components of its cost vector corresponding to I(i(t)):

{
c(τ)(δi) | i ∈ I(i(t))

}
(t).

Best responses. An action a is an ε-best response to a cost function c : A → [0, 1] if c(a) ≤
mina∗∈A c(a∗) + ε. An agnostic learning oracle Aε : (A → [0, 1]) × 2A → A is a function that,
given a cost function c and subset of actions A′ ⊆ A, computes an ε-best response Aε(c,A′) to
c from A′. When A′ = A, we may write Aε(c) without the second argument. Agnostic learning
oracles are given this name because they are usually used to find best-responses to the expected
values of stochastic cost functions using some number of samples. Through this paper, we design
learning algorithms that only interact with a data distribution through querying an agnostic learning
oracle; the oracle complexity of such an algorithm is defined as the number of agnostic oracle calls
that the algorithm makes. Using standard sample complexity bounds, all our algorithms also have a
corresponding sample complexity that circumvent the use of agnostic learning oracles.

Another concept we encounter in online settings is the distribution-free best response. An action a is
a distribution-free ε-best response to a stochastic cost c if

max
x∈X ,y∈Y

c(a, (x, y)) ≤ max
x∈X ,y∈Y

min
a∗∈A

c(a∗, (x, y)) + ε. (7)

Best-response algorithms. We can efficiently find an ε best-response to the expected value of a
stochastic cost function using agnostic learning oracles. For example, computing a single ε best-
response requires at most O(ln(|A|)/ε2) samples by uniform convergence. In game dynamics,
we will often need to provide best-responses for a sequence of stochastic cost functions. These
sequences are usually adaptive, in that which stochastic cost functions appear later in the sequence
depending on how we responded to previous stochastic cost functions. Adaptive data analysis
provides sample-efficient algorithms for these settings.
Lemma A.6 (Adaptive Data Analysis [1] Corollary 6.4). There is an algorithm that, for any adaptive
sequence of stochastic costs c(1:T ), is guaranteed with probability 1− δ to ε-best respond to each
cost in

{
LD,c(t)

}
(1:T ) while drawing at most

O

(√
T

ε2
ln

(
|A|
ε

)
ln3/2

(
1

εδ

))
≈ Õ

(√
T ln(|A| /δ)

ε2

)
samples from D. Here, Õ (·) suppresses ln(1/ε) and ln1/2(1/δ) factors.
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Remark A.7. It often suffices, for our results, that a sequence of actions a(1:T ) is on average ε-best
responding to a cost sequence c(1:T ); that is,

∑T
t=1 c

(t)(a(t)) ≤
∑T

t=1 mina∗∈A c(t)(a∗)+Tε. Thus,
it may be possible to use more efficient minimization oracles than Lemma A.6 in our algorithms.

B Proofs for Section 2

This section proves Fact 2.5 and Fact 2.6 from Section 2.
Fact 2.5. Let D be a data distribution for some k-class prediction problem and fix ε > 0, λ ∈ Z+,
and a set of groups S ⊆ 2X . For every direction i ∈ {±1}, level set v ∈ V k

λ , group S ∈ S , and class
j ∈ [k], we define an objective `i,j,S,v : P → [0, 1] where

`i,j,S,v(h, (x, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v, x ∈ S] · (h(x)j − δy,j) (3)
and Gmc := {`i,j,S,v}i,j,S,v is the set of these objectives. Predictor p ∈ ∆(P) is a ε-optimal solution
to the multi-objective problem ({D},Gmc,P) if and only if p is (S, 2ε, λ)-multicalibrated for D.

Proof. In the multi-objective learning problem (D,Gmc,P), the multi-objective value of a predictor p,
L∗(p) := maxD∗∈D,`∗∈G LD∗,`∗(p), is exactly the (rescaled and shifted) magnitude of the predictor’s
multicalibration violation. Formally,

L∗(p) =
1

2
+

1

2
max

j∈[k],S∈S,v∈V k
λ

∣∣∣∣ E
(x,y)∼D,h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣ .
Since we can write the absolute value of an abstract value w as |w| = maxi∈{±1} i · w, we next
observe that the optimal multi-objective value of the problem (D,Gmc,P) is 0.5.

min
h∗∈P

L∗(h∗) =
1

2
+

1

2
max

i∈{±1}
i ·

 max
j∈[k],S∈S

v∈V k
λ

E
(x,y)∼D

h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

 =
1

2
.

This fact is because multicalibration objectives Gmc are symmetric around 0.5 (where i = +1 and
i = −1 penalize over and under estimation), leading to the worst loss to be at least 0.5. Furthermore,
the Bayes classifier h∗ neither overestimates nor underestimates the label distribution and therefore
achieves the loss of 0.5 exactly. Combining these inequalities, we have

L∗(p)− min
h∗∈P

L∗(h∗) =
1

2
max

j∈[k],S∈S
v∈V k

λ

∣∣∣∣∣∣ E
(x,y)∼D

h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣∣∣ .
Therefore L∗(p)−minh∗∈P L∗(h∗) = ε if and only if our multicalibration violation is 2ε.

Fact 2.6. Let D(1:T ) be data distributions for some k-class prediction problem, D be the set of all
data distributions, and Gmc be as defined in (3). Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X . A
sequence of predictors p(1:T ) ∈ ∆(P) is ε-optimal on D(1:T ) for the online multi-objective learning
problem (D,Gmc,P) if and only if p(1:T ) is (S, 2ε, λ)-online multicalibrated on D(1:T ).

Proof. Note that online multicalibration is an online multi-objective learning problem by construction.
To analyze its optimality condition, we expand the definition of the objectives in Gmc as

max
`∈G

1

T

T∑
t=1

LD(t),`(p
(t))

=
1

2
+

1

2
max

j∈[k],S∈S
v∈V k

λ

∣∣∣∣∣ E
h∼p(t)

(x,y)∼D(t)

[
1

T

T∑
t=1

1[x ∈ S] · 1[h(x) ∈ v] · (h(x)j − δy,j)

] ∣∣∣∣∣.
We again observe that the optimal value of the problem is 0.5; formally,

max
D∗∈D

min
h∗∈H

max
`∗∈G

LD∗,`∗(h
∗) = 0.5.

This is because choosing h∗ to be the Bayes classifier for D∗ achieves the value of 0.5, which given
the absolute value in the second term is the minimum achievable value. Thus, p(1:T ) is ε-optimal on
D(1:T ) if and only if p(1:T ) is (S, 2ε, λ)-optimal on D(1:T ).
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C Proofs for Section 3

We first recall our characterization of multi-objective learning as a two-player zero-sum game. In this
game, a learner player chooses a non-deterministic hypothesis p ∈ ∆(H) and an adversary player
chooses a joint distribution over data distributions and objectives q ∈ ∆(D × G). The payoff of the
game is the expected objective value Lq(p). In single-distribution multi-objective learning problems
where the adversary only has one data distribution D to choose from, we sometimes write q ∈ ∆(G)
for simplicity. In online multi-objective learning, the adversary does not have control over which data
distribution D is chosen by nature. In these cases, the adversary only chooses objectives q ∈ ∆(G)
and the game payoff function becomes LD,q(p).

C.1 Game Dynamics

We now prove formalizations of Lemma 3.3, Lemma 3.4, Lemma 3.5, and Lemma 3.6 from Section 3.

The following is a formal restatement of Lemma 3.3.

Lemma C.1 (No-Regret vs. No-Regret). Consider a multi-objective learning problem (D,G,H), and
two sequences p(1:T ) ∈ ∆(H) and q(1:T ) ∈ ∆(D × G). Suppose RegB

(
p(1:T ), {Lq(t)(·)}(1:T )

)
≤

Tε and Reg(q(1:T ), {1− L(·)(p
(t))}(1:T )) ≤ Tε where B ∈ R. Then, the non-deterministic hypoth-

esis p ∈ ∆(H) defined as p := Uniform(p(1:T )) satisfies L∗(p) ≤ B + 2ε. If the baseline B is the
min-max baseline Bweak, then p is a 2ε-optimal solution for the problem (D,G,H).

Proof. By connecting the adversary’s regret bound and the learner’s (weak) regret bounds of

max
D∗∈D,`∗∈G

T∑
t=1

LD∗,`∗(p
(t))− Tε ≤

T∑
t=1

Lq(t)(p
(t)) and

T∑
t=1

Lq(t)(p
(t)) ≤ T (ε+B),

we directly observe that maxD∗∈D,`∗∈G
1
T

∑T
t=1 LD∗,`∗(p

(t)) ≤ 2ε+B. Linearity of expectation
allows us to equate 1

T

∑T
t=1 LD∗,`∗(p

(t)) = LD∗,`∗(p)), which yields our first claim that L∗(p) ≤
2ε+B. The second claim just plugs Bweak into the previous inequality to obtain the definition of a
2ε-optimal solution.

The following is a formal restatement of Lemma 3.4.

Lemma C.2 (No-Regret vs. Best-Response). Consider a multi-objective learning prob-
lem (D,G,H) and two sequences p(1:T ) ∈ ∆(H) and q(1:T ) ∈ ∆(D × G). Suppose
RegB

(
p(1:T ), {Lq(t)(·)}(1:T )

)
≤ Tε where B ∈ R. Further suppose q(1:T ) are, on average, ε

best-responses to the cost functions {1 − L(·)(p
(t))}(1:T ). Then there exists a t ∈ [T ] where

L∗(p(t)) ≤ B + 2ε. If B = Bweak, then p(t) is a 2ε-optimal solution for the problem (D,G,H).

Proof. Assume the contrary, namely that L∗(p(t)) > B + 2ε at all t ∈ [T ]. Then

Tε ≥
T∑

t=1

Lq(t)(p
(t))− TB, (bounded regret w.r.t. B)

≥
T∑

t=1

L∗(p(t))− Tε− TB, (on average ε-best-responding)

>

T∑
t=1

(B + 2ε− ε−B), (assumption to contrary)

gives us a contradiction that T (2ε− 2ε) > 0. This proves our first claim. The second claim follows
by plugging B = Bweak into our inequality L∗(p(t)) ≤ B+2ε to obtain the definition of a 2ε-optimal
solution.

The following is a formal restatement of Lemma 3.5.
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Lemma C.3. Consider a multi-objective learning problem (D,G,H) and a sequence p(1:T ) ∈ ∆(H)
of hypotheses where at least one hypothesis p(t) is ε-optimal. We can find a 3ε-optimal solution
p(t

∗) ∈ p(1:T ) with probability at least 1 − δ by taking only O(ε−2 ln(T |D| · |G| /δ)) samples
from each distribution D ∈ D. If we further have access to a sequence q(1:T ) ∈ ∆(D × G) of ε
best-responses to the cost functions {1− L(·)(p

(t))}(1:T ), then a 5ε-optimal solution can be found
with only O(ε−2 ln(T/δ)) samples from each D ∈ D.

Proof. Let the ε-optimal solution be denoted p(tgood). This claim is a simple uniform convergence
argument. Suppose that N i.i.d. samples xD are drawn from each distribution D ∈ D. We can
then use L̂D,`(p) to denote the empirical value of the loss function ` of hypothesis p on distribution
D, as approximated by the samples xD. We similarly define L̂∗ as the empirical analog of the
multi-objective value L∗. Since the range of each objective is bounded in [0, 1], Chernoff’s bound
guarantees that for any q ∈ ∆(D × G) and p ∈ ∆(H) we have Prx

[∣∣∣L̂q(p)− Lq(p)
∣∣∣ ≥ ε

]
≤

2 exp
(
−2Nε2

)
. Taking a union bound over each D ∈ D, t ∈ [T ] and ` ∈ G gives

Pr
x

[
∃D ∈ D, ` ∈ G, t ∈ [T ] :

∣∣∣L̂D,`(p
(t))− LD,`(p

(t))
∣∣∣ ≥ ε

]
≤ 2 |D| |G|T exp

(
−2Nε2

)
.

Letting t∗ = argmint∈[T ] L̂∗(p(t)) and N = O
(
ε−2 ln(T |D| · |G| /δ)

)
guarantees

L∗
D∗,`∗(p

(t∗))− ε ≤ L̂∗(p(t
∗)) ≤ L̂∗(p(tgood)) ≤ L∗(p(tgood)) + ε ≤ min

h∗∈H
L∗(h∗) + 2ε,

with probability at least 1− δ. We can therefore return p(t
∗) as our solution.

To prove our second claim, take instead a union bound over each t ∈ [T ] so that

Pr
x

[
∃t ∈ [T ] :

∣∣∣L̂q(t)(p
(t))− Lq(t)(p

(t))
∣∣∣ ≥ ε

]
≤ 2T exp

(
−2Nε2

)
.

Letting t∗ = argmint∈[T ] Lq(t)(p
(t)) and N = O

(
ε−2 ln(T/δ)

)
guarantees with probability at least

1− δ that we can return p(t
∗) as our solution, as

L∗(p(t
∗))− 2ε ≤ Lq(t∗)(p(t

∗))− ε︸ ︷︷ ︸
(since q

(
t∗

)
is an ε-best response.)

≤ L̂q(t∗)(p(t
∗)) ≤ L̂

q

(
tgood

)(p(tgood)) ≤ L
q

(
tgood

)(p(tgood)) + ε

≤ L∗(p(tgood)) + 2ε ≤ min
h∗∈H

L∗(h∗) + 3ε.

The following is a formal restatement of Lemma 3.6.
Lemma C.4 (Best-Response vs. No-Regret). Consider a online multi-objective learning prob-
lem (D,G,H) and the sequences p(1:T ) ∈ ∆(H), q(1:T ) ∈ ∆(G), and D(1:T ) ∈ D. Suppose
Reg(q(1:T ), {1 − LD(t),(·)(p

(t))}(1:T )) ≤ Tε and p(1:T ) ∈ ∆(H) are distribution-free ε′ best-
responses to q(1:T )(·, (x, y)). Then, p(1:T ) are (ε+ ε′)-optimal on D(1:T ).

Proof. Let D∗ be the set of all data distributions over X × Y . By linearity of expectation, the
maximum argmaxD∈D∗ LD(p(t)) can always be attained on a degenerate distribution supported
only on a single point (x, y). Thus, the learner’s distribution-free best-response guarantee provides
the bound

LD(t),`(t)(p
(t))− ε′ ≤ max

x∈X ,y∈Y
q(t)(p(t), (x, y))− ε′ ≤ max

D∗∈D∗
min
h∗∈H

LD∗,`(t)(h
∗).

We can obtain our desired claim by recovering (2) with a triangle inequality between the adversary’s
regret bound and a summation of the previous inequality over t ∈ [T ]:

max
`∗∈G

1

T

T∑
t=1

LD(t),`∗(p
(t))− Tε ≤ 1

T

T∑
t=1

LD(t),q(t)(p
(t)),

1

T

T∑
t=1

LD(t),`(t)(p
(t))− Tε′ ≤ max

D∗∈D∗
min
h∈H

LD∗,`(t)(h) ≤ max
D∗∈D∗

min
h∈H

max
`∗∈G

LD∗,`∗(h).
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C.2 No-Regret and Best-Response Computation in Multicalibration

In this section, we prove generalizations of Theorem 3.7 and Theorem 3.8 from Section 3, which
describe why multicalibration objectives are amenable to efficient online learning, to a more general
class of multi-objective learning problems. We refer to such problems as having separable objectives.

Definition C.5. Consider a multi-objective learning problem (D,G,H) where H is the set of all
functions of form h : X → W and W is some convex space (and not necessarily the label space Y).
We say the objectives G of such a problem are separable if every ` ∈ G is of form

`(h, (x, y)) = c+ f`(x, h(x)) · (h(x)− g`(y)),

where f` : X ×W → W and g` : Y → W are arbitrary functions and c is some constant offset.

We will see that, like with multicalibration objectives, having a learner’s cost functions all be separable
objectives introduces two major advantages generally.

Advantage 1: There exist no-regret learning strategies that do not require one to randomize
their actions, or even sample any data, yet still guarantee domain-independent regret bounds.
The following theorem, which proves this advantage of separable objectives, is a generalization of
Theorem 3.7.

Theorem C.6. Consider a multi-objective learning problem (D,G,H) where all objectives in
G are separable and all distributions in D are absolutely continuous with respect to a com-
mon distribution D∗. Let A be an online algorithm that, for any linear costs c(1:T ), out-
puts actions a(1:T ) ∈ W where Reg(a(1:T ), c(1:T )) ≤ R(T ). If |D| > 1, further assume

Reg(a(1:T ), c(1:T )) ≤ R(T ) · maxa∗∈W

√
1
T

∑T
t=1(c

(t)(a(t))− c(t)(a∗))2. Then for any stochas-

tic costs q(1:T ) ∈ ∆(G) and distributions D(1:T ) ∈ D, the below algorithm outputs predictors
h(1:T ) ∈ H where RegB∗(h(1:T ), {LD(t),q(t)(·)}(1:T )) ≤

√
|D|R(T ) and B∗ is the baseline

B∗ := c+ min
h∗∈H

1

T

T∑
t=1

max
h′∈H

E
(x,y)∼D(t)

`∼q(t)

[f`(x, h
′(x)) · (h∗(x)− g`(y))] . (8)

At each timestep t, construct the predictor h(t+1)(x) by setting, for all x ∈ X ,

h(t+1)(x) := A(c(1)x , . . . , c(t)x ) where c(τ)x (w) :=
1

2
· dD

(τ)(x)

dD∗(x)
·
(
1 + E

`∼q(τ)

[
f`(x, h

(τ)(x))
]
· w
)
,

where dD(τ)(x)
dD∗(x) is the Radon-Nikodym derivative of D(τ) with respect to D∗ at x.

Proof. First, suppose that D = {D}, that is |D| = 1. Then, for any x ∈ X , c(1:T )
x are linear costs

and thus A guarantees Reg({h(t)(x)}(1:T ), c
(1:T )
x ) ≤ R(T ). By the law of total expectation,

2R(T )

≥ E
x∼D∗

[
T∑

t=1

E
`∼q(t)

[
dD(x)

dD∗(x)
f`(x, h

(t))

]
· h(t)(x)− min

w∗∈W

T∑
t=1

E
`∼q(t)

[
dD(x)

dD∗(x)
f`(x, h

(t))

]
· w∗

]

= E
x∼D

[
T∑

t=1

E
`∼q(t)

[
f`(x, h

(t))
]
· h(t)(x)

]
− E

x∼D

[
min

w∗∈W

T∑
t=1

E
`∼q(t)

[
f`(x, h

(t))
]
· w∗

]

=

T∑
t=1

E
x∼D(t),`∼q(t)

[
f`(x, h

(t)) · h(t)(x)
]
− min

h∗∈H

T∑
t=1

E
x∼D(t),`∼q(t)

[
f`(x, h

(t)) · h∗(x)
]
.
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If |D| > 1, A further guarantees

Pr
D∗

(x) · Reg({h(t)(x)}(1:T ), c(1:T )
x ) ≤ Pr

D∗
(x) · max

w∈W
R(T )

√√√√ 1

T

T∑
t=1

(c
(t)
x (h(t)(x))− c

(t)
x (w))2

≤ Pr
D∗

(x) ·R(T )

√√√√ 1

2T

T∑
t=1

(
dD(t)(x)

dD∗(x)

)2

≤ R(T ) ·

√√√√ 1

2T

T∑
t=1

Pr
D(t)

(x)2.

For simplicity, we assumed above that D(1:T ) each have discrete support. The law of total expectation
gives

√
2 ·R(T ) ·

∑
x∈X

√√√√ 1

2T

T∑
t=1

Pr
D(t)

(x)2

≥ E
x∼D∗

[
T∑

t=1

E
`∼q(t)

[
dD(t)(x)

dD∗(x)
f`(x, h

(t))

]
· h(t)(x)− min

w∗∈W

T∑
t=1

E
`∼q(t)

[
dD(t)(x)

dD∗(x)
f`(x, h

(t))

]
· w∗

]

=

T∑
t=1

E
x∼D(t),`∼q(t)

[
f`(x, h

(t)) · h(t)(x)
]
− min

h∗∈H

T∑
t=1

E
x∼D(t),`∼q(t)

[
f`(x, h

(t)) · h∗(x)
]
.

To bound the left-hand term, we can apply Cauchy-Schwartz to get

∑
x∈X

√√√√ 1

T

T∑
t=1

Pr
D(t)

(x)2 =
∑
x∈X

√∑
D∈D

TD

T
Pr
D
(x)2

≤
∑
x∈X

∑
D∈D

Pr
D
(x)

√
TD

T

=
∑
D∈D

√
TD

T

∑
x∈X

Pr
D
(x)

≤
√

|D|,

where TD is the number of timesteps t ∈ [T ] where D(t) = D. Thus, whether |D| = 1 or |D| > 1,
we have

T∑
t=1

E
x∼D(t),`∼q(t)

[
f`(x, h

(t)) · h(t)(x)
]
− min

h∗∈H

T∑
t=1

E
x∼D(t),`∼q(t)

[
f`(x, h

(t)) · h∗(x)
]
≤ 2
√

|D|R(T ).

Adding and subtracting the term
∑T

t=1 E(x,y)∼D(t),`∼q(t)
[
f`(x, h

(t)(x))(g`(y))
]
, we have

T∑
t=1

E
(x,y)∼D(t)

`∼q(t)

[
f`(x, h

(t)(x))(h(t)(x)− g`(y))
]

≤ 2
√
|D|R(T ) + min

h∗∈H

T∑
t=1

E
(x,y)∼D(t)

`∼q(t)

[
f`(x, h

(t)(x))(h∗(x)− g`(y))
]
.

20



Adding the constant c to both sides, we have

T∑
t=1

LD(t),q(t)(h
(t)) ≤ 2

√
|D|R(T ) + T min

h∗∈H

1

T

T∑
t=1

E
(x,y)∼D(t)

`∼q(t)

[
c+ f`(x, h

(t)(x))(h∗(x)− g`(y))
]

≤ 2
√
|D|R(T ) + T min

h∗∈H

1

T
max
h′∈H

T∑
t=1

E
(x,y)∼D(t)

`∼q(t)

[c+ f`(x, h
′(x))(h∗(x)− g`(y))] .

We can directly prove Theorem 3.7 by instantiating the algorithm of Theorem C.6 with Hedge as the
no-regret learning algorithm A.
Theorem 3.7. Consider P the set of k-class predictors and any adversarial sequence of stochastic
costs q(1:T ) ∈ ∆(Gmc), where Gmc are the multicalibration objectives (3). There is a no-regret algo-
rithm that outputs (deterministic) predictors h(1:T ) ∈ P such that Regweak(h

(1:T ),
{
LD,q(t)

}
(1:T )) ≤

2
√
ln(k)T for every data distribution D. The algorithm does not need any samples from D.

Proof. First, we observe that every objective in multicalibration is separable. Specifically, for every
i ∈ {±1}, j ∈ [k], S ∈ S, v ∈ V k

λ , the corresponding objective `i,j,S,v ∈ Gmc can be written in the
form `i,j,S,v(h, (x, y)) = c+fi,j,S,v(x, h(x)) · (h(x)−gi,j,S,v(y)) where c = 0.5, W = ∆k∪−∆k,
gi,j,S,v(y) = δy and fi,j,S,v(x, h(x)) = δj · 0.5 · i · 1[h(x) ∈ v, x ∈ S]. Next, we recall that
by Lemma A.1, the Hedge algorithm guarantees a regret bound of 4

√
ln(k)T for any linear costs

on W = ∆k ∪ −∆k (Lemma A.1). The algorithm of Theorem C.6, for any stochastic costs
q(1:T ) ∈ ∆(Gmc), outputs h(1:T ) where

T∑
t=1

q(t)(h(t)) ≤ 8
√
ln(k)T + T · min

h∗∈H
max
`∗∈G

max
h′∈H

E
(x,y)∼D

[c+ f`∗(x, h
′(x)) · (h∗(x)− g(y))]

≤ 8
√
ln(k)T + T ·max

`∗∈G
max
h′∈H

E
(x,y)∼D

[c+ f`∗(x, h
′(x)) · (g(y)− g(y))]

≤ 8
√
ln(k)T + Tc,

if we choose h∗(x) = E(x,y)∼D

[
g(t)(y) | x

]
. Since the adversary is choosing from

objectives symmetric around c, the min-max baseline Bweak is at least c, meaning that
Regweak(h

(1:T ), {LD,q(t)(·)}(1:T )) ≤ 8
√
ln(k)T .

Advantage 2: There (almost) always exists distribution-free best responses. This advantage
is what allows multicalibration to be achievable in online settings where data arrives adversarially.
[10, 20] first showed that this advantage exists in calibrated online forecasting when Hart pointed out
that Foster’s asymptotic calibrated forecasting result could be obtained by appealing to Blackwell
approachability. Moreover, their proof extends trivially to online multicalibration. Later on, [18, 35]
independently rediscovered this same advantage and proof. In the following theorem, we provide
a rigorous treatment—largely in line with the prior works—that generalizes to all multi-objective
learning problems that have separable objectives and satisfy some weak compactness conditions.

Theorem C.7. Consider an online multi-objective learning problem (D,G,H) with separable
objectives and where D is the unrestricted set of all data distributions. Further, consider any
objective mixture q ∈ ∆(G) with finite support and suppose that for every objective ` ∈ G, (1) there
is a finite subset Y` ⊆ Y s.t. {g`(y) | y ∈ Y`} is an (ε/3)-net for {g`(y) | y ∈ Y}, (2) the range
of g` is convex, compact and finite-dimensional, and (3) fixing any x, y pair, `(h, (x, y)) is, in the
argument h, a function of bounded variation. Then, for any ε > 0, there is a non-deterministic
hypothesis p ∈ ∆(H) (given by (9)) that is a distribution-free ε best-response for q.

Proof. Let Gq = Support(q) be the support of our objective mixture, noting that |Gq| < ∞ by
assumption. Let Wg ⊆

∏
`∈Gq

W denote the range of the vector-valued function g : Y → Wg where
g(y) := [g`(y)]`∈Gq

. Fixing some x ∈ X , observe that we can rewrite our loss q(h, (x, y)) as the
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function q̃x : W × Wg → [0, 1] where q(h, (x, y)) = q̃x(h(x), g(y)) and we define q̃x(w, v) :=
c+ E`∼q [f`(w, x)(w − v`)].

By assumption (3), q̃x(w, v) is a function of bounded variation in w for all x ∈ X , v ∈ Wg.
By Lemma C.9, for any x ∈ X , y ∈ Y , there must exist some finite subset Wx,y ⊆ W such
that {q̃x(w, (x, g(y)))}w∈Wx,y

is an (ε/3)-net of {q̃x(w, (x, g(y)))}w∈W . Let us choose Wx :=⋃
`∈Gq

⋃
y∈Y`

Wx,y, which is a finite set as |Y`| < ∞ by assumption (1) and we |Gq| < ∞ by
assumption. Moreover, by construction, for any y ∈ Y , {q̃x(w, (x, y))}w∈Wx

is an (2ε/3)-net of
{q̃x(w, (x, y))}w∈W .

We now define our best response p pointwise at each x ∈ X , letting

p(x) = argmin
w∗∈∆(Wx)

max
y∈Y

E
w∼w∗

[q̃x(w, (x, g(y)))] = argmin
w∗∈∆(Wx)

max
g(y)∈Wg

E
w∼w∗

[q̃x(w, (x, g(y)))] .

(9)

Because each objective ` is separable, q̃x(w, (x, g(y))) is linear in g(y). By linearity of expectation,
we also know that Ew∼w∗ [q̃x(w, (x, g(y)))] is linear in w∗. Thus, for any x ∈ X ,

max
g(y)∈Wg

q̃x(p(x), (x, g(y))) = min
w∗∈∆(Wx)

max
g(y)∈Wg

E
w∼w∗

[q̃x(w, (x, g(y)))] , (construction of f)

= max
g(y)∈Wg

min
w∗∈∆(Wx)

E
w∼w∗

[q̃x(w, (x, g(y)))] , (minimax theorem)

≤ max
g(y)∈Wg

min
w∗∈∆(W)

E
w∼w∗

[q̃x(w, (x, g(y)))] + rε, (discretization error)

≤ max
g(y)∈Wg

min
p∗∈∆(H)

q̃x(p
∗(x), (x, g(y))) + rε.

In the above, we were able to apply the minimax theorem because of assumption (2). Recall that our
construction of Wx, guarantees, for any w ∈ W, y ∈ Y , there is a w′ ∈ Wx, y

′ ∈ Y ′ such that

|q̃x(w, (x, g(y)))− q̃x(w, (x, g(y
′)))| ≤ ε/3, (y′ ∈ Y ′)

|q̃x(w, (x, g(y′)))− q̃x(w
′, (x, g(y′)))| ≤ ε/3, (w′ ∈ Wx,y′)

|q̃x(w′, (x, g(y′)))− q̃x(w
′, (x, g(y)))| ≤ ε/3, (y′ ∈ Y ′)

|q̃x(w, (x, g(y)))− q̃x(w
′, (x, g(y)))| ≤ ε. (triangle inequality)

We, therefore, have that

max
D∈D

LD,q(p) = max
x∈X ,y∈Y

q̃x(p(x), (x, g(y)))

= max
x∈X ,g(y)∈Wg

q̃x(p(x), (x, g(y)))

≤ max
x∈X ,g(y)∈Wg

min
p∗∈∆(H)

q̃x(p
∗(x), (x, g(y))) + rε

= max
x∈X ,y∈Y

min
p∗∈∆(H)

q̃x(p
∗(x), (x, g(y))) + rε

= max
D∈D

min
p∗∈∆(H)

LD,q(p
∗) + rε.

We can now directly prove Theorem 3.8.

Theorem 3.8. Consider the set of k-class predictors P . Fix an ε > 0 and let q ∈ ∆(Gmc) be
a mixture of multicalibration objectives (3). There always exists a (non-deterministic) predictor
p ∈ ∆(P) that is a distribution-free ε-best-response (7) to the stochastic cost function q(·, (x, y)).

Proof. Let (D′,G′
mc,P) be the relaxation of the problem (D,Gmc,P) where, instead of assuming

that nature can only sample discrete labels y ∈ [k], nature too can sample mixed labels y ∈ ∆k. By
linearity of expectation, we have that maxD′∈D′ LD′,q′(p) = maxD∈D LD,q(p) for every predictor
p ∈ ∆(P) and objective q ∈ Gmc, where q′ ∈ G′

mc is the relaxation of q. Thus, a distribution-free
ε best-response (7) for the relaxed problem is a distribution-free ε best-response for our original
problem (D,Gmc,P). We next observe that (D′,G′

mc,P) satisfies the conditions of Theorem C.7.
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Recall that every objective q′ ∈ G′
mc can be written in a separable format where, for every i ∈

{±1}, j ∈ [k], S ∈ S, v ∈ V k
λ , we can write `i,j,S,v(h, (x, y)) = c + fi,j,S,v(x, h(x)) · (h(x) −

gi,j,S,v(y)) where c = 0.5, gi,j,S,v(y) = y and fi,j,S,v(x, h(x)) ∈ [0, 1]k is δj ·0.5·i·1[h(x) ∈ v, x ∈
S]. The domain and range of identity gi,j,S,v(y) = y is exactly ∆k which is convex, compact, and
k-dimensional; thus, it has a finite ε-covering. Finally, we observe that fi,j,S,v(h(x), (x, y)), and by
extension `i,j,S,v(h, (x, y)), is always a piecewise constant function in h(x) with finite discontinuities.
It follows that `i,j,S,v must be of bounded total variation in h(x) as variation along any linear segment
is at most 1. Thus, Theorem C.7 states there exists a distribution-free ε best-response for (D′,G′

mc,P)
and by extension (D,Gmc,P).

Remark C.8 (Closed-form of distribution-free best-responses). For calibration and multicalibration
problems, the best-response implicitly defined in Theorem C.7 takes a clean closed-form: for any
given x ∈ X , p(x) randomizes on two neighboring actions. This simple closed form was first derived
by [10] and independently rediscovered by [18].

In Theorem C.7, we referenced the notion of a function being of bounded variation. This is a common
notion in analysis which says that a function cannot go up and down too many times; thus reasonable
objectives (including every finite loss function you can think of) should all be of bounded variation.
For completeness, we prove below that bounded variation implies finite domain coverings.

Lemma C.9. Consider a function f : K → [0, 1] where K is a convex compact subset of Rn. Suppose
that f has pathwise bounded variation on K: that is, there exists a finite constant M such that for any
linear path γ : [0, 1] → K, Vγ(f) = sup0=t0≤t1≤···≤tN=1

∑N
i=1 ‖f(γ(ti)) − f(γ(ti−1))‖ ≤ M .

Then for any ε > 0, there exists a finite subset S ⊆ K such that for every y ∈ f(K), there exists an
xi ∈ S with ‖f(xi)− y‖ < ε.

Proof. Since K is compact, it is totally bounded. For any δ > 0, there exists a finite set T such that
K is covered by balls of radius δ centered at points in T . Let δ = ε

2M , where M is the constant
from the pathwise bounded variation condition. For each point t ∈ T , choose a point st ∈ K such
that ‖st − t‖ < δ. Define S = {st : t ∈ T}. Let y ∈ f(K). Then there exists an x ∈ K with
f(x) = y. Since K is covered by balls of radius δ centered at points in T , there exists a t ∈ T with
‖x− t‖ < δ. By the construction of S, we also have ‖st − t‖ < δ. Then, by the triangle inequality,
‖st − x‖ ≤ ‖st − t‖ + ‖t − x‖ < 2δ = ε

M . Consider a linear continuous path γ : [0, 1] → K
with γ(0) = x and γ(1) = st; such a path must exist by the convexity of K. By the pathwise
bounded variation condition, we have Vγ(f) ≤ M . For the partition 0 = t0 ≤ t1 = 1, we have
‖f(st)− y‖ = ‖f(st)− f(x)‖ ≤ Vγ(f) · ‖st − x‖ ≤ M · ε

M = ε. Thus, for every y ∈ f(K), there
exists an st ∈ S such that ‖f(st)− y‖ < ε.

D Proofs and Algorithms for Section 4

In the algorithms throughout this section, given an objective `(t) ∈ Gmc, we write i(t), j(t), S(t), v(t)

such that `(t) = `i,j,S,v.

D.1 Batch Multicalibration

Multicalibration with non-deterministic predictors. Our first algorithm uses no-regret no-regret
(NRNR) dynamics to find non-deterministic multicalibrated predictors. We now restate and prove its
guarantees from Theorem 4.1.
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Algorithm 1 Non-Deterministic Multicalibration Algorithm (Theorem 4.1)

1: Input: S ⊆ 2X , ε ∈ (0, 1), k, λ, T ∈ Z+, and distribution D;
2: Initialize Hedge iterate q(1) = Uniform(Gmc) and Hedge iterate h(1) = [1/k, . . . , 1/k]X ;
3: for t = 1 to T do
4: Sample objective `(t) ∼ q(t) and datapoint (x(t), y(t)) ∼ D;
5: For every x ∈ X , let h(t+1)(x) := Hedge(c

(1:t)
x ), where

c(t)x (ŷ) :=
1

2
(1 + i(t) · 1[h(x) ∈ v(t), x ∈ S(t)] · ŷj(t));

6: Let q(t+1) := Hedge(cadv
(1:t)), where cadv

(t)(`) := 1− `(h(t), (x(t), y(t)));
7: end for
8: Return: p∗, a uniform distribution over h(1), . . . , h(T );

Theorem 4.1. Fix ε > 0, λ, k ∈ Z+, set of groups S ⊆ 2X , and data distribution D. The below
algorithm, with probability 1 − δ, returns a non-deterministic k-class predictor that is (S, ε, λ)-
multicalibrated on D and takes no more than O

(
ε−2(ln(|S| /δ) + k ln(λ))

)
samples from D.

No-Regret vs No-Regret

Construct the problem ({D},Gmc,P) from Fact 2.5 and let T = Cε−2 ln(|S|λk/δ) for some uni-
versal constant C. Over T rounds, have an adversary choose q(1:T ) ∈ ∆(Gmc) by applying Hedge
to the costs {1− `(·)(h

(t), (x(t), y(t)))}(1:T ) where (x(t), y(t))
i.i.d.∼ D. In parallel, have a a learner

choose predictors h(1:T ) ∈ P by applying the no-regret learning algorithm of Theorem 3.7 to the
stochastic costs `(1:T ), where `(t) i.i.d.∼ q(t). Return the predictor p = Uniform(h(1:T )). This algorithm
is written explicitly in Algorithm 1.

Proof. By Theorem 3.7, if T ≥ 64ε−2 ln(k), the predictors h(1:T ) guarantee the learner
a regret bound of Regweak(h

(1:T ), {L`(t)}(1:T )) ≤ Tε/4. Similarly, by Lemma 3.1, if T ≥
576ε−2 ln(2kλk |S|), the objective mixtures q(1:T ) guarantee the adversary a regret bound of
Reg

(
q(1:T ), {1− `(·)(h

(t), (x(t), y(t)))}(1:T )
)
≤ T ε

12 .

We now argue that the adversary’s regret with respect to the costs 1− `(·)(h
(t), (x(t), y(t)))

approximates its regret with respect to the costs 1− LD,(·)(h
(t)). Since

Ex(t),y(t)∼D

[
`(·)(h

(t), (x(t), y(t)))
]

= LD,(·)(h
(t)), by Lemma 3.2, there is a universal con-

stant C such that, if T ≥ Cε−2 ln(2kλk |S| /δ),∣∣∣Reg (q(1:T ), {1− `(·)(h
(t), (x(t), y(t)))}(1:T )

)
− Reg

(
q(1:T ), {1− LD,(·)(h

(t))}(1:T )
)∣∣∣ ≤ T

ε

12
,

with probability 1 − δ. Similarly, since E`(t)∼q(t)
[
LD,`(t)(h

(t))
]
= LD,q(t)(h

(t)), Lemma 3.2
guarantees∣∣∣Reg (q(1:T ), {1− LD,(·)(h

(t))}(1:T )
)
− Reg

(
`(1:T ), {1− LD,(·)(h

(t))}(1:T )
)∣∣∣ ≤ T

ε

12
,

with probability 1− δ. Taking a triangle inequality and union bound, we can see that for sufficiently
large C, Reg

(
`(1:T ), {1− LD,(·)(h

(t))}(1:T )
)
≤ Tε/4.

By Lemma 3.3, the ergodic iterate h∗ is an (ε/2)-optimal solution. By Fact 2.5, h∗ is therefore a
(S, ε, λ)-multicalibrated predictor. The sample complexity is exactly T since the algorithm only
samples one datapoint at each iteration.

Multicalibration with deterministic predictors. We are often specifically interested in finding
deterministic multicalibrated predictors. This is usually because non-deterministic predictors can be
multicalibrated in a very weak sense, as we show in the following example.

Example D.1. Consider a data distribution D supported uniformly on X = {x1, x2}, where
Y = [0, 1], Pr(Y = 1 | X = x1) = 0 and Pr(Y = 1 | X = x2) = 1. The non-deterministic
predictor that is supported uniformly on predictors h1 and h2, where h1(x1) = 0 and h1(x2) = 0.5
and h2(x1) = 0.5 and h2(x2) = 1, is technically multicalibrated. However, neither h1 nor h2 are
calibrated.
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Our second algorithm uses no-regret best-response (NRBR) dynamics to find deterministic multicali-
brated predictors. We now restate and prove its guarantees from Theorem 4.2.

Algorithm 2 Deterministic Multicalibration Algorithm (Theorem 4.2)

1: Input: S ⊆ 2X , ε ∈ (0, 1), k, λ, T, C ∈ Z+, distribution D, and agnostic learning oracle A;
2: Initialize Hedge iterate h(1) = [1/k, . . . , 1/k]X ;
3: for t = 1 to T do
4: Let `(t) = Aε/8(cadv

(t),Gmc) where cadv
(t)(`) := 1− LD,`(h

(t));
5: For every x ∈ X , let h(t+1)(x) := Hedge(c

(1:t)
x ), where

c(t)x (ŷ) :=
1

2
(1 + i(t) · 1[h(x) ∈ v(t), x ∈ S(t)] · ŷj(t));

6: end for
7: Take C ln(T/δ)/ε2 samples x ∼ D and let t∗ = argmin

t∈[T ]

∑
(x,y)∈x

`(t)(h(t), (x, y));
8: Return the predictor h(t∗);

Theorem 4.2. Fix ε > 0, λ, k ∈ Z+, a set of groups S ⊆ 2X , and a data distribution D. The
following algorithm returns a deterministic k-class predictor that is (S, ε, λ)-multicalibrated on D
and makes O(ln(k)/ε2) calls to an agnostic learning oracle. Moreover, with probability 1− δ, the

oracle calls can be implemented with Õ
(

1
ε3 (
√

ln(k) ln(k |S| /δ) + k ln(λ))
)

samples from D.

No-Regret vs Best-Response

Construct the problem ({D},Gmc,P) from Fact 2.5 and let T = Cε−2 ln(|S|λkδ) for some uni-
versal constant C. Over T rounds, have a learner choose predictors h(1:T ) ∈ P by applying the
no-regret learning algorithm of Theorem 3.7 to the stochastic costs `(1:T ). Have an adversary choose
`(1:T ) by calling an agnostic learning oracle at each t ∈ [T ]: `(t) = Aε/8(1− LD,(·)(h

(t))). Using
C ln(T/δ)/ε2 samples from D, return the predictor h(t∗) with the lowest empirical multicalibration
error. This algorithm is written explicitly in Algorithm 2.

Proof. By Theorem 3.7, if T ≥ 256ε−2 ln(k), the predictors h(1:T ) guarantee the learner a regret
bound of Regweak(h

(1:T ), {LD,`(t)}(1:T )) ≤ Tε/8. Moreover, by construction, every `(t) is an (ε/8)
best-response to the cost 1− LD,(·)(h

(t)). By Lemma 3.4, there must exist a timestep where h(t) is
(ε/4)-optimal. By Lemma 3.5, the h(t∗) found by the algorithm is (ε/2)-optimal with probability
at least 1 − δ. By Fact 2.5, h(t∗) is a (S, ε, λ)-multicalibrated predictor. The oracle complexity
is exactly T , while the sample complexity of oracle A is a standard adaptive data analysis result
(Lemma A.6).

We note that our use of no-regret best-response dynamics recovers a multicalibration algorithm
similar to the original multicalibration algorithm of [21] and which can also be found in [7, 25]. We
also remark that the guarantees of Theorem 4.2 hold in weaker settings. In particular, Theorem 4.2
holds with the same analysis even if we only asked that our agnostic learning oracle A to be best-
responding with respect to a min-max baseline. Furthermore, the last step of Algorithm 2, which
explicitly samples datapoints to find timestep t∗, can be removed if one assumes that our agnostic
learning oracle A signals to us when it cannot find a greater than ε violation of multicalibration in the
current predictor. This assumption would allow Algorithm 2 to terminate early and return the current
predictor, and is assumed by prior multicalibration literature.

D.2 Online Multicalibration

Our next algorithm uses best-response no-regret (BRNR) dynamics for online multicalibration. We
now restate and prove its guarantees from Theorem 4.3.
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Algorithm 3 Online Multicalibration Algorithm

1: Input: S ⊆ 2X , ε ∈ (0, 1), λ, T ∈ Z+;
2: Initialize Hedge iterate q(1) = Uniform(Gmc);
3: for t = 1 to T do
4: p(t)(x) := min

p∗(x)∈∆([0,ε/4λ,...,1])
max
y∈[0,1]

1
2 E
ŷ∼p∗(x)

[
1 + E

`i,S,v∼q(t)
[i · 1[x ∈ S, y ∈ v] · (ŷ − y)]

]
;

5: Announce predictor p(t) to Nature and observe Nature’s data distribution D(t);
6: Sample (x(t), y(t)) ∼ D(t) and let q(t+1) := Hedge(cadv

(1:t)) where cadv
(t)(`) := 1 −

`(h(t), (x(t), y(t)));
7: end for

Theorem 4.3. Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X . The following algorithm guarantees
(S, ε, λ)-online multicalibration with probability 1− δ.

Best-Response vs No-Regret

Construct the online multi-objective learning problem (D,Gmc,P) in Fact 2.6 and let
T = Cε−2 ln(|S|λδ) for some universal constant C. Over T rounds, have an adversary
choose q(1:T ) ∈ ∆(Gmc) by applying Hedge to the costs {1− `(·)(p

(t), (x(t), y(t)))}(1:T ), where
(x(t), y(t))

i.i.d.∼ D(t). Have a learner best-respond to each stochastic cost q(t) with the (ε/2)-
distribution-free best-response p(t) ∈ ∆(P) of Theorem 3.8. This algorithm is written explicitly in
Algorithm 3.

Proof. By Lemma 3.1, if T ≥ 576ε−2 ln(2kλ |S|), the objective mixtures q(1:T ) guarantee the
adversary a regret bound of Reg

(
q(1:T ), {1− `(·)(p

(t), (x(t), y(t)))}(1:T )
)
≤ T ε

12 . By Lemma 3.2,
there is a universal constant C such that, if T ≥ Cε−2 ln(2kλ |S| /δ),∣∣∣Reg (q(1:T ), {1− `(·)(p

(t), (x(t), y(t)))}(1:T )
)
− Reg

(
q(1:T ), {1− LD(t),(·)(p

(t))}(1:T )
)∣∣∣ ≤ T

ε

12
,

with probability 1− δ. Thus, Reg
(
q(1:T ), {1− LD(t),(·)(h

(t))}(1:T )
)
≤ Tε/4 with probability 1− δ.

Since each p(t) is a (ε/4) distribution-free best-response to q(t), whose existence is proven by
Theorem 3.8, by Lemma 3.6, the predictors p(1:T ) are (ε/2)-optimal on D(1:T ) with probability 1− δ.
By Fact 2.6, p(1:T ) are also (S, ε, λ)-online multicalibrated on D(1:T ).

The high-probability condition of Theorem 4.3 can be removed if we assume nature presents data-
points rather than data distributions, as is assumed in prior works. Interestingly, Algorithm 3’s use of
best-response no-regret dynamics exactly recovers the online multicalibration algorithm of [18, 35].
The analysis of Theorem 4.3 is, however, significantly simpler because we make explicit the role
of the no-regret dynamics, whereas [18, 35] use potential arguments that ultimately prove no-regret
dynamics and the multiplicative weights algorithm from scratch.

An online-to-batch reduction. The online multicalibration algorithm of Theorem 4.3 can also be
used to obtain a non-deterministic multicalibrated predictor in batch settings through an online-to-
batch reduction. This exactly recovers the non-deterministic multicalibration algorithm of [18, 35].

Theorem D.2 (Analysis of Algorithm 3 for batch multicalibration). Fix ε > 0, λ ∈ Z+, a set of
groups S ⊆ 2X , and a data distribution D. Simulate Algorithm 3 by having Nature choose D at
every timestep and return a uniform distribution p over its outputs p(1:T ). With probability 1− δ, p is
(S, ε, λ)-multicalibrated on D. This algorithm takes O(ln(|S|λ/δ)/ε2) samples from D.

Proof. By Theorem 4.3, max`∗∈Gmc

∑T
t=1 LD,`∗(p

(t)) ≤ Tε. Thus, the non-deterministic predictor
p given by taking a uniform distribution over p(1), . . . , p(T ) is a (S, ε, λ)-multicalibrated predictor.

Unlike the algorithm of Theorem 4.1, the predictor p output by Theorem D.2 is neither guaranteed to
be succinct nor guaranteed to be of small circuit size. The lack of succinctness is because, even if p’s
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predicted label distribution on any feature x ∈ X is succinct, p itself can require an exponentially large
support over P . The large circuit size is because, at each timestep t, the learner is best-responding to
a distribution q(t) over objectives G with a non-zero weight on every objective. In contrast, in the
algorithm of Theorem 4.1, the learner only interacts with a single new objective `(t) at each timestep
t.

E Additional Multicalibration Considerations

In this section, we present additional results on multicalibration that all follow from the same game
dynamics presented in Section 3.

E.1 Conditional Multicalibration

One shortcoming of existing definitions of multicalibration is that they measure violations marginally
over the entire distribution D. That is, the amount that a predictor is allowed to violate calibration on
a subgroup is inversely proportional to the probability mass of the subgroup, as reflected by the use of
the indicator function in Definition 2.1. This can lead to predictors that are certifiably multicalibrated,
but still poorly calibrated on underrepresented or minority groups. In contrast, the original definition
of multicalibration proposed by [21], for which no non-trivial guarantee is known, is a conditional
notion of multicalibration.

Below, we generalize this notion of conditional multicalibration so that setting S = S ′ recovers the
original multicalibration definition of [21].

Definition E.1. Fix ε > 0, λ ∈ Z+, and two sets of groups S,S ′ ⊆ 2X . A k-class predictor
p ∈ ∆(P) is (S,S ′, ε, λ)-conditionally multicalibrated for some data distribution D if

∀S ∈ S, S′ ∈ S ′, v ∈ V k
λ , j ∈ [k] :

∣∣∣∣ E
(x,y)∼D,h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S] | x ∈ S′]

∣∣∣∣ ≤ ε.

It is not possible to obtain conditional multicalibration generally, so we will assume sample access to
the conditional distributions {DS′}S′∈S′ , where DS′ := D | x ∈ S′. In practice, this assumption
means that we are able to sample data from certain protected groups that may otherwise be underrep-
resented. For convenience, in this section, we will assume prior knowledge of {PrD(x ∈ S′)}S′∈S′

but note these probabilities can be cheaply estimated beforehand.

To derive conditional multicalibration algorithms from game dynamics, we first write conditional
multicalibration as a multi-distribution multi-objective learning problem.

Fact E.2. Let D be a data distribution for some k-class prediction problem and fix ε > 0, λ ∈ Z+,
and two sets of groups S,S ′ ⊆ 2X . Let Gmc be the set of objectives {`i,j,S,v} as defined in Fact 2.5
and let D = {D′

S}S′∈S′ . Predictor p ∈ ∆(P) is a ε-optimal solution to the multi-objective learning
problem (D,Gmc,P) if and only if p is (S,S ′, 2ε, λ)-conditionally multicalibrated for D.

Proof. In the multi-objective learning problem ({D′
S}S′∈S′ ,Gmc,P), the multi-objective value of a

predictor p, L∗(p) := maxD∗∈D,`∗∈G LD∗,`∗(p), is exactly the (rescaled and shifted) magnitude of
the predictor’s multicalibration violation. Formally,

L∗(p) =
1

2
+

1

2
max

j∈[k],S∈S,S′∈S′,v∈V k
λ

| E
(x,y)∼D′

S ,h∼p
[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]] |.

The optimal multi-objective value of the problem (D,Gmc,P) is 0.5, as Gmc are symmetric around
0.5 and the Bayes classifier still achieves a loss of 0.5.

min
h∗∈P

L∗(h∗) =
1

2
+

1

2
max

i∈{±1}
i ·

 max
j∈[k],S∈S

v∈V k
λ

E
(x,y)∼D

h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

 =
1

2
.

Thus, L∗(p) − minh∗∈P L∗(h∗) = ε if and only if our conditional multicalibration violation is
2ε.

27



Conditional multicalibration algorithms. The following Theorem E.3 is, to the best of our
knowledge, the first non-trivial guarantee for conditional multicalibration.

Theorem E.3. Fix ε > 0, λ, k ∈ Z+, two sets of groups S,S ′ ⊆ 2X , and a data distribution D. The
following algorithm returns a deterministic k-class predictor that is (S,S ′, ε, λ)-conditionally multi-
calibrated on D and makes O(ln(k)/ε2) calls to an agnostic learning oracle. Moreover, with proba-

bility 1− δ, the oracle calls can be implemented with Õ
(

1
ε3 (
√
ln(k) ln(k |S| |S ′| /δ) + k ln(λ))

)
samples from each conditional distribution {D′

S}S′∈S′ .
No-Regret vs Best-Response

Construct the problem (D,Gmc,P) from Fact E.2 and let T = Cε−2 |S ′| ln(k) for some universal
constant C. Over T rounds, have a learner choose predictors h(1:T ) by applying the no-regret
learning algorithm of Theorem C.6 to the stochastic costs `(1:T ) and distributions {DS′(t)}(1:T ).
Have an adversary choose S′(1:T ) and `(1:T ) by calling an agnostic learning oracle at each t ∈ [T ]:
S′(t), `(t) = Aε/8(1 − LD(·),(·)(h

(t))). Using C ln(T |S ′| /δ)/ε2 samples from each distribution
in {D′

S}S′∈S′ , return the predictor h(t∗) with the lowest empirical multicalibration error. This
algorithm is written explicitly in Algorithm 4.

Proof. In order to apply Theorem C.6, we first observe that every objective in Gmc is sep-
arable and every distribution D′

S is absolutely continuous with respect to D, By definition,
for any S′ ∈ S ′, the Radon-Nikodym derivative of D′

S with respect to D at x ∈ X is
1[x ∈ S′]/PrD(x ∈ S′). Thus, the sequence h(1:T ) corresponds to running the no-regret al-
gorithm of Theorem C.6 when A is chosen to be Prod. By Lemma A.4, we know that choos-
ing the Prod algorithm as A satisfies the conditions of Theorem C.6 with R(T ) ∈ O(

√
ln(k)T ).

Theorem C.6 therefore guarantees that RegB∗(h(1:T ), {LD
S′(t) ,`

(t)(·)}(1:T )) ≤ O(
√
|S ′| ln(k)T ),

where B∗ is as defined in (8). Since we can lower bound the baseline B∗ ≥ 0.5 by plugging
the Bayes classifier h∗(x) = E(x,y)∼D [y | x] into (8), Regweak(h

(1:T ), {LD
S′(t) ,`

(t)(·)}(1:T )) ≤
RegB∗(h(1:T ), {LD

S′(t) ,`
(t)(·)}(1:T )) ≤ O(

√
|S ′| ln(k)T ). Thus, if T ≥ C |S ′| ln(k)/ε2,

Regweak(h
(1:T ), {LD

S′(t) ,`
(t)(·)}(1:T )) ≤ Tε/8.

By construction, every pair S′(t), `(t) is an (ε/8) best-response to the cost function 1−LD(·),(·)(h
(t)).

By Lemma 3.4, since the learner has at most Tε/8 weak regret and the adversary is ε/8 best-
responding, there must exist a timestep t ∈ [T ] where h(t) is (ε/4)-optimal. By Lemma 3.5, the
h(t∗) found by the algorithm is (ε/2)-optimal with probability at least 1− δ. By Fact E.2, h(t∗) is a
(S,S ′, ε, λ)-conditionally multicalibrated predictor. The oracle complexity is exactly T , while the
sample complexity of oracle A is a standard adaptive data analysis result (Lemma A.6).

We can also implement faster non-deterministic conditional multicalibration algorithms.

Theorem E.4. Fix ε > 0, λ, k ∈ Z+, two sets of groups S,S ′ ⊆ 2X , and a data distribution D. The
following algorithm returns a non-deterministic k-class predictor that is (S,S ′, ε, λ)-conditionally
multicalibrated on D and takes O

(
|S ′| (ln(|S| |S ′| /δ) + k ln(λ))/ε2

)
samples in total from the

distributions in {D′
S}S′∈S′ .

No-Regret vs No-Regret

Construct the problem (D,Gmc,P) from Fact E.2 and let T = Cε−2 |S ′| ln(|S|λkδ) for some
universal constant C. Over T rounds, have a learner choose predictors h(1:T ) ∈ P by applying
the no-regret learning algorithm of Theorem C.6 to the stochastic costs `(1:T ) and distributions
{DS′(t)}(1:T ). In parallel, have an adversary choose S′(1:T ), `(1:T ) by applying ELP to costs
{1 − LD(·),(·)(h

(t))}(1:T ). Return the predictor p = Uniform(h(1:T )). This algorithm is written
explicitly in Algorithm 5.

Proof. As we proved in Theorem E.3, Theorem C.6 guarantees that if T ≥ C |S ′| ln(k)/ε2, the
learner’s regret is bounded by Regweak(h

(1:T ), {LD
S′(t) ,`

(t)(·)}(1:T )) ≤ Tε/4. We now turn to the
adversary.
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We will define a sequence of costs c̃adv
(1:T ) that mirrors the adversary’s costs

{1− LD(·),(·)(h
(t))}(1:T ). For all timesteps t ∈ [T ], rename (x

(t)

S′(t) , y
(t)

S′(t)) := (x(t), y(t))

while for all other S′ ∈ S ′ define the random samples (x
(t)
S′ , y

(t)
S′ )

i.i.d.∼ DS′ as the data-
point that the adversary would have hypothetically sampled if it had chosen to sample
from D′

S instead of DS′(t) at timestep t. We now can define c̃adv
(t)(S′, (i, j, S, v)) :=

(0.5 + 0.5 · i · 1[h(x
(t)
S′ ) ∈ v, x

(t)
S′ ∈ S] · (δ

y
(t)

S′ ,j
− h(x

(t)
S′ )j)). Note that, since

the ELP algorithm only observes values of cadv
(t)((i, j, S, S′, v)) where S′ = S′(t),

Reg({(S′(t), `(t))}(1:T ), cadv
(1:T )) = Reg({(S′(t), `(t))}(1:T ), c̃adv

(1:T )).

By Lemma A.5, the adversary satisfies Reg({(S′(t), `(t))}(1:T ), cadv
(1:T )) ≤ O(

√
|S ′| ln(k/δ)T ).

Thus, we also have that Reg({(S′(t), `(t))}(1:T ), c̃adv
(1:T )) ≤ O(

√
|S ′| ln(k/δ)T ). By Lemma 3.2,

there is a universal constant C such that, if T ≥ Cε−2 ln(2kλk |S| |S ′| /δ),

|Reg({(S′(t), `(t))}(1:T ), c̃adv
(1:T ))− Reg({(S′(t), `(t))}(1:T ), {1− LD(·),(·)(h

(t))}(1:T ))| ≤ Tε/12,

with probability 1− δ. Taking a triangle inequality and union bound, we can see that for sufficiently
large C, Reg({(S′(t), `(t))}(1:T ), {1− LD(·),(·)(h

(t))}(1:T )) ≤ Tε/4.

By Lemma 3.3, the ergodic iterate h∗ is an (ε/2)-optimal solution. By Fact E.2, h∗ is a (S,S ′, ε, λ)-
conditionally multicalibrated predictor. The sample complexity is exactly T since the algorithm only
samples one datapoint at each iteration.

Stronger multicalibration guarantees for (almost) free. We can also drop the assumption of
access to the conditional distributions {DS′}S′∈S′ and ask for a weaker guarantee than conditional
multicalibration where a subgroup’s error tolerance scales with

√
Pr(x ∈ S′). For simplicity, we

will fix S ′ = S here. Note that unlike Theorem E.3, Theorem 4.4 does not assume knowledge of the
vector [PrD(x ∈ S)]S∈S .
Theorem 4.4. Fix ε > 0, λ, k ∈ Z+, two sets of groups S ⊆ 2X , and a data distribution D. There is
an algorithm that, with probability at least 1−δ, takes O(ln(k) · (ln(|S| /εδ)+k ln(λ))/ε4) samples
from D and returns a deterministic k-class predictor h satisfying∣∣∣∣ E

(x,y)∼D,h∼p
[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣ ≤ ε
√
Pr(x ∈ S),

for all S ∈ S, v ∈ V k
λ , j ∈ [k].

The sample complexity of Theorem 4.4 should be improvable to a sample complexity of
Õ((
√
ln(k) ln(|S| /δ) + k ln(λ))/ε3) using adaptive data analysis [30, 1]. Even without using

adaptive data analysis, Theorem E.3 guarantees a sample complexity that is only a 1/ε factor greater
(less than a cube-root increase) than the best known sample complexity for deterministic multical-
ibration. In fact, it matches the best sample complexity for deterministic multicalibration that is
known to be possible without adaptive data analysis. This means that we can attain this strictly
stronger multicalibration guarantee for free (compared to its non-adaptive data analysis counterpart)
or with only a minor cube-root increase in sample complexity (compared to its adaptive data analysis
counterpart). We defer a complete proof and algorithm statement to Section E.4.

E.2 Agnostic Multicalibration

An implicit assumption of multicalibration is that one has unlimited freedom to vary their predictions
based on which subgroups a datapoint belongs to. This assumption arises because we assume
that groups are defined as subsets of the domain, S ⊆ X , and predictors are allowed to condition
arbitrarily on the domain. This is impractical in many settings including, for example, when subgroups
correspond to protected demographics. This is an important concern for fairness applications of
multicalibration.

One can extend multicalibration to a more general agnostic setting by assuming that group member-
ship is passed to the predictor separately from the covariate. Note that, in this definition, different
groups may not share a Bayes classifier and a fully multicalibrated predictor may not exist.
Definition E.5. Consider a data distribution D supported on X × X ′ × Y and where the set P of
k-class predictors that are functions of the visible covariates X but not the protected covariates X ′.
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Fix ε > 0, λ ∈ Z+, and a set of groups S ⊆ 2X
′
. A (possibly non-deterministic) k-class predictor

p ∈ ∆(P) is (S, ε, λ)-agnostic multicalibrated with respect to a baseline B if

∀S ∈ S, v ∈ V k
λ , j ∈ [k] :

∣∣∣∣ E
(x,x′,y)∼D,h∼p

[(h(x)j − δy,j) · 1[h(x) ∈ v, x′ ∈ S]]

∣∣∣∣ ≤ ε+B.

In the original definition of multicalibration, it is implicitly assumed that one knows, a priori, the
probability that a covariate x belongs to a certain group; this is necessary to attain sample complexity
rates independent of domain size X . We will similarly allow agnostic multicalibration to take for
granted knowledge of the group memberships of each covariate x ∈ X .

Choosing a baseline. One challenge with defining agnostic multicalibration is choosing a proper
baseline B. An immediate option is to choose a min-max baseline:

Bweak := min
h∗∈H∗

max
j,v,S

∣∣∣∣ E
(x,x′,y)∼D

[(h∗(x)j − yj) · 1[h∗(x) ∈ v, x′ ∈ S]]

∣∣∣∣ .
However, achieving this baseline is intractable, with a sample and oracle complexity that depends—
potentially linearly—on domain size. Moreover, the predictor attaining the min-max baseline is odd
and undesirable: when two groups disagree on the label for a set of covariates, the predictor hedges
its losses by spreading its predictions for those covariates into as many bins as possible.
Proposition E.6. Define X = [m] for some large m ∈ Z+ and uniformly sample a random half
of X as X̃ ⊆ X where |X̃ | = |X |/2. Let X ′ = {1, 2}, λ = 3 and k = 2, and define the marginal
distributions PrD(x | x′ = 1) and PrD(x | x′ = 2) to be uniform on X . For x /∈ X̃ , let labels
be random: PrD(y = 1 | x′ = 1, x) = PrD(y = 1 | x′ = 2, x) = 0.5. For x ∈ X̃ , let labels be
deterministic: PrD(y = 1 | x′ = 1, x) = 0 and PrD(y = 1 | x′ = 2, x) = 1. Finding a predictor
that is (S, ε, λ)-agnostic multicalibrated with respect to the min-max baseline requires at least Θ(|x|)
samples must be taken from D for ε = 0.1.

Proof. The min-max optimal multicalibated predictor divides X̃ into 4 equal parts: X̃1, . . . , X̃4. It
predicts h(x) = 0.5 for all x /∈ X̃ , x ∈ X̃1 and x ∈ X̃2. It predicts h(x) = 1/3 for all x ∈ X̃3. It
predicts h(x) = 2/3 for all x ∈ X̃4. This attains a multicalibration violation of 1/6. Thus, achieving
an ε-optimal predictor requires determining the membership (in X̃ ) of at least a 3/4− ε fraction of
X .

To provide a more satisfactory definition of agnostic multicalibration, we ask that one’s predictor
assigns the same label probabilities to datapoints with the same group memberships and relaxes the
baseline so that hedging is not necessary.
Definition E.7. We say that a k-predictor h is agnostic multicalibrated if the predictor h provides the
same prediction probabilities h(x1) = h(x2) to datapoints x1, x2 ∈ X that share the same group
membership distributions ∀S ∈ S : Pr(x′ ∈ S | x = x1) = Pr(x′ ∈ S | x = x2); and (2) is
(S, ε, λ)-agnostic multicalibrated with respect to the multi-accuracy baseline:

Bmulti-acc := min
h∗∈H∗

max
j∈[k],S∈S

∣∣∣∣ E
(x,x′,y)∼D

[(h∗(x)j − δy,j) · 1[x′ ∈ S]]

∣∣∣∣ . (10)

This baseline is zero when the groups share a Bayes classifier, recovering Definition 2.1. With a slight
tweak to Fact 2.5, we can write agnostic multicalibration as the following multi-objective learning
problem.
Fact E.8. Let D be a data distribution for some k-class prediction problem and fix ε > 0, λ ∈ Z+,
and a set of groups S ⊆ 2X

′
. For every protected feature x′ ∈ (X ′)X , direction i ∈ {±1}, level set

v ∈ V k
λ , group S ∈ S, and class j ∈ [k], we define an objective `x′,i,j,S,v : P × (X × Y) → [0, 1]

where

`x′,i,j,S,v(h, (x, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v,x′
x ∈ S] · (h(x)j − δy,j), (11)

and Gag = {`x′,i,j,S,v}x′,i,j,S,v is the set of these objectives. We also define objectives without
subscript x′, where `i,j,S,v(h, (x, x

′, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v, x′ ∈ S] · (h(x)j − δy,j) and
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G′
ag = {`i,j,S,v}i,j,S,v. For every objective ` ∈ G′

ag, let q` ∈ ∆(Gag) denote the objective mixture
where Ex∼D,`∼q` [`(·)] = Ex′,x∼D [`(·)]. If a predictor p ∈ ∆(P) is a ε-optimal solution to the
multi-objective learning problem ({D} ,G′

ag,P) with respect to the multi-accuracy baseline, then p
is (S,S ′, 2ε, λ)-agnostic multicalibrated for D with respect to the multi-accuracy baseline.

A simple modification to our batch multicalibration algorithm suffices to achieve agnostic multicali-
bration.

Theorem E.9. Fix ε > 0, λ, k ∈ Z+, a set of groups S ⊆ 2X
′
, and a data distribution D.

The following algorithm returns a deterministic k-class predictor that is (S, ε, λ)-agnostic mul-
ticalibrated on D with respect to the multi-accuracy baseline. It makes O(ln(k)/ε2) calls to an
agnostic learning oracle and, with probability 1 − δ, these oracle calls can be implemented with
Õ
(

1
ε3 (
√
ln(k) ln(k |S| /δ) + k ln(λ))

)
samples from D.

No-Regret vs Best-Response

Construct the problem ({D},Gag,P) from Fact 2.5 and let T = Cε−2 ln(|S|λkδ) for some universal
constant C. Over T rounds, have an adversary choose `(1:T ) ∈ G′

ag by calling an agnostic learning
oracle at each t ∈ [T ]: `(t) = Aε/8(1 − LD,(·)(h

(t)),G′
ag). Have a learner choose predictors

h(1:T ) ∈ P by applying the no-regret learning algorithm of Theorem C.6 to the stochastic costs
{q`(t)} (1:T ) ∈ ∆(Gag). Using C ln(T/δ)/ε2 samples from D, return the predictor h(t∗) with the
lowest empirical multicalibration error. This algorithm is written explicitly in Algorithm 6.

Proof. By Theorem C.6, if T ≥ 256ε−2 ln(k), the predictors h(1:T ) satisfy
RegB∗(h(1:T ), {q`(t)} (1:T )) ≤ Tε/8. Note that, since predictors h(1:T ) can only observe x
and not x′, we applied the algorithm of Theorem C.6 to (mixtures of) objectives from Gag that
depend only on (x, y). Since Ex∼D,`x′,i,j,S,v∼q

`(t)
[`x′,i,j,S,v(·)] = Ex′,x∼D

[
`(t)(·)

]
however,

we can still bound regret with respect to the loss functions in G′
ag, which do depend on x′, by

RegB∗(h(1:T ), `(1:T )) = RegB∗(h(1:T ), {q`(t)} (1:T )) ≤ Tε/8; we define both of these regrets with
respect to the set of all predictors from X → Y . Also note that the B∗ baseline bounded by the
multiaccuracy baseline (10):

B∗ = min
h∗∈H∗

1

T

T∑
t=1

max
h′∈H∗

E
(x,y)∼D

[
f (t)(x, h′(x)) · (h∗(x)− g(t)(y))

]
≤ min

h∗∈H∗
max
`∗∈G

max
h′∈H∗

E
(x,y)∼D

[f∗(x, h′(x)) · (h∗(x)− g∗(y))]

≤ min
h∗∈H∗

max
j,S

∣∣∣∣ E
(x,x′,y)∼D

[(h∗(x)j − yj) · 1[x′ ∈ S]]

∣∣∣∣
= Bmulti-acc.

Thus, we have regret RegBmulti-acc
(h(1:T ), `(1:T )) ≤ RegB∗(h(1:T ), `(1:T )) ≤ T ε

8 . By construction,
every `(t) is an (ε/8) best-response to the cost 1 − LD,(·)(h

(t)). By Lemma 3.4, there must exist
a timestep where h(t) is (ε/4)-optimal with respect to Bmultiacc. By Lemma 3.5, the h(t∗) found by
the algorithm is (ε/2)-optimal with respect to Bmultiacc with probability at least 1− δ. By Fact E.8,
h(t∗) is a (S, ε, λ)-agnostic multicalibrated predictor. Lastly, we verify that datapoints with identical
group membership probabilities must have the same label probabilities as the update rules for their
predicted labels are identical.

The best existing sample complexity bounds for agnostic multicalibration come from uniform
convergence [38], and scale with log(|H|) ≈ |X |—that is, sample complexity scales with the size of
one’s domain. In contrast, Theorem E.9 provides a sample complexity that still depends only on the
complexity of the groups on which one desires multicalibration. This can be an exponential (in |X |)
reduction in sample complexity.

Similarly to Algorithm 6, we can use the same modification to scale our non-deterministic multicali-
bration algorithm (Algorithm 1) to agnostic settings.
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Theorem E.10. Fix ε > 0, λ ∈ Z+ and a set of groups S ⊆ 2X . There exists an algorithm
guarantees, with probability at least 1− δ, the algorithm returns a randomized (S, ε, λ)-agnostic
multicalibrated predictor while taking no more than O

(
(ln(|S| /δ) + k ln(λ))/ε2

)
samples from D.

E.3 Moment Multicalibration

Our treatment of multicalibration, and extensions of multicalibration, hold more generally for any
problem that can be written as multi-objective learning with objectives that look separable. As
an example, we demonstrate that we can use the same approach to devise algorithms for moment
multicalibration, which concerns not only learning a multicalibrated label predictor but also a
second predictor that estimates the higher-order moments of the label distribution [22]. As in online
multicalibration, we will work with only binary classification problems in this section, and so will
say that predictors output real-valued hµ(x), hm(x) ∈ [0, 1].
Definition E.11. Let D be a data distribution for a binary classification problem and fix ε > 0,
λ,m ∈ Z+, and a set of groups S ⊆ 2X . A pair of predictors p = (pµ, pm) where pµ, pm : X →
[0, 1] is (S, ε, λ,m)-mean-conditioned moment-multicalibrated5 on D if, for all S ∈ S, vµ, vm ∈ Vλ,

ε ≥
∣∣∣∣ E
(x,y)∼D,(hµ,hm)∼p

[(hµ(x)− y) · 1[hµ(x) ∈ vµ, hm ∈ vm, x ∈ S]]

∣∣∣∣ ,
ε ≥

∣∣∣∣ E
(x,y)∼D,(hµ,hm)∼p

[((hµ(x)− y)m − hm(x)) · 1[hµ(x) ∈ vµ, hm ∈ vm, x ∈ S]]

∣∣∣∣ .
We will write h = (hµ, hm) as shorthand, where h(x) = (hµ(x), hm(x)). Moment multicalibration
can also be expressed as a multi-objective learning problem.
Fact E.12. Consider the set of all pairs of predictors H = {(hµ, hm) : hµ, hm : X → [0, 1]}.
Fix ε > 0 and λ,m ∈ Z+, and a set of groups S ⊆ 2X . Define the objectives Gµ

mc :=
{`µ,i,S,v}i∈{±1},S∈S,v∈V 2

λ
and Gm

mc := {`m,i,S,v}i∈{±1},S∈S,v∈V 2
λ

where

`m,i,S,v(h, (x, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v, x ∈ S] · (hm(x)− (y − hµ(x))
m),

`µ,i,S,v(h, (x, y)) = 0.5 + 0.5 · i · 1[h(x) ∈ v, x ∈ S] · (hµ(x)− y).

A pair of predictors is an ε-optimal solution to the single-distribution multi-objective learning
problem ({D},Gm

mc ∪ Gµ
mc,P) if and only if the pair is also (S, 2ε, λ,m) mean-conditioned moment

multicalibrated.

Thus, we can follow the same steps as before to derive a moment multicalibration algorithm. The
algorithm we derive for Theorem E.13 recovers the sample complexity of [22] for moment multicali-
bration. Moreover, the algorithm is parallelized in that it learns the mean and moment estimators
hµ, hm simultaneously, in contrast with [22]’s algorithm which uses nested optimization.

Theorem E.13. Fix ε > 0, λ, r ∈ Z+, a set of groups S ⊆ 2X , and a data distribution D. The
following algorithm returns a pair of predictors that are (S, ε, λ,m)-mean-conditioned moment
multicalibrated on D and makes O(1/ε2) calls to an agnostic learning oracle. Moreover, with
probability 1− δ, the oracle calls can be implemented with Õ(m ln(|S|λ/δ)/ε4) samples from D.

No-Regret vs Best-Response

Construct the problem ({D},Gm
mc ∪Gµ

mc,P) from Fact E.12 and let T = Cε−2 ln(|S|λkδ) for some
universal constant C. Over T rounds, have a learner choose predictors h(1:T )

m ∈ P by applying
the no-regret learning algorithm of Theorem C.6 to the stochastic costs `

(1:T )
m , instantiating A

to be Hedge with learning T−3/4. In parallel, have a learner choose predictors h
(1:T )
µ ∈ P by

applying the no-regret learning algorithm of Theorem C.6 to the stochastic costs `(1:T )
µ , instantiating

A to be the strongly adaptive Hedge algorithm (Lemma A.3). Have an adversary choose `
(t)
m , `

(t)
m

by calling an agnostic learning oracle at each t ∈ [T ]: `
(t)
m = Aε/8(1 − `(·)(h

(t)),Gm
mc) and

5This definition aligns with the definition of “pseudo-moment multicalibration” proposed by [22]. We
adopt this particular definition as previous studies [22, 18] develop their algorithms and analyses based on this
definition of moment multicalibration, with translations to other definitions occurring only retrospectively.
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`
(t)
µ = Aε/8(1− `(·)(h

(t)),Gµ
mc). Using C ln(T/δ)/ε2 samples from D, return the predictor h(t∗)

with the lowest empirical multicalibration error. This algorithm is written explicitly in Algorithm 7.

First, we prove an intermediate result.

Lemma E.14. In the Algorithm 7, the sequence of hypotheses h(1:T ) satisfies the bounded regret
condition Regweak(h

(1:T ),
{
`m

(t) + `µ
(t)
}

(1:T )) ∈ O
(√

mT 3/4
)
.

Proof. For simplicity, we’ll round T to the next largest square. Recall that using Hedge to select
T actions from the interval [0, 1] with learning rate T−3/4m−1/2 guarantees a regret bound of
2 ln(2)

√
mT 3/4 (Lemma A.1). By Theorem C.6, since we chose A to be Hedge with learning rate

T−3/4 when learning h
(t)
µ ,
∑T

t=1 `
(t)
µ (h(t)) ≤ 0.5T + 2 ln(2)

√
mT 3/4. Similarly, by Theorem C.6,

having chosen A to be strongly adaptive Hedge when learning h
(t)
m , we have for any T1 ∈ [T ] and

h∗
m ∈ Hm,

T1+
√
T∑

t=T1

(
L
`
(t)
m
(h(t))− 0.5− E

(x,y)∼D

[
f (t)
m (x, h(t)(x))(h∗

m(x)− g(t)m (y))
])

≤ O
(
T 1/4 ln(T )

)
.

In the above equation, f
(t)
m and g

(t)
m are the separable components of the loss `

(t)
m , as de-

fined in Definition C.5. We now turn to bound the expectation term. By triangle inequality,
f
(t)
m (x, h(t)(x))(h∗

m(x) − g
(t)
m (y)) ≤ f

(t)
m (x, h(t)(x))(h∗

m(x) − g
(T1)
m (y)) +

∣∣∣g(T1)
m (y)− g

(t)
m (y)

∣∣∣.
Using the inequality that |am − bm| ≤ m |a− b| when a, b ∈ [0, 1], and the movement upper bound
of Hedge (Lemma A.2), we have

∣∣∣g(T1)
m (y)− g

(t)
m (y)

∣∣∣ ≤ m
∣∣∣h(t)

µ (x)− h
(T1)
µ (x)

∣∣∣ ≤ mηµ
√
T , where

ηµ = T−1/2T−3/4 is the learning rate of the mean predictor hµ. Thus, for all T1, by choosing

h∗
m(x) = E

[
g
(T1)
m (y) |x

]
, we have that

T1+
√
T∑

t=T1

(L
`
(t)
m
(h(t))− 0.5)

≤ min
h∗
m∈Hm

T1+
√
T∑

t=T1

E
(x,y)∼D

[
f (t)
m (x, h(t)(x))(h∗

m(x)− g(T1)
m (y))

]
+mTηµ +O

(
T 3/4 ln(T )

)
≤

√
mT 3/4 +O

(
T 3/4 ln(T )

)
.

This gives 1
2

∑T
t=1 L`

(t)
m
(h(t)) + L

`
(t)
µ
(h(t))− 1 ≤ O

(
(ln(T ) +

√
m)T 3/4

)
as desired.

We now return to proving Theorem E.13.

Proof of Theorem E.13. By Lemma E.14, the learner’s regret is Regweak(h
(1:T ), {`(t)m + `

(t)
µ }(1:T )) ∈

O
(
m1/2T 3/4

)
. When T = Cm2/ε4, we thus have Regweak(h

(1:T ), {max{`(t)m , `
(t)
µ }}(1:T )) ≤ Tε/8.

By construction, every max{`(t)m , `
(t)
µ } is an (ε/8) best-response to the cost 1 − LD,(·)h

(t). By
Lemma 3.4, there must exist a timestep where h(t) is (ε/4)-optimal. By Lemma 3.5, the predictors
h(t∗) found by the algorithm are (ε/2)-optimal with probability at least 1− δ. By Fact E.12, h(t∗) is
a (S, ε, λ,m)-mean-conditioned moment multicalibrated predictor.
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Algorithm 4 Conditional Multicalibration Algorithm (Theorem E.3)

1: Input: S,S ′ ⊆ 2X , ε ∈ (0, 1), k, λ, T, C ∈ Z+, distributions {D′
S}S′∈S′ , and agnostic learning

oracle A;
2: Initialize Prod iterate h(1) = [1/k, . . . , 1/k]X ;
3: for t = 1 to T do
4: Let S′(t), `(t) = Aε/8(cadv

(t),S ′ × Gmc) where cadv
(t)(S′, `) := 1− LDS′ ,`(h

(t));
5: Let h(t+1)(x) = Prod(c

(1:t)
x ) where

c(t)x (ŷ) :=
1[x ∈ S′(t)]

2 PrD(x ∈ S′(t))
(1 + 1[h(x) ∈ v(t), x ∈ S(t)] · i(t) · ŷj(t));

6: end for
7: Take C ln(T/δ)/ε2 samples x(S′) ∼ DS′ for all S′ ∈ S ′, and let

t∗ = argmin
t∈[T ]

∑
(x,y)∈x(S′(t))

`(t)(h(t), (x, y));
8: Return the predictor h(t∗);

Algorithm 5 Non-Deterministic Conditional Multicalibration Algorithm (Theorem E.4)

1: Input: S,S ′ ⊆ 2X , ε ∈ (0, 1), k, λ, T ∈ Z+, and distributions {D′
S}S′∈S′ ;

2: Initialize Prod iterate h(1) = [1/k, . . . , 1/k]X and ELP iterate (S′(1), `(1)) ∼ Uniform(S ′ ×
Gmc);

3: for t = 1 to T do
4: Let h(t+1)(x) = Prod(c

(1:t)
x ) where

c(t)x (ŷ) :=
1[x ∈ S′(t)]

2 PrD(x ∈ S′(t))
(1 + 1[h(x) ∈ v(t), x ∈ S(t)] · i(t) · ŷj(t));

5: Sample (x(t), y(t)) ∼ DS′(t) and let S′(t+1), `(t+1) := ELP(cadv
(1:t)) with

cadv
(t)(S′, `i,j,S,v) :=

1

2
1[S′ = S′(t)] · (1 + i · 1[h(x(t)) ∈ v, x(t) ∈ S] · (δy(t),j − h(x(t))j));

6: end for
7: Return h∗, a uniform distribution over h(1), . . . , h(T );

Algorithm 6 Agnostic Deterministic Multicalibration Algorithm (Theorem E.9)

1: Input: S ⊆ 2X , ε ∈ (0, 1), k, λ, T, C ∈ Z+, agnostic learning oracle A, and distribution D;
2: Initialize Hedge iterate h(1) = [1/k, . . . , 1/k]X ;
3: for t = 1 to T do
4: Let `i,j,S,v = `(t) = Aε/8(cadv

(t),G′
ag) where cadv

(t)(`) := 1− LD,`(h
(t));

5: Let h(t+1)(x) = Hedge(c
(1:t)
x ) with

c(t)x (ŷ) :=
1

2
(1 +

∑
x′∈X ′

Pr
D
(x′ | x) · i(t) · 1[h(x) ∈ v(t), x′ ∈ S(t)] · ŷj(t) ;

6: end for
7: Take C ln(T/δ)/ε2 samples x from D, and let t∗ = argmin

t∈[T ]

∑
(x,x′,y)∈x

`(t)(h(t), (x, x′, y));
8: Return the predictor h(t∗);
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Algorithm 7 Moment Multicalibration Algorithm (Theorem E.13)

1: Input: S ⊆ 2X , ε ∈ (0, 1), k, λ, T, C ∈ Z+, agnostic learning oracle A, and distribution D;
2: Initialize Hedge iterate h

(1)
m = 0.5X and Hedge iterate h

(1)
µ = 0.5X ;

3: for t = 1 to T do
4: Let `

(t)
m = Aε/8(cadv

(t),Gm
mc) and `

(t)
µ = Aε/8(cadv

(t),Gµ
mc) where cadv

(t)(`) := 1 −
LD,`(h

(t));
5: For x ∈ X , let h(t+1)

m (x) := Hedge(c
(1:t)
m,x ) and h

(t+1)
µ (x) := Hedge(c

(1:t)
µ,x ) where

c(t)m,x(ŷ) :=
1

2
(1 + i(t)m · 1[ŷ ∈ v(t)m , x ∈ S(t)

m ]), c(t)µ,x(ŷ) :=
1

2
(1 + i(t)µ · 1[ŷ ∈ v(t)µ , x ∈ S(t)

µ ])

6: end for
7: Take C ln(T/δ)/ε2 samples x from D and let t∗ = argmin

t∈[T ]

∑
(x,y)∈x

`
(t)
m (h(t), (x, y)) + `

(t)
µ (h(t), (x, y));

8: Return the predictors h(t∗)
m , h

(t∗)
µ ;

E.4 Square-root Multicalibration Guarantees

The following Theorem E.15 is a stronger restatement of Theorem 4.4.

Theorem E.15. Fix ε > 0, λ, k ∈ Z+ and sets of groups S ⊆ 2X . Set T = C ln(k)/ε2 for
some universal constant C. Algorithm 8, with probability at least 1 − δ, requires no more than
Õ(ln(k) · (ln(k |S| /εδ) + k ln(λ))/ε4) samples6 from D to find a deterministic k-class predictor h
satisfying ∣∣∣∣ E

(x,y)∼D
[(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]]

∣∣∣∣ ≤ ε
√
Pr(x ∈ S),

for all S ∈ S, v ∈ V k
λ , j ∈ [k]. That is, h is a deterministic predictor that is (S,

√
Pr(x ∈ S) · ε, λ)-

multicalibrated, where the error tolerance
√
Pr(x ∈ S) · ε depends on the group mass.

Before proceeding to a proof, we first introduce some technical results which are simple variants
of lemmas that the reader has seen previously in the manuscript. Note that, in the following multi-
objective learning problem construction, we will allow negative objective values for simpler notation.

Fact E.16. Let D be a data distribution for some k-class prediction problem and fix ε > 0, λ ∈ Z+,
and a set of groups S ⊆ 2X . We define the following set of multicalibration losses:

G′
mc :=

{
1√

PrD(x ∈ S)
· i · (h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]

}
i∈±{1},j∈[k],S∈S,v∈V k

λ

(12)

Predictor p ∈ ∆(P) is a ε-optimal solution to the multi-objective learning problem ({D} ,Gmc,P)

if and only if p is (S, ε
√
PrD(x ∈ S), λ)-multicalibrated for D.

Proof. In the multi-objective learning problem ({D} ,G′
mc,P), the multi-objective value of a predic-

tor p, L∗(p) := max`i,j,S,v∈G LD,`i,j,S,v
(p), is exactly the magnitude of the predictor’s multicalibra-

tion violation. Formally,

L∗(p) = max
j∈[k],S∈S,v∈V k

λ

|E(x,y)∼D,h∼p [(h(x)j − δy,j) · 1[h(x) ∈ v, x ∈ S]] |√
PrD(x ∈ S)

.

The optimal value is 0, as the objectives are symmetric around 0 and the Bayes clasifier achieves a
loss of 0. Thus, L∗(p)−minh∗∈P L∗(h∗) ≥ ε if and only if our multicalibration violation is at least
ε
√
Pr(x ∈ S).

Lemma E.17. Let D be a data distribution for some k-class prediction problem, ε ∈ (0, 0.6), δ ∈
(0, 1) and fix a set of groups S ⊆ 2X where, for all S ∈ S, PrD(x ∈ S) ≥ ε2. With only

6Here, the tilde-O hides log-log factors.
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O(ln(S/δ)/ε4) samples, one can find with probability at least 1− δ a vector v ∈ R|S| where, for all
S ∈ S , ∣∣∣vS − Pr

D
(x ∈ S)

∣∣∣ ≤ εPr
D
(x ∈ S), (13)∣∣∣∣∣ 1

√
vS

− 1√
PrD(x ∈ S)

∣∣∣∣∣ ≤ ε√
PrD(x ∈ S)

, (14)∣∣∣∣√vS −
√
Pr
D
(x ∈ S)

∣∣∣∣ ≤ ε
√
Pr
D
(x ∈ S). (15)

Proof. Fix some sufficiently large universal constant C. Sample N = C ln(S/δ)/ε4 datapoints
X from D, and let vS = 1

|X|
∑

(x,y)∈X 1[x ∈ S]. Observe that E [v] = [PrD(x ∈ S)]S∈S . The
multiplicative Chernoff bound says that, fixing an S ∈ S ,

Pr(|vS − Pr
D
(x ∈ S)| ≥ εPr

D
(x ∈ S)) ≤ 2 exp(−ε2N Pr

D
(x ∈ S)/3)

≤ 2 exp(−ε4N/3).

With our choice of N , taking a union bound over all S ∈ S, with probability at least 1 − δ,
we have our first claim. Taking a square-root of both sides, we also have that for all S ∈ S,√

(1− ε) PrD(x ∈ S) ≤ √
vS ≤

√
(1 + ε) PrD(x ∈ S). The second claim then follows by ob-

serving that, for any ε ∈ (0, 0.6), 1 − 1√
1+ε

≤ ε, and 1√
1−ε

− 1 ≤ ε. The third claim follows by

observing that, for any ε ∈ (0, 1),
√
1 + ε− 1 ≤ ε and 1−

√
1− ε ≤ ε.

The following lemma is a modification of Theorem C.6 that states that the learner has a no-regret
strategy on the calibration objectives given in Fact E.16.
Lemma E.18. Consider the set of k-class predictors P , a data distribution D, and any adversarial
sequence of stochastic costs `(1:T ) ∈ G′

mc, where G′
mc are the multicalibration objectives defined

in Lemma E.16. Suppose you are given v ∈ R satisfying (14) and (13) for all S ∈ S and that,
for all S ∈ S, PrD(x ∈ S) ≥ ε2. There is a no-regret algorithm that outputs (deterministic)
predictors h(1:T ) ∈ P ′ such that Regweak(h

(1:T ), {LD,`(t)}(1:T )) ≤ O(
√
ln(k)T + εT ). Moreover,

the algorithm does not need any samples from D.

Proof. Consider the following algorithm. At each feature x ∈ X , initialize a Prod algorithm that
picks an action h(t)(x) ∈ ∆(Y) at each timestep t ∈ [T ]. Aggregating each algorithm’s action yields
our learner’s overall action h(t) ∈ P . For each x ∈ X , let h(t+1)(x) be the outcome of Prod at step
t+ 1 after observing linear loss functions f (τ)

h(τ),x
: Rk → [0, 1] for τ ∈ [t]:

f
(τ)

h(τ),x
(z) :=

1

2
√
vS(τ)

(
1 + zj(τ) · i(τ) · 1[h(τ)(x) ∈ v(τ), x ∈ S(τ)]

)
. (16)

Prod gives
∑T

t=1 f
(t)

h(t),x
(h(t)(x)) − minz∗∈∆(Y)

∑T
t=1 f

(t)

h(t),x
(z∗) ≤ C

√
ln(k)

∑T
t=1 v

−1
S(t)

(Lemma A.4) for some universal constant C. Since this inequality holds for all x ∈ X , apply-
ing the law of total expectation to Lemma A.4,

∑
x∈X

C Pr
D
(x)

√√√√ln(k)

T∑
t=1

v−1
S(t)

≥
∑
x∈X

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(h(t)(x))−

∑
x∈X

min
z∗∈∆(Y)

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(z∗)

=
∑
x∈X

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(h(t)(x))− min

h∗∈P

∑
x∈X

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(h∗(x))

= max
h∗∈P

∑
x∈X

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(h(t)(x)− h∗(x)),
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with the equality following because we allow arbitrary predictors. Expanding the definition of f ,

max
h∗∈P

∑
x∈X

T∑
t=1

Pr
D
(x)f

(t)

h(t),x
(h(t)(x)− h∗(x))

= max
h∗∈P

∑
x∈X

T∑
t=1

Pr
D
(x)

1

2
√
vS(t)

(
(h(t)(x)− h∗(x)) · i(t) · 1[h(t)(x) ∈ v(t), x ∈ S(t)]

)

≥
T∑

t=1

E
x∼D

[
1

2
√
vS(t)

(
(h(t)(x)− E

y∼D
S(t)

[δy | x]) · i(t) · 1[h(t)(x) ∈ v(t), x ∈ S(t)]

)]

=

T∑
t=1

√
PrD(x ∈ S(t))

vS(t)

LD,`(t)(h
(t)).

By definition of v,

T∑
t=1

√
PrD(x ∈ S(t))

vS(t)

LD,`(t)(h
(t)) ≥

T∑
t=1

√
1− εLD,`(t)(h

(t)) ≥
T∑

t=1

LD,`(t)(h
(t))− Tε.

We also know by construction of the losses in G′
mc that the weak baseline Bweak = 0. We can therefore

bound

Regweak(h
(1:T ), {LD,`(t)}(1:T )) ≤ Tε+

∑
x∈X

C Pr
D
(x)

√√√√ln(k)

T∑
t=1

1

vS(t)

≤ Tε+
∑
x∈X

C Pr
D
(x)

√√√√ln(k)

T∑
t=1

(1 + ε)
1

PrD(x ∈ S(t))

= Tε+ C
√

T ln(k)(1 + ε)
∑
x∈X

√
Pr
D
(x)

√√√√ 1

T

T∑
t=1

Pr
D

S(t)

(x).

To bound the last inequality, let u ∈ RX , v ∈ RX be vectors defined as ux =
√
PrD(x) and

vx =
√∑T

t=1 PrDS(t)
(x). Then, by Cauchy-Schwarz inequality, we have that u · v ≤ ‖u‖2 ‖v‖2. In

other words,

C
√
T ln(k)

∑
x∈X

√√√√Pr
D
(x)

1

T

T∑
t=1

Pr
D

S(t)

(x) ≤ C
√
T ln(k)

(∑
x∈X

Pr
D
(x)

)(∑
x∈X

1

T

T∑
t=1

Pr
D

S(t)

(x)

)
≤ C

√
T ln(k).

The following lemma states that the adversary can efficiently best-respond to the objectives from
Fact E.16.
Lemma E.19. Consider a k-class predictor h ∈ P , a data distribution D, and set of multicalibration
objectives G′

mc. Suppose you are given v ∈ R satisfying (15) for all S ∈ S . There is an algorithm that,
taking only ε−2(ln(|S| /δ)+k ln(λ)) samples for some universal constant C, returns a `i,j,S,v ∈ G′

mc
such that, with probability at least 1− δ, LD,`i,j,S,v

(h) + 2ε ≥ maxi∗,j∗,S∗,v∗ LD,`i∗,j∗,S∗,v∗ (h).

Proof. Consider the following algorithm. Draw N = Cε−2(ln(|S| /δ) + k ln(λ)) samples
(x, y)(1:N) from D. For all S ∈ S, initialize the empty buffer XS = {}. Then, for every
value of r = 1, . . . , N and for every group S ∈ S, if x(r) ∈ S, append (x, y)(r) to XS . Let
`i,j,S,v = maxi,j,S,v

√
vS

PrD(x∈S)
1

|XS |
∑

(x,y)∈XS
`i,j,S,v(h, (x, y)) be the multicalibration objective
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that minimizes the empirical risk on its respective buffer XS . Note that finding `i,j,S,v does not
require knowledge of PrD(x ∈ S), as the explicit factor of

√
1/PrD(x ∈ S) is cancelled out by

`i,j,S,v.

We first observe that |XS | is a binomial random variable with parameters N and Pr(x ∈ S). By
Chernoff’s bound, with probability 1 − δ |S|−1, |XS | ≥ Pr(x ∈ S) · C ′ε−2(ln(|S| /δ) + k ln(λ))
for some universal constant C ′, where we choose C to be large enough so that C ′ ≥ C

2 . By union
bound, with probability 1− δ, for every S ∈ S , |XS | ≥ Pr(x ∈ S)N/2.

Condition on this event and fix a `i,j,S,v ∈ G′
mc. We observe that each (x, y) ∈ XS is an unbiased

sample from DS , we have at least Pr(x ∈ S)N/2 samples, and `i,j,S,v ∈ ±{1/
√

Pr(x ∈ S)}. Thus,
by Chernoff’s bound, with probability at least 1− δ |G′

mc|
−1,∣∣∣∣∣∣|XS |−1

∑
(x,y)∈XS

√
Pr(x ∈ S)`i,j,S,v(h, (x, y))−

√
Pr(x ∈ S)LDS ,`i,j,S,v

(h)

∣∣∣∣∣∣
≤ ε/(3

√
Pr(x ∈ S)).

Thus with probability at least 1− δ, for all `i,j,S,v ∈ G′
mc,∣∣∣∣∣∣|XS |−1

∑
(x,y)∈XS

Pr(x ∈ S)`i,j,S,v(h, (x, y))− Pr(x ∈ S)LDS ,`i,j,S,v
(h)

∣∣∣∣∣∣
=

∣∣∣∣∣∣|XS |−1
∑

(x,y)∈XS

Pr(x ∈ S)`i,j,S,v(h, (x, y))− LD,`i,j,S,v
(h)

∣∣∣∣∣∣
≤ ε.

Taking a union bound over all ` ∈ G′
mc, by uniform convergence, with probability at least 1− 2δ, our

returned `i,j,S,v is an ε best-response to the cost function `i,j,S,v 7→ −
√

vS
PrD(x∈S)LD,`i,j,S,v

(h(t)).

By (15), max`i∗,j∗,S∗,v∗ LD,`i∗,j∗,S∗,v∗ (h
(t)) − LD,`i,j,S,v

(h(t)) ≤ ε. Thus, `i,j,S,v is an 2ε best-
response to the cost function `i,j,S,v 7→ −LD,`i,j,S,v

(h(t)).

Proof of Theorem E.15. First, we will assume without loss of generality that, for every group S ∈ S ,
PrD(x ∈ S) ≥ ε2/32. This is because for such S, our multicalibration constraint is trivially
satisfied for tolerances of at least ε/

√
32. We can remove such S from our group set S by testing if

PrD(x ∈ S) ≤ ε2/32; O( ln(|S|/δ)
ε4 ) samples suffices.

Next, we will sample v according to Lemma E.17, which also takes at most O( ln(|S|/δ)
ε4 ) samples.

Lemma E.18 then guarantees that, since T ≥ C ln(k)/ε2, Regweak(h
(1:T ), {LD,`(t)(·)}(1:T )) ≤

Tε/8. By Lemma E.19, `(t) is an (ε/8) best-response to the cost function −LD,(·)(h
(t)) with

probability at least 1− δ/T at each timestep t. By Lemma 3.4, since the learner has at most Tε/8
weak regret and the adversary is ε/8 best-responding, there is a timestep t ∈ [T ] where h(t) is
(ε/4)-optimal for the problem ({D} ,G′

mc,P). By Lemma 3.5, the h(t) found by the algorithm
is (ε/2)-optimal with probability at least 1 − δ. By Fact E.16, this is an (S, ε, λ)-multicalibrated
predictor.

F Other Fairness Notions

This general framework of approaching multi-objective learning problems with game dynamics can
be extended beyond multicalibration. In this section, we use multi-objective learning to derive new
guarantees for multi-distribution learning and multi-group learning.
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Algorithm 8 Conditional Multicalibration Algorithm (Theorem E.15)

1: Input: S ⊆ 2X , ε ∈ (0, 1), k, λ, T, C ∈ Z+, and distribution D;
2: Initialize Prod iterate h(1) = [1/k, . . . , 1/k]X ;
3: Sample C ln(S/δ)/ε4 datapoints X from D and, for each S ∈ S, remove S from S if

1
|X|
∑

(x,y)∈X 1[x ∈ S] ≤ ε2/32;
4: Sample C ln(S/δ)/ε4 datapoints X from D, and let vS = 1

|X|
∑

(x,y)∈X 1[x ∈ S] for all S ∈ S;
5: for t = 1 to T do
6: Draw N = Cε−2(ln(|S|T/δ) + k ln(λ)) samples (x, y)(1:N)

t from D;
7: For all S ∈ S , let Xt,S =

{
(x, y)it | i ∈ [N ], xi ∈ S

}
;

8: Let cadv
(t)(S, `) :=

√
vS |Xt,S |−1∑

(x,y)∈Xt,S
`(h(t), (x, y));

9: Let `(t) = argmax`∈G′
mc

cadv
(t)(S, `);

10: If cadv
(t)(S(t), `(t)) ≤ ε/8 terminate and return h(t);

11: Let h(t+1)(x) = Prod(c
(1:t)
x ) where

c(t)x (ŷ) :=
1[x ∈ S(t)]

2
√
vS(t)

(1 + 1[h(x) ∈ v(t), x ∈ S(t)] · i(t) · ŷj(t));

12: end for
13: Return p∗, a uniform distribution over h(1), . . . , h(T );

Competing in multi-distribution learning. Usually, in agnostic multi-objective learning problems,
the trade-off between objectives is arbitrated by the worst-off objectives maxD∗∈D,`∗∈G LD∗,`∗(·).
However, this approach to negotiating trade-offs may be suboptimal when some objectives are
inherently more difficult. In those cases, we can take into account the difficulty of individual
objectives by asking for a predictor where there is no objective for which a competitor h ∈ H∗

performs significantly better.

Definition F.1. For a multi-objective learning problem (D,G,H), a solution that is ε-competitive
with respect to a class H′ is a hypothesis p ∈ ∆(H) satisfying,

L∗
H′(p)− min

h∗∈H
L∗
H′(h∗) ≤ ε where L∗

H′(h) := max
D∈D

max
`∈G

(LD,`(h)− min
h∗∈H′

LD,`(h)).

Only a simple modification is needed to provide ε-competitive guarantees: amplify your original
objectives G into a new objective set G′ :=

{
1
2 (1 + `(·)− `(h′)) | ` ∈ G, h′ ∈ H′} and solve as

usual. The following fact, which holds by definition, formalizes this reduction.

Fact F.2. Consider a multi-objective learning problem (D,G,H). For some choice of H′, let
G′ := {0.5 + 0.5(`(·)− `(h′)) | ` ∈ G, h′ ∈ H′}. Any solution p that is ε-optimal for the multi-
objective learning problem (D,G′,H), is also 2ε-competitive (Definition F.1) w.r.t. H′ for the
original problem (D,G,H).

[19] showed that the sample complexity of finding an ε-optimal solution to a multi-objective learning
problem (D,G,H) is O(ε−2(ln(|H|) + |D| ln(|D| |G| /δ))). Thus, Fact F.2 immediately implies
Theorem 5.1, our sample complexity bound for finding an ε-competitive solution.

39



Algorithm 9 Multi-Group Learning Algorithm (Theorem 5.3)

1: Input: S ⊆ 2X , ε ∈ (0, 1), ` : Y ×Y → [0, 1], hypothesis class H : X → Y , and distribution D;
2: Initialize Hedge iterate q(1) = Uniform(S ×H) and p(1) = Uniform(H);
3: for t = 1 to T do
4: Sample (x

(t)
q , y

(t)
q ) ∼ D and (x

(t)
p , y

(t)
p ) ∼ D;

5: Let q(t+1) := Hedge(c
(1:t)
q ) and p(t+1) := Hedge(c

(1:t)
p ) where

c(t)q (S, h) :=
1

2
+

1

2
E

h′∼p(t)

[
1[x(t)

q ∈ S](`(h, (x(t)
q , y(t)q ))− `(h′, (x(t)

q , y(t)q )))
]

c(t)p (h) :=
1

2
+

1

2
E

S,h′∼q(t)

[
1[x(t)

p ∈ S](`(h, (x(t)
p , y(t)p ))− `(h′, (x(t)

p , y(t)p )))
]
;

6: end for
7: Return: p∗, a uniform distribution over p(1), . . . , p(T );

Multi-group learning. Consider the multi-group learning problem (Definition 5.2) where, rather
than seeking simultaneously calibrated estimates of different subsets of the domain as in multicalibra-
tion, we seek to simultaneously minimize a general loss function on different subsets of the domain
[37].

A (near) optimal sample complexity for multi-group learning of O
(
ln(|S| |H|)/ε2

)
was attained by

[39] using a reduction to sleeping experts. [39] also asked whether there exists a simpler optimal
algorithm that does not rely on sleeping experts. We answer this affirmatively by designing an optimal
algorithm that just runs two Hedge algorithms.

We can equate the multi-group learning problem (Definition 5.2) to finding an ε-competitive solution
in a single-distribution multi-objective learning problem.
Fact F.3. Fix ε > 0, a set of groups S ⊆ 2X , a hypothesis class H, data distribution D, and a
loss ` : H × (X × Y) → [0, 1]. We define `S(h, (x, y)) := `(h, (x, y)) · 1[x ∈ S]. If a hypothesis
p ∈ ∆(H) is ε-competitive with respect to the class H for the single-distribution multi-objective
learning problem ({D}, {`S}S∈S ,H), then p is also an ε-optimal solution to the multi-group
learning problem (S,H).

The following—a formalization of Theorem 5.3—is a direct consequence of running no-regret
no-regret dynamics, as in Lemma 3.3.
Theorem F.4 (Multi-group learning). Fix a set of groups S ⊆ 2X , loss ` : Y×Y → [0, 1], hypothesis
class H : X → Y , and distribution D; For some universal constant C and T = C ln(|S| |H|)/ε2,
Algorithm 9 takes 2T = O

(
ln(|S| |H|)/ε2

)
samples from D and returns an ε-optimal solution to

the multi-group learning problem (S,H).

G Empirical Results

G.1 Experiment Setup

We conduct three sets of experiments to evaluate different batch multicalibration algorithms. The
three sets of experiments we conduct correspond to three datasets: the UCI Adult Income dataset
[26], a real-world dataset for predicting individuals’ incomes based on the US Census, the UCI Bank
Marketing dataset [32], a dataset for predicting whether an individual will subscribe to a bank’s term
deposit, and the Dry Bean Dataset [27], a dataset for predicting a dry bean’s variety.

In every experiment, the performance of a multicalibration algorithm is measured based on the
multicalibration violations of the average iterate and last iterate, where multicalibration violations
are as defined in Definition 2.1. In every experiment, we empirically evaluate six multicalibration
algorithms. Four algorithms are based on no-regret best-response dynamics, using an empirical
risk minimizer as the adversary and implementing either Hedge [14] (Hedge-ERM), Prod [28]
(Prod-ERM), Optimistic Hedge [36] (OptHedge-ERM), or Gradient Descent (GD-ERM) as the
learner. Two algorithms are based on no-regret no-regret dynamics, using either Hedge (Hedge-
Hedge) or Optimistic Hedge (OptHedge-OptHedge) as both the learner and adversary. We also note
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that the most commonly used multicalibration algorithms are included in these comparisons. The
original multicalibration algorithm of [21] is equivalent to GD-ERM. The revised, boosting-inspired,
multicalibration algorithm of [25, 7] is equivalent to Hedge-ERM.

G.2 Results

The results of these experiments are summarized in Table 3, which reports the multicalibration errors
of each algorithm’s final iterate and average iterate. In Appendix G, Figure 1 plots the evolution of
training and testing multicalibration errors over the duration of the training process. We identify two
key trends that are statistically significant and hold consistently in all three experiments.

Error Measures

Train Error (Det) Test Error (Det) Test Error (Non-Det)

U
C

IA
du

lt

Hedge-Hedge (NRNR) 2.0e-2 ± 2.0e-3 3.0e-2 ± 3.0e-3 2.3e-4 ± 2.7e-5

OptHedge-OptHedge (NRNR) 7.0e-3 ± 0.0 2.7e-2 ± 3.0e-3 2.6e-4 ± 2.8e-5

OptHedge-ERM (NRBR) 0.0 ± 0.0 4.7e-2 ± 1.0e-3 4.8e-4 ± 9.0e-6

Hedge-ERM (NRBR) 0.0 ± 0.0 6.4e-2 ± 1.0e-3 6.4e-4 ± 1.1e-5

Prod-ERM (NRBR) 0.0 ± 0.0 5.3e-2 ± 4.0e-3 5.3e-4 ± 4.4e-5

GD-ERM (NRBR) 5.3e-2 ± 1.1e-2 8.3e-2 ± 3.0e-3 9.5e-4 ± 6.5e-5

U
C

IB
an

k

Hedge-Hedge (NRNR) 2.4e-2 ± 1.0e-3 4.3e-2 ± 1.1e-2 5.3e-4 ± 1.2e-4

OptHedge-OptHedge (NRNR) 1.3e-2 ± 1.0e-3 2.0e-2 ± 1.0e-3 2.1e-4 ± 5.0e-6

OptHedge-ERM (NRBR) 2.0e-3 ± 1.0e-3 1.8e-2 ± 0.0 2.2e-4 ± 6.0e-6

Hedge-ERM (NRBR) 2.0e-3 ± 0.0 5.2e-2 ± 1.0e-3 5.3e-4 ± 8.0e-6

Prod-ERM (NRBR) 0.0 ± 0.0 4.6e-2 ± 3.0e-3 5.1e-4 ± 2.3e-5

GD-ERM (NRBR) 8.0e-3 ± 1.0e-3 9.9e-2 ± 6.0e-3 1.1e-3 ± 7.1e-5

D
ry

B
ea

n

Hedge-Hedge (NRNR) 3.2e-2 ± 5.0e-3 4.6e-2 ± 4.0e-3 2.4e-5 ± 1.0e-6

OptHedge-OptHedge (NRNR) 1.9e-2 ± 1.0e-3 5.3e-2 ± 1.0e-3 2.7e-5 ± 1.0e-6

OptHedge-ERM (NRBR) 1.3e-2 ± 0.0 5.2e-2 ± 2.0e-3 2.6e-5 ± 1.0e-6

Hedge-ERM (NRBR) 1.4e-2 ± 0.0 5.5e-2 ± 1.0e-3 2.6e-5 ± 1.0e-6

Prod-ERM (NRBR) 1.2e-2 ± 4.0e-3 6.5e-2 ± 1.6e-2 2.9e-5 ± 5.0e-6

GD-ERM (NRBR) 6.0e-3 ± 0.0 7.6e-2 ± 1.0e-3 3.1e-5 ± 1.0e-6

Table 3: Average (± standard error) of multicalibration violations on UCI Adult Dataset (20 seeds),
UCI Bank Marketing Dataset (5 seeds), and the Dry Bean Dataset (5 seeds). Train Error (Det) and
Test Error (Det) evaluate the last iterate (deterministic predictor) on training and test splits; Test Error
(Non-Det) measures the average iterate (non-deterministic predictor) on the test split.

Figure 1 plots the evolution of training and testing multicalibration errors over the duration of the
training process. These plots confirm that the relative performance of different multicalibration
algorithms is fairly monotonic and regular, even across the duration of training and the learning rate
schedule.

The last iterates of no-regret no-regret dynamics are surprisingly multicalibrated. On all
datasets, the algorithms based on no-regret no-regret dynamics, namely Hedge-Hedge and OptHedge-
OptHedge, consistently yield not only among the most multicalibrated randomized predictors (with
their average iterate) but also the most multicalibrated deterministic predictors (with their last iterate).
This is surprising because the last iterate of these algorithms is not guaranteed to be multicalibrated,
and only enjoys a theoretical advantage over no-regret best-response algorithms in terms of average
iterate guarantees. As corroborated by Figure 1, this trend does not appear to be an artifact of early
stopping or learning rates, but may rather indicate that their more stable adversary updates provide
regularization to these algorithms.
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Figure 1: These plots depict the multicalibration violations (Definition 2.1) of various multicalibration
algorithms on the UCI Adult Income dataset (top left), Bank Market dataset (top right), and Dry
Bean dataset (bottom). The lines plot how much the current iterate violates the multicalibration
condition on the training data (top plot) and testing data (bottom plot), with error bars denoting
standard error. The iterates of the OptHedge-OptHedge algorithm, which implements no-regret vs
no-regret dynamics using the Optimistic Hedge algorithm, are the most multicalibrated predictors.

One’s choice of no-regret algorithm matters. On all datasets, we see that the best multicalibration
results are consistently achieved by algorithms that instantiate the Optimistic Hedge no-regret
algorithm. This is consistent with the theoretical results of [36], which show that Optimistic Hedge
converges faster than a standard Hedge in games. We also see that the original multicalibration
algorithm of [21], based on gradient descent, consistently attains the worst multicalibration errors,
both in terms of average-iterate and last-iterate. This is consistent with gradient descent being a
theoretically less effective no-regret algorithm, as it is unstable near the boundaries of a probability
simplex.

Due to the superficial similarity between boosting and multicalibration, the field has already be-
gun adopting multicalibration algorithms with Hedge’s multiplicative updates rather than gradient
descent’s additive ones, as suggested by [25]. Our findings offer the first theoretical and empirical en-
dorsement of this shift. Moreover, our results suggest that practitioners should further explore the use
of Optimistic Hedge-based algorithms and algorithms based on no-regret no-regret dynamics—even
when one is only interested in deterministic predictors.
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G.3 Experiment Details

The source code for these experiments is included in the repository https://github.com/
ericzhao28/multicalibration. Model checkpoints for replicating our results can be found
at https://drive.google.com/drive/folders/1CVusrPZkB-15_55VVkoU3KrLXQGZzne4?
usp=sharing. All experiments were performed on a 2021 MacBook Pro, with a M1 Pro chip.
The total compute time for replicating the experiments in this section, including hyperparameter
tuning, is approximately 20 hours.

UCI Adult Income Dataset. The UCI Adult Income dataset [26] is a dataset for predicting
individuals’ incomes based on the US Census. Our experiments use the dataset’s binary ‘income’
attribute as the target label and form 129 protected groups using eight of the dataset’s labeled
attributes: ‘age’, ‘workclass’, ‘education’, ‘marital-status’, ‘occupation’, ‘relationship’, ‘race’, and
‘sex’. We perform random 80-20 train/test splits of the dataset, resulting in approximately 24000
training samples, 6000 test samples, and 130 groups. We discretize the label space into 0.1-width
bins (λ = 10). Experiments are repeated for 20 seeds, with multicalibration algorithms running for
50 iterations.

UCI Bank Market Dataset. The UCI Bank Marketing dataset [32] is a dataset for predicting
individuals’ subscriptions to a term deposit at a bank. Our experiments use the dataset’s binary
‘y’ attribute as the target label and form 129 protected groups using eight of the dataset’s labeled
attributes: ‘age’, ‘job’, ‘marital’, ‘education’, ‘default’, ‘housing’, ‘loan’, and ‘contact’. We round
ages to the nearest age divisible by 5 since ‘age’ is a continuous attribute. We perform random 80-20
train/test splits of the dataset, resulting in approximately 36000 training samples, 9000 test samples,
and 180 groups. We discretize the label space into 0.1-width bins (λ = 10). Experiments are repeated
for 5 seeds, with multicalibration algorithms running for 50 iterations.

Dry Bean Dataset. The Dry Bean Dataset [27] is a dataset for predicting a dry bean’s variety using
its physical attributes. Our experiments use the dataset’s bean ‘type’ attribute (which takes 7 possible
values) as the target label and form 80 protected groups using eight of the dataset’s labeled attributes:
‘perimeter’, ‘major-axis-length’, ‘minor-axis-length’, ‘aspect-ratio’, ‘eccentricity’, ‘convex-area’, and
‘equivalent-diameter’. We discretize all numerical/continuously-valued attributes by evenly dividing
the range of possible values into 10 segments. We perform random 80-20 train/test splits of the
dataset, resulting in approximately 11000 training samples, 2700 test samples, and 80 groups. We
discretize the label space into 0.25-width bins (λ = 4). Experiments are repeated for 5 seeds, with
multicalibration algorithms run for 100 iterations.

Hyperparameter tuning. In each experiment, the learning rates of the algorithms are tuned on
the training set using 10 seeds (Adult Income dataset), 5 seeds (Bank Market dataset), and 5 seeds
(Dry Bean dataset). We sweep over the learning rate decay rates of η ∈ [0.8, 0.85, 0.9, 0.95] for the
learner and (if applicable) η ∈ [0.9, 0.95, 0.98, 0.99] for the adversary, where the learning rate of the
learner at the tth iteration is ηt and the adversary is 100 · ηt. In the Dry Bean dataset, learning rates
are universally doubled to 2ηt and the adversary is 200 · ηt. The selected learning rate decays are
summarized below.

Dataset
Hedge-
Hedge

OptHedge-
OptHedge

OptHedge-
ERM

Hedge-
ERM

Prod-ERM GD-ERM

Adult
Income

η = (0.95, 0.9) η = (0.95, 0.9) η = 0.9 η = 0.9 η = 0.9 η = 0.9

Bank
Marketing

η = (0.95, 0.95) η = (0.95, 0.95) η = 0.95 η = 0.95 η = 0.95 η = 0.85

Dry
Bean

η = (0.99, 0.98) η = (0.95, 0.99) η = 0.95 η = 0.95 η = 0.95 η = 0.95
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