
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIBENCH MEETS RESOCRATIC: MEASURE AND
IMPROVE LLMS FOR OPTIMIZATION MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have exhibited their problem-solving abilities in
mathematical reasoning. Solving realistic optimization (OPT) problems in ap-
plication scenarios requires advanced and applied mathematics ability. However,
current OPT benchmarks that merely solve linear programming are far from com-
plex realistic situations. In this work, we propose OPTIBENCH, a benchmark for
end-to-end optimization problem-solving with human-readable inputs and out-
puts. OPTIBENCH contains rich optimization problems, including linear and non-
linear programming with or without tabular data, which can comprehensively eval-
uate LLMs’ solving ability. In our benchmark, LLMs are required to call a code
solver to provide precise numerical answers. Furthermore, to alleviate the data
scarcity for optimization problems, and to bridge the gap between open-source
LLMs on a small scale (e.g., Llama-3-8b) and closed-source LLMs (e.g., GPT-4),
we further propose a data synthesis method namely ReSocratic. Unlike general
data synthesis methods that proceed from questions to answers, ReSocratic first
incrementally synthesizes formatted optimization demonstrations with mathemat-
ical formulations step by step and then back-translates the generated demonstra-
tions into questions. Based on this, we synthesize the RESOCRATIC-29K dataset.
We further conduct supervised fine-tuning with RESOCRATIC-29K on multiple
open-source models. Experimental results show that RESOCRATIC-29K signifi-
cantly improves the performance of open-source models.

1 INTRODUCTION

Large language models (LLMs), such as GPT-3 (Brown et al., 2020), GPT-4 (Achiam et al., 2023),
and Llama (Touvron et al., 2023a;b), have demonstrated their superior capability in logical reason-
ing (Suzgun et al., 2023; Huang et al., 2023) and mathematical reasoning (Ling et al., 2017; Patel
et al., 2021; Yang et al., 2022; 2023), such as solving elementary (Cobbe et al., 2021) to high-school
level (Hendrycks et al., 2021) math problems. Yet a follow-up curiosity is to what extent LLMs
apply their mathematical intelligence to practical scenarios. Optimization problem solving (Rama-
monjison et al., 2022b; Xiao et al., 2023; AhmadiTeshnizi et al., 2024; Huang et al., 2024a) is a
field of applied mathematics that has been proven beneficial in many applications such as supply
chain management, power energy scheduling, marketing, and quantitative trading. Optimization
problem-solving is a comprehensive task that evaluates the mathematical and coding capabilities of
LLMs. To provide the optimal solution to an optimization problem, LLMs are not only required to
understand and construct the mathematical formulation according to the given problem but also to
call an optimization solver to get the final answers.

Previous studies (Ramamonjison et al., 2022a; Xiao et al., 2023; AhmadiTeshnizi et al., 2024) have
explored using LLMs to solve operations research problems. However, these studies have not yet
extended to more generalized scenarios regarding practical optimization problems. Specifically,
NL4OPT (Ramamonjison et al., 2022a;b) uses named entity recognition to extract entity and nu-
merical values in the given question text, and then formulate it into mathematical models. They only
measure the model’s ability to correctly construct mathematical formulations, without considering
solving the mathematical formulations being constructed. To further evaluate models providing the
final optimal solution, i.e., the numerical values of the variables and the optimization objective,
ComplexOR (Xiao et al., 2023) and NLP4LP (AhmadiTeshnizi et al., 2024) benchmark the mod-
els to solve a problem with an optimization solver in the setting without explicit input numbers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison of optimization problem solving benchmarks. “End2End” indicates whether
the benchmark requires the model to solve for the optimal values of the variables and the optimiza-
tion objective. “Implicit/Explicit” refers to whether the numeric values in the question are displayed.

Benchmark
Question

Size End2End
Linear Nonlinear

Form w/ table w/o table w/ table w/o table

ComplexOR (Xiao et al., 2023) Implicit 37
√

×
√

× ×
NLP4LP (AhmadiTeshnizi et al., 2024) Implicit 57

√
×

√
× ×

NL4OPT (Ramamonjison et al., 2022b) Explicit 289 × ×
√

× ×
OPTIBENCH (Ours) Explicit 605

√ √ √ √ √

However, due to the difficulty of collecting such data, these benchmarks are still on a small scale.
Moreover, the recent MAMO (Huang et al., 2024a) proposes to further benchmark optimization
problem solving with a code solver. Nevertheless, one common pitfall of all the aforementioned
works is that they merely focus on linear programming, whereas nonlinear optimization problems
and practical tabular format are not included. Table 1 provides a comparison of the aforementioned
benchmarks. We also discuss the differences between current benchmarks in detail in Appendix A.

To bridge this gap, we propose OPTIBENCH, a new benchmark with high-quality data to evaluate
LLMs’ end-to-end solving ability in optimization tasks. We carefully select 605 questions and con-
duct careful manual verification to form the dataset. OPTIBENCH contains linear and nonlinear pro-
gramming with both integer and mixed integer variables in the programming problems. OPTIBENCH
also includes tabular data, which fills the gap in current optimization benchmarks. Figure 1 demon-
strates OPTIBENCH examples in the four problem types. A model solves an OPTIBENCH problem
by reading the natural language input and then generating Python code that solves the problem,
where the code will be processed to acquire the numerical value of the variables and the objective
function.

Additionally, the data scarcity issue in optimization tasks (Xiao et al., 2023; AhmadiTeshnizi et al.,
2024) cannot be ignored. Annotators are required to possess good professional knowledge, making
the process not only expensive but also time-consuming and labor-intensive. In addition, there is
a significant performance gap between small open-source models (e.g., Llama-2-7B, Llama-3-8B)
and large models (e.g., GPT-4) in many complex reasoning tasks (Ling et al., 2017; Patel et al., 2021;
Suzgun et al., 2023; Yang et al., 2022; 2023; Huang et al., 2023). To this end, we propose ReSo-
cratic, a novel method for synthesizing diverse and reliable data for optimization problems. Unlike
previous methods that synthesize questions first and then answers, ReSocratic incrementally syn-
thesizes the formatted optimization demonstration in a reverse manner, and finally back-translates it
into a question. Benefiting from intermediate reasoning steps, the quality of ReSocratic’s synthetic
data is higher than that of previous methods. We collect 29k samples with ReSocratic, resulting in
the RESOCRATIC-29K dataset. In summary, our contributions are as follows:

• We introduce a high-quality benchmark OPTIBENCH for optimization problems with com-
plex instances in multiple forms. As far as we know, this is the first large-scale benchmark
including nonlinear and tabular data to measure LLMs’ end-to-end problem solving abili-
ties. We conducted an in-depth evaluation of a range of LLMs under various settings.

• We propose ReSocratic, a novel method for generating diverse and reliable data for op-
timization problems. In particular, ReSocratic synthesizes complex reasoning data from
scratch in a reverse manner.

• We synthesize the RESOCRATIC-29K dataset with 29k samples by using our ReSocratic.
Experimental results show that conducting supervised fine-tuning with RESOCRATIC-
29K significantly improves the performance of open-source models on OPTIBENCH (e.g.,
Llama-2-7B-Chat from 0.0% to 30.6%; Llama-3-8B-Instruct from 13.6% to 51.7%), which
further demonstrates the validity of our synthetic data.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

linear problem with table

There are six cities (cities 1-6) in Kilroy County. The county must

determine where to build fire stations. The county wants to build

the minimum number of fire stations needed to ensure that at least

one fire station is within 15 minutes (driving time) of each city.

The times (in minutes) required to drive between the cities in

Kilroy County are shown in the following Table.

Tell Kilroy how many fire stations should be built and where they

should be located.

Table (Time Required to Travel between Cities in Kilroy):

Textual Question:

Optimization Model:

Define 𝑥𝑖 (𝑖 = 1,2, … , 6) as whether the station should be build in

City 𝑖.
Optimization Target: Constraints:

From /
To

City 1 City 2 City 3 City 4 City 5 City 6

City 1 0 10 20 30 30 20

City 2 10 0 25 35 20 10

City 3 20 25 0 15 30 20

City 4 30 35 15 0 15 25

City 5 30 20 30 15 0 14

City 6 20 10 20 25 14 0

linear problem without table

There are two ways to extract a metal from mined ores. The first

way is to use process J and the second is process P. Process J can

extract 5 units of metal using 8 units of water and produces 3 units

of pollution. Process P can extract 9 units of metal using 6 units of

water and produces 5 units of pollution. There can be at most 1500

units of water 1350 units of pollution. How many of each type of

processes should be performed to maximize the amount of metal

extracted?

Textual Question:

Optimization Model:

Define j as the process number in the type of J, p as the process

number in the type of P.

Optimization Target: Constraints:

nonlinear problem without table

A piece of cardboard is 1 meter by 1/2 meter. A square is to be cut

from each corner and the sides folded up to make an open-top box.

What are the dimensions of the box with maximum possible

volume?

Textual Question:

Optimization Model:

Define W,L as the width and length of the cardboard respectively, x

as the length of each corner to be cut to make the box.

Optimization Target: Constraints:

nonlinear problem with table

Textual Question:

A company is planning to optimize its production of five different

products (Product A, Product B, Product C, Product D, and Product

E) to maximize profit while considering the environmental impact

of production. The profit per unit and the environmental impact per

unit for each product are given in the following Table.

The company has a total production capacity of 1500 units across

all products. The company must produce at least 200 units of

Product A and 300 units of Product B to fulfill contractual

obligations. The total environmental impact should not exceed

20,000 units. The company wants to maximize the Profit-Impact

ratio, where the Profit-Impact ratio is defined as the total profit

divided by the total environmental impact.

Product Profit per Unit Environmental Impact per Unit

A $50 10 units

B $70 15 units

C $60 12 units

D $80 20 units

E $90 18 units

Optimization Model:

Define 𝑎 − 𝑒 as the number of products of A-E that the company

should produce.

Optimization Target: Constraints:

Figure 1: Our OPTIBENCH contains various types of data (linear, nonlinear, table). To enhance
readability, we present the table in an Excel format and include a diagram to illustrate the nonlinear
example without a table.

2 RELATED WORK

Benchmarks for Optimization Modeling. More closely related to our approach, the NL4OPT
benchmark (Ramamonjison et al., 2022a;b) investigates controlled generation techniques to obtain
an automatic suggestion of formulations. They first use named entity recognition methods to ex-
tract a set of entity-typed declarations, then they transform it into linear program models. As one
can see, NL4OPT only evaluates an AI model’s ability to establish mathematical models, while we
contribute an end-to-end framework in this work. Optimus (AhmadiTeshnizi et al., 2024) and Com-
plexOR (Xiao et al., 2023) also make significant research in the field of operations research with
LLMs. However, they provide a minimal test set, containing less than 70 test samples. Recently,
MAMO (Huang et al., 2024a) is proposed to benchmark mathematical modeling with code solvers.
However, all these works merely focus on linear programming, ignoring the nonlinear problems that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

exist widely in practical applications. In addition, these benchmarks are simple in form, ignoring
the tabular data that often occurs in industrial scenarios. Additionally, we notice a work Tang et al.
(2024) explores synthesizing problems via a semi-automated process. This work is based on forward
synthesis. Moreover, they did not focus on tabular data and nonlinear problems in real scenarios.
In contrast, in this paper, we aim to benchmark practical optimization modeling with a high-quality
manually checked test-bed OPTIBENCH and also automatically synthesize more comprehensive op-
timization data including tabular data and code solutions resulting in RESOCRATIC-29K. In this
work, we contribute OPTIBENCH, which is an end-to-end benchmark containing 605 multi-type
data samples. OPTIBENCH is a comprehensive benchmark that involves linear, non-linear, and tab-
ular data, and the types of variables involved in the problems include continuous, integers (IP), and
mixed integers (MIP).

Data Synthesis for Mathematical Reasoning. Improving the performance of language models in
mathematical reasoning tasks significantly depends on increasing the quantity of fine-tuning data
for LLMs. A substantial body of work has been dedicated to these areas (Yu et al., 2023; Liu &
Yao, 2024; Li et al., 2023; Yuan et al., 2023; Lu et al., 2024b; Yue et al., 2023). One notable
approach is Rejection Sampling Fine-Tuning (RFT; Yuan et al. 2023), which employs supervised
models to generate and collect correct reasoning paths, creating augmented fine-tuning datasets.
MAmmoTH (Yue et al., 2023) utilizes RFT with GPT-4 to gather both Chain-of-Thought solutions
in natural language and Program-of-Thought solutions in formal language. Similarly, MetaMath (Yu
et al., 2023) focuses on data augmentation for both question and answer texts. MathGenie (Lu et al.,
2024b) collects a vast amount of data through open-source language models. While there has been
significant progress in synthesizing data for informal mathematical reasoning, efforts have also been
made to address formal reasoning through the use of formal languages and compilers (Xiong et al.,
2023; Huang et al., 2024b; Lu et al., 2024a). However, a major challenge remains: there is a scarcity
of high-quality data for optimization problems. This lack of data limits the direct application of
these prior approaches to optimization contexts.

Socratic Method. The Socratic method (Gose, 2009; Scholle, 2020) is a critical thinking method
with dialogic disassembled multi-step sub-questions and answers cultivating in answering a com-
plex question. This method has been applied by current language model techniques for advanced
reasoning tasks, such as prompting step-wise reasoning (Qi et al., 2023; Chang, 2023; Shridhar
et al., 2022), multi-agent interaction (Zeng et al., 2023), and discovering math knowledge (Dong
et al., 2023). For example, Qi et al. (2023) proposes a divide-and-conquer style algorithm that
mimics recursive thinking by asking Socratic questions, it thus relieves the reliance on the initial
decision as chain-of-thought (CoT) and achieves performance improvements on several complex
reasoning tasks. Chen & Lampouras (2023); Xie et al. (2023) utilize back-translation as core mod-
ules in their data generation frameworks, but our ReSocratic places more emphasis on step-by-step
reverse construction of the chain-of-thought from scratch, with back-translation being one tiny step
in our framework. Another line of work (Ang et al., 2023; Cobbe et al., 2021) applies the Socratic
method for fine-grained dataset construction. GSM8K Socratic dataset1 (Cobbe et al., 2021) is the
most related work to our paper. They inject automatically generated “Socratic sub-questions” before
each step, resulting in fine-grained math data. To construct a step-by-step benchmark for optimiza-
tion problem solving with intermediate solutions, in this work, we explore the Socratic method to
synthesize optimization problems. Unlike the previous study, we propose a reverse Socratic ap-
proach (ReSocratic) that generates optimization problems from the answer back to a question, and
we demonstrate its superiority to traditional forward Socratic synthesis.

3 OPTIBENCH: BENCHMARK FOR OPTIMIZATION MODELING

The benchmark OPTIBENCH is to evaluate the capability of large language models to solve end-
to-end optimization problems. Table 1 compares OPTIBENCH and related optimization-problem
benchmarks. OPTIBENCH covers a substantial number of optimization problems with a wider range
of problem types. Specifically, OPTIBENCH features linear programming (linear), non-linear opti-
mization problems (non-linear), and table content as in industrial use (Table), resulting in a com-
prehensive and versatile benchmark for LLM optimization problem-solving. OPTIBENCH is an

1
https://github.com/openai/grade-school-math?tab=readme-ov-file#socratic-dataset

4

https://github.com/openai/grade-school-math?tab=readme-ov-file#socratic-dataset

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

A manufacturing company produces three types of products:

ProductA, ProductB, and ProductC. The company needs to

decide the number of units to produce for each product in the

next month and how much to invest in automation for each

product to increase production efficiency. The relationship

between increase profit and automation investment, profit per

unit, and production cost for each product is given in the

following Table.

The company aims to maximize the total profit from all

products. The company has a total budget of $50,000 for

production and automation investments. The production

capacity for the next month is limited to 1,000 units in total.

Due to market demand, the company must produce at least 100

units of ProductA and 150 units of ProductB.

Product Initial

Profit per

Unit

Production

Cost per Unit

Increase Profit per Unit

per $100 Automation

Investment

Product A $50 $10 $5

Product B $70 $15 $7

Product C $60 $12 $6

Results

Execute

Solving Optimization Problem

from pyscipopt import Model

Define variables

UnitsA = model.addVar(vtype="INTEGER", lb=0)

…

Define objective function

obj = model.addVar('obj')

model.setObjective(obj, "maximize")

model.addCons(obj == ProfitA+ProfitB+ProfitC)

…

Print the results

…

Code Generation:

Execution Output:

UnitsA = 100

Investment_a = 900

……

Textual Question:

Number of Units of ProductA: 100.0

Number of Units of ProductB: 900.0

Number of Units of ProductC: 0.0

Investment in Automation for ProductA: 0.0

Investment in Automation for ProductB: 35500.0

Investment in Automation for ProductC: 0.0

Total Profit: 2304500.0

Ground Truth Answer:

OptiBench Sample

Solver

Accoding to the code output,

please give your final answer

for the following query.

Number of Units of ProductA:

Number of Units of ProductB:

……

Answer Extraction Prompt

Number of Units of ProductA: 100.0

Number of Units of ProductB: 900.0

…

Answer
Extractor

Evaluate

Figure 2: Evaluation procedure of an OPTIBENCH example. This example is about a mixed integer
nonlinear optimization problem. The LLM is first required to write code to solve the question. Then,
the LLM is required to extract the exact numbers according to the code execution output.

end-to-end benchmark, that takes natural language as input and numerical values of variables and
objective as output. We show the four types of questions in Figure 1.

Data Collection and Annotation. In the data annotation stage, we assign workers to collect ques-
tions from textbooks (Bertsimas & Tsitsiklis, 1997; Conforti et al., 2014; Wolsey, 2020), and a
university’s course assignments and examinations. We require our workers to write Python code,
call the pyscipopt2 solver to solve each problem, and ask them to output the values of the variables
and optimization targets at the end of the code. Figure 2 shows a mixed integer nonlinear program-
ming sample of OPTIBENCH. For each sample, we provide the “Question” and “Results”. More
details of data collection and annotation are shown in Appendix D.

Data Statistics. In Figure 4, we show the statistical results of four data formats (linear w/ table,
linear w/o table, nonlinear w/ table, and nonlinear w/o table). Overall, our OPTIBENCH exhibits
good diversity in terms of question types, number of variables, and text length.

Evaluation. Unlike NL4OPT (Ramamonjison et al., 2022b), which only measures the mathematical
modeling ability of the language model, we also measure the solving ability of the language model
to call code solver. In this paper, the evaluation approach we adopt is an end-to-end process where
natural language text is the input and numerical form answers are the output. Given an optimization
problem p, the LLM is required to generate a solution including code c = LLM(p). Next, a Python
interpreter is used to execute the code and obtain the code output o = Python(c). Then, we request
the LLM to give the numerical form answer ai = LLM([o, ri]) for each variable and objective in
the problem, where ri is the natural language description of “Ground Truth Answer” in Figure 2.
Finally, we compare the numerical form answer ai with the ground truth answer a∗i to calculate the
accuracy. A problem is considered solved if and only if all the variables and objectives are correctly
matched.

2
https://github.com/scipopt/PySCIPOpt

5

https://github.com/scipopt/PySCIPOpt

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Define Variables:
Chip Green is the head groundskeeper at Birdie Valley
Golf Club. There are four fertilizers (Fertilizer 1-4)
available in the market, Chip would like to mix them
together to obtain a mixture. Chip needs to determine
the optimal proportion of each fertilizer in the
mixture.
// {"proportion of Fertilizer 1": "x1", "range":
"0<=x1<=1", "type": "continuous"}
// {"proportion of Fertilizer 2": "x2", "range":
"0<=x2<=1", "type": "continuous"}
// {"proportion of Fertilizer 3": "x3", "range":
"0<=x3<=1", "type": "continuous"}
// {"proportion of Fertilizer 4": "x4", "range":
"0<=x4<=1", "type": "continuous"}
// The sum of the proportions should be 1: x1 + x2 + x3
+ x4 = 1

Define Objective Function:
The price of Fertilizer 1-4 is $21.75, $23.75, $22.00,
and $19.50 per 100 pounds, respectively.
Chip wants to minimize the cost of the mixture per 100
pounds.
// Minimize: 21.75*x1 + 23.75*x2 + 22.00*x3 + 19.50*x4

Generate Constraint-1:
The Nitrogen percentage of Fertilizer 1-4 is 10%, 8%,
12%, and 10%; the Phosphorus percentage of Fertilizer
1-4 is 8%, 11%, 7%, and 10%; the Potash percentage of
Fertilizer 1-4 is 12, 15%, 12%, and 10%.
Chip knows that the best proportion of the chemical
content should be 10-8-12 (10% nitrogen, 8% phosphorus,
and 12% potash), but no more than 0.5% above them. So
the nitrogen level should be between 10% and 10.5%; the
phosphorus level should be between 8% and 8.5%; the
potash level should be between 12% and 12.5%.
// 10 <= 10*x1 + 8*x2 + 12*x3 + 10*x4 <= 10.5
// 8 <= 8*x1 + 11*x2 + 7*x3 + 10*x4 <= 8.5
// 12 <= 12*x1 + 15*x2 + 12*x3 + 10*x4 <= 12.5

Generate Constraint-2:
The mixture should contain at least 20% Fertilizer 1.
// x1 >= 0.2

(c) code & question translation for a 4-step demonstration(b) pipeline overview of our ReSocratic

…Step 1

Step 2

Step 3

rule filter

accepted step

rejected step by

…

…

step 3

formatted demonstrations

LLM

…

×

×

×

question-translate

code-translate

…

similarity filter

Step …

synthetic

demonstrations

ReSocratic-29k

question

(a) vanilla forward synthesis method

example

questions LLM
synthetic

question LLM code

step 4

code

Formatted Demonstration:

try execute

×

√

discard

Figure 3: (a) The forward data synthesis method is to synthesize the question first, and then let the
LLM generate the answer to the synthetic question. (b) In contrast, ReSocratic first synthesizes
carefully designed formatted demonstration and then transforms it into code and questions. (c) An
example of a formatted demonstration.

4 RESOCRATIC: DATA SYNTHESIS WITH REVERSE SOCRATIC

In this section, we introduce ReSocratic, a novel data synthesis method for eliciting diverse and
reliable data. The ReSocratic framework is shown in Figure 3(a). Former methods (forward syn-
thesis) skipped the intermediate reasoning steps and directly generated the question, relying more
on the intuition of LLMs. Whereas, the main idea of ReSocratic is to incrementally synthesize an
optimization problem with step-by-step generation via the Socratic method in a reverse manner from
our elaborately formatted seed demonstrations to questions. Our ReSocratic consists of three steps:
1) Seed Demonstration Formalization, 2) New Demonstration Synthesis, and 3) Question and Code
Translation.

1) Seed Demonstration Formalization. The seed demonstrations are rigorously selected by hu-
mans and each seed data is of diverse operations research scenarios. Figure 3(b) shows an example
of seed demonstration. It is formatted step by step, where each step is clearly delineated and builds
upon the previous one. Each step consists of three parts:1) A header with “##” that introduces the
specific aspect of the demonstration being addressed, such as “Defining Variables”, “Objective Func-
tion”, or “Constraints”. 2) A narrative description (colored in blue) in natural language that provides
context and details about the element being introduced. This helps to understand the rationale and
the requirements of that particular part of the optimization problem. 3) Mathematical formalization
following “//” that translates the natural language description into a precise mathematical expression
or constraint.

2) New Demonstration Synthesis. The ReSocratic method prompts an LLM to generate new
demonstrations based on the seeds. We sample 2 seeds each time from the pool to form the syn-
thesis prompt as shown in Appendix E.2. The LLM will follow the given prompt to generate new

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

demonstrations step by step. The generated data is rigorously selected via (1) each intermediate step
should follow the format (as shown in the first step) by a rule filter and (2) the overall demonstration
does not overlap with generated ones by a similarity filter. For all generated demonstrations, we set
a similarity filter, which converts all texts into TF-IDF vectors and filters out demonstrations with
cosine similarity higher than a threshold. The procedure is shown in Figure 3(b).

3) Question and Code Translation. We construct a code generation prompt to solve the mathe-
matical formulations in the synthetic demonstrations and output the optimal solution results. If the
code runs incorrectly, we delete this demonstration. Next, to acquire the questions in plain text for-
mat and the questions in table format, we construct two back-translation prompts. All the prompts
are shown in Appendix E. Then, for each generated demonstration starting from the third step, we
translate it into a question-code pair, as shown in Figure 3(b). Each generated code will be executed
automatically to ensure there are no bugs.

5 EXPERIMENTS AND ANALYSIS

5.1 BASELINES AND SETTINGS

Evaluation Setting. The evaluation metric of our OPTIBENCH is the answer accuracy, as detailed
in Section 3. We show the solving accuracy of the four data types along with the code pass rate.
We evaluate LLMs under three settings: Zero-shot, Few-shot, and Supervised Fine-Tuning (SFT)
setting. We provide the zero-shot prompt and the few-shot prompt to solve the problem in Ap-
pendix E.1.

Baselines. We select GPT-family (Brown et al., 2020; Achiam et al., 2023), Llama-family (Tou-
vron et al., 2023b; Team, 2024), Qwen2 Yang et al. (2024), Mistral-v0.3 Jiang et al. (2023), and
DeepSeek-family (DeepSeek-AI, 2024) as the baselines in zero-shot and few-shot settings. For the
SFT setting, we use Llama-2-7B-Chat and textbfLlama-3-8B-Instruct.

Setting of Data Synthesize. We use DeepSeek-V2 (DeepSeek-AI, 2024) to apply ReSocratic. As
an open-source large language model, DeepSeek-V2 (DeepSeek-AI, 2024) stands out due to its com-
petitive performance to GPT-4, while concurrently offering a more cost-effective alternative. Fur-
thermore, it exhibits a superior throughput, approximately 6 times greater, when contrasted against
the existing 70b open-source model (DeepSeek-AI, 2024). Utilizing the advanced capabilities of
DeepSeek-V2, we contribute 29k synthetic data. This results in the RESOCRATIC-29K dataset. The
threshold of the aforementioned similarity filter is set at 0.7, we also set the temperature as 0.7, and
sample 50 responses for each query.

Fine-tuning Setting. For a given language model, we utilize our contributed RESOCRATIC-29K to
conduct supervised fine-tuning. Specifically, we construct the training sample as follows:

[
"system": "Please use python code with pyscipopt to solve the given optimization

question."
"user": "{Question}"
"assistant":{Code}"

]

We replace “{Question}” and “{Code}” with the synthetic question and the verified code in our
RESOCRATIC-29K to form the training sample. Based on this, we conduct fine-tuning experiments
on two A800 GPUs, the epoch is set as 3, the learning rate is 2e−5, and the batch size is 128.

5.2 DATA STATISTICS AND VISUALIZATION

For both OPTIBENCH and RESOCRATIC-29K, we show the statistical results of data distribution in
question type, variable numbers, and question length. The question length refers to the number of
characters in the question text. The results are shown in the following Figure 4. The distribution of
variable numbers in both OPTIBENCH and RESOCRATIC-29K generally conforms to the long-tail
distribution. In addition, the distribution of question length in OPTIBENCH also conforms to the
long-tail distribution, while RESOCRATIC-29K is more balanced.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

56.5%

13.2%

22.0%

8.3%

31.8%
29.0%

24.2%

15.0%

linear w/o

table

linear w/

table

nonlinear

w/o table

nonlinear

w/ table

OptiBench

ReSocratic-29k

(a) Data type distribution (b) Variable numbers distribution (c) Question length distribution

58.1%

11.6%
9.1% 8.8% 7.4%

5.1%

17.9%

30.1%

20.3%
13.5%

8.0% 10.2%

<=2 3 4 5 6 >=7

OptiBench

ReSocratic-29k

56.7%

17.5%
12.1% 11.1%

2.6%

10.9%

30.7%

38.0%

15.8%

2.9%

<=600 601-900 901-1200 1201-1500 >=1501

OptiBench

ReSocratic-29k

Figure 4: Statistical results of OPTIBENCH and RESOCRATIC-29K

Furthermore, we show the visualization results of OPTIBENCH and RESOCRATIC-29K using the t-
SNE algorithm based on question semantic embedding. The visualization results of each type (linear
w/o table, linear w/ table, nonlinear w/o table, nonlinear w/ table) are shown in Figure 5.

In general, from the statistical results and visualization results, our RESOCRATIC-29K has a good
diversity in the question types, variable numbers, question length, and text semantics.

linear w/o table

t-SNE visualization of linear w/ table data

t-SNE visualization of nonlinear w/o table data t-SNE visualization of nonlinear w/ table data

linear w/ table nonlinear w/o table nonlinear w/ table

Figure 5: t-SNE visualization results of OPTIBENCH and RESOCRATIC-29K. (‘△’ indicates the
data point of OPTIBENCH and ‘•’ indicates the data point of RESOCRATIC-29K)

5.3 MAIN RESULTS

As shown in Table 2, GPT-4 has the strongest overall performance and achieves state-of-the-art
performance on almost all kinds of data formats. The performance of the two open-source models,
llama3-70b and deepseek-v2, is close to that of GPT-4 in the few-shot setup. In addition, open
source small models perform extremely poorly on OPTIBENCH, with Llama-2-7B-Chat not getting
a single question correctly solved and Llama-3-8B-Instruct getting only 13.6% accuracy on the few-
shot setting. From the perspective of data type, the nonlinear data of our OPTIBENCH is more
challenging than the linear data, and the data with table (w/ table) is more challenging than without
table (w/o table). Then, to show the validity of ReSocratic, we SFT Llama-2-7B-Chat, and Llama-3-
8B-Instruct with our synthetic data RESOCRATIC-29K. We improved the performance of the Llama-
2-7B-Chat from 0.0% to 30.6%, and the Llama-3-8B-Instruct from 13.6% to 51.1% (+37.5%), which
is very close to the GPT-3.5-Turbo. In addition, Llama-3-8B-Instruct even exceeds GPT-4 in the data
type of linear w/table, reaching state-of-the-art performance. We present a more detailed dataset
performance analysis in Figure 6.

5.4 PERFORMANCE ANALYSIS ON DATA SPLIT

We show the detailed evaluation results under the few-shot setting for GPT-4 and GPT-3.5-Turbo
in Figure 6. The performance on OPTIBENCH is split by data type, variable numbers, and question
length. According to the results, we can find that:

1) Tabular questions are harder. It is more difficult to solve table questions than no-table questions,
and nonlinear questions are more difficult than linear questions.

2) Nonlinear problem is harder. According to Table 2, for all language models, the performance
of nonlinear questions is significantly lower than that of linear questions. In Figure 6 (a), we show

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Main results on OPTIBENCH. “Code Pass” refers to the success rate of code execution.
Bold indicates the sota in the current setting, underline indicates the sota in the overall setting.

Model
Linear Nonlinear

All Code Pass
w/o Table w/ Table w/o Table w/ Table

Zero-shot Prompt
Llama-3-8B-Instruct 0.0% 0.29% 0.0% 0.0% 0.17% 8.8%
Llama-3-70B-Instruct 76.9% 50.0% 30.8% 32.0% 59.5% 86.8%
Mistral-7B-Instruct-v0.3 0.6% 0.0% 0.0% 0.0% 0.3% 6.9%
Qwen2-7b-Instruct 3.5% 0.0% 3.0% 0.0% 2.6% 19.2%
DeepSeek-V2 40.4% 27.5% 29.3% 18.0% 34.4% 74.0%
DeepSeek-V2.5 78.4% 67.5% 33.1% 24.0% 62.5% 92.7%
GPT-3.5-Turbo 68.1% 37.5% 19.5% 16.0% 49.1% 85.0%
GPT-4 75.4% 62.5% 42.1% 32.0% 62.8% 88.8%
GPT-40-mini 76.0% 48.8% 35.3% 34.0% 60.0% 84.8%
GPT-4o 78.1% 65.0% 45.9% 40.0% 66.1% 90.1%

Few-shot Prompt
Llama-3-8B-Instruct 17.8% 2.5% 11.3% 8.0% 13.6% 26.9%
Llama-3-70B-Instruct 79.2% 57.5% 33.8% 32.0% 62.5% 91.2%
Mistral-7B-Instruct-v0.3 40.0% 23.8% 13.5% 18.0% 27.9% 83.8%
Qwen2-7b-Instruct 65.5% 27.5% 18.8% 14.0% 46.0% 87.6%
DeepSeek-V2 79.5% 56.3% 27.1% 32.0% 61.0% 85.5%
DeepSeek-V2.5 79.5% 71.3% 40.6% 48.0% 67.3% 91.2%
GPT-3.5-Turbo 75.4% 40.0% 28.6% 26.0% 56.4% 93.2%
GPT-4 80.7% 71.3% 34.6% 34.0% 65.5% 88.3%
GPT-4o-mini 74.6% 52.5% 14.3% 34.0% 55.0% 74.4%
GPT-4o 81.0% 63.8% 50.4% 50.0% 69.4% 91.7%

SFT with Synthetic Data
Llama-2-7B-Chat 40.6% 11.3% 15.8% 32.0% 30.6% 93.7%
Llama-3-8B-Instruct 63.5% 32.5% 33.0% 44.0% 51.1% 96.3%

the average performance of linear problems and nonlinear problems for GPT-4 and GPT-3.5-Turbo.
The performance is 66.9% for linear problems and 30.8% for nonlinear problems.

3) In general, questions with more variables and longer text lengths are more difficult. We show
the performance of GPT-4 and GPT-3.5-Turbo on the data with different numbers of variables in
Figure 6 (b). From the linear trend line we provided, we can see that model performance decreases as
the number of variables increases. As can be seen from Figure 6 (c), GPT-3.5-Turbo has a significant
performance degradation on long text questions, while GPT-4 has a more balanced performance on
different text lengths.

75.4%

40.0%

28.6% 26.0%

80.7%

71.3%

34.6% 34.0%

linear w/o

table

linear w/

table

nonlinear

w/o table

nonlinear

w/ table

GPT-3.5-Turbo

GPT-4

(a) Accuracy on different data type (b) Accuracy on variable numbers (c) Accuracy on question length

71.6%

50.0%

24.4%

30.2%

8.6%
6.5%

71.1%
64.0%

51.1%
41.9%

31.4%
38.7%

<=2 3 4 5 6 >=7

GPT-3.5-Turbo

GPT-4
67.9%

56.5%

32.9% 29.9%
25.0%

67.9% 67.9%

53.4%

43.4%

50.0%

<=600 601-900 901-1200 1201-1500 >=1501

GPT-3.5-Turbo

GPT-4

66.9%

avg-linear

30.8%

avg-nonlinear

Figure 6: Performance analysis of GPT-4 and GPT-3.5-Turbo.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.5 ABLATION STUDY ON RESOCRATIC

In Table 3, we present the performance outcomes of the models with and without the application
of filters, specifically, the rule filter and similarity filter, which are illustrated in Figure 3(b). Ad-
ditionally, we compare the performance when incorporating step questions versus when they are
excluded. We conduct an ablation study on Llama-2-7B-Chat and Llama-3-8B-Instruct. The exper-
imental results show the validity of our filters, this conclusion is similar to RFT (Yuan et al., 2023)
that redundant data can negatively affect language models. Moreover, the step questions generated
in ReSocratic can bring improvement to the model’s solving ability.

Table 3: Ablation study on synthetic data.

Model SFT Data
Linear Nonlinear

All
w/o Table w/ Table w/o Table w/ Table

Llama-2-7B-Chat
ReSocratic w/o step questions 38.3% 10.0% 15.0% 32.0% 28.9%
ReSocratic w/o filters 40.1% 11.3% 14.3% 30.0% 29.6%
RESOCRATIC-29K 40.6% 11.3% 15.8% 32.0% 30.6%

Llama-3-8B-Instruct
ReSocratic w/o step questions 62.9% 32.5% 31.6% 42.0% 50.2%
ReSocratic w/o filters 62.3% 31.3% 32.3% 36.0% 49.4%
RESOCRATIC-29K 63.5% 32.5% 33.0% 44.0% 51.1%

5.6 COMPARISON BETWEEN REVERSE SYNTHESIS AND FORWARD SYNTHESIS

Furthermore, we compared the forward data synthesis approach with the reverse data synthesis
approach (our ReSocratic method). WizardLM(Xu et al., 2023) is a typical forward data synthesis
method, which first prompts the language model to generate questions similar to the seed data and
then answer them. Using the same seed data, we sample 1000 responses from DeepSeek-v2 with
wizardLM and ReSocratic respectively, and then fine-tune Llama-2-7B-Chat. The experimental
results are shown in Table 4. The experimental results show that our ReSocratic synthesis method
is superior to the forward synthesis method. Moreover, we sample 30 pieces of data generated by
ReSocratic and WizardLM respectively, and manually identify the data accuracy, which also shows
that the data generated by ReSocratic is more accurate.

Table 4: Comparison between ReSocratic and other forward methods (Evol-Instruct and Self-
Instruct).

Model
SFT Data Linear Nonlinear

All
Method Data Acc w/o Table w/ Table w/o Table w/ Table

Llama-2-7B-Chat
Self-Instruct (1k responses) 80.0% 16.1% 5.0% 3.0% 4.0% 10.7%
Evol-Instruct (1k responses) 76.7% 15.5% 7.5% 3.8% 6.0% 11.1%
ReSocratic (1k responses) 86.7% 21.6% 6.3% r5.3% 6.0% 14.4%

6 CONCLUSION

In this paper, we propose the OPTIBENCH benchmark, which includes various types of data, to
evaluate the ability of language models to solve mathematical optimization problems end-to-end.
Furthermore, in order to alleviate the issue of data sparsity and mitigate the performance gap be-
tween large models and small open-source models, we introduce the ReSocratic method, a reverse
data synthesis approach. The experimental results show that our ReSocratic method outperforms the
forward data synthesis method. After fine-tuning with our synthetic data, RESOCRATIC-29K, the
performance of Llama-2-7B-Chat and Llama-3-8B-Instruct has been significantly improved, demon-
strating the effectiveness of our synthesis method. In the future, we plan to extend ReSocratic to
other complex reasoning tasks such as math word problem-solving and evaluate more large language
models on our proposed OPTIBENCH benchmark.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Scalable optimization modeling
with (mi) lp solvers and large language models. arXiv preprint arXiv:2402.10172, 2024.

Beng Heng Ang, Sujatha Das Gollapalli, and See-Kiong Ng. Socratic question generation: A novel
dataset, models, and evaluation. In Andreas Vlachos and Isabelle Augenstein (eds.), Proceedings
of the 17th Conference of the European Chapter of the Association for Computational Linguistics,
EACL 2023, Dubrovnik, Croatia, May 2-6, 2023, pp. 147–165. Association for Computational
Linguistics, 2023. doi: 10.18653/V1/2023.EACL-MAIN.12. URL https://doi.org/10.
18653/v1/2023.eacl-main.12.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena
Scientific Belmont, MA, 1997.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Edward Y. Chang. Prompting large language models with the socratic method. In 13th IEEE Annual
Computing and Communication Workshop and Conference, CCWC 2023, Las Vegas, NV, USA,
March 8-11, 2023, pp. 351–360. IEEE, 2023. doi: 10.1109/CCWC57344.2023.10099179. URL
https://doi.org/10.1109/CCWC57344.2023.10099179.

Pinzhen Chen and Gerasimos Lampouras. Exploring data augmentation for code generation tasks.
arXiv preprint arXiv:2302.03499, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, Michele Conforti, Gérard Cornuéjols, and
Giacomo Zambelli. Integer programming models. Springer, 2014.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

Qingxiu Dong, Li Dong, Ke Xu, Guangyan Zhou, Yaru Hao, Zhifang Sui, and Furu Wei. Large
language model for science: A study on P vs. NP. CoRR, abs/2309.05689, 2023. doi: 10.48550/
ARXIV.2309.05689. URL https://doi.org/10.48550/arXiv.2309.05689.

Michael Gose. When socratic dialogue is flagging: Questions and strategies for engaging students.
College Teaching, 57(1):45–50, 2009.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Mamo: a mathematical
modeling benchmark with solvers. arXiv preprint arXiv:2405.13144, 2024a.

Yinya Huang, Ruixin Hong, Hongming Zhang, Wei Shao, Zhicheng Yang, Dong Yu, Changshui
Zhang, Xiaodan Liang, and Linqi Song. Clomo: Counterfactual logical modification with large
language models. arXiv preprint arXiv:2311.17438, 2023.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo
Li, Linqi Song, and Xiaodan Liang. MUSTARD: mastering uniform synthesis of theorem and
proof data. CoRR, abs/2402.08957, 2024b. doi: 10.48550/ARXIV.2402.08957. URL https:
//doi.org/10.48550/arXiv.2402.08957.

11

https://doi.org/10.18653/v1/2023.eacl-main.12
https://doi.org/10.18653/v1/2023.eacl-main.12
https://doi.org/10.1109/CCWC57344.2023.10099179
https://doi.org/10.48550/arXiv.2309.05689
https://doi.org/10.48550/arXiv.2402.08957
https://doi.org/10.48550/arXiv.2402.08957

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Chengpeng Li, Zheng Yuan, Guanting Dong, Keming Lu, Jiancan Wu, Chuanqi Tan, Xiang Wang,
and Chang Zhou. Query and response augmentation cannot help out-of-domain math reasoning
generalization. arXiv preprint arXiv:2310.05506, 2023.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gen-
eration: Learning to solve and explain algebraic word problems. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 158–167, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1015. URL https://aclanthology.org/P17-1015.

Haoxiong Liu and Andrew Chi-Chih Yao. Augmenting math word problems via iterative question
composing. arXiv preprint arXiv:2401.09003, 2024.

Jianqiao Lu, Zhengying Liu, Yingjia Wan, Yinya Huang, Haiming Wang, Zhicheng Yang, Jing Tang,
and Zhijiang Guo. Process-driven autoformalization in lean 4. CoRR, abs/2406.01940, 2024a.
doi: 10.48550/ARXIV.2406.01940. URL https://doi.org/10.48550/arXiv.2406.
01940.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathgenie: Generating synthetic data with question back-translation for enhanc-
ing mathematical reasoning of llms. arXiv preprint arXiv:2402.16352, 2024b.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 2080–
2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168.

Jingyuan Qi, Zhiyang Xu, Ying Shen, Minqian Liu, Di Jin, Qifan Wang, and Lifu Huang. The
art of SOCRATIC QUESTIONING: Recursive thinking with large language models. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pp. 4177–4199, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.255. URL
https://aclanthology.org/2023.emnlp-main.255.

Rindra Ramamonjison, Haley Li, Timothy T. L. Yu, Shiqi He, Vishnu Rengan, Amin Banitalebi-
Dehkordi, Zirui Zhou, and Yong Zhang. Augmenting operations research with auto-formulation
of optimization models from problem descriptions. In Yunyao Li and Angeliki Lazaridou (eds.),
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing:
EMNLP 2022 - Industry Track, Abu Dhabi, UAE, December 7 - 11, 2022, pp. 29–62. Association
for Computational Linguistics, 2022a. doi: 10.18653/V1/2022.EMNLP-INDUSTRY.4. URL
https://doi.org/10.18653/v1/2022.emnlp-industry.4.

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghad-
dar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang.
Nl4opt competition: Formulating optimization problems based on their natural language descrip-
tions. In Marco Ciccone, Gustavo Stolovitzky, and Jacob Albrecht (eds.), Proceedings of the
NeurIPS 2022 Competitions Track, volume 220 of Proceedings of Machine Learning Research,
pp. 189–203. PMLR, 28 Nov–09 Dec 2022b. URL https://proceedings.mlr.press/
v220/ramamonjison23a.html.

Charles Scholle. Understanding the socratic method of teaching. Abraham Lincoln University
(blog). https://www. alu. edu/alublog/understanding-the-socraticmethod-of-teaching, 2020.

Kumar Shridhar, Jakub Macina, Mennatallah El-Assady, Tanmay Sinha, Manu Kapur, and Mrin-
maya Sachan. Automatic generation of socratic subquestions for teaching math word problems.

12

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://aclanthology.org/P17-1015
https://doi.org/10.48550/arXiv.2406.01940
https://doi.org/10.48550/arXiv.2406.01940
https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2023.emnlp-main.255
https://doi.org/10.18653/v1/2022.emnlp-industry.4
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://proceedings.mlr.press/v220/ramamonjison23a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, pp. 4136–4149. Association for Computational Linguistics,
2022. doi: 10.18653/V1/2022.EMNLP-MAIN.277. URL https://doi.org/10.18653/
v1/2022.emnlp-main.277.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-
bench tasks and whether chain-of-thought can solve them. In Findings of the Association for
Computational Linguistics: ACL 2023, pp. 13003–13051, Toronto, Canada, July 2023. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.824. URL https:
//aclanthology.org/2023.findings-acl.824.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. Orlm: Training large language models for optimization modeling. arXiv preprint
arXiv:2405.17743, 2024.

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex opera-
tions research problems. In The Twelfth International Conference on Learning Representations,
2023.

Yiqing Xie, Atharva Naik, Daniel Fried, and Carolyn Rose. Data augmentation for code translation
with comparable corpora and multiple references. arXiv preprint arXiv:2311.00317, 2023.

Jing Xiong, Jianhao Shen, Ye Yuan, Haiming Wang, Yichun Yin, Zhengying Liu, Lin Li, Zhi-
jiang Guo, Qingxing Cao, Yinya Huang, Chuanyang Zheng, Xiaodan Liang, Ming Zhang, and
Qun Liu. TRIGO: benchmarking formal mathematical proof reduction for generative language
models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pp. 11594–11632. Association for Computational Linguistics, 2023. doi:
10.18653/V1/2023.EMNLP-MAIN.711. URL https://doi.org/10.18653/v1/2023.
emnlp-main.711.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

13

https://doi.org/10.18653/v1/2022.emnlp-main.277
https://doi.org/10.18653/v1/2022.emnlp-main.277
https://aclanthology.org/2023.findings-acl.824
https://aclanthology.org/2023.findings-acl.824
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2023.emnlp-main.711
https://doi.org/10.18653/v1/2023.emnlp-main.711
https://arxiv.org/abs/2407.10671

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhicheng Yang, Jinghui Qin, Jiaqi Chen, Liang Lin, and Xiaodan Liang. Logicsolver: Towards
interpretable math word problem solving with logical prompt-enhanced learning. arXiv preprint
arXiv:2205.08232, 2022.

Zhicheng Yang, Yiwei Wang, Yinya Huang, Jing Xiong, Xiaodan Liang, and Jing Tang. Speak like
a native: Prompting large language models in a native style. arXiv preprint arXiv:2311.13538,
2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scal-
ing relationship on learning mathematical reasoning with large language models. arXiv preprint
arXiv:2308.01825, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Marcin Choromanski, Adrian Wong, Stefan
Welker, Federico Tombari, Aveek Purohit, Michael S. Ryoo, Vikas Sindhwani, Johnny Lee,
Vincent Vanhoucke, and Pete Florence. Socratic models: Composing zero-shot multimodal
reasoning with language. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=G2Q2Mh3avow.

14

https://openreview.net/pdf?id=G2Q2Mh3avow
https://openreview.net/pdf?id=G2Q2Mh3avow

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A MORE COMPARISONS WITH OTHER BENCHMARKS

NL4OPT is too easy for current LLMs. As we have mentioned in our paper, the NL4OPT bench-
mark is not an End-to-End evaluation benchmark. It conducts a two-stage process to evaluate the
ability to construct mathematical models. In this work, we transform NL4OPT into our OPTIBENCH
data format and contribute NL4OPT-E. We then evaluate a few LLMs, the results are shown in the
following Table 5. All the experiments are conducted under the zero-shot setting. It is observed that
LLMs solve NL4OPT almost completely even using the simplest prompt, but our OPTIBENCH still
poses a strong challenge.

Table 5: Evaluation results comparison of NL4OPT-E and OPTIBENCH.
Models NL4OPT-E OPTIBENCH

Deepseek-V2 89.3% 34.4%
GPT-3.5-Turbo 83.0% 49.1%
GPT-4 93.1% 62.8%

‘Implicit’ and ‘Explicit’ data. Problems studied by Chain-of-Experts (Xiao et al., 2023) and Opti-
MUS (AhmadiTeshnizi et al., 2024) are orthogonal to ours. These related works (Xiao et al., 2023;
AhmadiTeshnizi et al., 2024) examine the abstract modeling capabilities of LLMs for optimization
problems. Specifically, the problems they focus on do not include explicit numerical values, pri-
marily investigating the abstract modeling capabilities of LLMs in domain-specific scenarios. We
denote this form of the problem as ‘Implicit’. In contrast, the problems we study include explicit
numbers, and researching the concrete problem-solving capabilities of LLMs. We denote this form
of the problem as ‘Explicit’. The form of the problems we study is closer to practical applications.
We present an ’Implicit’ sample and an ’Explicit’ sample in Figure 7.

A fishery wants to transport their catch.
They can either use local sled dogs or
trucks. Local sled dogs and trucks can take
different amount of fish per trip. Also, the
cost per trip for sled dogs and truck is
also differs. You should note that the
budget has an upper limit and the number
of sled dog trips must be less than the
number of truck trips. Formulate an LP to
maximize the number of fish that can be
transported.

A fishery wants to transport their catch.
They can either use local sled dogs or
trucks. Local sled dogs can take 100 fish
per trip while trucks can take 300 fish
per trip. The cost per trip for sled dogs
is $50 while the cost per trip for a truck
is $100. The budget is at most $1000
and the number of sled dog trips must be
less than the number of truck trips.
Formulate an LP to maximize the number
of fish that can be transported.

Implicit Sample Explicit Sample

Figure 7: Examples of ‘Implicit’ and ‘Explicit’ data. The ’Implicit’ sample is constructed by Xiao
et al. (2023) according to the original ‘Explicit’ example of NL4OPT.

In this work, we mainly focus on the ‘Explicit’ problems. We consider such a form to be more
related to real work scenarios, such as the query question containing a numerical table. Therefore,
Chain-of-Experts (Xiao et al., 2023) and OptiMUS (AhmadiTeshnizi et al., 2024) are orthogonal to
our work.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 FINE-GRAINED ERROR ANALYSIS

We provide the statistical results on the Code Pass rate under various data categories. The results of
Code Pass rate are shown as follows (’Code Pass’ refers to the success rate of code execution).

Table 6: Code Pass rate under various data categories.
Models Prompt Linear w/o Table Linear w/ Table Nonlinear w/o Table Nonlinear w/ Table Overall Pass

Mistral-7B-Instruct-v0.3 zero-shot 5.8 6.3 9.0 0.1 6.9
Qwen2-7b-Instruct zero-shot 21.3 0.1 21.8 12.0 19.2
gpt-4o zero-shot 93.6 93.8 83.5 78.0 90.1

Mistral-7B-Instruct-v0.3 few-shot 87.7 85.0 75.9 84.0 83.8
Qwen2-7b-Instruct few-shot 92.4 85.0 78.9 82.0 87.6
gpt-4o few-shot 94.2 80.0 85.7 86.0 91.7

From the above statistical results, we can observe that the Code Pass rate for nonlinear problems is
lower than that for linear problems, indicating that solving nonlinear problems poses certain chal-
lenges in terms of coding. Furthermore, we provide 2 case studies to show the errors in code gener-
ation by language models, as shown in the following.

Error Case 1:

import pyscipopt

Create a new model
model = pyscipopt.Model()

Define variables
acai_smoothies = model.addVar("acai_smoothies", vtype="I", lb=0)
banana_smoothies = model.addVar("banana_smoothies", vtype="I", lb=0)

Define objective function
Minimize the total amount of water used
obj = model.addVar(’obj’)
model.setObjective(obj, "minimize")
model.addCons(obj == 3 * acai_smoothies + 4 * banana_smoothies)

Add constraints
Constraint for acai berries
model.addCons(7 * acai_smoothies <= 3500)

Constraint for banana chocolate
model.addCons(6 * banana_smoothies <= 3200)

Constraint for more banana smoothies than acai smoothies
model.addCons(banana_smoothies > acai_smoothies)

Constraint for at least 35% of smoothies being acai berry smoothies
model.addCons(acai_smoothies >= 0.35 * (acai_smoothies + banana_smoothies))

Solve the problem
model.optimize()

Error Analysis 1:

PySCIPOpt does not support the symbols <,>; it only supports ≤, ≥.

Error Case 2:

import math
import pyscipopt

Create a new model
model = pyscipopt.Model()

Define variables for the rescue team’s location (x, y)
x = model.addVar(’x’, lb=0) # x must be non-negative
y = model.addVar(’y’)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Define the man’s location
man_x = 3/4
man_y = 0

Define the objective function: minimize the distance to the man
distance = model.addVar(’distance’)
model.setObjective(distance, "minimize") # We want to minimize the distance

Add the distance constraint
model.addCons(distance == math.sqrt((x - man_x)**2 + (y - man_y)**2))

Add the constraint for the swamp: y >= xˆ2
model.addCons(y >= x**2)

Solve the problem
model.optimize()

Error Analysis 2:

In PySCIPOpt, you cannot use math.sqrt() directly.

B.2 IMPACT OF DIFFERENT PROMPTING STRATEGIES

We investigate whether step-by-step reasoning then generates the code can help improve model
performance. We construct a new prompt (first step reason then write code) named ’few-shot (first
reason)’. The experimental results are shown in the following:

Table 7: Performance of Other Prompting Strategy.

Models Prompt Overall Acc

GPT-3.5-Turbo few-shot (ori) 56.4
GPT-3.5-Turbo few-shot (first reason) 55.5 (-0.9)
GPT-4 few-shot (ori) 65.5
GPT-4 few-shot (first reason) 63.8 (-1.7)
GPT-4o-mini few-shot (ori) 55.0
GPT-4o-mini few-shot (first reason) 54.9 (-0.1)
GPT-4o few-shot (ori) 69.4
GPT-4o few-shot (first reason) 67.1 (-2.3)

’few-shot (ori)’ is the original few-shot prompt in out paper, and ’few-shot (first reason)’ is provided
in the Appendix E.1.3. It can be seen from the results that ”first understanding the reasoning and
then writing code” does not significantly improve performance.

B.3 PASS@K PERFORMANCE

We provide the Pass@k results as follows (we set the temperature as 0.7) as following. The perfor-
mance of the model improves with the increase in the number of generation attempts.

Table 8: Pass@k Performance.
Models Pass@5 Pass@10 Pass@15 Pass@20 Pass@25 Pass@30

Llama-3-8B-Instruct 40.5% 55.5% 59.5% 61.5% 62.5% 63.3%
Mistral-7B-Instruct-v0.3 47.1% 57.0% 61.3% 63.8% 64.7% 66.1%
Qwen2-7b-Instruct 59.5% 63.5% 65.8% 67.3% 68.3% 68.6%

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.4 SOLVING EFFICIENCY OF THE GENERATED CODES

To fairly compare with code written by humans, for each tested LLM, we only compare the runtime
of the LLM’s code with that of human-written code on the samples where the LLM can provide
correct answers. The statistical results are as follows (in seconds):

Table 9: Comparison of Solving Efficiency
Models Prompt LLM code runtime Human code runtime

Mistral-7B-Instruct-v0.3 zero-shot 0.160 0.154
Mistral-7B-Instruct-v0.3 few-shot 0.147 0.151
Qwen2-7b-Instruct zero-shot 0.403 0.157
Qwen2-7b-Instruct few-shot 0.212 0.143
deepseek-v2.5 zero-shot 0.259 0.157
deepseek-v2.5 few-shot 0.146 0.135
gpt-4o-mini zero-shot 0.283 0.159
gpt-4o-mini few-shot 0.114 0.145
gpt-4o zero-shot 0.199 0.157
gpt-4o few-shot 0.152 0.158

The aforementioned outcomes indicate that the efficiency of LLM written code is akin to that of
human beings. The principal challenges for LLMs in solving optimization problems pertain to the
accurate formulation of mathematical formulations and the generation of code that is devoid of
errors.

B.5 POTENTIAL OF LLMS TO EXTEND PROBLEM COMPLEXITY

We conducte the following attempts: We provid a sample to DeepSeek-V2.5 and prompt the LLM
to expand the number of variables and constraints of the sample. One of the expansion results is
shown in the following:

Original Sample (6 variables, 3 constraints):

Define Variables:
Gandhi Cloth Company is capable of manufacturing three types of clothing: shirts, shorts, and

pants. The manufacture of each type of clothing requires Gandhi to rent the appropriate
type of machinery. The company needs to determine the optimal number of each type of
clothing to manufacture, and the number of each type of machinery to rent.

// {"number of shirts to manufacture": "Shirt", "range": "Shirt >= 0", "type": "integer"}
// {"number of shorts to manufacture": "Shorts", "range": "Shorts >= 0", "type": "integer"}
// {"number of pants to manufacture": "Pants", "range": "Pants >= 0", "type": "integer"}
// {"number of shirt machinery to rent": "Shirt_Machinery", "range": "Shirt_Machinery >= 0", "

type": "integer"}
// {"number of shorts machinery to rent": "Shorts_Machinery", "range": "Shorts_Machinery >=

0", "type": "integer"}
// {"number of pants machinery to rent": "Pants_Machinery", "range": "Pants_Machinery >= 0", "

type": "integer"}

Define Objective Function:
The revenue per shirt is $12, the revenue per shorts is $8, and the revenue per pants is $15.
The cost per shirt is $6, the cost per shorts is $4, and the cost per pants is $8.
The rental cost per shirt machinery per week is $200, the rental cost per shorts machinery per

week is $150, and the rental cost per pants machinery per week is $100.
The company wants to maximize the weekly profit.
// Total_Revenue = 12*Shirt + 8*Shorts + 15*Pants
// Total_Cost = 6*Shirt + 4*Shorts + 8*Pants + 200*Shirt_Machinery + 150*Shorts_Machinery +

100*Pants_Machinery
// Objective Function: Maximize: Total_Revenue - Total_Cost

Generate Constraint-1:
The labor hours required per shirt is 3, the labor hours required per shorts is 2, and the

labor hours required per pants is 6. Each week, 150 hours of labor are available.
// 3*Shirt + 2*Shorts + 6*Pants <= 150

Generate Constraint-2:
The cloth required per shirt is 4 sq yd, the cloth required per shorts is 3 sq yd, and the

cloth required per pants is 4 sq yd. Each week, 160 sq yd of cloth are available.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

// 4*Shirt + 3*Shorts + 4*Pants <= 160

Generate Constraint-3:
The company needs to rent at least one machinery for each type of clothing.
// Shirt_Machinery >= 1, Shorts_Machinery >= 1, Pants_Machinery >= 1

Expanded Samples (10 variables, 8 constraints):

Define Variables:
Gandhi Cloth Company is capable of manufacturing five types of clothing: shirts, shorts, pants

, jackets, and skirts. The manufacture of each type of clothing requires Gandhi to rent
the appropriate type of machinery. The company needs to determine the optimal number of
each type of clothing to manufacture, and the number of each type of machinery to rent.

// {"number of shirts to manufacture": "Shirt", "range": "Shirt >= 0", "type": "integer"}
// {"number of shorts to manufacture": "Shorts", "range": "Shorts >= 0", "type": "integer"}
// {"number of pants to manufacture": "Pants", "range": "Pants >= 0", "type": "integer"}
// {"number of jackets to manufacture": "Jackets", "range": "Jackets >= 0", "type": "integer"}
// {"number of skirts to manufacture": "Skirts", "range": "Skirts >= 0", "type": "integer"}
// {"number of shirt machinery to rent": "Shirt_Machinery", "range": "Shirt_Machinery >= 0", "

type": "integer"}
// {"number of shorts machinery to rent": "Shorts_Machinery", "range": "Shorts_Machinery >=

0", "type": "integer"}
// {"number of pants machinery to rent": "Pants_Machinery", "range": "Pants_Machinery >= 0", "

type": "integer"}
// {"number of jacket machinery to rent": "Jacket_Machinery", "range": "Jacket_Machinery >=

0", "type": "integer"}
// {"number of skirt machinery to rent": "Skirt_Machinery", "range": "Skirt_Machinery >= 0", "

type": "integer"}

Define Objective Function:
The revenue per shirt is $12, the revenue per shorts is $8, the revenue per pants is $15, the

revenue per jacket is $20, and the revenue per skirt is $10.
The cost per shirt is $6, the cost per shorts is $4, the cost per pants is $8, the cost per

jacket is $10, and the cost per skirt is $5.
The rental cost per shirt machinery per week is $200, the rental cost per shorts machinery per

week is $150, the rental cost per pants machinery per week is $100, the rental cost per
jacket machinery per week is $250, and the rental cost per skirt machinery per week is
$120.

The company wants to maximize the weekly profit.
// Total_Revenue = 12*Shirt + 8*Shorts + 15*Pants + 20*Jackets + 10*Skirts
// Total_Cost = 6*Shirt + 4*Shorts + 8*Pants + 10*Jackets + 5*Skirts + 200*Shirt_Machinery +

150*Shorts_Machinery + 100*Pants_Machinery + 250*Jacket_Machinery + 120*Skirt_Machinery
// Objective Function: Maximize: Total_Revenue - Total_Cost

Generate Constraint-1:
The labor hours required per shirt is 3, the labor hours required per shorts is 2, the labor

hours required per pants is 6, the labor hours required per jacket is 8, and the labor
hours required per skirt is 4. Each week, 1500 hours of labor are available.

// 3*Shirt + 2*Shorts + 6*Pants + 8*Jackets + 4*Skirts <= 1500

Generate Constraint-2:
The cloth required per shirt is 4 sq yd, the cloth required per shorts is 3 sq yd, the cloth

required per pants is 4 sq yd, the cloth required per jacket is 5 sq yd, and the cloth
required per skirt is 3 sq yd. Each week, 1600 sq yd of cloth are available.

// 4*Shirt + 3*Shorts + 4*Pants + 5*Jackets + 3*Skirts <= 1600

Generate Constraint-3:
The company needs to rent at least one machinery for each type of clothing.
// Shirt_Machinery >= 1, Shorts_Machinery >= 1, Pants_Machinery >= 1, Jacket_Machinery >= 1,

Skirt_Machinery >= 1

Additional Constraints:
To ensure the problem remains feasible and interesting, we can add additional constraints

based on the production capacity of each machinery type.

Constraint-4:
Each shirt machinery can produce up to 20 shirts per week.
// Shirt <= 20 * Shirt_Machinery

Constraint-5:
Each shorts machinery can produce up to 30 shorts per week.
// Shorts <= 30 * Shorts_Machinery

Constraint-6:
Each pants machinery can produce up to 15 pants per week.
// Pants <= 15 * Pants_Machinery

Constraint-7:
Each jacket machinery can produce up to 10 jackets per week.
// Jackets <= 10 * Jacket_Machinery

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Constraint-8:
Each skirt machinery can produce up to 25 skirts per week.
// Skirts <= 25 * Skirt_Machinery

Furthermore, we had 3 master’s degree students in computer science to examine 10 expanded sam-
ples. Specifically, the following points were checked:

Variables: Does the expanded variable relate to the optimization objective? Constraints: Are the
expanded constraints reasonable? Formulation: Whether the formulation of the expanded mathe-
matical model is correct. The verification results indicate that 9 out of the 10 expanded samples are
correct.

We consider this to be the foundation for the model to self-improve its complex problem-solving
abilities. In fact, this is also one of the future work plans we have.

C MORE DETAIL OF RESOCRATIC

We have already shown the process of our synthesis method in our paper. This section adds more
detail to our ReSocratic.

C.1 SEED DEMONSTRATIONS

We collect 27 elaborate formatted demonstrations (13 linear scenarios and 14 nonlinear scenarios)
in the seed pool. An example is shown in the following bellow.

Define Variables:
Chip Green is the head groundskeeper at Birdie Valley Golf Club. There are four fertilizers (

Fertilizer 1-4) available in the market, Chip would like to mix them together to obtain a
mixture. Chip needs to determine the optimal proportion of each fertilizer in the

mixture.
// {"proportion of Fertilizer 1 in the compost": "x1", "range": "0 <= x1 <= 1", "type": "

continuous"}
// {"proportion of Fertilizer 2 in the compost": "x2", "range": "0 <= x2 <= 1", "type": "

continuous"}
// {"proportion of Fertilizer 3 in the compost": "x3", "range": "0 <= x3 <= 1", "type": "

continuous"}
// {"proportion of Fertilizer 4 in the compost": "x4", "range": "0 <= x4 <= 1", "type": "

continuous"}
// The sum of the proportions should be 1: x1 + x2 + x3 + x4 = 1

Define Objective Function:
The price of Fertilizer 1-4 is $21.75, $23.75, $22.00, and $19.50 per 100 pounds, respectively

.
Chip wants to minimize the cost of the mixture per 100 pounds.
// Minimize: 21.75*x1 + 23.75*x2 + 22.00*x3 + 19.50*x4

Generate Constraint-1:
The Nitrogen percentage of Fertilizer 1-4 is 10%, 8%, 12%, and 10%;
the Phosphorus percentage of Fertilizer 1-4 is 8%, 11%, 7%, and 10%;
the Potash percentage of Fertilizer 1-4 is 12, 15%, 12%, and 10%.
Chip knows that the best proportion of the chemical content should be 10-8-12 (10% nitrogen,

8% phosphorus, and 12% potash), but no more than 0.5% above them. So the nitrogen level
should be between 10% and 10.5%; the phosphorus level should be between 8% and 8.5%; the
potash level should be between 12% and 12.5%.

// 10 <= 10*x1 + 8*x2 + 12*x3 + 10*x4 <= 10.5
// 8 <= 8*x1 + 11*x2 + 7*x3 + 10*x4 <= 8.5
// 12 <= 12*x1 + 15*x2 + 12*x3 + 10*x4 <= 12.5

Generate Constraint-2:
The mixture should contain at least 20% Fertilizer 1.
// x1 >= 0.2

We show some statistical results of our formatted demonstration pool in Figure 8.

We have shown the distribution of the formatted demonstrations of synthetic data in Figure 4. The
data distribution of our synthetic dataset RESOCRATIC-29K is similar to the data distribution in our
formatted demonstration pool.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

48.1%
51.9%

linear nonlinear

(a) Amount of data type

7.4%

25.9%
29.6%

14.8% 14.8%

7.4%

<=2 3 4 5 6 >=7

0.0%

14.8%

37.0% 33.3%

14.8%

0-600 601-1200 1201-1800 1801-2400 >=2401

(b) Distribution of number of variables (c) Distribution of scenario length

Figure 8: Statistical results of our demonstration pool.

C.2 TABULAR DATA SYNTHESIZE

To facilitate the synthesis of different types of data (linear and nonlinear), we produce different
prompts, which are shown in Section E.2.1 and Section E.2.2. In addition, in the back-translate
stage, to get the question text with a table and the question text without a table, we construct two
different back-translation prompts, as shown in Section E.2.3.

C.3 BACK-TRANSLATION

We show an example of back-translation in the following:

Demonstration:

Define Variables:
A cereal company makes nutritional cereal, kids’ cereal, and sugary cereal. The company needs

to determine the optimal number of boxes to produce for each type of cereal.
// {"number of nutritional cereal boxes": "x", "range": "x >= 0", "type": "integer"}
// {"number of kids’ cereal boxes": "y", "range": "y >= 0", "type": "integer"}
// {"number of sugary cereal boxes": "z", "range": "z >= 0", "type": "integer"}

Define Objective Function:
The revenue per box of nutritional cereal is $1, the revenue per kids’ cereal is $1.50, and

the revenue per sugary cereal is $2. How many of each should they make to maximize
revenue?

// Maximize x + 1.5y + 2z

Generate Constraint-1:
Each box of nutritional cereal requires 3 units of oat, each kids’ cereal requires 1.5 units

of oat, and each sugary cereal requires 2 units of oat. The company has available 500
units of oat.

// 3x + 1.5y + 2z <= 500

Generate Constraint-2:
Each box of nutritional cereal requires 1 unit of sugar, each kids’ cereal requires 1.5 units

of sugar, and each sugary cereal requires 4 units of sugar. The company has available 700
units of sugar.

// x + 1.5y + 4z <= 700

Back-translated question:

A cereal company makes nutritional cereal, kids’ cereal, and sugary cereal. The company needs
to determine the optimal number of boxes to produce for each type of cereal. Each box of
nutritional cereal requires 3 units of oat, each kids’ cereal requires 1.5 units of oat,
and each sugary cereal requires 2 units of oat. The company has available 500 units of
oat. Each box of nutritional cereal requires 1 unit of sugar, each kids’ cereal requires
1.5 units of sugar, and each sugary cereal requires 4 units of sugar. The company has
available 700 units of sugar. The revenue per box of nutritional cereal is $1, the
revenue per kids’ cereal is $1.50, and the revenue per sugary cereal is $2. How many of
each should they make to maximize revenue?

As shown in this example, back-translation is almost equivalent to extracting the natural language
part of the demonstration, which is a very simple task.

We asked 3 master’s degree students in computer science to examine 20 back-translation samples to
determine whether the generated questions in this step are correct. Specifically, the following points
were checked:

• Whether the generated question text includes all the information from the demonstration.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• Whether the generated question is consistent with the question in the demonstration.

The test results show that all 20 samples are correct.

D BENCHMARK AND DATASET

D.1 MORE DETAILS OF DATA COLLECTION AND ANNOTATION

Scale of Labeling Team: Our labeling team consists of 6 professional annotators with master’s
degrees. Four of them are assigned to labeling tasks, while the other two annotators are responsible
for correcting inconsistent labeling samples.

Labeler Qualifications:

• All team annotators have successfully passed the course of Operations Research and have
a good theoretical foundation of mathematical modeling and optimization.

• All team annotators are proficient in Python programming language and the PySCIPOpt
library.

Source Data Details:

• Original data sources: We assign annotators to collect questions from textbooks (Bert-
simas & Tsitsiklis, 1997; Conforti et al., 2014; Wolsey, 2020), and a university’s course
assignments and examinations.

• Data curation and annotation details:

1. First, the annotators are required to write the questions in markdown format. Simulta-
neously, record the question type (linear, nonlinear, with table, without table).

2. Each question is annotated by 4 annotators, and each annotator performs the annota-
tion independently. Specifically, the annotators are required to write the mathematical
models in markdown format for those collected questions. If there are standard an-
swers during the data collection process, we will instruct the annotators to directly
record the mathematical model in the form of a formula in the markdown file. Other-
wise, the annotators will be asked to write down the mathematical model themselves.

3. After this step, the annotators were required to write code using PySCIPOpt to solve
the problem and to record the values of the variables and the objective function.

4. For each question, we compare the code execution results of the assigned 4 annotators.
If the results are the same, the question is deemed as correctly labeled; otherwise, we
will re-label and determine its final result.

D.2 DATA FORMAT

Data Format of OPTIBENCH. We store E-OPT data in the form of JSON files. A sample of our
OPTIBENCH benchmark is shown below:

{
"question": "A rectangular garden is to be constructed using a rock wall as one side of

the garden and wire fencing for the other three sides. Given 100ft of wire fencing,
determine the dimensions that would create a garden of maximum area. What is the
maximum area?",

"results": {
"The length of the garden": "50.0",
"The width of the garden": "25.0",
"The maximum area of the garden": "1250.0"

},
"type": "nonlinear-notable",
"index": 3

}

We construct samples in dictionary format, and all the data is stored as a list in a JSON file. Each
sample has the following fields:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• “question”: The question text, presented in natural language, contains the background as
well as the optimization objective and associated constraints. In order to solve the question,
it is necessary to first find out the variables that can be optimized, then build a mathematical
model, and then call a code solver to get the optimal numerical results of the variables and
objective.

• “results”: This field is presented in the form of a dictionary, where the key is the natu-
ral language description of the variables and objectives, followed by their optimal values.
During the annotation process, if the taggers cannot confirm that there is only one opti-
mal solution to the problem, the results only contain the description of the optimization
objective and its optimal value.

• “type”: This field records the type of the current sample, and there are four types: linear-
table, linear-notable, non-linear-table, and nonlinear-notable.

• “index”: The index of the sample.

Data Format of RESOCRATIC-29K. We show a sample of our RESOCRATIC-29K in the follow-
ing bellow.

{
"question": "A logistics company operates four different routes for delivering packages.

They need to determine the number of trucks to allocate to each route to optimize
their operations. Each route has a different cost and revenue structure. On route 1,
each truck incurs a cost of $100 per day and generates a revenue of $150 per day. On
route 2, each truck incurs a cost of $120 per day and generates a revenue of $180 per
day. On route 3, each truck incurs a cost of $140 per day and generates a revenue of
$210 per day. On route 4, each truck incurs a cost of $160 per day and generates a
revenue of $240 per day. The company aims to maximize the total daily profit across
all routes. The company has a total of 50 trucks available. Please help the company
to determine the optimal allocation of trucks to each route.",

"code_solution": "import math\nimport pyscipopt\n\n# Create a new model\nmodel = pyscipopt
.Model()\n\n# Define variables\nT1 = model.addVar(vtype=\"INTEGER\", name=\"T1\", lb=
0) # number of trucks on route 1\nT2 = model.addVar(vtype=\"INTEGER\", name=\"T2\",
lb=0) # number of trucks on route 2\nT3 = model.addVar(vtype=\"INTEGER\", name=\"T3\"
, lb=0) # number of trucks on route 3\nT4 = model.addVar(vtype=\"INTEGER\", name=\"T4
\", lb=0) # number of trucks on route 4\n\n# Define objective function\nProfit_route1
= 150 * T1 - 100 * T1\nProfit_route2 = 180 * T2 - 120 * T2\nProfit_route3 = 210 * T3
- 140 * T3\nProfit_route4 = 240 * T4 - 160 * T4\n# So, the objective function is:
Maximize (Profit_route1 + Profit_route2 + Profit_route3 + Profit_route4)\nobj = model
.addVar(’obj’)\nmodel.setObjective(obj, \"maximize\")\nmodel.addCons(obj ==
Profit_route1 + Profit_route2 + Profit_route3 + Profit_route4)\n\n# Add constraints\n
The company has a total of 50 trucks available.\nmodel.addCons(T1 + T2 + T3 + T4 <=
50)\n\n# Solve the problem\nmodel.optimize()\n\n# Print the optimal solution (value
of the variables & the objective)\nprint(’-’*10)\nif model.getStatus() == \"optimal\"
:\n print(\"Number of Trucks on Route 1: \", model.getVal(T1))\n print(\"Number
of Trucks on Route 2: \", model.getVal(T2))\n print(\"Number of Trucks on Route 3
: \", model.getVal(T3))\n print(\"Number of Trucks on Route 4: \", model.getVal(T4
))\n print(\"Maximized Total Daily Profit: \", model.getObjVal())\nelse:\n
print(\"The problem could not be solved to optimality.\")\n"

}

We construct samples in dictionary format, and all the data is stored as a list in a JSON file. Each
sample has the following fields:

• “question”: The question text, presented in natural language, contains the background as
well as the optimization objective and associated constraints. In order to solve the question,
it is necessary to first find out the variables that can be optimized, then build a mathematical
model, and then call code solver to get the optimal numerical results of the variables and
objective.

• “code solution”: The corresponding python code to solve the question.

E ALL PROMPTS

We show all the prompts we used in this section.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E.1 PROMPTS FOR EVALUATION OF OPTIBENCH

E.1.1 ZERO-SHOT PROMPT

“system”:

Please use python code to solve the given question.

“user”:

[Code Template]:
‘‘‘python
import math
import pyscipopt

Create a new model
model = pyscipopt.Model()

Define variables
...

Define objective function
set objective as a variable (pyscipopt does not support non-linear objective)
obj = model.addVar(’obj’)
model.setObjective(obj, "...") # "maximize" or "minimize"
model.addCons(obj == ...) # obj function as a constraint

Add constraints
...

Solve the problem
model.optimize()

Print the optimal solution (value of the variables & the objective)
print(’-’*10)
if model.getStatus() == "optimal":

...
else:

print("The problem could not be solved to optimality.")
‘‘‘

[Follow the code template to solve the given question, your code should be enclosed in ‘‘‘
python\n{}‘‘‘]:

‘‘‘question
<... A testing question here ...>
‘‘‘

E.1.2 FEW-SHOT PROMPT

“system”:

Please follow the given examples and use python code to solve the given question.

“user”:

[Example-1]:
‘‘‘question
A bakery specializes in producing two types of cakes: chocolate and vanilla. The bakery needs

to decide how many of each type of cake to produce daily to maximize profit while
considering the availability of ingredients and the minimum daily production requirement.
The profit from each chocolate cake is $5, and from each vanilla cake is $4. The bakery

aims to maximize its daily profit from cake sales. Each chocolate cake requires 2 eggs,
and each vanilla cake requires 1 egg. The bakery has a daily supply of 100 eggs. Please
help the bakery determine the optimal number of chocolate and vanilla cakes to produce
daily.

‘‘‘

‘‘‘python
import math
import pyscipopt

Create a new model
model = pyscipopt.Model()

Define variables

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The number of each type of cake to produce daily
Choc = model.addVar(vtype="INTEGER", name="Choc", lb=0) # number of chocolate cakes
Van = model.addVar(vtype="INTEGER", name="Van", lb=0) # number of vanilla cakes

Define objective function
set objective as a variable
obj = model.addVar(’obj’)
model.setObjective(obj, "maximize")
model.addCons(obj == 5*Choc + 4*Van)

Add constraints
Each chocolate cake requires 2 eggs, and each vanilla cake requires 1 egg. The bakery has a

daily supply of 100 eggs.
model.addCons(2*Choc + Van <= 100)

Solve the problem
model.optimize()

Print the optimal solution (value of the variables & the objective)
print(’-’*10)
if model.getStatus() == "optimal":

print("Number of chocolate cakes: ", model.getVal(Choc))
print("Number of vanilla cakes: ", model.getVal(Van))
print("Maximized Daily Profit: ", model.getObjVal())

else:
print("The problem could not be solved to optimality.")

‘‘‘

[Example-2]:
‘‘‘question
A company produces three types of widgets: X, Y, and Z. The company needs to determine how

many units of each widget to produce in next week.
For Widget X, the selling price is 10$, the material cost is 5$, and the production time is 2

hours.
For Widget Y, the selling price is 15$, the material cost is 7$, and the production time is 3

hours.
For Widget Z, the selling price is 20$, the material cost is 9$, and the production time is 4

hours.
The company has $500 available for material costs next week. The company wants to produce at

least 10 units of each widget next week. The company wants to spend at most 200 hours on
production next week. The company has only one production line and can only produce one
widget at a time. Please help the company to maximize the rate at which it earns profits
(which is defined as the sum of the selling profit divided by the sum of the production
times).

‘‘‘

‘‘‘python
import math
import pyscipopt

Create a new model
model = pyscipopt.Model()

Define variables
The company wants to produce at least 10 units of each widget next week.
X = model.addVar(vtype="INTEGER", name="X", lb=10) # number of units of widget X
Y = model.addVar(vtype="INTEGER", name="Y", lb=10) # number of units of widget Y
Z = model.addVar(vtype="INTEGER", name="Z", lb=10) # number of units of widget Z

Define objective function
set objective as a variable (pyscipopt does not support non-linear objective)
obj = model.addVar(’obj’)
model.setObjective(obj, "maximize")
Profit_X = (10 - 5) * X
Profit_Y = (15 - 7) * Y
Profit_Z = (20 - 9) * Z
ProductionTime = 2 * X + 3 * Y + 4 * Z
the objective function is: Maximize (Profit_X + Profit_Y + Profit_Z) / ProductionTime
convert the division to multiplication
model.addCons(obj * ProductionTime == Profit_X + Profit_Y + Profit_Z)

Add constraints
The company has $500 available for material costs next week.
model.addCons(5 * X + 7 * Y + 9 * Z <= 500)
The company wants to spend at most 200 hours on production next week.
model.addCons(2 * X + 3 * Y + 4 * Z <= 200)

Solve the problem
model.optimize()

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Print the optimal solution (value of the variables & the objective)
print(’-’*10)
if model.getStatus() == "optimal":

print("Number of Widget X: ", model.getVal(X))
print("Number of Widget Y: ", model.getVal(Y))
print("Number of Widget Z: ", model.getVal(Z))
print("Maximized Profit Rate: ", model.getObjVal())

else:
print("The problem could not be solved to optimality.")

‘‘‘

[Follow the examples to solve the given question]:
‘‘‘question
<... A testing question here ...>
‘‘‘

E.1.3 FEW-SHOT (FIRST REASON) PROMPT

“system”:

Please follow the given examples and use python code to solve the given question.

“user”:

Given a question, you sould first establish the ‘‘‘formulation‘‘‘ step by step, then generate
the ‘‘‘python‘‘‘ code to solve the problem using the ‘pyscipopt‘ library.

[Example-1]:
Input:
‘‘‘question
A bakery specializes in producing two types of cakes: chocolate and vanilla. The bakery needs

to decide how many of each type of cake to produce daily to maximize profit while
considering the availability of ingredients and the minimum daily production requirement.
The profit from each chocolate cake is $5, and from each vanilla cake is $4. The bakery

aims to maximize its daily profit from cake sales. Each chocolate cake requires 2 eggs,
and each vanilla cake requires 1 egg. The bakery has a daily supply of 100 eggs. Please
help the bakery determine the optimal number of chocolate and vanilla cakes to produce
daily.

‘‘‘

Your Output:
‘‘‘formulation
Define variables

* number of chocolate cakes

* number of vanilla cakes

Define objective function
maximize the daily profit from cake sales: 5*Choc + 4*Van

Add constraints

* Each chocolate cake requires 2 eggs, and each vanilla cake requires 1 egg. The bakery has a
daily supply of 100 eggs. (2*Choc + Van <= 100)

‘‘‘

‘‘‘python
import math
import pyscipopt

model = pyscipopt.Model()

Choc = model.addVar(vtype="INTEGER", name="Choc", lb=0)
Van = model.addVar(vtype="INTEGER", name="Van", lb=0)

obj = model.addVar(’obj’)
model.setObjective(obj, "maximize")
model.addCons(obj == 5*Choc + 4*Van)

model.addCons(2*Choc + Van <= 100)

model.optimize()

print(’-’*10)
if model.getStatus() == "optimal":

print("Number of chocolate cakes: ", model.getVal(Choc))
print("Number of vanilla cakes: ", model.getVal(Van))
print("Maximized Daily Profit: ", model.getObjVal())

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

else:
print("The problem could not be solved to optimality.")

‘‘‘

[Example-2]:
Input:
‘‘‘question
A company produces three types of widgets: X, Y, and Z. The company needs to determine how

many units of each widget to produce in next week.
For Widget X, the selling price is 10$, the material cost is 5$, and the production time is 2

hours.
For Widget Y, the selling price is 15$, the material cost is 7$, and the production time is 3

hours.
For Widget Z, the selling price is 20$, the material cost is 9$, and the production time is 4

hours.
The company has $500 available for material costs next week. The company wants to produce at

least 10 units of each widget next week. The company wants to spend at most 200 hours on
production next week. The company has only one production line and can only produce one
widget at a time. Please help the company to maximize the rate at which it earns profits
(which is defined as the sum of the selling profit divided by the sum of the production
times).

‘‘‘

Your Output:
‘‘‘formulation
Define variables

* number of units of widget X

* number of units of widget Y

* number of units of widget Z

Define objective function
Maximize (Profit_X + Profit_Y + Profit_Z) / ProductionTime
where,
Profit_X = (10 - 5) * X
Profit_Y = (15 - 7) * Y
Profit_Z = (20 - 9) * Z
ProductionTime = 2 * X + 3 * Y + 4 * Z

Add constraints

* The company has $500 available for material costs next week. (5 * X + 7 * Y + 9 * Z <= 500)

* The company wants to spend at most 200 hours on production next week. (2 * X + 3 * Y + 4 * Z
<= 200)

* The company wants to produce at least 10 units of each widget next week. (X >= 10, Y >= 10,
Z >= 10)

‘‘‘

‘‘‘python
import math
import pyscipopt

model = pyscipopt.Model()

X = model.addVar(vtype="INTEGER", name="X", lb=10) # number of units of widget X
Y = model.addVar(vtype="INTEGER", name="Y", lb=10) # number of units of widget Y
Z = model.addVar(vtype="INTEGER", name="Z", lb=10) # number of units of widget Z

obj = model.addVar(’obj’)
model.setObjective(obj, "maximize")
Profit_X = (10 - 5) * X
Profit_Y = (15 - 7) * Y
Profit_Z = (20 - 9) * Z
ProductionTime = 2 * X + 3 * Y + 4 * Z
model.addCons(obj * ProductionTime == Profit_X + Profit_Y + Profit_Z)

model.addCons(5 * X + 7 * Y + 9 * Z <= 500)
model.addCons(2 * X + 3 * Y + 4 * Z <= 200)

model.optimize()

print(’-’*10)
if model.getStatus() == "optimal":

print("Number of Widget X: ", model.getVal(X))
print("Number of Widget Y: ", model.getVal(Y))
print("Number of Widget Z: ", model.getVal(Z))
print("Maximized Profit Rate: ", model.getObjVal())

else:
print("The problem could not be solved to optimality.")

‘‘‘

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

[Follow the examples to solve the given question]:
‘‘‘

E.1.4 RESULTS EXTRACTION PROMPT

‘‘‘python
<... solution code generated by the LLM ...>
‘‘‘

‘‘‘code output
<... code execution result ...>
‘‘‘

Accoding to the code output, please give your final answer for the following query. (The
answer should be boxed in ’\\boxed{}’, and only in numerical form, and round it to 5
decimal places, such as ’\\boxed{27.00000}’, ’\\boxed{3.20000}’, and ’\\boxed{0.23334}’).

<... query for the variables and objective ...>

E.2 PROMPTS OF RESOCRATIC

E.2.1 LINEAR DEMONSTRATION GENERATION

“system”:

Please follow the scenario examples to generate a [New Scenario] with a new background. The
scenario should be a real-world linear optimization problem. Make sure that the
mathematical logic in [New Scenario] is correct.

“user”:

[Scenario Format]:
Define Variables:
natural language description.
// formal definition of variables (integer, real, binary, etc.) and their domains.

Define Objective Function:
natural language description.
// formal definition of an objective function, maximize or minimize something. There can only

be one objective function.

Generate Constraint-1:
natural language description.
// formal definition of constraint-1

...

Generate Constraint-n:
natural language description.
// formal definition of constraint-n

<... Sample 2 scenarios in the example pool ...>

[New Scenario]:

E.2.2 NONLINEAR DEMONSTRATION GENERATION

“system”:

Please follow the scenario examples to generate a [New Scenario] with a new background. The
scenario should be a real-world **nonlinear** optimization problem. Make sure that the
mathematical logic in [New Scenario] is correct.

“user”:

[Scenario Format]:
Define Variables:
natural language description.
// formal definition of variables (integer, real, binary, etc.) and their domains.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Define Objective Function:
natural language description.
// formal definition of a **nonlinear** objective function, maximize or minimize something.

There can only be one objective.

Generate Constraint-1:
natural language description.
// formal definition of constraint-1

...

Generate Constraint-n:
natural language description.
// formal definition of constraint-n

<... Sample 2 scenarios in the example pool ...>

[New Scenario]:

E.2.3 QUESTION GENERATION

“system”:

You are a mathematical assistant. Now, you will be provided with an optimization scenario.
Please follow the example to convert the given scenario to question.

Generating questions without table.

“user”:

[Task Description]:
You will be given a scenario that involves optimization problem. The scenario is organized

into a few sections start with "##".
Each section contains a few lines of text that describe the scenario. The mathematical formal

solution of the scenario is provided in the comments starting with "//".
Your job is to convert the scenario into a question without missing any information. The

question should be clear and concise, and do not expose the mathematical formal solution
of the scenario.

[Example of converting a Scenario to a Question]:
‘‘‘scenario
Define Variables:
A company produces five types of widgets: X, Y, Z, W, and V. The company needs to determine

how many units of each widget to produce in next week.
// {"number of units of widget X": "X", "range": "X >= 0", "type": "integer"}
// {"number of units of widget Y": "Y", "range": "Y >= 0", "type": "integer"}
// {"number of units of widget Z": "Z", "range": "Z >= 0", "type": "integer"}
// {"number of units of widget W": "W", "range": "W >= 0", "type": "integer"}
// {"number of units of widget V": "V", "range": "V >= 0", "type": "integer"}

Define Objective Function:
For Widget X, the selling price is $10, the material cost is $5, and the production time is 2

hours.
For Widget Y, the selling price is $15, the material cost is $7, and the production time is 3

hours.
For Widget Z, the selling price is $20, the material cost is $9, and the production time is 4

hours.
For Widget W, the selling price is $25, the material cost is $11, and the production time is 5

hours.
For Widget V, the selling price is $30, the material cost is $13, and the production time is 6

hours.
The company has only one production line and can only produce one widget at a time. The

company aims to maximize the rate at which it earns profits (which is defined as the sum
of the selling profit divided by the sum of the production times).

// Selling profit of X: Profit_X = (10 - 5) * X
// Selling profit of Y: Profit_Y = (15 - 7) * Y
// Selling profit of Z: Profit_Z = (20 - 9) * Z
// Selling profit of W: Profit_W = (25 - 11) * W
// Selling profit of V: Profit_V = (30 - 13) * V
// So, the objective function is: Maximize (Profit_X + Profit_Y + Profit_Z + Profit_W +

Profit_V) / (2 * X + 3 * Y + 4 * Z + 5 * W + 6 * V)

Generate Constraint-1:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

The company has $900 available for material costs next week.
// 5 * X + 7 * Y + 9 * Z + 11 * W + 13 * V <= 900

Generate Constraint-2:
The company wants to produce at least 10 units of each widget next week.
// X >= 10; Y >= 10; Z >= 10; W >= 10; V >= 10

Generate Constraint-3:
The company wants to spend at most 200 hours on production next week.
// 2 * X + 3 * Y + 4 * Z + 5 * W + 6 * V <= 200

Generate Constraint-4:
The company wants to ensure that the total production of Widget W does not exceed the combined

production of Widgets X, Y, and Z.
// W <= X + Y + Z
‘‘‘

‘‘‘question
A company produces five types of widgets: X, Y, Z, W, and V. The company needs to determine

how many units of each widget to produce in next week.
For Widget X, the selling price is $10, the material cost is $5, and the production time is 2

hours.
For Widget Y, the selling price is $15, the material cost is $7, and the production time is 3

hours.
For Widget Z, the selling price is $20, the material cost is $9, and the production time is 4

hours.
For Widget W, the selling price is $25, the material cost is $11, and the production time is 5

hours.
For Widget V, the selling price is $30, the material cost is $13, and the production time is 6

hours.
The company has $900 available for material costs next week. The company wants to produce at

least 10 units of each widget next week. The company wants to spend at most 200 hours on
production next week. The company wants to ensure that the total production of Widget W
does not exceed the combined production of Widgets X, Y, and Z. The company has only one
production line and can only produce one widget at a time.

Please help the company to maximize the rate at which it earns profits (which is defined as
the sum of the selling profit divided by the sum of the production times).

‘‘‘

[Follow the Example to Convert the following Scenario to a Question]:

Generating questions with table.

“user”:

[Task Description]:
You will be given a scenario that involves optimization problem. The scenario is organized

into a few sections start with "##".
Each section contains a few lines of text that describe the scenario. The mathematical formal

solution of the scenario is provided in the comments starting with "//".
Your job is to convert the scenario into a question without missing any information. The

question should be clear and concise, and do not expose the mathematical formal solution
of the scenario.

[Example of converting a Scenario to a Question with table]:
‘‘‘scenario
Define Variables:
A company produces five types of widgets: X, Y, Z, W, and V. The company needs to determine

how many units of each widget to produce in next week.
// {"number of units of widget X": "X", "range": "X >= 0", "type": "integer"}
// {"number of units of widget Y": "Y", "range": "Y >= 0", "type": "integer"}
// {"number of units of widget Z": "Z", "range": "Z >= 0", "type": "integer"}
// {"number of units of widget W": "W", "range": "W >= 0", "type": "integer"}
// {"number of units of widget V": "V", "range": "V >= 0", "type": "integer"}

Define Objective Function:
For Widget X, the selling price is $10, the material cost is $5, and the production time is 2

hours.
For Widget Y, the selling price is $15, the material cost is $7, and the production time is 3

hours.
For Widget Z, the selling price is $20, the material cost is $9, and the production time is 4

hours.
For Widget W, the selling price is $25, the material cost is $11, and the production time is 5

hours.
For Widget V, the selling price is $30, the material cost is $13, and the production time is 6

hours.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

The company has only one production line and can only produce one widget at a time. The
company aims to maximize the rate at which it earns profits (which is defined as the sum
of the selling profit divided by the sum of the production times).

// Selling profit of X: Profit_X = (10 - 5) * X
// Selling profit of Y: Profit_Y = (15 - 7) * Y
// Selling profit of Z: Profit_Z = (20 - 9) * Z
// Selling profit of W: Profit_W = (25 - 11) * W
// Selling profit of V: Profit_V = (30 - 13) * V
// So, the objective function is: Maximize (Profit_X + Profit_Y + Profit_Z + Profit_W +

Profit_V) / (2 * X + 3 * Y + 4 * Z + 5 * W + 6 * V)

Generate Constraint-1:
The company has $900 available for material costs next week.
// 5 * X + 7 * Y + 9 * Z + 11 * W + 13 * V <= 900

Generate Constraint-2:
The company wants to produce at least 10 units of each widget next week.
// X >= 10; Y >= 10; Z >= 10; W >= 10; V >= 10

Generate Constraint-3:
The company wants to spend at most 200 hours on production next week.
// 2 * X + 3 * Y + 4 * Z + 5 * W + 6 * V <= 200

Generate Constraint-4:
The company wants to ensure that the total production of Widget W does not exceed the combined

production of Widgets X, Y, and Z.
// W <= X + Y + Z
‘‘‘

‘‘‘question
A company produces five types of widgets: X, Y, Z, W, and V. The company needs to determine

how many units of each widget to produce in next week. The selling price, material cost,
and production time for each widget are given in the following Table.

Widget	Selling Price	Material Cost	Production Time
X	10$	5$	2 hours
Y	15$	7$	3 hours
Z	20$	9$	4 hours
W	25$	11$	5 hours
V	30$	13$	6 hours

The company has $900 available for material costs next week. The company wants to produce at
least 10 units of each widget next week. The company wants to spend at most 200 hours on
production next week. The company wants to ensure that the total production of Widget W
does not exceed the combined production of Widgets X, Y, and Z. The company has only one
production line and can only produce one widget at a time.

Please help the company to maximize the rate at which it earns profits (which is defined as
the sum of the selling profit divided by the sum of the production times).

‘‘‘

[Follow the Example to Convert the following Scenario to a Question with table]:

E.2.4 CODE GENERATION

“system”:
You are a mathematical assistant. Now, you will be provided with an optimization scenario with

its corresponding question. Please follow the examples to solve the optimization
scenario using python code with pyscipopt. (Tips: 1. Set objective as a variable to avoid
non-linear objective. 2. To expedite computation, convert division to multiplication.)

“user”:
[Example-1]:
‘‘‘scenario
Define Variables:
Now we need to create a cylindrical metal jar with a metal shell.
// variables: {"radius of the cylindrical jar": "r", "height of the cylindrical jar": "h"},

where r, h >= 0

Define Objective Function:
The cost of the metal is $10 per square meter. Find the dimensions that will minimize the cost

of the metal to manufacture the jar.
// The surface area of the cylindrical jar is the sum of the area of the two circular ends and

the lateral surface area. The area of each circular end is \pi * rˆ2, and the lateral
surface area is 2\pi*rh.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

// So, the surface area of the cylindrical jar is 2\pi*rˆ2 + 2\pi*rh, and the cost of the
metal is 10 * (2\pi*rˆ2 + 2\pi*rh).

// So, the objective function is: Minimize 10 * (2\pi*rˆ2 + 2\pi*rh)

Generate Constraint-1:
The volume of the jar must be at least 1000 cubic centimeters.
// \pi*rˆ2h >= 1000
‘‘‘

‘‘‘python
import math
import pyscipopt

Create a new model
model = pyscipopt.Model()

Define variables
The radius and height of the cylindrical jar
r = model.addVar(vtype="CONTINUOUS", name="r", lb=0, ub=100) # radius of the cylindrical jar
h = model.addVar(vtype="CONTINUOUS", name="h", lb=0, ub=100) # height of the cylindrical jar

Define objective function
set objective as a variable (pyscipopt does not support non-linear objective)
obj = model.addVar(’obj’)
model.setObjective(obj, "minimize")
the objective function is: Minimize 10 * (2\pi*rˆ2 + 2\pi*rh)
model.addCons(obj == 10 * (2*math.pi*r**2 + 2*math.pi*r*h))

Add constraints
The volume of the jar must be at least 1000 cubic centimeters.
model.addCons(math.pi*r**2*h >= 1000)

Solve the problem
model.optimize()

Print the optimal solution (value of the variables & the objective)
print(’-’*10)
if model.getStatus() == "optimal":

print("Radius of the cylindrical jar: ", model.getVal(r))
print("Height of the cylindrical jar: ", model.getVal(h))
print("Minimized Cost: ", model.getObjVal())

else:
print("The problem could not be solved to optimality.")

‘‘‘

[Example-2]:
‘‘‘scenario
Define Variables:
You are designing a rectangular poster by cutting from a rectangular piece of paper.
// variables: {"width of the poster": "w", "height of the poster": "h"}, where w, h >= 0

Define Objective Function:
The top and bottom margins are 2 inches, and the side margins are 1 inch. What dimensions of

the poster should you use to minimize the area of paper used?
// The width of the used paper is w + 2*1, and the height of the used paper is h + 2*2.
// Therefore, the objective function is: Minimize (w + 2) * (h + 4)

Generate Constraint-1:
The poster must have an area of 100 square inches.
// The area of the poster is given by the product of the width and the height, and it is given

that the area is 100. Therefore, the constraint is w * h = 100
‘‘‘

‘‘‘python
import math
import pyscipopt

Create a new model
model = pyscipopt.Model()

Define variables
The width and height of the poster
w = model.addVar(vtype="CONTINUOUS", name="w", lb=0, ub=100) # width of the poster
h = model.addVar(vtype="CONTINUOUS", name="h", lb=0, ub=100) # height of the poster

Define objective function
set objective as a variable (pyscipopt does not support non-linear objective)
obj = model.addVar(’obj’)
model.setObjective(obj, "minimize")
the objective function is: Minimize (w + 2) * (h + 4)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

model.addCons(obj == (w + 2) * (h + 4))

Add constraints
The poster must have an area of 100 square inches.
model.addCons(w * h == 100)

Solve the problem
model.optimize()

Print the optimal solution (value of the variables & the objective)
print(’-’*10)
if model.getStatus() == "optimal":

print("Width of the poster: ", model.getVal(w))
print("Height of the poster: ", model.getVal(h))
print("Minimized Area of Paper Used: ", model.getObjVal())

else:
print("The problem could not be solved to optimality.")

‘‘‘

[Convert the following Scenario to code]:
‘‘‘scenario
<... Put your synthetic scenario here ...>
‘‘‘

33

	Introduction
	Related Work
	OptiBench: Benchmark for Optimization Modeling
	ReSocratic: Data Synthesis with Reverse Socratic
	Experiments and Analysis
	Baselines and Settings
	Data Statistics and Visualization
	Main Results
	Performance Analysis on Data Split
	Ablation Study on ReSocratic
	Comparison between Reverse Synthesis and Forward Synthesis

	Conclusion
	More Comparisons with Other Benchmarks
	Additional Experimental Results
	Fine-Grained Error Analysis
	Impact of Different Prompting Strategies
	Pass@k Performance
	Solving Efficiency of the Generated Codes
	Potential of LLMs to Extend Problem Complexity

	More Detail of ReSocratic
	Seed Demonstrations
	Tabular Data Synthesize
	Back-Translation

	Benchmark and Dataset
	More Details of Data Collection and Annotation
	Data Format

	All Prompts
	Prompts for Evaluation of OptiBench
	Zero-Shot Prompt
	Few-Shot Prompt
	Few-Shot (First Reason) Prompt
	Results Extraction Prompt

	Prompts of ReSocratic
	Linear Demonstration Generation
	Nonlinear Demonstration Generation
	Question Generation
	Code Generation

