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Abstract
Despite the impressive capability of large lan-
guage models (LLMs) in solving different down-
stream tasks, new concerns about proper perfor-
mance evaluation have been raised, especially for
test-data leakage caused by accidentally including
them during pretraining, or by indirectly exposing
them through API calls for evaluation. Motivated
by these, in this paper, we propose a new evalua-
tion workflow that generates steerable synthetic
language datasets and proxy tasks for benchmark-
ing the performance of pertained LLMs on sen-
tence classification tasks. This approach allows
for better characterization of the joint analysis
on the robustness and accuracy of LLMs without
risking sensitive information leakage. Verified on
various pretrained LLMs, the proposed approach
demonstrates promising high correlation with real
downstream performance.

1. Introduction
While new opportunities present themselves with foundation
models (not only LLMs), they also bring forth potential risks
and challenges (Bommasani et al., 2021; Blodgett & Madaio,
2021; Wiggins & Tejani, 2022; Thieme et al., 2023; Bider-
man et al., 2023). Specifically, Dr. Percy Liang, a promi-
nent researcher and Director of the Center for Research on
Foundation Models at Stanford University, recently took to
Twitter to express his concerns about the potential for lan-
guage models to be trained on test sets. Furthermore, even
private or held-out unpublished test sets may be vulnerable
to data leakage through querying the LLMs via APIs for
evaluation purposes. Recently, the generative embedding
inversion attack (Li et al., 2023) that reconstructs input se-
quences based on sentence embeddings further deepened
our concerns about information leakage during test time.

To address this caveat of “information leakage” leading to
improper and fragile evaluation, in this paper, we propose
a synthetic testbed for benchmarking two critical aspects
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of LLM sentence embeddings: accuracy and robustness.
We further propose a novel approach to generate synthetic
datasets for LLMs that can serve as proxy test sets. Our ap-
proach leverages existing sentiment lexicons, such as Senti-
WordNet 3.0 (Baccianella et al., 2010), to generate working
word lists based on the word (or synset) level labels. We
build positive, negative, and neutral word lists from Senti-
WordNet 3.0, and use them to design synthetic datasets for
LLM evaluation. Our synthetic dataset generation follows
the nesting parentheses (Papadimitriou & Jurafsky, 2020),
which mimics the recursion structural hypothesis about the
narrow language faculty in humans (Hauser et al., 2002) and
the dependency tree structure in natural language (Chiang
& Lee, 2022). By maneuvering the mixing percentage of bi-
nary words (positive/negative words) and neutral words, we
create a configurable testbed for evaluating the performance
of LLMs on different levels of difficulty and complexity.
Specifically, we benchmark and quantify the ability of each
LLM on sentence classification tasks by comparing their
performance on a set of our synthetic datasets with varying
difficulty levels. It is worthwhile to note that since this work
focuses on benchmarking LLMs on sentence classification
tasks, our synthetic datasets admittedly do not try to encode
syntax. This relaxation is inspired by our experiment where
we noticed that 86% of the labels given by Huggingface
sentiment analysis pipeline on product reviews classifica-
tion (CR) (Hu & Liu, 2004) remain the same after removing
284 stop words (listed in the supplementary materials) from
the sentences. We dub our framework of benchmarking
LLMs using synthetic texts by SynTextBench and present
the workflow in Figure 1. With the popularity of LLMs, we
argue that they should be subject to much more rigorous and
comprehensive testing and auditing before being deployed
in real-life applications (Weidinger et al., 2021; Ganguli
et al., 2022; Mökander et al., 2023; Rastogi et al., 2023).
The evaluation framework using synthetic data outlined in
this paper should be viewed as a contribution towards ensur-
ing independent and more sustainable LLM auditing.
Our main contributions are:
• We introduce SynTextBench, a novel theoretically-
grounded framework to generate steerable synthetic datasets
towards a holistic evaluation of LLMs. The use of synthetic
datasets alleviates the risk of test-data leakage and offers
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Figure 1: Overview of SynTextBench. SynTextBench generates a set of synthetic datasets from any given lexicon with
word-level labels. We test the given LLM on these datasets and obtain robustness-accuracy characterization under a range of
steerable task difficulties. For each LLM, we can plot the robustness-accuracy trade-off curve and make model comparisons.

new tools for LLM testing and auditing.
• SynTextBench provides a configurable lightweight
testbed and a quantifiable metric for evaluating the robust-
ness and accuracy of LLMs on different levels of difficulty
and complexity for sentence classification tasks, with no
restrictions on the model architecture.
• We conduct experiments with several state-of-the-art
LLMs on our testbed and report their performance and
behavior. SynTextBench, as a real-data-free evaluation
method, shows high correlation with robustness-accuracy
performance evaluated on real data. Further study demon-
strates its capability of making quick attribution compar-
isons such as analyzing fine-tuning effects for LLMs.

2. Methodology
We defer the review of sentence representations, pretrained
model evaluations, sentiment lexicons, and robust Bayes
optimal classifiers to the appendix.

2.1. Why using synthetic datasets for LLM evaluation?
To reduce the reliance on real-life data, we build synthetic
tasks by generating synthetic sentences as model inputs at
test time. This way, we no longer need to exchange private
or label-annotated data as test sets with LLM APIs. We de-
tail the desiderata of proxy tasks and the evaluation metric.
• Task substance: Tasks should test a pretrained LLM’s
ability to encode sentence representations that preserve class
separability when evaluated by a linear classifier.
• Task difficulty: Tasks’ difficulty should be configurable
to allow for comprehensive analysis, i.e., one can generate
tasks of various levels of difficulty.
• Task feasibility: Tasks should be feasible to solve, i.e.,
the sentences should be distinguishable to a certain degree
by an algorithm that works on the raw sentences input.
• Task independence: Tasks’ ground-truth should be in-
dependent of the LLM to be evaluated, in order to avoid
biased evaluation, e.g., the label in the task should not be
given by an LLM.
• Task equity: Tasks should be able to be generated by
anyone and affordable for anyone without requiring any
private data or favoring any party with more resources.
• Metric informativeness: The designed framework
should give a metric with a clear implication (the larger
the better) and correlates well with the real performance.
With these in mind, it is straightforward to see why we

should not opt for synthetic datasets generated by any LLM:
(1) task difficulty would not be configurable, (2) the eval-
uation might favor the LLM that generates the synthetic
sentences and/or the pseudo-labels (causing label leakage),
and (3) any auditor without access to proprietary LLMs or
datasets cannot run independent evaluation.

2.2. Constructing synthetic datasets and tasks
Word List. Building a synthetic task requires us to de-
fine the synthetic input data to be used. Here, we utilize
sentiment lexicons with word-level labeling such as Sen-
tiWordNet 3.0 (Baccianella et al., 2010) to build positive,
negative, and neutral word lists. We give details and run-
ning examples in the appendix. To this end, we created the
word lists from SentiWordNet 3.0 as depicted in Figure 2(a).
Next, we explain the structure of the synthetic sentences.
Sentence structure. Motivated by a recent literature (Pa-
padimitriou & Jurafsky, 2020) that explored the power of
non-linguistic artificial parentheses languages in training
models that transfer to NLP tasks, we follow nesting paren-
thesis when generating the synthetic sentences in our proxy
tasks. Specifically, nesting parenthesis involves paired to-
kens and a recursive structure. For example, by referring to
Figure 2(b), one sees that t1 and t4 are paired words, while
t2 and t3 are another paired words. In our example, words
are hierarchically nested, meaning the token to be paired
with t2, which is t3 herein, should appear before the pairing
token with t1. In other words, it observes a “last in first out”
data structure, and the arcs in Figure 2(b) do not cross.
Sentence generation and difficulty level. Now we explain
how to do sentence generation following the structure. Let
us revisit the case in Figure 2(b). Assume we already gen-
erated the first five tokens t1 : t5 in a positive sentence
(y = 1) with colors denoting the picked word. To decide
the next token, we sample t6 from a mixing distribution D,
where D = pe ·‘<eos>’+pn(1−pe)·last unpaired word+
(1 − pn)(1 − pe) · Dnew. To interpret distribution D, we
see there are 3 possible outcomes for the incoming t6 token:
(1) the end of sentence indicator ‘<eos>’, (2) the popped
token from the stack that stores the unpaired words, i.e., the
last unpaired word, (3) a new word. If it is to pick a new
word, this word will be sampled from the distribution of new
words Dnew, which directly depends on the label y of the
sentence to be generated and the desired task difficulty. For
a positive sentence (y = 1), Dnew|y=1 is described by the
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b. Synthetic sentence generation with nesting parenthesis
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Figure 2: Overview of the sentence generation procedure. In block a, we generate word lists from SentiWordNet 3.0. In
block b, we generate each sentence token following nesting parenthesis and mixing distribution D. In block c, we show a
running example of sequentially generating t6, t7, t8.

PDF p · fNEU(x) + (1− p) · fPOS(x), where p specifies the
percentage of neutral words in a synthetic sentence, fNEU
and fPOS give the PDFs of neutral and positive words. Simi-
larly, if we are to generate a negative sentence (y = −1), we
have Dnew|y=−1 described by p·fNEU(x)+(1−p)·fNEG(x),
where fNEG gives the PDF of negative words.

In essence, the label of the generated sentence is deter-
mined by construction, which guarantees the task inde-
pendence. It also allows configurable task difficulty by
adjusting the percentage p of neutral words in a synthetic
sentence. That is, it is easier to predict the sentiment of
sentences consisting of 90% positive words and 10% neu-
tral words than that of sentences constructed all by neutral
words. We refer readers to the appendix for exemplary
synthetic examples. In Figure 2(c), we show a running ex-
ample of the sentence generation process, where we flip a
coin with 3 outcomes each time to decide on a new token.
When the realization is “new words” (like in t6 and t7),
this word will also be pushed to the stack “Unpaired words”
that stores unpaired words. When we are deciding t8, we
draw “unpaired words” and hence t8 is determined by Un-
paired words.pop(). In the appendix Figure 4, we prove the
task feasibility by demonstrating the separability of gener-
ated synthetic datasets by SentiWordNet sentiment analysis
algorithm (Denecke, 2008). With an increasing mixing ratio
p, while the task becomes harder, we show there at least
exists an algorithm that can separate the data to a certain de-
gree, showcasing a lower bound on the optimal classification
strategy. By our workflow of constructing synthetic datasets
and tasks, we also guarantee task equity since the genera-
tion process requires no access to any LLM or private data,
and can be replicated by anyone with limited resources. Fur-
thermore, we note that the construction of synthetic datasets
and tasks described herein is also extendable to other values
by swapping the lexicon used for extracting word lists.

2.3. Robustness-accuracy evaluation
Given an LLM g, let x, y be the input sentence and its
label, z be the sentence embeddings z = g(x) ∈ Rn,
we are interested in evaluating the accuracy of the sen-
tence embedding classifiers f , and the average distance
∆ from sentence embeddings to the classifiers. We let z1 be
{z : z = g(x), y = 1} and z−1 be {z : z = g(x), y = −1}.
Preparing sentence embeddings. Recall that Bert-flow (Li
et al., 2020) and Bert-whitening (Su et al., 2021) trans-
formed the sentence embeddings into an isotropic Gaussian
distribution to remedy the anisotropic behavior in the sen-
tence embedding vector space. We thereby also perform
whitening on sentence representations before we draw the
decision rule on the embeddings. Transforming a set of
sentence embeddings of a class into an isotropic Gaussian
involves two steps: (1) model the mean by and covariance
Σy of original embeddings zy, (2) apply a transformation
to the embeddings FTS−1/2zy, where FSFT = Σy is
the singular value decomposition of Σy. Since Σy can be
ill-conditioned, directly applying S−1/2 on embeddings zy
might amplify noisy signals due to numerical instability.
Thus, we propose to reduce the dimension according to
energy-preservation (Leskovec et al., 2020). We select to
keep K dimensions according to argmink

∑k
i=1 si∑n
i=1 si

≥ 0.99,
where si = diag(S)[i] is the i-th largest singular value
of S. Till now, we see that the sentence embeddings are
transformed to a RK vector space via FT

:,1:kS
−1/2
1:k,1:kzy. We

perform these operations for both classes (y = 1 and
y = −1) separately. Since we want the transformed em-
beddings to observe the original relative distance between
two classes, we further scale the distance between two
whitened Gaussians by dInter-class/dIntra-class, where the nu-
merator dInter-class = ∥b1 − b−1∥ calculates the inter-class
distance (the distance between two class centers b1 and b−1),
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and the denominator dIntra-class =
1

m1+m2
(
∑m1

i=1∥zi1− b1∥+∑m2

j=1∥z
j
−1 − b−1∥) calculates the intra-class distance (the

average distance from class data to class mean) with m1

and m2 being the number of positive sentences and negative
sentence, respectively. We let Ty denote the overall trans-
formation operations and obtain transformed embeddings
ẑ1 = T1(z1) and ˆz−1 = T−1(z−1).
Decision margins induced by robust Bayes optimal clas-
sifiers. Recall that robust Bayes optimal classifiers ex-
plicitly give the optimal classification strategy for class-
conditional Gaussian distribution in the presence of data
perturbations (Bhagoji et al., 2019; Dan et al., 2020). Here,
we see that (ẑ, y) are modeled as Pµ1,µ2,IK : ẑ|y = 1 ∼
N (µ1, IK), ẑ|y = −1 ∼ N (µ2, IK), and y ∈ C =
{+1,−1}. While finding the robust Bayes optimal clas-
sifier generally involves solving an optimization problem,
when the covariance is an identity matrix, the class pri-
ors P(y = 1) = τ , P(y = −1) = 1 − τ , and the
perturbation radius ϵ, the optimal classifier is given as
sign(wT (ẑ − µ1+µ2

2 ) − q/2), where q = log{(1 − τ)/τ},
w = µ̃(1− ϵ/∥µ̃∥2), and µ̃ = µ1−µ2

2 . Furthermore, when
the classes are balanced, the (robust) Bayes optimal clas-
sifier is sign(µ̃T (ẑ − µ1+µ2

2 )), which is independent of ϵ.
We use this classifier to calculate the accuracy on synthetic
datasets. In fact, we prove in the appendix that ϵ-robust
Bayes optimal classifiers overlap for all ϵ as long as µ̃ lies
completely within a degenerate subspace of the eigenspace
of the covariance matrix. In the case of an identity covari-
ance matrix, the degenerated subspace of the eigenspace
expands the whole RK , hence µ̃ lies in the space naturally.

Now that we have specified the optimal robust classifica-
tion rule on the transformed sentence embeddings, we write
out the decision margin induced by the classifiers using
an informal but more intuitive statement: for any sample
z, the Bayes optimal classifier f of class-balanced class-
conditional Gaussian distribution Pµ1,µ2,IK , yields a deci-

sion margin of ∥∆∥2 =
|(ẑ−µ1+µ2

2 )T µ̃|
∥µ̃∥2

, and if we scale the
margin by the distance between two Gaussian centers, we

obtain a scaled margin of ∥∆̄z∥2 =
|(ẑ−µ1+µ2

2 )T µ̃|
∥µ̃∥2

2
. We give

the formal results for the generic class prior in the appendix.
In the following, we will state the complete algorithm for
characterizing robustness-accuracy performance (cf. Sec-
tion 2.3) of LLMs using synthetic datasets (cf. Section 2.2).

2.4. SynTextBench score and algorithm
In our benchmarking process, we essentially generate a
sequel of tasks with different difficulty levels and inspect
how the magnitude of decision margins changes with the
classifier accuracy. In terms of robustness-accuracy charac-
terization, it is desirable for an LLM to consistently yield
high classification accuracy, while maintaining a big deci-
sion margin (that is, less sensitive to perturbations in the
embedding space). The pseudocode of the proposed frame-

work, SynTextBench, is given in Algorithm 1. In practice,
we let P = {0, 0.05, . . . , 0.9, 0.95}, and subsequently gen-
erate 20 synthetic datasets with p = 0 being the easiest and
p = 0.95 being the hardest. Then, we perform analysis on
the sentence embeddings of various synthetic datasets, and
threshold the accuracy at aT based on utility. The thresh-
old serves as a penalty for poor sentence embeddings that
lead to an undesirable accuracy under this threshold, match-
ing our task substance of testing LLM’s ability to preserve
linear separability. By referring to Figure 1, Line 1 in Al-
gorithm 1 determines the word lists from a given lexicon.
From Line 2 to Line 9, the for-loop generates one synthetic
dataset at one time, on which we compute an (accuracy, avg.
margin) pair (ap, δp) and draw one point on the margin-
accuracy 2D plot as in Figure 1. Since we not only care
about the curvature of the curve but also how the (accuracy,
avg. margin) pairs span on the curve, we define a goodness
function s(a) = 1

|P |
∑

{p∈P,ap>a} δp on R[0, 1] to account
for the span. By our definition, s(a) will be a monotonically
decreasing function (e.g., Figure 6) and calculate the ex-
pected margin conditioned on the accuracy level. The final
SynTextBench score is defined by the integration over the
desirable range of threshold accuracy, i.e. SynTextBench
score =

∫ 1

aT
s(a)da. We use SynTextBench as a quantifi-

able score to inform the accuracy-robustness aspect of a
pretrained LLM. We apply Algorithm 1 on various models
to evaluate their performance. In the later section, we will
demonstrate the metric informativeness by measuring the
correlation between SynTextBench scores and the average
real-life sentence classification task performance.

3. Experiments
In this section, we test SynTextBench on multiple pretrained
LLMs to demonstrate the usage of the framework, including
BERTbase, BERTlarge, RoBERTabase, DiffCSE-B, DiffCSE-
R, T5base, T5large, ST5, and GPT. We give more details of
these models in the appendix. For models that have an en-
coder component (encoder-only or encoder-decoder), we
use the average output from the first and the last layer as
sentence embeddings. For the decoder-only model, we use
the embedding of the last token as sentence embeddings.
Baselines. We followed the implementation of (Whitney
et al., 2020) and fed the pretrained LLMs with synthetic
texts generated according to Section 2.2 and reported the
validation accuracy (Val loss), minimum description length
(MDL), surplus description length (SDL), and ϵ-sample
complexity (ϵSC) as baselines (Blier & Ollivier, 2018; Voita
& Titov, 2020; Whitney et al., 2020). Since these methods
take one dataset as inputs, we choose a relatively easy syn-
thetic proxy task generated by p = 0.2 as the input dataset.
Correlation with the real-life task performance. In order
to demonstrate the power of SynTextBench in informing
the robustness-accuracy performance of a given LLM on
possible downstream sentence-level tasks, we test LLMs
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Table 1: Correlation of real-data-free evaluation metric and
real-data accuracy at different synthetic dataset sizes.

n 4096 8192 16384 32768
Val loss 0.29±0.50 0.65±0.00 0.61±0.01 0.27±0.02
MDL 0.57±0.11 0.52±0.04 0.51±0.03 0.48±0.03
SDL, ε=1 0.57±0.11 0.51±0.04 0.43±0.02 0.31±0.01
εSC, ε=1 - - - -0.04±0.000
SynTextBench 0.94±0.01 0.96±0.01 0.96±0.00 0.93±0.00

Table 2: Aggregated correlation with real-data-free evalua-
tion metrics and the aggregated robustness-accuracy perfor-
mance, and its breakdown.

Correlation. w/ Rob.-Acc. Rob.-STS Rob.-Transfer
Val loss -0.06±0.15 0.08±0.13 -0.13±0.24
MDL 0.64±0.06 0.55±0.08 0.62±0.03
SDL, ε=1 0.60±0.02 0.51±0.04 0.58±0.028
εSC, ε=1 - - -
SynTextBench 0.76±0.04 0.76±0.03 0.69±0.05

Table 3: Performance evaluation of T5 and ST5 by real-
data-free metric (SynTextBench) and real-data-dependent
metrics (accuracy and robustness on SentEval).

SynTextBench Real-life
n 4096 8192 16384 32768 accuracy robustness

T5 0.111±0.002 0.130±0.001 0.145±0.000 0.158±0.001 82.78 12.21
ST5 0.214±0.000 0.223±0.001 0.227±0.001 0.230±0.000 90.17 13.23

on SynTextBench as well as real-life tasks. Concretely, we
applied Algorithm 1 and obtained one goodness function
s(a) for each LLM (Figure 6), from which the final Syn-
TextBench score can be determined by definition. We refer
readers to Table 6 in the appendix for the complete results.
To gauge the performance of these pretrained LLMs on
downstream real-life tasks, we evaluate given models on
SentEval (Conneau & Kiela, 2018)) and show the detailed
numbers in Figure 7 in the appendix. SentEval tasks include
seven semantic textual similarity tasks (denoted by “STS
tasks”), where results are given by the Spearman’s correla-
tion with output range [−1, 1], and seven transfer learning
tasks (denoted by “Transfer task”), where results are given
by the standard accuracy with range [0, 1]. We scale the
former to the same range as the latter, [0, 1], and take an
average as the final accuracy indicator. We put the full list
of tasks in the appendix Table 5.

To demonstrate the utility of SynTextBench score, we list
the Pearson correlation coefficients between real-data-free
evaluation methods and the accuracy of SentEval tasks in
Table 1. Five real-data-free metrics are considered that in-
cludes Val loss, MDL, SDL, εSC, and SynTextBench. Since
the smaller the baselines are, the better, we add a negative
sign when calculating their Pearson correlation coefficients.
As we have the flexibility of generating synthetic datasets
with various sizes (number of sentences), we compare four
configurations n = {4096, 8192, 16384, 32768}. Accord-
ing to Table 1, SynTextBench consistently gives scores
highly correlated with real-life task accuracy, with corre-
lation coefficients that are above 0.9. For baselines, the
highest correlation is when n = 8192 and evaluated by Val
loss, 0.65. It is noteworthy that SynTextBench is a stabler
metric as substantiated by the smaller standard deviation.

Furthermore, to evaluate LLMs’ robustness performance,

we use PWWS attack (Ren et al., 2019) and report the aver-
age percentage of perturbed words as the robustness indica-
tor. Essentially, the attacker perturbs the inputs gradually by
changing more and more words until the perturbation leads
to a wrong classification result. We analyze the correlation
on Transfer tasks when n = 8192 since these tasks are clas-
sification tasks where adversarial attacks are well-defined.
To combine robustness correlation with accuracy correlation,
we add up two ranking vectors by robustness and accuracy
measures, and calculate its Pearson correlation with the rank-
ing by one of the real-data-free evaluation metrics (Val loss,
MDL, SDL, ϵSC, SynTextBench). This way, we effectively
obtain the aggregated Spearman correlation coefficient be-
tween real-data-free evaluation metrics and joint robustness-
accuracy performance. We refer readers to the appendix
for more details. We list the results in Table 2. From the
“Rob.-Acc.” column, we see SynTextBench has an overall
higher correlation with robustness-accuracy performance
compared to other baselines. Recall that accuracy results
were aggregated from STS and Transfer tasks. In Table 2,
we show how each component contributes to the correlation.
In the “Rob.-STS” and “Rob.-Transfer” columns, we use
only STS or Transfer task results as the accuracy measure
when ranking the models, and the remaining steps follow.
From the two columns, we see that SynTextBench shows
a stronger correlation compared to baselines, while having
a better correlation with Robustness-STS accuracy perfor-
mance than Robustness-Transfer accuracy performance.
Attribute comparisons. Besides having high correlation
with real-life task performance, SynTextBench can be used
to make model attribute comparisons. Table 3 lists the Syn-
TextBench scores of pretrained T5 and ST5 under different
dataset sizes n, together with the accuracy and robustness
on SentEval tasks. From the table, it can be seen that the
SynTextBench score of ST5 is significantly higher than that
of T5 across all n, indicating contrastive fine-tuning is bene-
ficial for improving sentence embeddings. This conclusion
is in sync with the observations from real-life tasks, where
we see ST5 yields both higher accuracy and robustness.

4. Conclusion
In this paper, we have proposed SynTextBench, a config-
urable real-date-free lightweight testbed for evaluating the
accuracy and robustness of LLM sentence embeddings. Syn-
TextBench is the pioneering effort in developing synthetic
benchmarking methodologies for NLP, with a primary focus
on sentence classification tasks and does not cover other
NLP tasks (e.g. question answering, machine translation,
summarization). By concentrating on the task, we have
provided a solid foundation upon which future research can
build. We believe that our work is a major step towards
ensuring independent and sustainable auditing of LLMs.
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A. Appendix
A.1. Related Work and Background

Sentence representations. To obtain performant LLMs, learning universal sentence representations that capture rich
information for various downstream NLP tasks without task-specific finetuning is an active research field and has also been
studied extensively in the past years (Kiros et al., 2015; Conneau et al., 2017; Gao et al., 2019; Li et al., 2020; Su et al.,
2021; Giorgi et al., 2021; Gao et al., 2021; Chuang et al., 2022). While learning to extract ideal sentence embeddings, (Gao
et al., 2019; Li et al., 2020; Ethayarajh, 2019) have pinpointed the anisotropic behavior in the sentence embedding vector
space as a reason behind sentence embeddings’ poor capture of semantic information. To remedy the situation, Bert-flow (Li
et al., 2020) and Bert-whitening (Su et al., 2021) transformed the sentence embedding distribution into an isotropic Gaussian
distribution through normalizing flow and whitening post-processing. Through contrastive learning, SimCSE (Gao et al.,
2021) and DiffCSE (Chuang et al., 2022) also achieved new state-of-the-art sentence embedding performance by promoting
uniformity and alignment (Wang & Isola, 2020).

Evaluations of pretrained models. In evaluating the performance of LLMs, the current de facto evaluation paradigm is
to utilize widely-used NLP benchmarks such as the General Language Understanding Evaluation (GLUE (Wang et al.,
2018)/SuperGLUE (Wang et al., 2019)) benchmark, the Stanford Question Answering Dataset (SQuAD v1.1 (Rajpurkar
et al., 2016)/v2.0 (Rajpurkar et al., 2018)), the Situations With Adversarial Generations (SWAG (Zellers et al., 2018)) dataset,
the ReAding Comprehension from Examinations (RACE (Lai et al., 2017)) dataset, the Evaluation Toolkit for Universal
Sentence Representations (SentEval (Conneau & Kiela, 2018)), BIG-Bench (Srivastava et al., 2022), etc. In many cases,
these NLP benchmarks are supersets of datasets, e.g., GLUE is a collection of 9 datasets for evaluating natural language
understanding systems, and SentEval is a collection of 7 Semantic Textual Similarity (STS) tasks and 7 transfer datasets that
have partial overlap with GLUE. The heavy reliance on real-life tasks can be exemplified by broad literature. For example,
Bert (Devlin et al., 2019) was evaluated on GLUE, SQuAD v1.1/2.0, SWAG; Roberta (Liu et al., 2019) was evaluated on
GLUE, SQuAD v1.1/2.0, RACE; and T5 (Raffel et al., 2020) was evaluated on GLUE/SuperGLUE, SQuAD, CNN/Daily
Mail abstractive summarization and WMT translation. HELM (Liang et al., 2022) proposes a holistic evaluation framework
for language models that measures 7 metrics on 42 scenarios. However, when confronting the challenge of test-data leakage,
to the best of our knowledge, there is no real-data-free evaluation method for NLP pretrained representations. In a recent
literature (Ko et al., 2022), authors reported the validation loss (Val loss), minimum description length (MDL) (Blier &
Ollivier, 2018; Voita & Titov, 2020), surplus description length (SDL) and ϵ-sample complexity (ϵSC) (Whitney et al.,
2020) on class-conditional Gaussian distribution data as an effort to build task-agnostic evaluation baselines for pretrained
representations in computer vision. Our proposed framework differs from this line of work in that we focus on the domain
of natural language processing and we do not assume the data inputs are sampled from an idealized distribution. Instead, we
create synthetic sentences and proxy tasks based on a lexical resource for LLM evaluation.

Sentiment lexicons. SentiWordNet 3.0 (Baccianella et al., 2010) is a lexical resource that provides sentiment information for
each word in WordNet (Miller, 1995), a widely-used lexical database of English words and their relationships. SentiWordNet
3.0 is an improved version of SentiWordNet 1.0 (Esuli & Sebastiani, 2006), 1.1 (Esuli & Sebastiani, 2007), 2.0 (Esuli,
2008). SentiWordNet automatically assigns synsets of WordNet according to notions of “positivity”, “negativity”, and
“neutrality”. The sentiment scores of a synset are assigned on a scale from 0.0 to 1.0 and sum to 1, reflecting a fine-grained
opinion-related word-level labeling. SentiWordNet has been used in a variety of natural language processing tasks, such
as sentiment analysis (Denecke, 2008; Ohana & Tierney, 2009; Khan et al., 2016), opinion mining (Husnain et al., 2021;
Dadhich & Thankachan, 2021), representation learning (Ke et al., 2020), and curriculum learning (Rao et al., 2020). Besides
SentiWrodNet, other sentiment lexicons include Affective Norms for English Words (ANEW) (Bradley & Lang), Warriner
lexicon (Warriner et al., 2013), a new ANEW (Nielsen, 2011), and ANEW+ (Shaikh et al., 2016). In this paper, we will
demonstrate the use of sentiment lexicon with word-level labels in constructing synthetic datasets using SentiWordNet;
however, the framework proposed herein can take any lexicon with word-level labels. We also envision our framework to
benefit from a richer vocabulary and extend to other value lexicons like moral lexicons (Rezapour et al., 2019).

Robust Bayes optimal classifier. Despite the difficulty of characterizing the optimal classifier with the minimum loss for
generic data, for data drawn from class-conditional Gaussian distribution, the explicit optimal strategy is given by Fisher’s
linear discriminant rule (Johnson et al., 2002; Petridis & Perantonis, 2004). Likewise, the optimal classification strategy
can also be given for such data in the presence of input perturbations (Bhagoji et al., 2019; Dan et al., 2020). Let N (µ,Σ)
denote Gaussian distribution with mean µ and variance Σ. Generally, for binary classification problems with data pair (x, y)
generated from a probability distribution Pµ,Σ: x|y = 1 ∼ N (µ,Σ), x|y = −1 ∼ N (−µ,Σ), the classifier that minimizes
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the adversarial loss (Awasthi et al., 2021) maxx′:∥x′−x∥≤ϵ 1(f(x
′) ̸= y), the robust Bayes optimal classifier (Bhagoji et al.,

2019; Dan et al., 2020), is given by sign(wT
0 x), where w0 = Σ−1 (µ− zΣ(µ)) and zΣ is the solution of the problem

argmin
∥z∥2≤ϵ

(µ− z)TΣ−1(µ− z) (1)

In the following sections, we will exploit robust Bayes optimal classifier in giving the explicit optimal classifier on whitened
sentence embeddings and develop our theoretical groundings on top of it.

A.2. List of stop words

{‘must’, ‘meanwhile’, ‘among’, ‘same’, ‘you’, ‘formerly’, ‘already’, ‘take’, ‘he’, ‘thereupon’, ‘done’, ‘anyhow’, ‘almost’,
‘ca’, ‘regarding’, ‘will’, ‘mostly’, ‘say’, ‘again’, ‘forty’, ‘seemed’, ‘still’, ‘they’, “re’, ‘seem’, ‘latter’, ‘why’, ‘hers’, ‘thereby’,
‘themselves’, ‘your’, ‘nine’, ‘become’, ‘may’, ‘beyond’, ‘it’, ‘back’, ‘our’, ‘himself’, “m’, ‘via’, ‘we’, ‘seems’, ‘throughout’,
‘yourself’, ‘bottom’, ‘only’, ‘whereby’, ‘move’, ‘else’, ‘front’, ‘within’, ‘after’, ‘every’, ‘quite’, ‘hereby’, ‘now’, ‘since’,
‘became’, ‘herself’, ‘behind’, ‘any’, ‘those’, ‘used’, ‘indeed’, ‘’ve’, ‘first’, ‘moreover’, ‘ourselves’, ‘she’, ‘should’, ‘her’,
‘various’, ‘few’, ‘hundred’, ‘whoever’, ‘give’, ‘latterly’, ‘between’, ‘in’, ‘most’, ‘make’, ‘sixty’, ‘therefore’, ”’s”, ’hence’,
‘amount’, ‘otherwise’, ‘’m’, ‘’re’, ‘’s’, ‘are’, ‘could’, ‘along’, ‘ours’, ‘of’, ‘that’, ‘everywhere’, ‘during’, ‘his’, ‘then’, ‘fifty’,
‘namely’, ‘when’, ‘around’, ‘all’, ‘keep’, ‘these’, ‘’ll’, ‘third’, ‘being’, ‘thus’, ‘more’, “s’, ‘is’, ‘where’, ‘further’, ‘them’,
‘towards’, ‘next’, ‘and’, ‘a’, ‘does’, ‘here’, ‘ten’, ‘whom’, ‘except’, ‘myself’, ‘somehow’, ‘ever’, ‘enough’, ‘there’, ‘mine’,
‘other’, ‘so’, ‘hereupon’, ‘who’, ‘eight’, ‘one’, ‘hereafter’, ‘amongst’, ‘seeming’, ‘its’, ‘each’, ‘sometime’, ‘this’, ‘me’,
“ll’, ‘until’, ‘him’, ‘because’, ‘many’, ‘anyway’, ‘part’, ‘from’, ‘have’, ‘over’, ‘to’, ”’re”, ’becomes’, ‘too’, ‘as’, ‘name’,
‘whence’, ‘whole’, ‘herein’, ‘everything’, ‘against’, ‘call’, ‘upon’, ‘both’, ‘i’, ‘whenever’, ‘across’, ‘anywhere’, ‘six’, ‘us’,
‘thereafter’, ‘also’, ‘former’, ‘whither’, ‘whose’, ‘such’, ‘really’, ‘was’, ‘’d’, ‘someone’, “ve’, ‘eleven’, ‘wherein’, ‘yours’,
‘by’, ‘their’, ‘beside’, ‘or’, ‘re’, ‘has’, ‘off’, ‘which’, ‘put’, ‘whether’, ‘per’, ‘four’, ‘whereafter’, ‘often’, ‘doing’, ‘had’,
‘out’, ‘some’, ‘fifteen’, ‘others’, ‘once’, ‘somewhere’, ‘either’, ‘besides’, ‘though’, ‘been’, ‘do’, ‘very’, ‘thru’, ‘go’, ‘please’,
‘sometimes’, ”’ll”, ’perhaps’, ‘whereupon’, ‘whatever’, ‘about’, ‘for’, ‘itself’, ‘thence’, ‘at’, ‘how’, ‘made’, ‘three’, ‘might’,
‘another’, ‘did’, ‘alone’, ‘elsewhere’, ‘toward’, ‘were’, ‘would’, ‘due’, ‘what’, ‘an’, ‘wherever’, ‘be’, ‘can’, ‘something’,
‘side’, ”’d”, ’with’, ”’m”, ’am’, ‘therein’, ‘into’, ‘through’, ”’ve”, ’everyone’, ‘on’, ‘my’, ‘even’, ‘own’, ‘see’, ‘several’,
‘two’, ‘afterwards’, ‘show’, “d’, ‘beforehand’, ‘nowhere’, ‘becoming’, ‘last’, ‘onto’, ‘the’, ‘yourselves’, ‘five’, ‘anyone’,
‘together’, ‘before’, ‘always’, ‘get’, ‘using’}

A.3. SentiWordNet 3.0 synsets

Each of the entries in SentiWordNet 3.0 has PosScore and NegScore denoting the positivity and negativity score assigned by
SentiWordNet to the synset, and ObjScore is calculated by 1 - (PosScore + NegScore), denoting the neutrality score. When
categorizing these words, we remove the sense number associated with the words and group words into individual word list
based on the following criteria: for a word w,
• if PosScore > NegScore, we categorize w into the positive word list;
• if PosScore < NegScore, we categorize w into the negative word list;
• if PosScore = NegScore = 0, we categorize w into the neutral word list.

We drop columns POS, ID, GLOSS in the examples for easier illustration. By performing the procedure on synsets in
Table 4, we obtain a positive word list {able, living, accurate, concrete, active}, a negative word list {unfaithful, unable}, a
neutral word list {acroscopic, straight}. In practice, we perform the procedure on SentiWordNet 3.0 and gather a positive
word list with 23147 words, a negative word list with 26440 words, and a neutral word list with 154993 words.

Table 4: Examples of synsets in SentiWordNet 3.0.

SynsetTerms PosScore NegScore SynsetTerms PosScore NegScore
able#1 0.125 0 unable#1 0 0.75

acroscopic#1 0 0 unquestioning#2 0.5 0.5
living#3 0.5 0.125 concrete#1 0.625 0.25

accurate#1 0.5 0 straight#5 0 0
unfaithful#4 0 0.5 active#5 0.5 0.125
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A.4. More synthetic sentence examples

POSITIVE

• “convincingly gruesomely gruesomely convincingly deserve feeder exhaust exhaust debonaire stuffily stuffily
anne sexton wholeness wholeness rarefy conformable pretension pretension”
• “smarmily smarmily fairness covetously infuse soothing subtly subtly soothing”
• “precious grace the right way the right way absoluteness absoluteness”
• “personal relation pleasurable sleekness cryptographically cryptographically correct delineate sink in authenticated”
• “perfectibility lotus-eater shine shine health care health care pleasant-tasting”

NEGATIVE

• “counterrevolutionary apprehensive thunderclap unskilled unskilled thunderclap apprehensive cheat shanny shanny cheat
counterrevolutionary smooth smooth decayed decayed imagine imagine loser unpicturesque unnaturalized unnaturalized
unrelieved unrelieved unhewn”
• “unpleasant unpleasant mortal sympathetic dead dead choker nubbly fallout”
• ‘jostling weka offend engorged fouled fouled engorged intermittence space impaction impaction space intermittence
dishonesty disgustingly”
• “blindly blindly”
• “second class criminal possession lousiness nonextensile linanthus dianthiflorus nonarbitrary regular foolishness stab-
bing”

A.5. Synthetic sentence generation details

During the construction of synthetic sentences, the probability pe associated with the special token ‘<eos>’ is determined
by its frequency in the English Wikipedia corpus. For the remaining mass 1− pe, pn portion is assigned to new words, with
its value picked following (Papadimitriou & Jurafsky, 2020), which is pn = 0.5. Additionally, when there are no unpaired
words in the stack (e.g., when drawing the starting token of the sentence, or when all the unpaired words are popped), we
assign its probability pn(1− pe) to new words.

A.6. Histograms of synthetic datasets versus English Wikipedia corpus

Figure 3: The histograms of sentence lengths in the English Wikipedia corpus (stop words removed) and the constructed
synthetic corpus (positive/negative sentences).
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A.7. Task feasibility

Figure 4: The reference accuracy given by SentiWordNet sentiment analysis. With an increasing mixing ratio p, the task
becomes harder and the reference accuracy also shows a decreasing trend.
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A.8. Robust Bayes optimal classifier and proofs

To motivate our findings, we first plot the Bayes optimal robust classifiers together with the Bayes optimal classifier in three
2D cases in Figure 5. From the plot, we see that as long as the direction of µ is in parallel to one of the two eigenvectors, the
robust Bayes optimal classifiers would overlap with the Bayes optimal classifier.

(a) No alignment (b) µ ∥ v1 (c) µ ∥ v2

Figure 5: Three 2D examples of the Bayes optimal classifier and robust Bayes optimal classifiers with different magnitudes
of expected perturbation ϵ. Figure 5(a) - no alignment between the mean vector µ and the eigenvectors. Figure 5(b) and
Figure 5(c) - µ is parallel to the eigenvector corresponding to either of the two eigenvalues.

To generalize the result, we prove the following theorem that specifies a sufficient condition for all ϵ-robust Bayes optimal
classifiers to overlap with each other (including ϵ = 0, i.e. Bayes optimal classifier). Intuitively, if the ϵ-robust Bayes
optimal classifiers overlap with the Bayes optimal classifiers, then there is no robustness-accuracy trade-off.
Result A.1. The ϵ-robust Bayes optimal classifiers overlap for all ϵ if the vector difference µ between the centers of the
two gaussians lies completely within a degenerate subspace of the eigenspace of the covariance matrix, i.e. with eigenpairs
{(λk, vk), k ∈ [n]}, for ∀ i, j ∈{k : λk ̸= 0, µT vk ̸= 0}, λi = λj = λ.

Proof. Let v1, . . . , vn and λ1, . . . , λn be the orthonormal eigenbasis and the corresponding eigenvalues of the covariance
matrix Σ, then we have Σ−1 =

∑n
i=1

1
λi
viv

T
i . Using (Dan et al., 2020), we see that the ϵ-robust classifier is given as

signwϵ⊤x, where wϵ = Σ−1 (µ− zϵΣ(µ)) and

zϵΣ(µ) = argmin
∥z∥≤ϵ

∥µ− z∥2Σ−1 .

Let µ =
∑n

i=1 aivi and we re-parameterize z =
∑n

i=1 bivi. Then,

zϵΣ(µ) =

n∑
i=1

bϵivi, where bϵ = ⟨bϵi⟩ni=1 = argmin∑n
i=1 b2i≤ϵ2

n∑
i=1

(ai − bi)
2

λi

By using the Lagrange multiplier γϵ with first-order optimality condition, we see that ∀ i

bϵi − ai
λi

+ γϵb
ϵ
i = 0 ⇐⇒ ai − bϵi

λi
= γϵb

ϵ
i ⇐⇒ bϵi =

ai
1 + λiγϵ

(2)

and
∑n

i=1 (b
ϵ
i)

2 ≤ ϵ2. In order for all the robust classifiers to overlap we need wϵ/∥wϵ∥ to the independent of ϵ. That is,

wϵ

∥wϵ∥
=

∑n
i=1 vi

ai−bϵi
λi√∑n

i=1

(
ai−bϵi
λi

)2
=

∑n
i=1 γ

ϵbϵivi√∑n
i=1 (γ

ϵ)
2
(bϵi)

2
=

∑n
i=1 b

ϵ
ivi√∑n

i=1 (b
ϵ
i)

2
=

∑
i∈S bϵivi√∑n
i∈S (bϵi)

2
,

where the S in the last equation denotes the set of indices for which ai ̸= 0. For ∀ i with ai = 0, from equation 2, we clearly
have bϵi = 0.
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The condition µ lies completely within a degenerate subspace of the eigenspace of Σ is equivalent to saying λi = λj = λ
for ∀ i, j ∈ S. In this case, we see that for ∀ i ∈ S,

ϵ2 ≥
n∑

i=1

(bϵi)
2 =

∑
i∈S

(bϵi)
2 =

(
1

1 + λγϵ

)2 ∑
i∈S

a2i ,

so 1
1+λγϵ

≤ ϵ 1√∑
i∈S a2

i

, bϵi ≤ ϵ√∑
i∈S a2

i

ai. So, we get bϵi = mϵ · ai where mϵ = min

(
1, ϵ√∑

i∈S a2
i

)
wϵ

∥wϵ∥
=

∑
i∈S bϵivi√∑n
i∈S (bϵi)

2
=

∑
i∈S mϵaivi

mϵ

√∑
i∈S a2i

=
∑
i∈S

ai√∑
i∈S(ai)

2
vi,

which is independent of ϵ.

Result A.2. Consider the robust Bayes optimal classifier1, fϵ, for Pµ1,µ2,Id with class prior P(y = 1) = τ , P(y = −1) =
1− τ , it is in the following form

fϵ(x) = sign

{(
x− µ1 + µ2

2

)T

µ̃(1− ϵ/∥µ̃∥2)− q/2

}
,

where µ̃ = µ1−µ2

2 and q = ln{(1− τ)/τ}. For any sample x, fϵ gives the lower bound on the decision margin δ(
x+ δ − µ1 + µ2

2

)T

µ̃(1− ϵ/∥µ̃∥2)− q/2 = 0

⇔ δT µ̃(1− ϵ/∥µ̃∥2) = q/2−
(
x− µ1 + µ2

2

)T

µ̃(1− ϵ/∥µ̃∥2)

⇒ ∥δ∥2 ≥
|(x− µ1+µ2

2 )T µ̃(1− ϵ/∥µ̃∥2)− q/2|
∥µ̃(1− ϵ/∥µ̃∥2)∥2

,

which then yields the worst-case bound

∥∆∥2 = min ∥δ∥2 =
|(x− µ1+µ2

2 )T µ̃(1− ϵ/∥µ̃∥2)− q/2|
∥µ̃(1− ϵ/∥µ̃∥2)∥2

.

Since the bound ∥∆∥2 is subject to the positions of two Gaussians, we scale the bound by the distance from Gaussian centers
to the classifier. We note that, since the class are imbalanced, the distances from the two Gaussian centers to the classifier fϵ
are different, i.e. |µ̃T µ̃(1−ϵ/∥µ̃∥2)−q/2|

∥µ̃(1−ϵ/∥µ̃∥2)∥2
and |µ̃T µ̃(1−ϵ/∥µ̃∥2)+q/2|

∥µ̃(1−ϵ/∥µ̃∥2)∥2
, respectively. We hereby take their average as the scaling

factor and obtain

∥∆̄∥2 =
|(x− µ1+µ2

2
)T µ̃(1− ϵ/∥µ̃∥2)− q/2|

∥µ̃(1− ϵ/∥µ̃∥2)∥2
2∥µ̃(1− ϵ/∥µ̃∥2)∥2

|µ̃T µ̃(1− ϵ/∥µ̃∥2)− q/2|+ |µ̃T µ̃(1− ϵ/∥µ̃∥2) + q/2|

=
2|(x− µ1+µ2

2
)T µ̃(1− ϵ/∥µ̃∥2)− q/2|

|µ̃T µ̃(1− ϵ/∥µ̃∥2)− q/2|+ |µ̃T µ̃(1− ϵ/∥µ̃∥2) + q/2| .

1Dobriban, E., Hassani, H., Hong, D. and Robey, A., 2020. Provable tradeoffs in adversarially robust classification. arXiv preprint
arXiv:2006.05161.
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A.9. Algorithm

Algorithm 1 Benchmarking LLMs using synthetic datasets (SynTextBench)

input Sentiment lexicons S, a range of difficulty levels P , an LLM g, threshold accuracy aT .
output SynTextBench score that quantifies the robustness-accuracy performance.

1: Construct positive/negative/neutral word lists from sentiment lexicon S.
2: for p in P do
3: Generate a synthetic binary classification task and obtain training set (xtrain, ytrain) and test set (xtest, ytest).
4: Calculate transformation T1 and T−1 from ztrain1 = {g(x) | (x, y) ∈ (xtrain, ytrain), y = 1} and

ztrain−1 = {g(x) | (x, y) ∈ (xtrain, ytrain), y = −1}.
5: Transform training set and test set ẑ1train = T1(z

train
1 ), ˆz−1

train = T−1(z
train
−1 ) and ẑ1

test = T1(z
test
1 ), ˆz−1

test =
T−1(z

test
−1 ).

6: Derive the Bayes optimal classifier f according to sign(µ̃T (ẑ − µ1+µ2

2 )) based on ẑ1
train and ˆz−1

train, i.e. µ1 =

mean(ẑ1train), µ2 = mean( ˆz−1
train).

7: Read out the accuracy a of f on ẑ1
test and ˆz−1

test, and calculate the average scale margin δ := avg(∥∆̄z∥2)
according to ∥∆̄z∥2 =

|(ẑ−µ1+µ2
2 )T µ̃|

∥µ̃∥2
2

for correctly-classified sentence embeddings.
8: Denote the accuracy and average margin pair on the task by (ap, δp).
9: end for

10: Define a goodness function s(a) = 1
|P |

∑
{p∈P,ap>a} δp, for a ∈ R[0, 1].

11: SynTextBench score =
∫ 1

aT
s(a)da.

Figure 6: The goodness function s(a) of nine pretrained language models. The SynTextBench score is calculated by the
area under the curve.
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A.10. Models

• BERTbase and BERTlarge (Bidirectional Encoder Representations from Transformers (Devlin et al., 2019)) are
encoder-only transformers pretrained with masked language model and next sentence prediction pre-training objectives with
110M and 340M parameters.
• RoBERTabase (Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)) is a modification of BERT with 125M
parameters that trained with dynamic masking, large mini-batches, a larger byte-level byte pair encoding, and removed the
next sentence prediction objective.
• DiffCSE-B and DiffCSE-R (Difference-based Contrastive Learning for Sentence Embeddings (Chuang et al., 2022)) are
BERTbase and RoBERTabase models that further trained with difference-based contrastive learning.
• T5base and T5large (Text-to-Text Transfer Transformer (Raffel et al., 2020)) are encoder-decoder transformers with 223M
and 738M parameters that casts all NLP tasks into a text-to-text problem.
• ST5 (Scalable sentence encoders from pre-trained text-to-text models (Ni et al., 2022)) is initialized by T5base and
trained by two-stage contrastive learning with 220M parameters.
• (GPT) DialogRPT (Dialog Ranking Pretrained Transformers (Gao et al., 2020)) is a decoder-only GPT-2 based
transformer trained on vast human feedback data with 355M parameters. We use DialogRPT instead of GPT-2 since GPT-2
is not optimized for classification tasks while DialogRPT is fine-tuned with classification tasks.
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A.11. Complete results

Figure 7: The accuracy and robustness (average percentage of perturbed words) performance of pretrained models on
SentEval tasks.

Table 5: The detailed SentEval task performance. For STS tasks, we report Spearman’s correlation (%), and for Transfer
task, we report the standard accuracy (%).

STS tasks Transfer tasks
Models STS12 STS13 STS14 STS15 STS16 STS-B SICK-R MR CR SUBJ MPQA SST TREC MRPC avg.

BERTbase 54.44 58.03 58.86 67.94 68.42 53.88 62.06 82.98 89.56 95.43 89.92 85.45 89.8 74.03 83.50
DiffCSE-B 68.88 76.21 73.88 79.76 78.84 75.51 67.70 82.2 88.11 95.44 91.03 84.46 88 75.71 86.81
BERTlarge 53.33 56.86 56.23 63.43 66.69 54.43 58.06 85.96 89.59 96.43 90.96 89.13 91.8 73.16 83.68

T5base 58.18 63.78 64.14 71.83 68.94 60.17 58.77 80.54 88.34 93.04 89.73 81.27 85.8 67.36 82.78
T5large 58.34 62.59 63.50 71.36 67.88 59.67 58.02 79.31 86.86 93.53 90.43 80.72 82.8 68.75 82.36

RoBERTabase 57.28 55.21 59.76 69.22 64.64 58.55 61.63 84.08 86.91 95.63 89.52 88.25 91.6 74.49 83.83
DiffCSE-R 69.77 78.70 76.08 81.75 80.86 81.17 70.34 84.75 90.99 95.2 89.75 87.92 89.4 77.28 88.19

GPT 44.16 23.99 34.73 40.78 55.11 41.05 43.65 81.08 88.53 92.81 87.87 86.6 93 70.49 78.01
ST5 74.32 82.83 81.50 86.14 85.95 86.04 79.76 85.88 91.81 94.4 91.09 90.88 95.8 74.26 90.17

Table 6: Pearson correlation comparison between real-data-free evaluation methods and the average accuracy on the real-life
tasks included in Table 5. Since the smaller the Val loss, MDL, SDL and ϵSC, the better, we add a negative sign in front of
them when calculating the Pearson correlation coefficient.

n Name BERTbase DiffCSE-B BERTlarge T5base T5large RoBERTabase DiffCSE-R GPT ST5 Pearson
Reallife acc. 83.50 86.81 83.68 82.78 82.36 83.83 88.19 78.01 90.17 1.0

4096 Val loss 1.0e-06±1e-07 1.4e-06±3e-07 7.6e-07±5e-08 8.5e-08±1e-08 5.4e-08±9e-09 4.0e-06±3e-07 1.1e-06±8e-08 3.1e-03±8e-04 3.7e-03±5e-03 0.285±0.498
MDL 5002±318 4755±129 5422±357 7318±119 6724±228 5396±181 4773±296 5604±366 4433±360 0.571±0.109
SDL, ε=1 3090±318 2843±129 3510±357 5406±119 4812±228 3484±181 2861±296 3687±366 2514±368 0.570±0.110
εSC, ε=1 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 -
SynTextBench 0.137±0.001 0.148±0.001 0.135±0.000 0.111±0.002 0.103±0.002 0.119±0.001 0.193±0.001 0.090±0.003 0.214±0.000 0.939±0.008

8192 Val loss 3.3e-06±3e-07 6.3e-04±9e-04 6.6e-04±9e-04 3.3e-07±9e-08 5.9e-04±8e-04 1.3e-05±1e-06 4.1e-06±2e-07 3.1e-02±1e-03 1.2e-03±5e-05 0.649±0.004
MDL 8802±99 8687±260 10107±156 14664±464 14487±426 9801±489 8902±175 10001±291 7310±175 0.519±0.043
SDL, ε=1 5262±99 5144±262 6564±155 11124±464 10944±426 6261±489 5362±175 6343±287 3766±175 0.509±0.043
εSC, ε=1 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 -
SynTextBench 0.152±0.001 0.156±0.001 0.148±0.002 0.130±0.001 0.122±0.000 0.129±0.002 0.196±0.001 0.085±0.003 0.223±0.001 0.962±0.006

16384 Val loss 2.3e-03±2e-03 9.5e-04±7e-04 7.2e-04±1e-03 6.6e-04±9e-04 1.2e-03±9e-05 8.2e-04±1e-03 2.2e-03±2e-03 2.1e-01±3e-02 2.3e-02±9e-04 0.605±0.007
MDL 15840±436 15253±455 18039±778 26004±879 25606±767 16629±117 15465±349 16794±440 11895±89 0.506±0.032
SDL, ε=1 9266±429 8689±458 11477±786 19443±887 19040±767 10066±118 8891±365 8525±383 5153±93 0.425±0.021
εSC, ε=1 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 -
SynTextBench 0.161±0.000 0.164±0.001 0.161±0.001 0.145±0.000 0.141±0.001 0.137±0.000 0.198±0.001 0.087±0.001 0.227±0.001 0.958±0.002

32768 Val loss 6.4e-03±8e-04 4.2e-03±2e-03 4.1e-03±3e-04 3.1e-02±1e-02 3.0e-03±7e-04 1.4e-02±2e-03 1.1e-02±1e-02 4.7e-01±2e-02 2.9e-01±1e-02 0.267±0.018
MDL 27667±294 25793±898 29577±253 43955±1616 39692±1520 27151±33 27546±646 28930±471 21999±88 0.481±0.029
SDL, ε=1 15417±282 13581±927 17367±252 31282±1860 27501±1518 14775±50 15214±489 9442±195 6076±106 0.311±0.008
εSC, ε=1 29491±0 29491±0 29491±0 29491±0 29491±0 29491±0 29491±0 12139±0 12139±0 -0.044±0.000
SynTextBench 0.170±0.001 0.169±0.000 0.173±0.001 0.158±0.001 0.156±0.000 0.140±0.001 0.202±0.000 0.092±0.001 0.230±0.000 0.934±0.002
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A.12. Experimental details

When we calculate the correlation between real-data-free evaluation methods and real-life task robustness-accuracy per-
formance, we need to aggregate two metrics - accuracy and robustness. For this purpose, we can obtain a ranking of the
models according to the accuracy measure, R1, and a ranking of the models according to the robustness measure, R2. We
aggregate two rankings by the simple and commonly-used mean aggregation2 which yields the overall ranking of models
based on accuracy-robustness performance, Rref. On the other hand, we can obtain another ranking of models based on
one of the real-data-free evaluation methods (e.g. Val loss, MDL, SDL, ϵSC, SynTextBench), R. Lastly, we calculate the
Pearson correlation coefficient between R and Rref.

Moreover, when we calculate the robustness measures, we only perform attacks on Transfer tasks as they are classification
tasks where adversarial attacks are well-defined. Since we use the average percentage of perturbed words as the robustness
indicator, we also excluded MPQA and TREC due to their short sentence lengths (MPQA and TREC average sentence
lengths are 3.03 and 6.48, respectively). We list the robustness results in the following table:

Table 7: The robustness (average percentage of perturbed words) of pretrained representations on Transfer tasks.

Models MR CR SUBJ SST MRPC avg.
BERTbase 14.48 13.99 20.2 15.07 5.45 13.838

DiffCSE-B 14.46 14.7 18.64 15.19 6.39 13.876
BERTlarge 14.3 14.22 19.87 15.46 5.26 13.822

T5base 12.71 12.82 16.8 13.66 5.05 12.208
T5large 13.67 14.28 16.93 13.82 5.17 12.774

RoBERTabase 16.4 18.35 20.74 17.26 7.12 15.974
DiffCSE-R 15.72 16.07 18.53 16.82 5.68 14.564

GPT 12.53 13.11 15.75 13.52 5.17 12.016
ST5 13.6 13.08 18.36 14.22 6.9 13.232

We also list the ranking of models from different metrics in the following table.

Table 8: Ranking of models from different metrics at n = 8192.

Name BERTbase DiffCSE-B BERTlarge T5base T5large RoBERTabase DiffCSE-R GPT ST5
Overall accuracy 6 3 5 7 8 4 2 9 1
STS accuracy 7 3 8 4 5 6 2 9 1
Transfer accuracy 5 6 2 8 9 4 3 7 1
Robustness 4 3 5 8 7 1 2 9 6
Val loss 8 4 3 9 5 6 7 1 2
MDL 7 8 3 1 2 5 6 4 9
SDL, ε=1 7 8 3 1 2 5 6 4 9
εSC, ε=1 5 5 5 5 5 5 5 5 5
SynTextBench 4 3 5 6 8 7 2 9 1

For example, to calculate SynTextBench correlation with robustness-and-accuracy performance, we calculate the Pearson
correlation between (row “Overall accuracy” + row “Robustness”) / 2 and “SynTextBench”. To calculate SynTextBench
correlation with robustness-and-STS accuracy performance, we calculate the Pearson correlation between (row “STS
accuracy” + row “Robustness”) / 2 and “SynTextBench”. To calculate SynTextBench correlation with robustness-and-
Transfer accuracy performance, we calculate the Pearson correlation between (row “Transfer accuracy” + row “Robustness”)
/ 2 and “SynTextBench”. We note that in all our results prior to Table 8, we always infer the correlation in individual
runs before we take an average over all trials. Different from that, the rankings from Val loss, MDL, SDL, ϵSC, and
SynTextBench in Table 8, are inferred from the average metric results over 3 trails for an easier illustration. Therefore, the
ranking correlation suggested by the table might have some deviation from what is shown in Table 2.

2Wald, R., Khoshgoftaar, T.M. and Dittman, D., 2012, December. Mean aggregation versus robust rank aggregation for ensemble gene
selection. In 2012 11th international conference on machine learning and applications (Vol. 1, pp. 63-69). IEEE.
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