

000 001 002 003 004 005 CTC-DRO: ROBUST OPTIMIZATION FOR REDUCING 006 LANGUAGE DISPARITIES IN SPEECH RECOGNITION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Modern deep learning models often achieve high overall performance, but con-
028 sistent-ly fail on specific subgroups. Group distributionally robust optimization
029 (group DRO) addresses this problem by minimizing the worst-group loss, but
030 it fails when group losses misrepresent performance differences between groups.
031 This is common in domains like speech, where the widely used connectionist tem-
032 poral classification (CTC) loss not only scales with input length but also varies with
033 linguistic and acoustic properties, leading to spurious differences between group
034 losses. We present CTC-DRO, which addresses the shortcomings of the group
035 DRO objective by smoothing the group weight update to prevent overemphasis
036 on consistently high-loss groups, while using input length-matched batching to
037 mitigate CTC’s scaling issues. We evaluate CTC-DRO on the task of multilingual
038 automatic speech recognition (ASR) across five language sets from the diverse
039 ML-SUPERB 2.0 benchmark. CTC-DRO consistently outperforms group DRO
040 and CTC-based baseline models, reducing the worst-language error by up to 47.1%
041 and the average error by up to 32.9%. CTC-DRO can be applied to ASR with
042 minimal computational costs, and, while motivated by multilingual ASR, offers the
043 potential for reducing group disparities in other domains with similar challenges.
044

1 INTRODUCTION

045 State-of-the-art deep learning models are often highly accurate on training data populations, while
046 consistently underperforming on specific subpopulations or groups (Hashimoto et al., 2018; Duchi
047 et al., 2023). One practical setting where this issue has very large effects is multilingual automatic
048 speech recognition (ASR), where performance varies substantially between languages (Radford et al.,
049 2023; Pratap et al., 2024; Shi et al., 2024). Such models, which jointly perform language identification
050 (LID) and ASR in many languages, could help improve accessibility and increase digital participation
051 for speakers worldwide (Besacier et al., 2014).

052 Distributionally robust optimization (DRO), particularly group DRO (Sagawa et al., 2020), has
053 the potential to mitigate language disparities in multilingual ASR. Group DRO improves group
054 robustness by up-weighting high-loss groups during training, and has been shown to outperform other
055 approaches where the goal is to achieve high performance, even on the worst-performing group (Koh
056 et al., 2021). However, it requires comparable training losses between groups to perform well (Oren
057 et al., 2019; Sagawa et al., 2020), and this condition is often not met in ASR model training, because of
058 differences in input length and speaker and acoustic characteristics across language-specific datasets.
059

060 In this paper, we focus on a training approach that has been successful on multilingual ASR bench-
061 marks: pre-trained self-supervised models fine-tuned with the connectionist temporal classification
062 (CTC; Graves et al., 2006) objective (Rouditchenko et al., 2023; Chen et al., 2024; Pratap et al., 2024).
063 CTC-based models built on encoders such as XLS-R (Babu et al., 2022) and MMS (Pratap et al.,
064 2024) are widely adopted and offer advantages over autoregressive models like Whisper (Radford
065 et al., 2023), including faster inference and reduced hallucinations (Koenecke et al., 2024; Peng et al.,
066 2024), which are crucial for many downstream applications. However, differences in CTC-based
067 training losses due to length, speaker, and acoustics may lead to varying magnitudes and irreducible
068 components of losses across different groups. As a result, the group DRO weights do not have the
069 desired effect.
070

To address these issues, we present CTC-DRO, which optimizes a generalization of the group DRO objective, specifically by smoothing the up-weighting of high-loss groups. This new objective prevents overemphasis on groups with consistently and disproportionately high training losses. Also, we use length-matched group losses to mitigate the scaling properties of CTC. We evaluate CTC-DRO using language sets randomly selected from the ML-SUPERB 2.0 (Shi et al., 2024) benchmark collection, which includes multilingual speech data from 15 diverse corpora across multiple domains, speaking styles and recording conditions. In this setting, CTC-DRO models outperform both group DRO and CTC-based baseline models across five language sets, regardless of whether balanced or unbalanced amounts of training data per language are used during training. Specifically, CTC-DRO models reduce the error rate of the worst-performing language in all of the five sets, with improvements of up to 47.1%, while also improving the average performance across all languages by up to 32.9%. While motivated by multilingual ASR, CTC-DRO offers the potential for reducing group disparities in other domains with incomparable training losses between groups, such as medical applications (Ganz et al., 2021; Petersen et al., 2023). Our code and newly trained models will be made publicly available.

2 BACKGROUND

2.1 GROUP DRO

Given a family of models Θ , loss function ℓ and training data (x, y) drawn from empirical distribution \hat{P} , the standard training procedure for label prediction involves minimizing the expected loss over the training data:

$$\min_{\theta \in \Theta} \mathbb{E}_{(x, y) \sim \hat{P}} [\ell(\theta; (x, y))]. \quad (1)$$

In contrast, group DRO aims to minimize the worst-case expected loss over a set of pre-defined groups or sub-distributions $\{\hat{P}_g : g \in G\}$ in the training data:

$$\min_{\theta \in \Theta} \left\{ \max_{g \in G} \mathbb{E}_{(x, y) \sim \hat{P}_g} [\ell(\theta; (x, y))] \right\}. \quad (2)$$

Following Sagawa et al. (2020), this objective can be rewritten as:

$$\min_{\theta \in \Theta} \left\{ \sup_{q \in \Delta_{|G|}} \sum_{g \in G} q_g \mathbb{E}_{(x, y) \sim \hat{P}_g} [\ell(\theta; (x, y))] \right\}, \quad (3)$$

where $\Delta_{|G|}$ is the $|G|$ -dimensional probability simplex, and q_g is a weight for group $g \in G$. Sagawa et al. (2020) propose an online algorithm to optimize this objective, treating the problem as a minimax game and interleaving gradient ascent updates on $q = \{q_g : g \in G\}$ with gradient descent updates on θ for training data mini-batches (see Algorithm 2 in Appendix C).

2.2 CTC

The CTC objective (Graves et al., 2006) defines a method to learn a mapping between an input sequence $X = (x_1, x_2, \dots, x_D)$ and an output sequence $Y = (y_1, y_2, \dots, y_U)$ without requiring a known alignment between them, but assuming $U \leq D$ and a monotonic alignment. CTC uses a blank output token ϵ to handle $x_d \in X$ that do not map to any output symbol. Consider \mathcal{Z} , which is the set of all sequences of length D that are composed of tokens from Y , and ϵ . Each sequence $Z \in \mathcal{Z}$ is a potential alignment between X and Y . CTC defines a collapsing function that merges consecutive, identical symbols and removes ϵ in an alignment Z . The set of alignments $Z \in \mathcal{Z}$ that collapse to Y using this function forms the set of valid alignments $\mathcal{A}(X, Y)$. For example, a possible alignment $Z \in \mathcal{A}(X, Y)$ for $D = 2U + 2$ could be: $[\epsilon, y_1, \epsilon, y_2, y_2, \epsilon, \dots, \epsilon, y_U, \epsilon]$. The conditional probability $P_{CTC}(Z|X)$ for any alignment Z is computed as:

$$P_{CTC}(Z|X) = \prod_{d=1}^D p(z_d|X), \quad (4)$$

where $Z = (z_1, z_2, \dots, z_D)$ and $p(z_d|X)$ is the model's predicted probability for symbol $z_d \in Z$ at time d . The predicted probability of the output sequence Y , $P_{CTC}(Y|X)$, is then computed by marginalizing over valid alignments $Z \in \mathcal{A}(X, Y)$:

$$P_{CTC}(Y|X) = \sum_{Z \in \mathcal{A}(X, Y)} P_{CTC}(Z|X). \quad (5)$$

108 The CTC loss function for (X, Y) is then defined as:
 109

$$\mathcal{L}_{CTC} = -\log P_{CTC}(Y | X). \quad (6)$$

112 **2.3 LIMITATIONS OF GROUP DRO APPLIED TO CTC**

114 The CTC loss, as defined in Equation 6, scales with the length of the input sequence D and the length
 115 of the output sequence U . This scaling behavior occurs because $P_{CTC}(Y|X)$ is a marginalization
 116 over all valid alignments $Z \in \mathcal{A}(X, Y)$. Each alignment is a sequence of length D , which collapses
 117 to an output sequence of length U . As D increases relative to U , the number of valid alignments
 118 increases as well (Graves et al., 2006). As each alignment’s probability is the product of D per-
 119 element probabilities, its value typically decreases as D increases. Therefore, their sum $P_{CTC}(Y|X)$
 120 remains relatively low, as the per-alignment probabilities typically decrease faster than the number of
 121 valid alignments increases. In practice, this often results in a higher CTC loss for longer sequences.

122 Therefore, differences in the distribution of D or U
 123 between groups can result in CTC losses that are not
 124 directly comparable. For example, a long audio sam-
 125 ple (large D) may have fewer errors overall, but a
 126 higher loss than a short audio sample (small D) if
 127 their transcription lengths U are similar. In Figure 1,
 128 we illustrate the need to address this challenge, show-
 129 ing that there are large differences in the distribution
 130 of audio sample lengths D across various groups (in
 131 this case, languages) included in our experimental
 132 setup, which we further detail in Section 4. In this
 133 example, Spanish has a high proportion of long utter-
 134 ances, resulting in higher CTC losses. We find that
 135 the group DRO algorithm assigns a larger weight to
 136 this group, even though it is among the best groups in
 137 terms of downstream performance in our experiments,
 138 as shown in Section 5.

139 Importantly, simply scaling the CTC loss by D or U is insufficient to address the problem of
 140 incomparable CTC losses across languages (see Appendix G). In addition, the CTC loss also varies
 141 due to differences in linguistic and acoustic properties across the pre-defined groups. This may cause
 142 variance in the irreducible component of the training loss (Malinin & Gales, 2018).

143 In line with observations made in past work (Oren et al., 2019; Słowik & Bottou, 2022), we show
 144 that this inherent incomparability of losses across groups poses a critical challenge for group DRO.
 145 From Algorithm 2, we compute the gradient ascent update to q_g , given group losses \mathcal{L}_g , as:

$$q_g \leftarrow \frac{q_g \cdot \exp(\eta_q \mathcal{L}_g)}{\sum_g (q_g \cdot \exp(\eta_q \mathcal{L}_g))}. \quad (7)$$

146 This is equivalent to the Hedge algorithm (Slivkins, 2019) update for the following maximization
 147 objective:

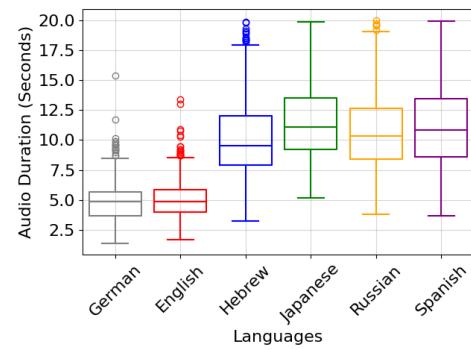
$$\max_{q \in \Delta_{|G|}} \sum_{g \in G} q_g \mathcal{L}_g. \quad (8)$$

148 Now consider a situation where one of the groups g' consistently has the highest training losses
 149 among all groups during training, presumably due to long audio samples or lengthy transcriptions, as
 150 well as the highest irreducible loss. This will result in its weight $q_{g'}$ consistently receiving the largest
 151 increases δq_g during training, as:

$$\delta q_g \propto q_g \exp(\eta_q \mathcal{L}_g). \quad (9)$$

152 As a result, $q_{g'}$ will grow disproportionately large over the course of training, eventually drawing all
 153 the weight away from the other groups. This can result in other groups being under-weighted, which
 154 will cause a substantial decrease in their downstream performance (see Section 5).

155 This observation highlights the problems caused by the fundamental mismatch between the computed
 156 loss and the ideal loss for use in group DRO. The ideal loss would measure only the excess loss



157 Figure 1: Distribution of audio sample lengths
 158 across groups (languages) in our experimental
 159 setup.

162 beyond each group’s irreducible component and be length-normalized. However, in our setting, the
 163 irreducible component of the training loss is difficult to estimate, and, as we show in Appendix G,
 164 simple per-utterance scaling does not provide a solution. Existing solutions, such as calibrating group
 165 losses or approximating disparities between groups with simpler models (Oren et al., 2019; Słowiak
 166 & Bottou, 2022), would either require a substantial increase in computational cost or a proxy for
 167 group difficulty, for which there is no reliable model for speech to our knowledge. Therefore, CTC
 168 remains inherently incompatible with group DRO.

169

170

3 CTC-DRO

171

172

To address the identified challenges, we propose a new training algorithm: CTC-DRO (Algorithm 1). This algorithm computes length-matched losses across groups to mitigate the scaling properties of CTC, and uses a generalization of the group DRO objective that introduces a new smoothed maximization objective for the group weights to prevent overemphasis on groups with consistently high training losses. Like group DRO, CTC-DRO has minimal computational costs, only keeping track of a single scalar weight for every group in the training data.

173

174

3.1 LENGTH-MATCHED GROUP LOSSES

175

176

To address incomparable CTC losses across groups due to different distributions of audio lengths, we ensure that the CTC loss for each group is computed using roughly equal total audio durations. Specifically, we create a new batch sampler that selects batches of audio samples and corresponding transcripts (x_i, y_i) , all from a single, randomly-selected group g , while ensuring that their total audio duration is as close to a fixed value (set as a hyperparameter) as possible.¹ Batches with a larger number of shorter audio samples tend to have a lower CTC loss per audio sample than batches with fewer, longer, audio samples. Therefore, we sum the utterance-level CTC losses in a batch (see line 10 in Algorithm 1) and update the group weights using this sum instead of the mean loss used in the group DRO algorithm. During training, these summed losses are tracked for each group, and a group weight update is performed only after at least one batch has been processed for every group. If a group is sampled multiple times before the update, the corresponding summed losses are averaged. This approach effectively increases the batch size for computing the group weight update.

177

178

Also, we multiply the losses by the total number of groups (line 21 in Algorithm 1) before performing gradient descent on the model parameters. This ensures that the training losses with CTC-DRO are comparable to a model trained without CTC-DRO, removing the need to tune shared hyperparameters, such as the learning rate, separately for both training algorithms.

179

180

¹Group utterances are iteratively added to a batch until the total duration meets or slightly exceeds the set target duration.

Algorithm 1 Optimization algorithm for CTC-DRO. θ represents the model parameters.

1: **Input:** Step sizes η_q, η_θ ; smoothing parameter α ; loss function l ; duration of each batch d ; groups $G = \{g\}$; training data $(x, y, g) \sim D$; number of training steps T
 2: Initialize $\theta^{(0)}, \{q_g\}$
 3: Initialize $\text{gr_losses}[g] = \emptyset \forall g$
 4: **for** $t = 1$ to T **do**
 5: Sample $g \sim G$
 6: Sample $\mathcal{B} = \{(x_i, y_i, g)\}_{i=1}^{B_t} \sim D$ // selected such that $\sum_{i=1}^{B_t} \text{duration}(x_i) \approx d$
 7: **for** $i = 1$ to B_t **do**
 8: $\ell_i = l(\theta^{(t-1)}; (x_i, y_i))$
 9: **end for**
 10: $\text{gr_losses}[g] \leftarrow \text{gr_losses}[g] \cup \left\{ \sum_{i=1}^{B_t} \ell_i \right\}$
 11: **if** $\text{gr_losses}[g] \neq \emptyset \forall g$ **then**
 12: **for each** group g **do**
 13: $\bar{\ell}_g = \frac{\sum_{\mathcal{L} \in \text{gr_losses}[g]} \mathcal{L}}{|\text{gr_losses}[g]|}$
 14: $q'_g \leftarrow q_g \times \exp\left(\frac{\eta_q \bar{\ell}_g}{q_g + \alpha}\right)$
 15: $\text{gr_losses}[g] \leftarrow \emptyset$
 16: **end for**
 17: **for each** group g **do**
 18: $q_g \leftarrow \frac{q'_g}{\sum_{g'} q'_{g'}} \quad // \text{gradient ascent on } q$
 19: **end for**
 20: **end if**
 21: $\tilde{\mathcal{L}} = q_g |G| \sum_{i=1}^{B_t} \ell_i \quad // \text{all data from same group}$
 22: $\theta^{(t)} \leftarrow \theta^{(t-1)} - \eta_\theta \nabla_\theta \tilde{\mathcal{L}} \quad // \text{gradient descent on } \theta$
 23: **end for**

216 3.2 SMOOTHED MAXIMIZATION OBJECTIVE
217

218 We propose a new method for updating the group weights, which addresses group DRO’s tendency
219 to assign a disproportionately large weight to groups with consistently high training losses (see
220 Section 2.3). This approach also helps mitigate the scaling properties of CTC related to transcription
221 length, which cannot be adequately resolved by normalizing for transcript length (see Appendix G).

222 Our proposed update rule introduces a smoothing hyperparameter α (see Algorithm 1):
223

$$224 q_g \leftarrow \frac{q_g \cdot \exp(\eta_q \frac{\mathcal{L}_g}{q_g + \alpha})}{\sum_{g \in G} (q_g \cdot \exp(\eta_q \frac{\mathcal{L}_g}{q_g + \alpha}))}. \quad (10)$$

225 As $\alpha \rightarrow 0$, the update becomes increasingly more sensitive to the current group weight relative to the
226 group loss. This causes groups with higher weights to receive smaller updates, resulting in a more
227 uniform distribution of the group weights. In contrast, as α increases, updates depend more on the
228 group loss compared to the group weight, increasing the group weights more strongly for groups with
229 higher losses. In fact, when $\alpha \rightarrow \infty$, the update rule reduces to:
230

$$231 q_g \leftarrow \frac{q_g \cdot \exp(\eta_q \frac{\mathcal{L}_g}{\alpha})}{\sum_{g \in G} (q_g \cdot \exp(\eta_q \frac{\mathcal{L}_g}{\alpha}))}, \quad (11)$$

232 recovering the form of the group DRO update.
233

234 This update rule has several desirable properties. First, the updates to q_g are smoother, because they are
235 inversely proportional to the current q_g , while still being proportional to the loss \mathcal{L}_g . This discourages
236 any single group from having a disproportionately large weight q_g relative to its group loss, leading
237 to a more balanced distribution of the group weights. Second, the update rule adjusts for differences
238 in group weights when the CTC losses are similar. Specifically, if two groups with different q_g
239 have similar CTC losses, the group with the lower q_g receives a larger update. This helps prevent
240 under-training of lower-weighted groups by reducing the gap between the group weights over time.
241

242 Along with these desirable properties, we demonstrate that our new objective does not change
243 the fundamental behavior of the group DRO objective, assigning higher weights to groups with
244 higher losses. Following the Hedge algorithm (Slivkins, 2019), Equation 10 optimizes the following
245 generalization of the group DRO maximization objective (Equation 8):
246

$$247 \max_{q \in \Delta_{|G|}} \sum_{g \in G} \log(q_g + \alpha) \mathcal{L}_g. \quad (12)$$

248 Expanding the conditions for the probability simplex $\Delta_{|G|}$ ($\sum_g q_g = 1, q_g \geq 0 \forall g$) and taking the
249 Lagrangian of Equation 12, we obtain:
250

$$251 \mathcal{J} = \sum_{g \in G} \log(q_g + \alpha) \mathcal{L}_g + \lambda \left(1 - \sum_{g \in G} q_g\right) - \sum_{g \in G} \lambda_g q_g, \quad (13)$$

252 where λ and λ_g are Lagrange multipliers and $\lambda_g \geq 0$ for all g . To find the optimal q_g , we calculate
253 the partial derivative of \mathcal{J} with respect to q_g and set it to 0:
254

$$255 \frac{\partial \mathcal{J}}{\partial q_g} = \frac{\mathcal{L}_g}{q_g + \alpha} - \lambda - \lambda_g = 0 \implies q_g = \frac{\mathcal{L}_g}{\lambda + \lambda_g} - \alpha. \quad (14)$$

256 Assuming $q_g > 0$ for all g , complementary slackness ($\lambda_g q_g = 0$ with $\lambda_g \geq 0$ for all g) implies
257 $\lambda_g = 0$ for all g and:
258

$$259 q_g = \frac{\mathcal{L}_g}{\lambda} - \alpha. \quad (15)$$

260 Since $\sum_g q_g = 1$:
261

$$262 1 = \sum_g \left(\frac{\mathcal{L}_g}{\lambda} - \alpha \right) \implies \lambda = \frac{\sum_g \mathcal{L}_g}{1 + |G|\alpha} \quad (16)$$

263 Substituting in Equation 15:
264

$$265 q_g = \frac{\mathcal{L}_g (1 + |G|\alpha)}{\sum_g \mathcal{L}_g} - \alpha \implies q_g + \alpha \propto \frac{\mathcal{L}_g}{\sum_{g'} \mathcal{L}_{g'}} \quad (17)$$

266 Thus, the optimal weight for a group (q_g) increases with its loss (\mathcal{L}_g), since $q_g + \alpha$ is proportional to
267 \mathcal{L}_g and both α and $\sum_{g'} \mathcal{L}_{g'}$ are constant with respect to g .
268

270

4 EXPERIMENTS

271
 272 We fine-tune the existing, self-supervised multilingual XLS-R and MMS models on the task of
 273 multilingual ASR (formulated as a joint task of ASR and LID) using data from the ML-SUPERB
 274 2.0 benchmark (more on the dataset in Section 4.1). These models are licensed under Apache 2.0 and
 275 CC-BY-NC-4.0, respectively. Following the setup of ML-SUPERB 2.0, we add two Transformer
 276 layers and a softmax layer on top of the pre-trained models to predict a language token followed
 277 by character sequences using CTC. We do not use a separate LID head or loss, and update all model
 278 parameters. The models we choose have shown the best performance on ML-SUPERB 2.0 (Shi
 279 et al., 2024), outperforming other models like Whisper (Radford et al., 2023). The two pre-trained
 280 models share the same architecture and training objective (Baevski et al., 2020), but their training
 281 data differs: XLS-R is pre-trained on roughly 436K hours of speech in 128 languages, while MMS
 282 is pre-trained on 491K hours of speech in 1406 languages.

283 We train the models using three approaches. First, our baseline models use the joint ASR and LID
 284 training setup adopted in ML-SUPERB 2.0 (as described above), with the addition of our new
 285 batch sampler that computes length-matched group losses. Second, we fine-tune models using our
 286 proposed CTC-DRO algorithm. Third, we train models using the group DRO algorithm (replicating
 287 its original batch sampler) for comparison. When training both CTC-DRO and group DRO models,
 288 the groups correspond to the languages in our training datasets (see Section 4.1).

289 We mostly follow the hyperparameters used by Babu et al. (2022), Pratap et al. (2024), and in
 290 ML-SUPERB 2.0, but train for 40 epochs, retaining the model checkpoint with the lowest loss on
 291 the development data, accumulate gradients across 16 batches, set the batch duration hyperparameter
 292 (Algorithm 1) so that batches fit within our NVIDIA A6000 GPU memory, leading to batches
 293 of roughly 50 seconds of audio (more details in Appendix F), and tune the learning rate of the
 294 baseline models on our development data. We also use this learning rate to train models with
 295 CTC-DRO and group DRO. Lastly, for the CTC-DRO and group DRO models, we tune the DRO-
 296 specific hyperparameters on the development set as well, specifically $\eta_q \in \{10^{-3}, 10^{-4}\}$ and
 297 $\alpha \in \{0.1, 0.5, 1\}$.

298

4.1 DATASET

300 We use the ML-SUPERB 2.0 dataset for our experiments. This dataset belongs to an established
 301 benchmark where a number of multilingual ASR models have already been compared. It has broad
 302 coverage of 141 languages sourced from 15 corpora, and contains substantial variation in domains
 303 and recording environments as well as more natural speech compared to smaller, translation focused
 304 corpora, such as FLEURS (Conneau et al., 2023). For each language-corpus pair, there is between
 305 one and nine hours of training data available, as well as 10 minutes each for development and test
 306 data. While we focus on studying relatively small training data sizes, prior work has shown that ASR
 307 performance differences between languages persist even when the amount of training data increases
 308 substantially (e.g., see Radford et al., 2023).

309 For our main experiments, we use a balanced data setup by randomly selecting five diverse sets of
 310 groups from ML-SUPERB 2.0, each consisting of six language-corpus pairs, matching the number
 311 of groups used in Sagawa et al. (2020). We thus have one hour of training data, and 10 minutes
 312 of development and test data available for each language-corpus pair in each set. The selection of
 313 language-corpus pairs is based on the character error rates (CERs) of the best-performing model
 314 configuration from ML-SUPERB 2.0. Specifically, for each set, we randomly select two language-
 315 corpus pairs from the bottom 10 percentile of CERs, two language-corpus pairs from the top 10
 316 percentile of CERs, and two language-corpus pairs with CERs between the 10th and 90th percentiles.

317 For the first two language sets, we also investigate the effect of using additional training data in an
 318 unbalanced setup, as most languages in these sets have more than one hour of training data available.
 319 We show more dataset details in Appendix D.

320

4.2 EVALUATION

321 We compare the performance of CTC-DRO models to the baseline and group DRO models. They
 322 are evaluated using the standard CER metric on the test sets from the five language sets (metric

details in Appendix E). We also report the LID accuracy for completeness. We report the CER of the worst-performing language (our primary metric), as well as the average CER across languages. For the CTC-DRO and group DRO models, we report the performance of the model checkpoint with the largest CER improvement on the worst-performing language relative to the baseline on the development set.

5 RESULTS

We present the results of our experiments using balanced and additional training data in Table 1 and Table 2, respectively (detailed results, including hyperparameter search results and a word error rate (WER) analysis, in Appendix F; wall-clock training times in Appendix I). In line with previous work (e.g., Pratap et al., 2024 and Shi et al., 2024), we find substantial performance differences between languages for our baseline models trained without group DRO or CTC-DRO, as shown by the large difference between the CER of the worst-performing language and the average CER across languages. This finding applies to each of the evaluated sets, regardless of whether the training data is balanced or unbalanced across languages.

Table 1: CER of the worst-performing language (Max CER, ISO code for the worst-performing language provided as ISO), as well as the average CER (Avg CER) and LID accuracy (LID) across languages (in %) for the baseline models (Base), group DRO models (GDRO), and CTC-DRO models (Ours) on the test sets from the five language sets (indexed by the “#” column). Best results are highlighted.

SET	MODEL	TYPE	η_q	α	MAX CER (ISO) (↓)	AVG CER (↓)	LID (↑)	SET	MODEL	TYPE	η_q	α	MAX CER (ISO) (↓)	Avg CER (↓)	LID (↑)
#								#							
1	MMS	BASE			60.8 (NAN)	23.4	97.4	2	MMS	BASE			49.4 (YUE)	15.8	98.4
	MMS	GDRO	10^{-4}		86.6 (NAN)	30.5	78.7		MMS	GDRO	10^{-4}		55.5 (YUE)	20.7	98.2
	MMS	OURS	10^{-4}	1.0	56.8 (NAN)	22.9	95.8		MMS	OURS	10^{-3}	0.5	44.4 (YUE)	15.0	96.2
3	XLS-R	BASE			64.9 (CMN)	25.2	92.6	4	XLS-R	BASE			68.8 (YUE)	19.0	94.2
	XLS-R	GDRO	10^{-4}		78.4 (NAN)	30.0	87.8		XLS-R	GDRO	10^{-4}		58.8 (YUE)	21.6	87.0
	XLS-R	OURS	10^{-4}	0.1	57.6 (NAN)	22.5	89.5		XLS-R	OURS	10^{-4}	0.5	45.0 (YUE)	15.8	89.3
5	MMS	BASE			34.2 (KOR)	16.1	98.5	4	MMS	BASE			24.0 (SND)	14.4	87.9
	MMS	GDRO	10^{-4}		34.0 (KOR)	22.0	98.7		MMS	GDRO	10^{-4}		21.8 (URD)	14.9	91.9
	MMS	OURS	10^{-4}	0.1	31.3 (KHM)	15.3	98.7		MMS	OURS	10^{-3}	0.5	18.4 (URD)	12.9	87.3
3	XLS-R	BASE			33.2 (KHM)	17.0	99.2	4	XLS-R	BASE			29.7 (URD)	14.6	88.4
	XLS-R	GDRO	10^{-4}		38.0 (KHM)	25.1	97.2		XLS-R	GDRO	10^{-3}		25.6 (SLV)	18.6	83.5
	XLS-R	OURS	10^{-4}	0.1	32.2 (KHM)	17.7	97.9		XLS-R	OURS	10^{-3}	0.1	24.2 (URD)	13.7	88.9
5	MMS	BASE			90.0 (JPN)	26.0	96.3								
	MMS	GDRO	10^{-4}		62.2 (JPN)	29.2	67.0								
	MMS	OURS	10^{-3}	1.0	57.5 (JPN)	24.3	90.5								
3	XLS-R	BASE			114.8 (JPN)	29.9	89.0								
	XLS-R	GDRO	10^{-4}		92.9 (JPN)	36.8	57.7								
	XLS-R	OURS	10^{-4}	0.1	71.5 (JPN)	23.8	91.0								

For each language set, CTC-DRO models achieve a lower CER for the worst-performing language compared to the baseline and group DRO models. The largest improvement is obtained on set 2 using XLS-R using all available data, showing a relative CER reduction of 47.1% compared to the baseline model. Note that CTC-DRO also results in the best average CER in 13 out of 14 settings (seven sets with two models each) compared to both the baseline and group DRO models, leading to relative CER reductions up to 32.9%. The exception is XLS-R in balanced set 3, where the average CER is slightly worse with CTC-DRO (17.7%) than the baseline (17.0%). In terms of LID accuracy, CTC-DRO models improve over the baseline models in seven out of 14 settings. In most of the remaining settings, the LID accuracy of CTC-DRO models exceeds 95%, leaving little room for further improvement. To assess sensitivity to random initialization, we report the performance of baseline and CTC-DRO models on sets 1 and 3, which have the smallest single-seed worst-language improvements, with four different random seeds in Appendix F. The results show that the largest gains in worst-language CER are stable across seeds.

In contrast, group DRO worsens the CER of the worst-performing language in seven out of 14 settings compared to the baseline model, with the highest relative CER increase of 57.5% on set 2 using MMS trained on all available training data. Also, group DRO increases the average CER compared to

378 the baseline in all settings. This finding shows the ineffectiveness of the original group DRO formula-
 379 tion in this challenging setting, and the substantial added robustness of the modifications in CTC-DRO.
 380

381 In four settings, the worst-performing language changes between the baseline and CTC-DRO models.
 382 For example, in set 3 with MMS trained on balanced data, it shifts from Korean to Khmer. As shown
 383 in Table 9, the CTC-DRO model reduces the CER for Korean from 34.2 to 27.6, while the CER for
 384 Khmer remains unchanged at 31.3. Overall, CTC-DRO consistently improves the performance on the
 385 worst-performing language without significantly worsening best-language performance, while still
 386 achieving a lower CER on average (see Appendix F for detailed results and best-language analysis).
 387

388 Table 2: CER of the worst-performing language (Max CER, ISO code for the worst-performing
 389 language provided as ISO), as well as the average CER (Avg CER) and LID accuracy (LID) across
 390 languages (in %) for the baseline models (Base), group DRO models (GDRO), and CTC-DRO
 391 models (Ours) on the test sets from the first two language sets using additional training data if
 392 available. Best results are highlighted.

SET	MODEL	TYPE	η_q	α	MAX CER (ISO) (↓)	Avg CER (↓)	LID (↑)	SET	MODEL	TYPE	η_q	α	MAX CER (ISO) (↓)	Avg CER (↓)	LID (↑)
#								#							
1	MMS	BASE			67.5 (NAN)	25.6	98.1	2	MMS	BASE			66.9 (YUE)	19.5	99.0
		GDRO	10^{-4}		96.3 (NAN)	37.8	83.9			GDRO	10^{-3}		105.4 (YUE)	38.8	81.0
		OURS	10^{-4}	0.5	62.8 (NAN)	22.8	98.5			OURS	10^{-4}	1.0	48.1 (YUE)	16.4	99.1
	XLS-R	BASE			92.1 (CMN)	35.6	96.4		XLS-R	BASE			97.2 (YUE)	28.0	98.2
		GDRO	10^{-4}		90.8 (NAN)	38.1	72.3			GDRO	10^{-4}		102.9 (YUE)	44.0	80.8
		OURS	10^{-4}	1.0	67.5 (NAN)	26.9	97.1			OURS	10^{-4}	1.0	51.4 (YUE)	18.8	98.6

6 ANALYSIS

400
 401
 402
 403
 404
 405 Next, we present an ablation study to measure the contributions of the length-matched group losses
 406 and smoothed maximization objective introduced in CTC-DRO (Section 6.1). To this end, we train
 407 CTC-DRO models with each of these components removed one at a time on balanced training data
 408 from set 5, which showed the largest reduction in CER for the worst-performing language (Table 1).
 409 We also describe and compare how the group weights of CTC-DRO and group DRO models change
 410 throughout training (Section 6.2). For brevity, we focus on the XLS-R models trained on the same set,
 411 showing that CTC-DRO results in more stable training. Finally, we confirm the benefit of CTC-DRO
 412 when scaling to a larger number of groups (Section 6.3).
 413

6.1 ABLATION STUDY

414 We find that removing either component from CTC-DRO leads to a substantial
 415 decrease in performance (see Table 3; we present detailed results in Appendix F). Specifically, the CER of the
 416 worst-performing language increases by up to 171.6% and the average CER by up to 302.9% compared to a model trained us-
 417 ing the complete CTC-DRO algorithm. We also find that the smoothed maximization
 418 objective has the stronger effect on reducing both the CER of the worst-performing
 419 language and the average CER. Note that removing the smoothed maximization ob-
 420 jective from CTC-DRO is not similar to training baseline models, as this configura-
 421 tion still uses the group DRO weight update mechanism (see Appendix C).
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431

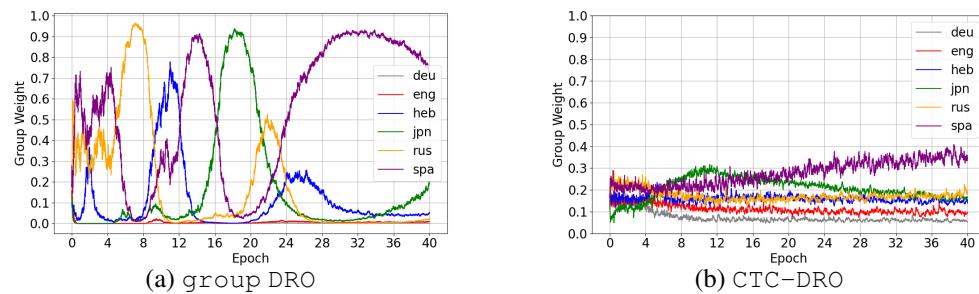
420 Table 3: CER of the worst-performing language (Max CER), as well as the average CER (Avg CER) and LID
 421 accuracy (LID) across languages (in %) on set 5 for a subtractive ablation of CTC-DRO (Ours), removing the
 422 length-matched group losses (Dur) and smoothed maximization objective (Smooth). Baseline (Base) results
 423 are shown for reference. Best results are highlighted.

		MODEL	TYPE	MAX CER (ISO) (↓)	Avg CER (↓)	LID (↑)
MMS		BASE		90.0 (JPN)	26.0	96.3
		OURS		57.5 (JPN)	24.3	90.5
		- DUR		84.6 (JPN)	29.5	66.1
		- SMOOTH		102.1 (JPN)	97.9	13.2
XLS-R		BASE		114.8 (JPN)	29.9	89.0
		OURS		71.5 (JPN)	23.8	91.0
		- DUR		115.2 (NAN)	50.6	54.4
		- SMOOTH		194.2 (NAN)	61.4	43.2

432 6.2 COMPARISON OF GROUP WEIGHTS
433

434 To analyze the behavior of group DRO and CTC–DRO models during training, we plot the group
435 weights for all languages in set 5 throughout training in Figure 2 (see Appendix F for additional
436 plots). The group weights of the group DRO model fluctuate substantially during training, reaching
437 values close to 0 or 1 at various stages of training. For extended periods of training with group
438 DRO, the group weights are heavily concentrated on a single language, causing the weights for all
439 other languages to reach values close to 0.

440 In contrast, the group weights of the CTC–DRO model are distributed more evenly across all languages
441 throughout training. The group weights for each language also fluctuate substantially less during
442 training compared to group DRO. The only languages with group weights dropping below 0.1 at any
443 point are German and English, both of which have low CERs on the development set. Importantly, the
444 weight of Japanese (worst-performing) consistently remains among the top two highest group weights.



455 Figure 2: Group weights for each language throughout training of an XLS–R model trained with
456 group DRO or CTC–DRO on balanced data from set 5.

457 6.3 SCALABILITY TO MORE GROUPS
458

460 To analyze the impact of scaling the number of languages, we conduct additional experiments on
461 18 languages (our languages from set 1 plus 12 randomly sampled extra languages). We find that
462 CTC–DRO maintains its effectiveness at improving worst-language performance, reducing the worst-
463 language CER by 8.9% for MMS and 9.2% for XLS–R in the balanced data setting compared to
464 baseline models. In the unbalanced data setting, XLS–R shows the strongest results with a relative
465 CER reduction of 23.7% on the worst-performing language. The full results are shown in Appendix H.
466

467 7 RELATED WORK

468 **Robustness to distribution shifts** Prior work categorizes distribution shifts as domain general-
469 ization (Quiñonero-Candela et al., 2008; Hendrycks et al., 2021; Santurkar et al., 2021), where
470 train and test data domains have no overlap, or subpopulation shifts (Dixon et al., 2018; Oren et al.,
471 2019; Sagawa et al., 2020), where train and test data come from the same domains, but do not
472 necessarily appear in the same proportions (Koh et al., 2021). Our experimental setup is an example
473 of a subpopulation shift, as all test languages are included in the training data for the models.
474

475 Methods for robust generalization are commonly categorized into three groups. Domain invariance
476 methods aim to learn feature representations that are consistent across domains (groups) by encourag-
477 ing similar feature distributions across domains (Tzeng et al., 2014; Long et al., 2015; Ganin et al.,
478 2016; Sun & Saenko, 2016). Other approaches use invariant prediction methods (Meinshausen &
479 Bühlmann, 2015; Peters et al., 2016; Arjovsky et al., 2019; Rothenhäusler et al., 2021) from the causal
480 inference literature. In contrast, DRO explicitly minimizes the worst-case loss over an uncertainty
481 set, which is typically defined as a divergence ball around the training distribution (Namkoong &
482 Duchi, 2016; Bertsimas et al., 2018; Esfahani & Kuhn, 2018; Duchi & Namkoong, 2019; Oren et al.,
483 2019; Sagawa et al., 2020). Our work builds upon group DRO (Sagawa et al., 2020), since it has
484 outperformed other approaches in settings with subpopulation shifts (Koh et al., 2021).

485 **Robust ASR** Prior work on robustness in ASR primarily focuses on quantifying or addressing
486 biases related to accent, age, dialect, gender, and race (Tatman, 2017; Koenecke et al., 2020; Markl,

2022; Martin & Wright, 2022; Ngueajio & Washington, 2022; Feng et al., 2024; Harris et al., 2024). Methods to mitigate these biases include data balancing (Dheram et al., 2022) and fairness-promoting training methods (Sarı et al., 2021; Zhang et al., 2022; Veliche & Fung, 2023). These methods are not appropriate for reducing ASR language disparities, as they require large amounts of training data unavailable for most languages or have methodological constraints that prohibit direct application to a multilingual setting. Alternative approaches focused on multilingual settings use architectural and representation level improvements to include language information (Chen et al., 2023; Lu et al., 2024). These methods improve multilingual ASR performance by conditioning the model on language identity through auxiliary CTC objectives or conditional adapters. CTC-DRO differs in its objective, directly targeting worst-group performance through robust optimization rather than architectural modifications, but could in principle be combined with such approaches. Gao et al. (2022) explored DRO for training language-independent speech recognition models, and reported negative results.

Comparison with other approaches We consider several alternative approaches but find them unsuitable for our multilingual ASR setting. For approaches that calibrate group losses or approximate disparities with simpler models (Oren et al., 2019; Słowik & Bottou, 2022), Section 2.3 explains that they would require substantially more computation or a proxy for group difficulty, for which there is no reliable model for speech. For other DRO variants that update on group-averaged losses (e.g., Lokhande et al., 2022), CTC losses remain not directly comparable across groups (see Section 2.3), and loss normalization does not solve this problem (as shown in Appendix G). Alternatively, group-aware reinforcement learning methods (e.g., Tjandra et al., 2018) could be used, but decoding during training and optimizing a sequence-level reward such as CER would be substantially more expensive than the scalar group-weight update used by CTC-DRO. To the best of our knowledge, our work is the first to propose a robust optimization method that successfully reduces cross-lingual performance disparities in ASR.

8 CONCLUSION

CTC-DRO, our robust optimization approach motivated by multilingual ASR, addresses group DRO’s inability to handle group losses that do not accurately reflect performance differences between groups. When applied to data from an established multilingual ASR and LID benchmark, CTC-DRO outperformed baseline CTC-based and group DRO models, reducing the worst-language CER across all sets and improving average CER and LID accuracy in almost all cases. Our analysis showed that this result can be attributed to the smoothed maximization objective and length-matched batching that balance and stabilize the group weights.

While performance disparities are reduced in our approach, they are not eliminated. The improvements may be sufficient to make ASR useful for more languages than before, but additional work is needed before ASR is truly practical for many more languages. A promising direction for future work is to automatically learn data groupings, which removes the need for pre-defined groups that may be unknown or incomplete, as well as applying CTC-DRO to pre-training. Extending CTC-DRO to code-switching scenarios is another promising direction (e.g., see Liu et al., 2024).

Also, we believe the principles underlying CTC-DRO have broader applicability. The smoothed maximization objective could in principle be applied to any setting with group-level losses, suggesting potential extensions to other architectures, loss functions, and groupings. For example, tasks that use variable-length sequences as input data and therefore face similar challenges, such as text classification and video transcription, could potentially benefit from our algorithm, enabling more inclusive processing of other data modalities as well.

REFERENCES

Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty, Reuben Morais, Lindsay Saunders, Francis Tyers, and Gregor Weber. Common Voice: A Massively-Multilingual Speech Corpus. In *Proceedings of the Language Resources and Evaluation Conference*, 2020.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant Risk Minimization. *arXiv preprint arXiv:1907.02893*, 2019.

540 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhota, Qiantong Xu, Naman Goyal, Kritika
 541 Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, and
 542 Michael Auli. XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale. In
 543 *Interspeech 2022*, pp. 2278–2282, 2022.

544 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A Framework
 545 for Self-Supervised Learning of Speech Representations. In H. Larochelle, M. Ranzato, R. Hadsell,
 546 M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33,
 547 pp. 12449–12460. Curran Associates, Inc., 2020.

548 Etienne Barnard, Marelle H. Davel, Charl van Heerden, Febe de Wet, and Jaco Badenhorst. The
 549 NCHLT speech corpus of the South African languages. In *Proceedings of the Workshop on Spoken
 550 Language Technologies for Under-Resourced Languages*, 2014.

552 Timo Baumann, Arne Köhn, and Felix Hennig. The Spoken Wikipedia Corpus collection: Harvesting,
 553 alignment and an application to hyperlistening. *Language Resources and Evaluation*, 53(2):
 554 303–329, 2019.

555 Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust optimization. *Mathematical
 556 Programming*, 167:235–292, 2018.

558 Laurent Besacier, Etienne Barnard, Alexey Karpov, and Tanja Schultz. Automatic speech recognition
 559 for under-resourced languages: A survey. *Speech communication*, 56:85–100, 2014.

560 David A. Braude, Matthew P. Aylett, Caoimhín Laoide-Kemp, Simone Ashby, Kristen M. Scott,
 561 Brian O’Raghallaigh, Anna Braudo, Alex Brouwer, and Adriana Stan. All Together Now: The
 562 Living Audio Dataset. In *Interspeech 2019*, pp. 1521–1525, 2019.

564 William Chen, Brian Yan, Jiatong Shi, Yifan Peng, Soumi Maiti, and Shinji Watanabe. Improving
 565 Massively Multilingual ASR with Auxiliary CTC Objectives. In *ICASSP 2023 - 2023 IEEE
 566 International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2023.

567 William Chen, Wangyou Zhang, Yifan Peng, Xinjian Li, Jinchuan Tian, Jiatong Shi, Xuankai Chang,
 568 Soumi Maiti, Karen Livescu, and Shinji Watanabe. Towards robust speech representation learning
 569 for thousands of languages. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 570 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 571 10205–10224, Miami, Florida, USA, November 2024. Association for Computational Linguistics.

572 Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason
 573 Riesa, Clara Rivera, and Ankur Bapna. FLEURS: FEW-Shot Learning Evaluation of Universal
 574 Representations of Speech. In *2022 IEEE Spoken Language Technology Workshop (SLT)*, pp.
 575 798–805, 2023.

577 Pranav Dheram, Murugesan Ramakrishnan, Anirudh Raju, I-Fan Chen, Brian King, Katherine Powell,
 578 Melissa Saboovala, Karan Shetty, and Andreas Stolcke. Toward Fairness in Speech Recognition:
 579 Discovery and mitigation of performance disparities. In *Proceedings of Interspeech*, pp. 1268–1272,
 580 2022.

581 Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Measuring and Miti-
 582 gating Unintended Bias in Text Classification. In *Proceedings of the 2018 AAAI/ACM Conference
 583 on AI, Ethics, and Society*, pp. 67–73, 2018.

584 John Duchi and Hongseok Namkoong. Variance-based Regularization with Convex Objectives.
 585 *Journal of Machine Learning Research*, 20(68):1–55, 2019.

587 John Duchi, Tatsunori Hashimoto, and Hongseok Namkoong. Distributionally robust losses for latent
 588 covariate mixtures. *Operations Research*, 71(2):649–664, 2023.

589 Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization
 590 using the Wasserstein metric: Performance guarantees and tractable reformulations. *Mathematical
 591 Programming*, 171(1):115–166, 2018.

593 Siyuan Feng, Bence Mark Halpern, Olya Kudina, and Odette Scharenborg. Towards inclusive
 594 automatic speech recognition. *Computer Speech & Language*, 84:101567, 2024.

594 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 595 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
 596 *Journal of machine learning research*, 17(59):1–35, 2016.

597

598 Melanie Ganz, Sune Holm, and Aasa Feragen. Assessing Bias in Medical AI. In *Workshop on*
 599 *Interpretable ML in Healthcare at International Conference on Machine Learning (ICML)*, 2021.

600 Heting Gao, Junrui Ni, Yang Zhang, Kaizhi Qian, Shiyu Chang, and Mark Hasegawa-Johnson.
 601 Domain Generalization for Language-Independent Automatic Speech Recognition. *Frontiers in*
 602 *Artificial Intelligence*, 5:806274, 2022.

603

604 Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist Temporal
 605 Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. In
 606 *Proceedings of the International Conference on Machine learning*, 2006.

607 Camille Harris, Chijioke Mgbahurike, Neha Kumar, and Diyi Yang. Modeling gender and dialect
 608 bias in automatic speech recognition. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
 609 (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 15166–15184,
 610 Miami, Florida, USA, November 2024. Association for Computational Linguistics.

611

612 Tatsumi Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness Without
 613 Demographics in Repeated Loss Minimization. In *Proceedings of the International Conference on*
 614 *Machine Learning*, 2018.

615 Fei He, Shan-Hui Cathy Chu, Oddur Kjartansson, Clara Rivera, Anna Katanova, Alexander Gutkin,
 616 Isin Demirsahin, Cibu Johny, Martin Jansche, Supheakmungkol Sarin, and Knot Pipatsrisawat.
 617 Open-source multi-speaker speech corpora for building Gujarati, Kannada, Malayalam, Marathi,
 618 Tamil and Telugu speech synthesis systems. In *Proceedings of the Language Resources and*
 619 *Evaluation Conference*, 2020.

620

621 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 622 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
 623 The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization. In
 624 *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 8340–
 8349, October 2021.

625

626 Oddur Kjartansson, Alexander Gutkin, Alena Butryna, Isin Demirsahin, and Clara Rivera. Open-
 627 source high quality speech datasets for Basque, Catalan and Galician. In *Proceedings of the Joint*
 628 *Workshop on Spoken Language Technologies for Under-resourced languages and Collaboration*
 629 *and Computing for Under-Resourced Languages*, 2020.

630

631 Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha, Connor
 632 Toups, John R. Rickford, Dan Jurafsky, and Sharad Goel. Racial disparities in automated speech
 633 recognition. *Proceedings of the National Academy of Sciences*, 117(14):7684–7689, 2020.

634

635 Allison Koenecke, Anna Seo Gyeong Choi, Katelyn X. Mei, Hilke Schellmann, and Mona Sloane.
 636 Careless whisper: Speech-to-text hallucination harms. In *Proceedings of the 2024 ACM Conference*
 637 *on Fairness, Accountability, and Transparency*, FAccT ’24, pp. 1672–1681, New York, NY, USA,
 2024. Association for Computing Machinery. ISBN 9798400704505.

638

639 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
 640 ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
 641 David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure Leskovec,
 642 Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A Bench-
 643 mark of in-the-Wild Distribution Shifts. In Marina Meila and Tong Zhang (eds.), *Proceedings of*
 644 *the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine*
Learning Research, pp. 5637–5664. PMLR, 18–24 Jul 2021.

645

646 Hexin Liu, Leibny Paola Garcia, Xiangyu Zhang, Andy W. H. Khong, and Sanjeev Khudanpur.
 647 Enhancing Code-Switching Speech Recognition With Interactive Language Biases. In *ICASSP*
 648 *2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*,
 649 pp. 10886–10890, 2024.

648 Vishnu Suresh Lokhande, Kihyuk Sohn, Jinsung Yoon, Madeleine Udell, Chen-Yu Lee, and Tomas
 649 Pfister. Towards Group Robustness in the Presence of Partial Group Labels. In *ICML 2022: Workshop on Spurious Correlations, Invariance and Stability*, 2022.

650

651

652 Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning Transferable Features
 653 with Deep Adaptation Networks. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp. 97–105, Lille, France, 07–09 Jul 2015. PMLR.

654

655 Yen-Ju Lu, Jing Liu, Thomas Thebaud, Laureano Moro-Velazquez, Ariya Rastrow, Najim Dehak,
 656 and Jesus Villalba. CA-SSLR: Condition-Aware Self-Supervised Learning Representation for
 657 Generalized Speech Processing. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
 658 J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37,
 659 pp. 50126–50151. Curran Associates, Inc., 2024.

660

661 Ken MacLean. Voxforge, 2018.

662

663 Andrey Malinin and Mark Gales. Predictive Uncertainty Estimation via Prior Networks. In S. Bengio,
 664 H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018.

665

666 Nina Markl. Language variation and algorithmic bias: understanding algorithmic bias in British
 667 English automatic speech recognition. In *Proceedings of the ACM Conference on Fairness, Accountability, and Transparency*, pp. 521–534, 2022.

668

669

670 Joshua L Martin and Kelly Elizabeth Wright. Bias in Automatic Speech Recognition: The Case of
 671 African American Language. *Applied Linguistics*, 44(4):613–630, 2022.

672

673 Nicolai Meinshausen and Peter Bühlmann. Maximin effects in inhomogeneous large-scale data. *The Annals of Statistics*, 43(4):1801–1830, 2015.

674

675 Hongseok Namkoong and John C Duchi. Stochastic Gradient Methods for Distributionally Robust
 676 Optimization with f-divergences. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
 677 (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016.

678

679

680 Mikel K. Ngueajio and Gloria Washington. Hey asr system! why aren't you more inclusive? In Jessie Y. C. Chen, Gino Fragomeni, Helmut Degen, and Stavroula Ntoa (eds.), *HCI International 2022 – Late Breaking Papers: Interacting with eXtended Reality and Artificial Intelligence*, pp. 421–440, Cham, 2022.

681

682

683

684 Yonatan Oren, Shiori Sagawa, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
 685 language modeling. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 4227–4237, Hong Kong, China, November 2019. Association for Computational Linguistics.

686

687

688

689 Yifan Peng, Yui Sudo, Muhammad Shakeel, and Shinji Watanabe. OWSM-CTC: An open encoder-
 690 only speech foundation model for speech recognition, translation, and language identification. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 10192–10209, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

691

692

693

694 Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal Inference by using Invariant
 695 Prediction: Identification and Confidence Intervals. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 78(5):947–1012, 2016.

696

697

698 Eike Petersen, Sune Holm, Melanie Ganz, and Aasa Feragen. The path toward equal performance in
 699 medical machine learning. *Patterns*, 4(7):100790, 2023.

700

701 Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert. MLS: A
 Large-Scale Multilingual Dataset for Speech Research. In *Interspeech 2020*, pp. 2757–2761, 2020.

702 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali
 703 Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui
 704 Zhang, Wei-Ning Hsu, Alexis Conneau, and Michael Auli. Scaling Speech Technology to 1,000+
 705 Languages. *Journal of Machine Learning Research*, 25(97):1–52, 2024.

706 Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence. *Dataset
 707 Shift in Machine Learning*. The MIT Press, 12 2008.

708 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 709 Robust Speech Recognition via Large-Scale Weak Supervision. In *Proceedings of the International
 710 Conference on Machine Learning*, 2023.

711 Dominik Rothenhäusler, Nicolai Meinshausen, Peter Bühlmann, and Jonas Peters. Anchor regression:
 712 Heterogeneous data meet causality. *Journal of the Royal Statistical Society Series B: Statistical
 713 Methodology*, 83(2):215–246, 2021.

714 Andrew Rouditchenko, Sameer Khurana, Samuel Thomas, Rogerio Feris, Leonid Karlinsky, Hilde
 715 Kuehne, David Harwath, Brian Kingsbury, and James Glass. Comparison of Multilingual Self-
 716 Supervised and Weakly-Supervised Speech Pre-Training for Adaptation to Unseen Languages. In
 717 *Interspeech 2023*, pp. 2268–2272, 2023.

718 Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally Ro-
 719 bust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case
 720 Generalization. In *Proceedings of the International Conference on Learning Representations*,
 721 2020.

722 Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. BREEDS: Benchmarks for Subpopula-
 723 tion Shift. In *Proceedings of the International Conference on Learning Representations*, 2021.

724 Leda Sari, Mark Hasegawa-Johnson, and Chang D. Yoo. Counterfactually Fair Automatic Speech
 725 Recognition. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 29:3515–3525,
 726 2021.

727 Jiatong Shi, Shih-Heng Wang, William Chen, Martijn Bartelds, Vanya Bannihatti Kumar, Jinchuan
 728 Tian, Xuankai Chang, Dan Jurafsky, Karen Livescu, Hung yi Lee, and Shinji Watanabe. ML-
 729 SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Lan-
 730 guages, and Datasets. In *Interspeech 2024*, pp. 1230–1234, 2024.

731 Aleksandrs Slivkins. Introduction to Multi-Armed Bandits. *Foundations and Trends in Machine
 732 Learning*, 12(1-2):1–286, 2019.

733 Agnieszka Słowiak and Leon Bottou. On Distributionally Robust Optimization and Data Rebalancing.
 734 In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), *Proceedings of The 25th
 735 International Conference on Artificial Intelligence and Statistics*, volume 151 of *Proceedings of
 736 Machine Learning Research*, pp. 1283–1297. PMLR, 28–30 Mar 2022.

737 Keshan Sodimana, Pasindu De Silva, Supheakmungkol Sarin, Oddur Kjartansson, Martin Jansche,
 738 Knot Pipatsrisawat, and Linne Ha. A Step-by-Step Process for Building TTS Voices Using Open
 739 Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese. In
 740 *Proceedings of the Workshop on Spoken Language Technologies for Under-Resourced Languages*,
 741 2018.

742 Imdat Solak. M-AILABS Speech Dataset, 2019.

743 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
 744 Gang Hua and Hervé Jégou (eds.), *Computer Vision – ECCV 2016 Workshops*, pp. 443–450, Cham,
 745 2016.

746 Rachael Tatman. Gender and dialect bias in YouTube’s automatic captions. In Dirk Hovy, Shannon
 747 Spruit, Margaret Mitchell, Emily M. Bender, Michael Strube, and Hanna Wallach (eds.), *Proceed-
 748 ings of the First ACL Workshop on Ethics in Natural Language Processing*, pp. 53–59, Valencia,
 749 Spain, April 2017. Association for Computational Linguistics.

756 Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Sequence-to-Sequence Asr Optimization Via
757 Reinforcement Learning. In *2018 IEEE International Conference on Acoustics, Speech and Signal
758 Processing (ICASSP)*, pp. 5829–5833, 2018.

759

760 Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep Domain Confusion:
761 Maximizing for Domain Invariance. *arXiv preprint arXiv:1412.3474*, 2014.

762

763 Irina-Elena Veliche and Pascale Fung. Improving fairness and robustness in end-to-end speech recog-
764 nition through unsupervised clustering. In *ICASSP 2023 - 2023 IEEE International Conference on
765 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2023.

766

767 Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary
768 Williamson, Juan Pino, and Emmanuel Dupoux. VoxPopuli: A large-scale multilingual speech
769 corpus for representation learning, semi-supervised learning and interpretation. In Chengqing
770 Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting
771 of the Association for Computational Linguistics and the 11th International Joint Conference on
772 Natural Language Processing (Volume 1: Long Papers)*, pp. 993–1003, Online, August 2021.
773 Association for Computational Linguistics.

774

775 Yuanyuan Zhang, Yixuan Zhang, Bence Halpern, Tanvina Patel, and Odette Scharenborg. Mitigating
776 bias against non-native accents. In *Interspeech 2022*, pp. 3168–3172, 2022.

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **A IMPACT STATEMENT**
811

812 Our CTC-DRO approach reduces performance differences between languages in modern multilingual
813 ASR models with minimal computational costs, ensuring it can be readily adopted. Our work
814 therefore has the potential to positively impact speakers of many languages worldwide, including
815 digitally underrepresented languages and varieties, by improving their access to information and
816 services. However, several challenges remain. The performance of multilingual ASR needs to
817 further improve before it can be deployed in real-world settings for many languages. In addition,
818 improved ASR for underrepresented languages and varieties calls for careful, community-driven
819 evaluation to ensure modern technology is aligned with local interests. In this process, it is important
820 to evaluate CTC-DRO's impact in varied real-world settings to ensure our algorithm benefits all
821 language communities.
822

823 **B REPRODUCIBILITY STATEMENT**
824

825 To ensure the reproducibility of our work, we provide detailed descriptions of our algorithm and
826 experimental setup. Specifically, the theoretical formulation of CTC-DRO is presented in Section 3.
827 A comprehensive overview of our experimental framework, including datasets, model configurations,
828 hyperparameter selection process, and evaluation setup is presented in Section 4. The experiments
829 were performed on the publicly available ML-SUPERB 2.0 benchmark, and we provide the exact
830 information needed to reconstruct the language sets used in our experiments in Appendix D. To
831 facilitate direct replication, our source code will be included as part of the supplemental material, and
832 we will make the code and all newly trained models publicly available upon acceptance of the paper.
833

834 **C GROUP DRO ALGORITHM**
835

836
837 In Section 2.1, we described group DRO. Sagawa et al. (2020) propose an online algorithm to
838 optimize the group DRO objective, which we show in Algorithm 2. They treat the optimization
839 problem as a minimax game and interleave gradient ascent updates on $q = \{q_g : g \in G\}$ with
840 gradient descent updates on θ for training data mini-batches.
841

842 **Algorithm 2** Online optimization algorithm for group DRO. θ represents the model parameters.

843 1: **Input:** Step sizes η_q, η_θ ; loss function l ; batch size B ; groups $G = \{g\}$; training data $(x, y, g) \sim D$;
844 number of training steps T
845 2: Initialize $\theta^{(0)}$ and $\{q_g\}$
846 3: **for** $t = 1$ to T **do**
847 4: Sample $\mathcal{B} = \{(x_i, y_i, g_i)\}_{i=1}^B \sim D$
848 5: **for** $g \in G$ **do**
849 6: $\mathcal{L}_g \leftarrow \emptyset$
850 7: **for** $i = 1$ to B **do**
851 8: **if** $g_i == g$ **then**
852 9: $\mathcal{L}_g \leftarrow \mathcal{L}_g \cup \{l(\theta^{(t-1)}; (x_i, y_i))\}$
853 10: **end if**
854 11: **end for**
855 12: $\bar{\mathcal{L}}_g = \frac{\sum_{\mathcal{L} \in \mathcal{L}_g} \mathcal{L}}{|\mathcal{L}_g|}$
856 13: $q'_g \leftarrow q_g \exp(\eta_q \bar{\mathcal{L}}_g)$
857 14: **end for**
858 15: **for** $g \in G$ **do**
859 16: $q_g \leftarrow \frac{q'_g}{\sum_{g'} q'_{g'}} \quad // \text{gradient ascent on } q$
860 17: **end for**
861 18: $\mathcal{L} \leftarrow \sum_{g \in G} q_g \bar{\mathcal{L}}_g$
862 19: $\theta^{(t)} \leftarrow \theta^{(t-1)} - \eta_\theta q_g^{(t)} \nabla \mathcal{L} \quad // \text{gradient descent on } \theta$
863 20: **end for**

864 **D DATASETS**
865866
867 In Table 4, we show the language-corpus pairs included in our main experiments. In Table 5, we
868 show the number of samples, along with the average duration and transcript length for each language
869 in each language set. Table 6 shows the first two language sets, listing all available corpora for
870 each language in ML-SUPERB 2.0. All corpora in ML-SUPERB 2.0 are licensed under Creative
871 Commons, MIT, GNU, or Free-BSD licenses and are available for academic research.
872873 Table 4: Overview of the language sets, which are originally obtained from CommonVoice (CV;
874 Ardila et al., 2020), FLEURS, Google18n open-source project (GOP; Sodimana et al., 2018;
875 Kjartansson et al., 2020; He et al., 2020), Living Audio dataset (LAD; Braude et al., 2019),
876 M-AILABS Speech Dataset (MSD; Solak, 2019), NCHLT Speech Corpus (NCHLT; Barnard et al.,
877 2014), and VoxForge (VF; MacLean, 2018).

SET # LANGUAGES (ISO CODE, CORPUS)	
1	CZECH (CES, CV), MANDARIN (CMN, FLEURS) MIN NAN (NAN, CV), POLISH (POL, MSD)
	ROMANIAN (RON, FLEURS), SPANISH (SPA, VF)
2	CANTONESE (YUE, FLEURS), CROATIAN (HRV, FLEURS) ENGLISH (ENG, LAD), ITALIAN (ITA, FLEURS) PERSIAN (FAS, CV), SLOVAK (SLK, FLEURS)
3	KHMER (KHM, FLEURS), KOREAN (KOR, FLEURS) NORTHERN KURDISH (KMR, CV), NYNORSK (NNO, CV) SOUTHERN NDEBELE (NBL, NCHLT), TATAR (TAT, CV)
4	SINDHI (SND, FLEURS), SLOVENIAN (SLV, CV) SOUTHERN SOTHO (SOT, GOP), SPANISH (SPA, MSD) URDU (URD, FLEURS), WESTERN MARI (MRJ, CV)
5	ENGLISH (ENG, VF), GERMAN (DEU, VF) HEBREW (HEB, FLEURS), JAPANESE (JPN, FLEURS) RUSSIAN (RUS, FLEURS), SPANISH (SPA, FLEURS)

894
895
896 Table 5: Dataset statistics for the training set of each of the language sets used in our experiments, in
897 the balanced data setting. ISO codes are used for the languages, duration is presented in seconds, and
898 transcript length is in number of characters. Averages and standard deviations are reported.
899

SET #	ISO	NUMBER OF DATA POINTS	DURATION	TRANSCRIPT LENGTH	SET #	ISO	NUMBER OF DATA POINTS	DURATION	TRANSCRIPT LENGTH
1	CES	908	4.0 ± 1.7	23.8 ± 22.1	2	ENG	647	4.7 ± 1.5	63.7 ± 25.4
	CMN	322	10.4 ± 3.5	36.8 ± 13.9		FAS	693	5.2 ± 1.7	34.4 ± 18.2
	NAN	1406	2.6 ± 0.7	3.4 ± 1.9		HRV	291	11.7 ± 3.3	116.3 ± 35.7
	POL	482	7.5 ± 3.0	104.6 ± 46.3		ITA	326	10.7 ± 3.2	140.4 ± 42.3
	RON	274	12.6 ± 3.1	136.1 ± 45.1		SLK	330	10.6 ± 3.3	116.2 ± 38.6
	SPA	445	8.1 ± 2.2	91.1 ± 26.4		YUE	243	12.2 ± 3.7	31.7 ± 10.2
3	KHM	206	13.7 ± 3.4	122.5 ± 36.5	4	MRJ	707	5.1 ± 2.0	40.8 ± 22.8
	KMR	723	5.0 ± 1.6	30.8 ± 15.0		SLV	918	3.9 ± 1.1	30.2 ± 12.3
	KOR	269	12.5 ± 3.0	45.8 ± 14.1		SND	263	12.0 ± 3.6	105.4 ± 31.2
	NBL	744	4.8 ± 1.9	31.3 ± 10.0		SOT	655	5.5 ± 2.0	51.0 ± 23.6
	NNO	709	4.5 ± 1.2	41.2 ± 17.3		SPA	550	6.6 ± 3.4	87.2 ± 50.2
	TAT	835	4.3 ± 1.8	33.2 ± 20.8		URD	299	11.3 ± 3.4	119.9 ± 37.1
5	DEU	745	4.8 ± 1.6	43.3 ± 16.1					
	ENG	712	5.0 ± 1.5	47.7 ± 17.4					
	HEB	345	10.2 ± 3.3	91.9 ± 29.8					
	JPN	290	11.5 ± 3.1	50.0 ± 15.8					
	RUS	318	10.8 ± 3.4	125.6 ± 42.2					
	SPA	311	11.1 ± 3.4	144.6 ± 50.0					

918
 919 Table 6: Overview of the additional corpora available for the first two sets, which are originally
 920 obtained from CV, Fleurs, LAD, Multilingual Librispeech (MLL; Pratap et al., 2020), MSD, NCHLT,
 921 Spoken Wikipedia corpus (SWC; Baumann et al., 2019), VF, and Voxpopuli (VP; Wang et al., 2021).

SET #	LANGUAGE	ISO CODE	CORPUS
1	CZECH	CES	CV, FLEURS, VP
	MANDARIN	CMN	CV, FLEURS
	MIN NAN	NAN	CV
	POLISH	POL	CV, FLEURS, MSD, MLL, VP
	ROMANIAN	RON	CV, FLEURS, VP
	SPANISH	SPA	CV, FLEURS, MSD, MLS, VF, VP
2	CANTONESE	YUE	CV, FLEURS
	CROATIAN	HRV	FLEURS, VP
	ITALIAN	ITA	CV, FLEURS, LAD, MSD, MLS, NCHLT, SWC, VF, VP
	ENGLISH	ENG	CV, FLEURS, MSD, MLS, VF, VP
	PERSIAN	FAS	CV, FLEURS
	SLOVAK	SLK	CV, FLEURS, VP

E EVALUATION METRIC DETAILS

939 In Section 4, we discuss the evaluation metrics used. Here, we provide more details about the
 940 computation of the CER. The CER can be computed by comparing the system generated and
 941 reference transcripts using the formula:

$$943 \quad \text{CER} = \frac{I + S + D}{N} \times 100, \quad (18)$$

946 where I is the number of insertions, S the number of substitutions, and D the number of deletions in
 947 a minimum edit distance alignment between the reference and system output, and N is the number of
 948 characters in the reference transcript. The WER is computed identically, but operates at the word
 949 level rather than the character level (see WER results in Appendix F.2).

F RESULTS

955 In Section F.1, we present the language-specific results on the development set, showing the effect of
 956 our tested hyperparameters. In addition, we show the language-specific test results in Section F.2.
 957 In this section, we include a WER analysis for set 4 for completeness. This set was chosen, as
 958 it contains languages with clear word boundaries. Additionally, we present the language-specific
 959 results of our ablation study and an analysis of the batch duration hyperparameter in Section F.3. We
 960 present multi-seed experiments on sets 1 and 3 in Section F.4. Finally, we address the effect on the
 961 best-performing language in Section F.5 and plot the group weights for additional language sets and
 962 models in Section F.6.

F.1 LANGUAGE-SPECIFIC DEVELOPMENT RESULTS

967 To show the effect of our tested hyperparameters on the performance of the CTC-DRO models, we
 968 present language-specific results on the development set. In Table 7, we show the development results
 969 for tested values of $\eta_q \in \{10^{-3}, 10^{-4}\}$ and $\alpha \in \{0.1, 0.5, 1\}$ in the balanced data setup. The results
 970 for models trained with additional training data are shown in Table 8. For each language set, the
 971 model with the best-performing hyperparameter setting is evaluated on the test data. All results are
 972 obtained using a learning rate of 10^{-4} .

Table 7: Results of the CTC–DRO models on the development set for the different language sets, where languages are indicated by their ISO code. We show the CER on the individual languages and CER averaged across languages (Avg) for fine-tuned MMS and XLS–R models. We highlight the best hyperparameter setting per set.

SET	MODEL	η_q	α	CES	CMN	NAN	POL	RON	SPA	Avg	SET	MODEL	η_q	α	ENG	FAS	HRV	ITA	SLK	YUE	Avg			
#				(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	#				(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)			
1	MMS	10^{-3}	0.1	11.6	45.5	58.7	4.2	16.0	2.6	23.1	2	MMS	10^{-3}	0.1	0.4	28.8	8.1	5.0	8.7	48.5	16.6			
		10^{-3}	0.5	12.4	44.4	56.4	4.4	16.9	3.0	22.9			10^{-3}	0.5	0.6	30.0	8.0	5.2	7.8	44.8	16.0			
		10^{-3}	1.0	12.2	45.8	56.1	4.5	16.6	2.7	23.0			10^{-3}	1.0	1.1	28.0	7.9	5.0	8.9	45.2	16.0			
		10^{-4}	0.1	9.8	49.1	62.2	4.2	16.4	2.5	24.0			10^{-4}	0.1	0.4	27.3	7.1	5.0	7.4	46.8	15.6			
		10^{-4}	0.5	13.0	47.7	61.8	4.3	17.4	2.8	24.5			10^{-4}	0.5	0.9	27.6	7.6	4.7	7.7	45.7	15.7			
		10^{-4}	1.0	11.7	45.5	55.2	4.2	18.0	2.7	22.9			10^{-4}	1.0	1.4	27.9	8.2	5.9	8.9	46.5	16.5			
2	XLS–R	10^{-3}	0.1	13.7	47.9	57.1	3.8	13.7	2.4	23.1			10^{-3}	0.1	0.4	29.0	8.2	4.3	7.9	50.5	16.7			
		10^{-3}	0.5	13.0	50.7	56.2	3.8	14.6	2.7	23.5			10^{-3}	0.5	0.9	29.1	11.1	4.7	8.4	52.1	17.7			
		10^{-3}	1.0	12.6	45.4	58.0	3.9	14.8	2.6	22.9			10^{-3}	1.0	1.4	27.7	12.0	4.3	8.9	49.4	17.3			
		10^{-4}	0.1	12.2	50.7	55.8	3.6	14.5	2.4	23.2			10^{-4}	0.1	0.4	27.6	8.8	3.8	8.0	94.1	23.8			
		10^{-4}	0.5	12.2	50.3	58.9	3.7	14.9	2.5	23.8			10^{-4}	0.5	0.6	31.6	9.8	4.3	8.3	45.2	16.6			
		10^{-4}	1.0	13.5	49.2	58.0	3.7	15.2	2.8	23.7			10^{-4}	1.0	0.8	31.2	10.7	4.5	9.5	47.1	17.3			
3	MMS	SET	MODEL	η_q	α	KHM	KMR	KOR	NBL	NNO	TAT	Avg	SET	MODEL	η_q	α	MRJ	SLV	SND	SOT	SPA	URD	Avg	
		#		(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	#		(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)		
		10^{-3}	0.1	38.7	13.4	27.3	7.3	1.4	17.5	17.5			10^{-3}	0.1	9.3	10.3	19.5	12.5	4.9	35.4	15.3			
		10^{-3}	0.5	37.5	14.9	27.1	8.0	2.2	19.3	18.2			10^{-3}	0.5	9.2	11.5	18.8	13.4	4.6	23.6	13.5			
		10^{-3}	1.0	34.9	13.0	24.9	7.9	0.6	19.2	16.7			10^{-3}	1.0	9.4	12.9	20.3	14.7	5.4	30.4	15.5			
		10^{-4}	0.1	34.3	12.6	25.5	7.4	0.8	16.8	16.2			10^{-4}	0.1	8.4	9.3	21.4	11.8	4.7	27.0	13.8			
4	XLS–R	10^{-4}	0.5	35.3	13.8	26.6	8.3	0.8	20.8	17.6			10^{-4}	0.5	8.9	10.2	19.0	13.1	4.4	33.6	14.9			
		10^{-4}	1.0	36.8	13.5	26.4	7.9	0.5	20.1	17.5			10^{-4}	1.0	9.6	12.5	18.7	13.6	4.4	27.4	14.4			
		10^{-3}	0.1	34.5	15.2	25.8	8.5	0.7	17.2	17.0			10^{-3}	0.1	11.8	8.7	21.8	14.8	5.4	28.6	15.2			
		10^{-3}	0.5	47.0	17.7	29.3	10.7	3.0	19.8	21.2			10^{-3}	0.5	11.8	13.0	21.0	16.1	4.8	39.0	17.6			
		10^{-3}	1.0	40.6	18.2	27.4	10.0	1.1	19.9	19.5			10^{-3}	1.0	13.9	18.1	22.7	17.2	4.5	39.6	19.3			
		10^{-4}	0.1	33.1	14.9	29.9	9.3	2.8	19.5	18.2			10^{-4}	0.1	12.3	9.3	21.9	14.2	4.6	34.9	16.2			
5	XLS–R	10^{-4}	0.5	43.6	16.4	27.8	9.4	1.1	22.7	20.2			10^{-4}	0.5	14.5	13.9	23.7	17.5	5.5	40.7	19.3			
		10^{-4}	1.0	46.0	19.6	28.3	10.7	2.3	23.5	21.7			10^{-4}	1.0	12.8	13.2	20.8	15.0	4.4	30.4	16.1			
		SET	MODEL	η_q	α	DEU	ENG	HEB	JPN	RUS	SPA	Avg	SET	MODEL	η_q	α	DEU	ENG	FAS	HRV	ITA	SLK	YUE	Avg
		#		(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	#		(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	
		10^{-3}	0.1	8.3	13.4	43.5	54.7	13.3	8.0	23.5			10^{-3}	0.1	9.3	10.3	19.5	12.5	4.9	35.4	15.3			
		10^{-3}	0.5	10.0	14.1	31.9	53.0	13.9	8.7	21.9			10^{-3}	0.5	9.2	11.5	18.8	13.4	4.6	23.6	13.5			
6	MMS	10^{-3}	1.0	12.2	15.6	41.9	52.4	14.3	9.8	24.4			10^{-3}	1.0	9.4	12.9	20.3	14.7	5.4	30.4	15.5			
		10^{-4}	0.1	8.2	14.8	32.9	64.2	14.1	8.7	23.8			10^{-4}	0.1	8.4	9.3	21.4	11.8	4.7	27.0	13.8			
		10^{-4}	0.5	9.8	15.3	39.0	65.6	14.6	9.4	25.6			10^{-4}	0.5	8.9	10.2	19.0	13.1	4.4	33.6	14.9			
		10^{-4}	1.0	12.6	16.8	38.0	74.5	14.9	12.8	28.3			10^{-4}	1.0	7.7	13.0	40.6	11.1	4.7	32.1				
		10^{-3}	0.1	7.7	13.0	40.6	111.5	12.4	7.7	32.1			10^{-3}	0.5	9.2	13.8	48.8	119.3	12.9	28.1	38.7			
		10^{-3}	1.0	11.1	15.5	48.9	127.7	16.1	18.2	39.6			10^{-4}	0.1	6.1	11.2	41.5	77.1	11.1	8.9	26.0			
7	XLS–R	10^{-4}	0.5	9.6	13.0	45.4	105.5	11.9	8.3	32.3			10^{-4}	0.5	9.6	13.0	44.9	118.8	12.3	9.0	35.0			
		10^{-4}	1.0	10.9	14.1	44.9	118.8	12.3	9.0	35.0			10^{-4}	1.0	12.3	52.9	67.2	10.3	13.7	8.3	27.5			

Table 8: Results of the CTC–DRO models on the development set for the first two language sets using additional amounts of training data per language, where languages are indicated by their ISO code. We show the CER on the individual languages and CER averaged across languages (Avg) for fine-tuned MMS and XLS–R models. We highlight the best hyperparameter setting per set.

SET	MODEL	η_q	α	CES	CMN	NAN	POL	RON	SPA	Avg	SET	MODEL	η_q	α	ENG	FAS	HRV	ITA	SLK	YUE	Avg
#				(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	#				(↓)	(↓)	(↓)	(↓)	(↓)	(↓)	(↓)
1	MMS	10^{-3}	0.1	8.4	57.6	68.6	6.9	9.5	5.3	26.1	2	MMS	10^{-3}	0.1	9.4	20.5	8.1	7.2	10.8	53.4	18.2
		10^{-3}	0.5	8.0	48.6	64.8	7.0	9.6	5.4	23.9			10^{-3}	0.5	9.6	20.4	8.8	7.5	11.3	52.4	18.3
		10^{-3}	1.0	8.5	50.8	71.5	7.5	9.8	5.2	25.5			10^{-3}	1.0	9.5	19.5	8.9	7.5	10.8	49.8	17.6
		10^{-4}	0.1	8.1	50.1	64.0	6.6	9.7	5.2	24.0			10^{-4}	0.5	9.4	20.3	8.4	7.5	10.5	55.1	18.4
		10^{-4}	0.5	7.9	45.6	60.3	6.8	9.8	5.2	24.6			10^{-4}	1.0	9.4	19.9	8.9	7.4	11.3	47.8	17.5
		10^{-4}	1.0	8.0	49.1	68.5	7.0	9.5	5.3	24.6			10^{-3}	0.1	11.6	24.6	10.2	9.0	13.4	56.9	21.0
2	XLS–R	10^{-3}	0.1	9.1	57.8	67.5	8.1	11.2	6.6	26.7			10^{-3}	0.5	11.7	22.7	9.7	8.2	12.9	57.9	20.5
		10^{-3}	0.5	12.9	57.8	69.8	10.4	13.2	7.8	28.7			10^{-3}	1.0	23.2	30.7	18.4	15.3	21.7	83.0	32.1
		10^{-3}	1.0	11.1	53.3	67.2	9.3	12													

1026
1027

F.2 LANGUAGE-SPECIFIC TEST RESULTS

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

For each language set, we present the language-specific test set results of our experiments using balanced training data in Table 9. Table 10 shows the language-specific test set results for the first two sets based on experiments using all available training data in ML-SUPERB 2.0. In Table 11, we present results using WER on set 4 (balanced setup for brevity), which contains languages with clear word boundaries. Using this evaluation metric, CTC-DRO still achieves substantial worst-language improvements, namely 22.3% (MMS) and 11.8% (XLS-R) relative WER reductions. For MMS, the average WER is substantially reduced (14.4% relative). For XLS-R, the average WER increased marginally (0.4% relative), even though the average CER improved. This shows that character-level and word-level improvements do not always align, as a single character error invalidates an entire word. This also causes different languages to emerge as worst-performing under the CER versus the WER metrics. Despite the slight average WER increase for one model, CTC-DRO achieves its primary objective of substantially improving the performance on the worst-performing language.

1040
1041
1042
1043
1044

Table 9: Results of the baseline models (Base), group DRO models (GDRO), and CTC-DRO models (Ours) on the test set for the different language sets, where languages are indicated by their ISO code. We show the CER on the individual languages, CER averaged across languages (Avg CER), and LID accuracy (LID) for fine-tuned MMS and XLS-R models. Best LID and CER results are highlighted, and the CERs for the worst-performing languages are underlined.

1045

SET #	MODEL	TYPE	CES (↓)	CMN (↓)	NAN (↓)	POL (↓)	RON (↓)	SPA (↓)	Avg CER (↓)	LID (↑)
1	MMS	BASE	8.4	52.4	<u>60.8</u>	3.6	13.3	1.8	23.4	97.4
		GDRO	20.6	48.6	<u>86.6</u>	4.3	16.7	6.2	30.5	78.7
		OURS	10.5	46.1	<u>56.8</u>	3.7	17.9	2.3	22.9	95.8
	XLS-R	BASE	7.3	<u>64.9</u>	60.8	3.1	13.4	1.8	25.2	92.6
		GDRO	27.4	48.9	<u>78.4</u>	3.7	14.9	6.6	30.0	87.8
		OURS	7.8	50.7	<u>57.6</u>	3.0	14.2	1.8	22.5	89.5
MODEL	TYPE	ENG (↓)	FAS (↓)	HRV (↓)	ITA (↓)	SLK (↓)	YUE (↓)	Avg CER (↓)	LID (↑)	
2	MMS	BASE	0.2	21.8	9.0	5.9	8.2	<u>49.4</u>	15.8	98.4
		GDRO	11.8	29.7	10.8	6.2	10.2	<u>55.5</u>	20.7	98.2
		OURS	0.5	22.1	8.8	5.5	8.6	<u>44.4</u>	15.0	96.2
	XLS-R	BASE	0.1	20.6	10.9	4.6	8.9	<u>68.8</u>	19.0	94.2
		GDRO	12.7	28.5	14.4	5.1	10.2	<u>58.8</u>	21.6	87.0
		OURS	0.5	21.5	12.6	5.2	10.0	<u>45.0</u>	15.8	89.3
MODEL	TYPE	KHM (↓)	KMR (↓)	KOR (↓)	NBL (↓)	NNO (↓)	TAT (↓)	Avg CER (↓)	LID (↑)	
3	MMS	BASE	31.3	12.2	<u>34.2</u>	7.4	2.5	9.0	16.1	98.5
		GDRO	33.2	19.1	<u>34.0</u>	22.4	9.8	13.5	22.0	98.7
		OURS	<u>31.3</u>	12.0	<u>27.6</u>	8.1	2.3	10.2	15.3	98.7
	XLS-R	BASE	<u>33.2</u>	13.3	32.3	8.7	3.7	11.0	17.0	99.2
		GDRO	<u>38.0</u>	23.9	35.5	26.6	11.9	14.9	25.1	97.2
		OURS	<u>32.2</u>	14.8	31.9	10.1	5.0	12.0	17.7	97.9
MODEL	TYPE	MRJ (↓)	SLV (↓)	SND (↓)	SOT (↓)	SPA (↓)	URD (↓)	Avg CER (↓)	LID (↑)	
4	MMS	BASE	14.8	6.9	24.0	14.4	5.9	20.1	14.4	87.9
		GDRO	13.1	14.4	19.0	17.1	3.8	21.8	14.9	91.9
		OURS	17.7	8.1	17.5	11.4	4.4	<u>18.4</u>	12.9	87.3
	XLS-R	BASE	14.0	4.8	23.3	11.6	4.2	<u>29.7</u>	14.6	88.4
		GDRO	19.5	<u>25.6</u>	18.5	23.0	3.9	21.1	18.6	83.5
		OURS	11.9	6.7	21.0	13.8	4.8	<u>24.2</u>	13.7	88.9
MODEL	TYPE	DEU (↓)	ENG (↓)	HEB (↓)	JPN (↓)	RUS (↓)	SPA (↓)	Avg CER (↓)	LID (↑)	
5	MMS	BASE	5.4	11.1	30.2	<u>90.0</u>	12.0	7.2	26.0	96.3
		GDRO	27.6	27.0	32.6	<u>62.2</u>	17.6	8.4	29.2	67.0
		OURS	10.9	15.4	39.2	<u>57.5</u>	13.2	9.3	24.3	90.5
	XLS-R	BASE	4.8	9.2	33.2	<u>114.8</u>	10.5	7.1	29.9	89.0
		GDRO	29.1	26.8	46.1	<u>92.9</u>	16.5	9.3	36.8	57.7
		OURS	5.7	9.6	38.6	<u>71.5</u>	10.1	7.3	23.8	91.0

1080
 1081 Table 10: Results of the baseline models (Base), group DRO models (GDRO), and CTC-DRO
 1082 models (Ours) on the test set for the first two language sets using additional amounts of training
 1083 data per language, where languages are indicated by their ISO code. We show the CER on the
 1084 individual languages, CER averaged across languages (Avg CER), and LID accuracy (LID) for
 1085 fine-tuned MMS and XLS-R models. Best LID and CER results are highlighted, and the CERs for the
 1086 worst-performing languages are underlined.

SET #	MODEL	TYPE	CES (↓)	CMN (↓)	NAN (↓)	POL (↓)	RON (↓)	SPA (↓)	Avg CER (↓)	LID (↑)
1	MMS	BASE	9.1	58.9	<u>67.5</u>	6.0	7.1	5.0	25.6	98.1
		GDRO	13.8	92.1	<u>96.3</u>	6.7	11.9	5.8	37.8	83.9
		OURS	8.7	45.9	<u>62.8</u>	6.2	7.5	5.3	22.8	98.5
	XLS-R	BASE	13.0	<u>92.1</u>	78.3	9.8	12.0	8.5	35.6	96.4
		GDRO	18.9	<u>86.4</u>	<u>90.8</u>	5.7	21.6	5.0	38.1	72.3
		OURS	12.9	52.5	<u>67.5</u>	9.0	11.9	7.8	26.9	97.1
MODEL	TYPE	ENG (↓)	FAS (↓)	HRV (↓)	ITA (↓)	SLK (↓)	YUE (↓)	Avg CER (↓)	LID (↑)	
2	MMS	BASE	9.6	16.9	8.5	6.8	8.0	<u>66.9</u>	19.5	99.0
		GDRO	10.1	70.0	24.3	7.9	14.8	<u>105.4</u>	38.8	81.0
		OURS	9.7	18.1	8.3	6.6	7.3	<u>48.1</u>	16.4	99.1
	XLS-R	BASE	11.9	32.2	9.6	8.1	9.2	<u>97.2</u>	28.0	98.2
		GDRO	8.8	88.2	33.9	6.7	23.3	<u>102.9</u>	44.0	80.8
		OURS	11.6	23.2	9.3	8.2	8.9	<u>51.4</u>	18.8	98.6

1100
 1101 Table 11: Results of the baseline models (Base), group DRO models (GDRO), and CTC-DRO
 1102 models (Ours) on the test set for set 4, where languages are indicated by their ISO code. We
 1103 show the WER on the individual languages, WER averaged across languages (Avg WER), and LID
 1104 accuracy (LID) for fine-tuned MMS and XLS-R models. Best LID and WER results are highlighted,
 1105 and the WERs for the worst-performing languages are underlined.

SET #	MODEL	TYPE	MRJ (↓)	SLV (↓)	SND (↓)	SOT (↓)	SPA (↓)	URD (↓)	Avg WER (↓)	LID (↑)
4	MMS	BASE	59.2	32.4	<u>65.9</u>	52.1	30.1	56.4	49.4	87.9
		GDRO	57.3	56.1	50.3	<u>61.5</u>	19.1	56.6	50.2	91.9
		OURS	<u>51.2</u>	36.7	49.4	43.6	22.5	50.3	42.3	87.3
	XLS-R	BASE	60.2	22.9	63.9	44.6	21.4	<u>74.0</u>	47.8	88.4
		GDRO	71.3	<u>82.5</u>	51.0	75.8	19.8	<u>57.2</u>	59.6	83.5
		OURS	58.8	29.2	59.5	51.0	24.1	<u>65.3</u>	48.0	88.9

F.3 ABLATION STUDY

1115
 1116 We present the language-specific results of our ablation study in Table 12.

1117
 1118 Table 12: Results of the baseline models (Base) and CTC-DRO models (Ours) on the test set for set 5
 1119 with ablations removing the length-matched group losses (Dur) and smoothed maximization objective
 1120 (Smooth). We show the CER averaged across languages (Avg CER) as well as the CER on the
 1121 individual languages and the LID accuracy (LID) for fine-tuned MMS and XLS-R models. Best LID
 1122 and CER results are highlighted, and the CERs for the worst-performing languages are underlined.

MODEL	TYPE	DEU (↓)	ENG (↓)	HEB (↓)	JPN (↓)	RUS (↓)	SPA (↓)	Avg CER (↓)	LID (↑)
MMS	BASE	5.4	11.1	30.2	<u>90.0</u>	12.0	7.2	26.0	96.3
	OURS	10.9	15.4	39.2	<u>57.5</u>	13.2	9.3	24.3	90.5
	- DUR	19.4	21.2	30.9	<u>84.6</u>	12.9	8.3	29.6	66.1
	- SMOOTH	<u>95.6</u>	96.0	98.8	<u>102.1</u>	97.4	97.3	97.9	13.2
XLS-R	BASE	4.8	9.2	33.2	<u>114.8</u>	10.5	7.1	29.9	89.0
	OURS	5.7	9.6	38.6	<u>71.5</u>	10.1	7.3	23.8	91.0
	- DUR	35.6	36.5	72.9	<u>115.2</u>	27.4	15.9	50.6	54.4
	- SMOOTH	18.5	24.5	69.9	<u>194.2</u>	41.2	19.9	61.4	43.2

1134 To assess the sensitivity of our results to the choice of the batch duration hyperparameter (Algorithm 1),
 1135 we first report in Table 13 the total audio duration per batch used in our main experiments for each
 1136 language set. We then perform an additional robustness experiment on language set 5 by training
 1137 additional baseline and CTC-DRO models with half the duration target. Table 14 shows the test set
 1138 performance. With the smaller duration target, CTC-DRO achieves relative worst-language CER
 1139 reductions of 34.2% for MMS and 15.8% for XLS-R compared to the corresponding baselines. With
 1140 the original batch duration target of roughly 50 seconds, the relative reductions are 36.1% and 37.7%,
 1141 respectively. While XLS-R shows more sensitivity to the choice of the duration target, both models
 1142 maintain substantial improvements from CTC-DRO across both settings.

1143 Table 13: Batch duration statistics for the main experiments. For each language set, we report the
 1144 maximum total audio duration in seconds.

SET #	TOTAL AUDIO DURATION / BATCH (S)
1	50.2
2	48.6
3	54.8
4	47.9
5	46.0

1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154 Table 14: Effect of the batch duration hyperparameter on the test set for set 5. We show the CER of
 1155 the worst-performing language (Max CER, ISO code for the worst-performing language provided
 1156 as ISO) as well as the average CER (Avg CER) and LID accuracy (LID) for baseline (Base) and
 1157 CTC-DRO models (Ours). Best results are highlighted.

SET #	MODEL	DURATION (S) (AUDIO / BATCH)	TYPE	MAX CER (ISO) (↓)	AVG CER (↓)	LID (↑)
5	MMS	23.0	BASE	79.5 (JPN)	24.9	92.7
	MMS	23.0	OURS	52.3 (JPN)	21.7	90.8
	XLS-R	23.0	BASE	101.9 (JPN)	29.0	86.6
	XLS-R	23.0	OURS	85.8 (JPN)	30.3	77.8
5	MMS	46.0	BASE	90.0 (JPN)	26.0	96.3
	MMS	46.0	OURS	57.5 (JPN)	24.3	90.5
	XLS-R	46.0	BASE	114.8 (JPN)	29.9	89.0
	XLS-R	46.0	OURS	71.5 (JPN)	23.8	91.0

F.4 ROBUSTNESS EXPERIMENTS

1158
 1159 To assess the robustness of our results across random seeds, we perform experiments on language
 1160 sets 1 and 3 using four unique random seeds and report the results in Table 15. We selected these
 1161 sets, because they showed the smallest single-seed improvements of CTC-DRO compared to the
 1162 baseline (see Table 1). Overall, the largest gains in worst-language CER are stable across seeds. For
 1163 the remaining language sets, where the single-seed gaps between CTC-DRO and the baseline are
 1164 substantially larger, we expect the conclusions to be at least as robust.

1165 Table 15: Results of the baseline models (Base) and CTC-DRO models (Ours) on the test sets for
 1166 set 1 and 3 using four random seeds. We show the mean and standard deviation of the worst-language
 1167 CER (Max CER) as well as the mean difference in worst-language CER (Avg Delta) between
 1168 the baseline (Base) and CTC-DRO models (Ours) for fine-tuned MMS and XLS-R models.

SET #	MODEL	BASE MAX CER (MEAN \pm SD)	OURS MAX CER (MEAN \pm SD)	AVG DELTA (BASE - OURS)	SEEDS WITH LOWER CER (OUT OF 4)
1	MMS	58.7 \pm 2.1	56.6 \pm 1.1	2.1	3
	XLS-R	76.4 \pm 15.0	58.6 \pm 2.5	17.9	4
3	MMS	32.0 \pm 1.6	31.3 \pm 0.7	0.7	2
	XLS-R	33.2 \pm 1.0	34.7 \pm 2.2	-1.5	2

1188
1189

F.5 BEST-PERFORMING LANGUAGE RESULTS

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

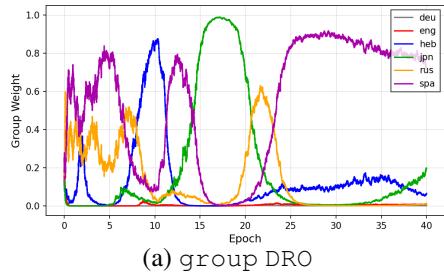
To directly address the effect on the best-performing language groups, we investigate the CER of the best-performing language per setup (i.e., lowest CER reported in Table 9 and 10) and average scores across sets and models. In the balanced data setup, the average CER of the best-performing language is 3.0% (standard deviation (SD) 2.1%) for the baseline, 3.7% (SD 2.7%) for CTC-DRO, and 6.6% (SD 3.0%) for group DRO. A paired t-test shows no statistically significant difference between the baseline and CTC-DRO ($p = 0.19$), while there is a significant difference between the baseline and group DRO ($p = 0.0068$), with group DRO having worse performance (6.6% vs. 3.0%). In the unbalanced data setup, the average CER of the best-performing language is 7.1% (SD 1.6%) for the baseline, 7.0% (SD 1.3%) for CTC-DRO, and 6.4% (SD 1.2%) for group DRO. Paired t-tests show no significant difference between the baseline and CTC-DRO ($p = 0.61$) or between the baseline and group DRO ($p = 0.53$). Thus, CTC-DRO does not significantly degrade best-language performance, while achieving substantial worst-language improvements.

1202
1203

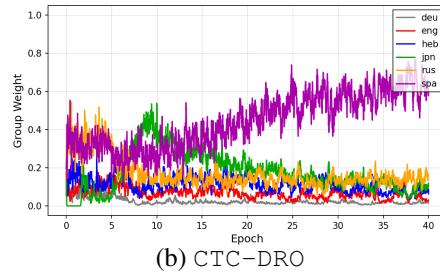
F.6 COMPARISON OF GROUP WEIGHTS

1204
1205
1206
1207
1208

In Section 6.2, we analyze the behavior of group DRO and CTC-DRO models during training for XLS-R on set 5. Here, we include additional visualizations, showing the behavior of MMS models on sets 5 and 2 in Figures 3 and 4, respectively. These visualizations confirm that the stability pattern extends to different models and language sets, showing that group DRO exhibits substantial weight fluctuations, while CTC-DRO maintains more stable group weights throughout training.

1209
1210
1211
1212
1213
1214
1215
1216
1217

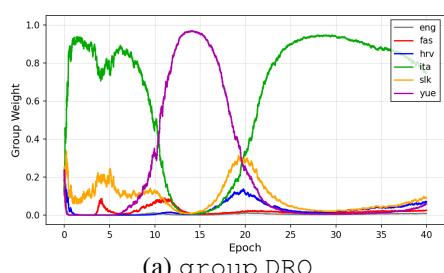
(a) group DRO



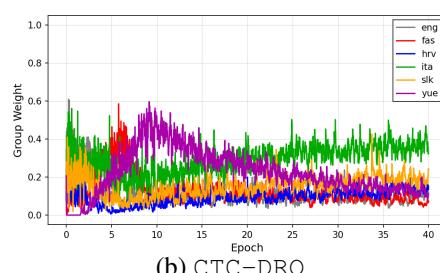
(b) CTC-DRO

1218
1219
1220

Figure 3: Group weights for each language throughout training of an MMS model trained with group DRO or CTC-DRO on balanced data from set 5.

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230

(a) group DRO



(b) CTC-DRO

1231
1232
1233

Figure 4: Group weights for each language throughout training of an MMS model trained with group DRO or CTC-DRO on balanced data from set 2.

1234
1235

G NORMALIZATION EXPERIMENTS

1236
1237
1238
1239
1240
1241

We conduct additional experiments to explain why normalization of the CTC loss alone is insufficient (see Section 2.3). We evaluate four approaches on language set 1 (balanced setup): (1) group DRO with losses normalized by the number of frames in the sequence (FRAME); (2) group DRO with losses normalized by the number of target labels (TARGET); (3) CTC-DRO without our new batch sampler that computes length-matched group losses (instead using the group DRO batch sampler) and with losses normalized by the number of frames in the sequence (FRAME; NO LENGTH-MATCHED); (4) CTC-DRO without our new batch sampler that computes length-matched group

losses (instead using the group DRO batch sampler) and with losses normalized by the number of target labels (TARGET; NO LENGTH-MATCHED). These experiments follow the same experimental setup used for our main experiments.

Normalizing each utterance’s loss by its own length (number of input frames or target labels) also scales the corresponding gradient. The longest utterances are most strongly downweighted, while the gradients of shorter utterances retain relatively more weight within a batch. Importantly, longer sequences inherently provide more information and should influence the gradients more, so reducing their gradients limits the model’s ability to learn from the most informative examples. We note that a different global learning rate would not compensate for this per-utterance imbalance. We present the test set results of this experiment in Table 16 and confirm that simple normalization provides no solution to address the problem of incomparable CTC losses across languages.

Table 16: CER of the worst-performing language (Max CER, ISO code for the worst-performing language provided as ISO), as well as the average CER (Avg CER) and LID accuracy (LID) across languages for the baseline models (Base), group DRO models (GDRO), and CTC-DRO models (Ours) on the test set for set 1 under different normalization settings. We also report the step size η_q and smoothing α selected on the development set where applicable. Best results are highlighted.

SET	MODEL	TYPE	η_q	α	MAX CER (ISO) (↓)	Avg CER (↓)	LID (↑)
1259 1260 1261	MMS	BASE (NONE)	–	–	60.8 (NAN)	23.4	97.4
		GDRO (NONE)	10^{-4}	–	86.6 (NAN)	30.5	78.7
		GDRO (FRAME)	10^{-4}	–	91.5 (CMN)	32.8	98.1
		GDRO (TARGET)	10^{-4}	–	170.7 (CMN)	87.0	65.4
		Ours (FRAME; NO LENGTH-MATCHED)	10^{-4}	0.5	94.7 (CMN)	31.9	97.9
		Ours (TARGET; NO LENGTH-MATCHED)	10^{-4}	0.1	98.7 (CMN)	43.7	83.6
1262 1263 1264 1265 1266 1267	XLS-R	BASE (NONE)	–	–	64.9 (CMN)	25.2	92.6
		GDRO (NONE)	10^{-4}	–	78.4 (NAN)	30.0	87.8
		GDRO (FRAME)	10^{-3}	–	81.2 (CMN)	33.2	94.2
		GDRO (TARGET)	10^{-3}	–	119.9 (CMN)	95.0	44.3
		Ours (FRAME; NO LENGTH-MATCHED)	10^{-3}	0.5	67.6 (CMN)	26.6	93.7
		Ours (TARGET; NO LENGTH-MATCHED)	10^{-4}	0.1	119.7 (CMN)	50.2	78.7

H SCALABILITY EXPERIMENTS

The strong performance of CTC-DRO motivates investigating the algorithm’s scalability. While our algorithm adds minimal computational costs, a rigorous hyperparameter search for any new, large-scale experiment is inherently resource-intensive (our main experiments already required training 130 models over approximately 1500 GPU hours). To validate scalability under our compute budget, we conducted a single, challenging scaling experiment on a diverse set of 18 languages, extending the languages in set 1 by 12 randomly selected languages. This appendix shows the full experiment, presenting the language-corpus pairs (Section H.1), the development set results from our hyperparameter search (Section H.2), and the final test set performance (Section H.3).

H.1 DATASETS

Table 17 shows the language-corpus pairs that are included in our scaling experiments for the balanced setup and when additional training data is available.

H.2 LANGUAGE-SPECIFIC DEVELOPMENT RESULTS

Tables 18 and 19 show the language-specific performance on the development set from our hyperparameter search. We tested values of $\eta_q \in \{10^{-3}, 10^{-4}\}$ and $\alpha \in \{0.1, 0.5, 1\}$, while keeping the learning rate fixed at 10^{-4} . Table 18 shows the results for the balanced data setup, while Table 19 contains the results for models trained with additional training data. From this evaluation, the best-performing hyperparameter setting was selected for evaluation on the test data.

Table 17: Overview of the languages included in the scaling experiment, which are originally obtained from CV, Fleurs, LAD, MLS, MSD, NCHLT, SWC, VF, and VP.

SETUP	LANGUAGES (ISO CODE, CORPORA)
BALANCED	BASHKORT (BAK, CV), BURMESE (MYA, FLEURS) MANDARIN (CMN, CV), MIN NAN (NAN, CV) CANTONESE (YUE, CV), CZECH (CES, CV) ENGLISH (ENG, LAD), FRENCH (FRA, MLS) GERMAN (DEU, VF), GUARANI (GRN, CV) ITALIAN (ITA, FLEURS), KHMER (KHM, FLEURS) PERSIAN (FAS, CV), POLISH (POL, MSD) ROMANIAN (RON, FLEURS), RUSSIAN (RUS, LAD) SPANISH (SPA, VF), SWATI (SSW, NCHLT)
ADDITIONAL DATA	BASHKORT (BAK, CV), BURMESE (MYA, FLEURS) CANTONESE (YUE, CV, FLEURS), MANDARIN (CMN, CV, FLEURS) MIN NAN (NAN, CV), CZECH (CES, CV, FLEURS, VP) ENGLISH (ENG, CV, FLEURS, LAD, MSD, MLS, NCHLT, SWC, VF, VP), FRENCH (FRA, CV, FLEURS, MSD, MLS, VF, VP), GERMAN (DEU, CV, FLEURS, MSD, MLS, SWC, VF, VP), GUARANI (GRN, CV) ITALIAN (ITA, CV, FLEURS, MSD, VF, VP), KHMER (KHM, FLEURS) PERSIAN (FAS, CV, FLEURS), POLISH (POL, CV, FLEURS, MSD, MLS, VP) ROMANIAN (RON, CV, FLEURS, VP), RUSSIAN (RUS, CV, FLEURS, LAD, MSD, VF) SPANISH (SPA, CV, FLEURS, MSD, MLS, VF, VP), SWATI (SSW, NCHLT)

Table 18: Results of the CTC-DRO models on the development set, where languages are indicated by their ISO code. We show the CER on the individual languages and CER averaged across languages (Avg CER) for fine-tuned MMS and XLS-R models. We highlight the best hyperparameter setting per set.

LANGUAGE	MMS						XLS-R						
	η_q	10 ⁻³			10 ⁻⁴			10 ⁻³			10 ⁻⁴		
		α	0.1	0.5	1.0	0.1	0.5	1.0	0.1	0.5	1.0	0.1	0.5
BAK (↓)		20.7	11.9	12.7	10.6	11.6	12.8	21.6	39.5	33.1	35.3	31.9	32.8
CES (↓)		24.0	13.2	15.5	11.6	14.4	16.6	23.9	45.7	41.1	40.4	39.9	34.9
CMN (↓)		74.7	54.6	55.1	57.1	57.9	57.9	78.0	86.4	84.1	90.2	75.4	65.4
DEU (↓)		14.5	8.7	9.8	7.7	10.0	11.7	13.6	31.2	27.6	28.6	27.6	26.3
ENG (↓)		6.6	0.8	1.5	1.4	2.1	2.8	5.2	8.7	8.4	7.0	5.1	3.0
FAS (↓)		43.5	31.6	33.0	32.7	32.4	33.9	38.6	57.9	52.3	54.3	53.1	54.4
FRA (↓)		29.4	19.9	20.2	18.5	18.5	18.6	23.2	45.8	43.8	45.3	43.0	43.7
GRN (↓)		19.4	12.1	14.6	10.0	13.5	15.0	21.3	40.5	33.8	33.4	32.1	36.0
ITA (↓)		13.8	5.5	6.8	5.7	6.0	6.4	13.6	33.1	28.3	27.7	27.1	26.1
KHM (↓)		76.6	39.0	41.6	36.5	36.4	38.6	87.4	78.2	85.8	91.9	77.5	80.9
MYA (↓)		74.1	35.2	31.0	28.7	30.2	30.3	54.4	90.1	89.3	74.5	89.6	88.2
NAN (↓)		77.9	56.4	63.2	63.9	66.8	72.1	75.3	80.4	83.5	80.7	81.4	77.5
POL (↓)		10.0	4.8	5.3	4.8	4.5	5.0	7.7	20.9	17.8	18.6	18.1	18.5
RON (↓)		28.9	17.3	17.9	17.8	17.6	16.2	23.8	47.4	40.6	44.7	43.5	43.1
RUS (↓)		14.4	1.3	2.5	3.1	3.3	4.0	12.3	18.1	14.5	16.8	6.5	2.8
SPA (↓)		8.6	3.5	4.5	3.7	5.0	5.6	8.8	28.2	23.4	23.9	23.7	22.4
SSW (↓)		15.3	9.1	13.1	6.6	12.1	15.3	16.4	32.0	29.6	26.8	29.4	22.7
YUE (↓)		61.7	41.2	42.6	43.2	44.5	49.3	66.3	82.0	77.8	82.5	69.4	57.9
AVG CER (↓)		34.1	20.3	21.7	20.2	21.5	22.9	32.9	48.1	45.3	45.7	43.0	40.9

H.3 LANGUAGE-SPECIFIC TEST RESULTS

Table 20 summarizes test set performance for all languages in the balanced setup and Table 21 shows results when models are trained on all available ML-SUPERB 2.0 data. We find that CTC-DRO maintains its effectiveness at improving the performance on the worst-performing language at a larger scale. On the balanced data setup, CTC-DRO reduces worst-language CER by 8.9% relative for MMS and 9.2% relative for XLS-R. For XLS-R, the average CER improves by 17.2% relative. While MMS shows a slight average CER increase (3.0% relative), it successfully reduces the worst-language performance, which is our primary objective. On the unbalanced data setup, XLS-R shows

1350 Table 19: Results of the CTC–DRO models on the development set using additional amounts of
 1351 training data per language, where languages are indicated by their ISO code. We show the CER on
 1352 the individual languages and CER averaged across languages (Avg) for fine-tuned MMS and XLS–R
 1353 models. We highlight the best hyperparameter setting per set.

1354

1355

1356	LANGUAGE	MMS						XLS–R								
		η_q	10^{-3}			10^{-4}			0.1	0.5	10^{-3}			0.1	0.5	1.0
			0.1	0.5	1.0	0.1	0.5	1.0			1.0	0.1	0.5			
1358	BAK (↓)	87.9	14.2	19.4	12.0	13.3	14.5	61.7	16.6	19.4	13.8	19.0	18.3			
1359	CES (↓)	84.6	9.2	11.4	9.0	9.2	9.2	45.7	10.2	11.4	8.7	10.3	11.6			
1360	CMN (↓)	247.1	48.2	54.9	55.7	48.8	47.6	103.6	56.9	54.9	51.6	53.2	47.4			
1361	DEU (↓)	70.6	9.2	10.4	9.1	8.9	9.3	37.0	9.8	10.4	9.4	9.5	10.3			
1362	ENG (↓)	73.3	10.9	12.2	10.6	10.6	10.7	44.3	11.5	12.2	10.5	10.9	11.1			
1363	FAS (↓)	98.7	22.4	23.8	23.8	23.7	23.4	65.9	23.3	23.8	22.3	25.0	24.4			
1364	FRA (↓)	70.5	12.3	14.1	12.4	12.4	12.3	44.2	13.0	14.1	11.9	12.5	13.0			
1365	GRN (↓)	88.6	14.3	24.1	11.4	15.9	16.9	54.9	20.9	24.1	15.7	21.3	22.0			
1366	ITA (↓)	77.2	8.9	9.4	8.6	8.8	8.2	31.7	8.5	9.4	7.9	8.7	8.8			
1367	KHM (↓)	99.9	31.4	39.7	32.5	30.0	30.0	90.2	38.6	39.7	37.4	34.9	36.2			
1368	MYA (↓)	94.7	28.1	47.1	29.5	32.0	28.3	89.3	65.4	47.1	74.3	30.4	29.6			
1369	NAN (↓)	163.7	67.7	70.5	69.2	70.4	69.4	99.8	70.7	70.5	62.6	71.7	71.3			
1370	POL (↓)	78.3	8.5	8.6	7.9	7.8	8.3	37.0	7.6	8.6	7.9	7.9	9.2			
1371	RON (↓)	74.6	10.3	12.3	10.4	10.8	11.2	42.2	12.1	12.3	11.6	11.2	11.8			
1372	RUS (↓)	90.2	9.9	12.7	9.8	9.9	10.0	46.2	11.6	12.7	9.5	11.7	12.1			
1373	SPA (↓)	75.8	5.9	6.5	6.0	5.7	6.0	30.9	5.6	6.5	5.5	6.0	6.7			
1374	SSW (↓)	97.0	14.3	23.6	11.8	16.2	16.1	49.1	24.4	23.6	12.1	20.5	18.4			
1375	YUE (↓)	261.2	50.4	55.7	53.3	50.7	50.1	96.0	55.6	55.7	45.4	51.6	46.3			
1376	Avg CER (↓)	107.4	20.9	25.4	21.3	21.4	21.2	59.4	25.7	25.4	23.2	23.1	22.7			

1372

1373

1374

1375 Table 20: Results of the baseline models and CTC–DRO models on the test set, where languages are
 1376 indicated by their ISO code. We show the CER on the individual languages, CER averaged across
 1377 languages (Avg CER), and LID accuracy (LID) for fine-tuned MMS and XLS–R models. Best LID
 1378 and CER results are highlighted, and the CERs for the worst-performing languages are underlined.

1379

1380

1381

1382	LANGUAGE	MMS			XLS–R		
		BASELINE	CTC–DRO	BASELINE	CTC–DRO		
1383	BAK (↓)	12.6	14.9	30.4	23.7		
1384	CES (↓)	10.3	13.4	28.8	22.2		
1385	CMN (↓)	65.2	55.6	<u>94.9</u>	78.8		
1386	DEU (↓)	5.6	8.2	22.0	13.9		
1387	ENG (↓)	0.8	0.8	2.7	5.2		
1388	FAS (↓)	23.5	25.2	45.4	34.0		
1389	FRA (↓)	14.4	16.5	37.0	20.6		
1390	GRN (↓)	6.4	11.0	31.8	21.9		
1391	ITA (↓)	5.5	6.9	24.3	12.4		
1392	KHM (↓)	34.0	33.8	67.7	<u>86.2</u>		
1393	MYA (↓)	35.3	40.6	91.6	61.6		
1394	NAN (↓)	<u>66.1</u>	<u>60.2</u>	81.7	78.4		
1395	POL (↓)	3.7	4.3	15.6	7.3		
1396	RON (↓)	14.0	16.9	38.0	23.3		
1397	RUS (↓)	5.1	1.6	7.3	12.0		
1398	SPA (↓)	2.1	3.2	13.4	7.5		
1399	SSW (↓)	6.3	13.1	14.3	19.1		
1400	YUE (↓)	47.5	43.2	74.7	69.2		
1401	Avg CER (↓)	19.9	20.5	40.1	33.2		
1402	LID (↑)	96.5	94.7	84.0	84.9		
1403							

particularly strong results, namely a reduction of 23.7% relative for the worst-performing language

1404
 1405 Table 21: Results of the baseline models and CTC-DRO models on the test set using additional
 1406 amounts of training data per language, where languages are indicated by their ISO code. We show the
 1407 CER on the individual languages, CER averaged across languages (Avg CER), and LID accuracy
 1408 (LID) for fine-tuned MMS and XLS-R models. Best LID and CER results are highlighted, and the
 1409 CERs for the worst-performing languages are underlined.

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430	1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430	1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430		1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430	
		LANGUAGE	BASELINE	CTC-DRO	BASELINE
BAK (↓)	13.0	14.3	14.3	21.6	
CES (↓)	8.6	10.3	8.6	11.3	
CMN (↓)	60.7	48.1	75.7	56.3	
DEU (↓)	8.8	9.5	8.4	10.2	
ENG (↓)	9.4	10.7	9.3	12.3	
FAS (↓)	18.1	18.5	17.1	22.2	
FRA (↓)	12.9	13.4	12.5	14.8	
GRN (↓)	6.7	12.8	9.4	21.1	
ITA (↓)	7.8	7.7	6.8	8.6	
KHM (↓)	37.1	32.0	68.5	40.7	
MYA (↓)	30.8	28.6	95.5	44.1	
NAN (↓)	<u>70.6</u>	<u>70.0</u>	75.3	<u>72.9</u>	
POL (↓)	6.2	6.9	6.3	7.9	
RON (↓)	7.5	8.7	7.7	10.5	
RUS (↓)	9.4	9.7	8.7	12.7	
SPA (↓)	5.1	5.6	5.1	6.3	
SSW (↓)	5.5	16.6	7.5	26.4	
YUE (↓)	53.0	51.3	70.8	56.7	
Avg CER (↓)	20.6	20.8	28.2	25.4	
LID (↑)	97.6	97.6	96.2	95.2	

1431
 1432 and 9.9% relative average CER improvement. For MMS, CTC-DRO still reduces the worst-language
 1433 CER (although marginally), while maintaining comparable average performance.

1436 I TRAINING TIMES

1437
 1438 In Table 22, we present averaged wall-clock training times for baseline and CTC-DRO models across
 1439 our main experiments. Each model was trained on a single NVIDIA RTX A6000 GPU.

1440
 1441 Table 22: Averaged wall-clock training times for baseline and CTC-DRO models across experiments
 1442 using balanced and additional training data in seconds.

1444 1445 1446 1447	1444 1445 1446 1447	1444 1445 1446 1447	1444 1445 1446 1447
SET #		BASELINE TIME (S)	CTC-DRO TIME (S)
1-5 (BALANCED DATA)	24,665	24,986	
1-2 (ADDITIONAL DATA)	81,122	82,458	