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ABSTRACT

Dataset Distillation aims to compress a large dataset into a significantly more
compact, synthetic one without compromising the performance of the trained mod-
els. To achieve this, existing methods use the agent model to extract information
from the target dataset and embed it into the distilled dataset. Consequently, the
quality of extracted and embedded information determines the quality of the dis-
tilled dataset. In this work, we find that existing methods introduce misaligned
information in both information extraction and embedding stages. To alleviate
this, we propose Prioritize Alignment in Dataset Distillation (PAD), which aligns
information from the following two perspectives. 1) We prune the target dataset
according to the compressing ratio to filter the information that can be extracted
by the agent model. 2) We use only deep layers of the agent model to perform the
distillation to avoid excessively introducing low-level information. This simple
strategy effectively filters out misaligned information and brings non-trivial im-
provement for mainstream matching-based distillation algorithms. Furthermore,
built on trajectory matching, PAD achieves remarkable improvements on various
benchmarks, achieving state-of-the-art performance.

1 INTRODUCTION

Dataset Distillation (DD) (Wang et al., 2020) aims to compress a large dataset into a small synthetic
dataset that preserves important features for models to achieve comparable performances. Ever since
being introduced, DD has gained a lot of attention because of its wide applications in practical fields
such as privacy preservation (Dong et al., 2022; Yu et al., 2023), continual learning (Masarczyk &
Tautkute, 2020; Rosasco et al., 2021), and neural architecture search (Jin et al., 2018; Pasunuru &
Bansal, 2019).

Recently, matching-based methods (Zhao & Bilen, 2021c; Wang et al., 2022; Du et al., 2022) have
achieved promising performance in distilling high-quality synthetic datasets. Generally, the process
of these methods can be summarized into two steps: (1) Information Extraction: an agent model is
used to extract important information from the target dataset by recording various metrics such as gra-
dients (Zhao et al., 2020), distributions (Zhao & Bilen, 2021a), and training trajectories (Cazenavette
et al., 2022), (2) Information Embedding: the synthetic samples are optimized to incorporate the
extracted information, which is achieved by minimizing the differences between the same metric
calculated on the synthetic data and the one recorded in the previous step.

In this work, we first reveal both steps will introduce misaligned information, which is redundant
and potentially detrimental to the quality of the synthetic data. Then, by analyzing the cause of this
misalignment, we propose alleviating this problem through the following two perspectives.

Typically, in the Information Extraction step, most distillation methods allow the agent model to see
all samples in the target dataset. This means information extracted by the agent model comes from
samples with various difficulties (see Figure 1a). However, according to previous study (Guo et al.,
2023), information related to easy samples is only needed when the compression ratio is high. This
misalignment leads to the sub-optimal of the distillation performance.

To alleviate the above issue, we first use data selection methods to measure the difficulty of each
sample in the target dataset. Then, during the distillation, a data scheduler is employed to ensure only
data whose difficulty is aligned with the compression ratio is available for the agent model.
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Figure 1: (a) Compared with using all samples without differentiation in IPCs (left), PAD meticulously
selects a subset of samples for different IPCs to align the expected difficulty of information required
(right). (b) Different layers distill different patterns (left). PAD masks out (grey box) shallow-layer
parameters during metric matching in accordance with IPCs (right).

In the Information Embedding step, most distillation methods except DM (Zhao & Bilen, 2021a)
choose to use all parameters of the agent model to perform the distillation. Intuitively, this will
ensure the information extracted by the agent model is fully utilized. However, we find shallow layer
parameters of the model can only provide low-quality, basic signals, which are redundant for dataset
distillation in most cases. Conversely, performing the distillation with only parameters from deep
layers will yield high-quality synthetic samples. We attribute this contradiction to the fact that deeper
layers in DNNs tend to learn higher-level representations of input data (Mahendran & Vedaldi, 2016;
Selvaraju et al., 2016).

Based on our findings, to avoid embedding misaligned information in the Information Embedding
step, we propose to use only parameters from deeper layers of the agent model to perform distillation,
as illustrated in Figure 1b. This simple change brings significant performance improvement, showing
its effectiveness in aligning information.

Through experiments, we validate that our two-step alignment strategy is effective for distillation
methods based on matching gradients (Zhao et al., 2020), distributions (Zhao & Bilen, 2021a), and
trajectories (Cazenavette et al., 2022). Moreover, by applying our alignment strategy on trajectory
matching (Cazenavette et al., 2022; Guo et al., 2023), we propose our novel method named Prioritize
Alignment in Dataset Distillation (PAD). After conducting comprehensive evaluation experiments,
we show PAD achieves state-of-the-art (SOTA) performance.

2 MISALIGNED INFORMATION IN DATASET DISTILLATION

Generally, we can summarize the distillation process of matching-based methods into the following
two steps: (1) Information Extraction: use an agent model to extract essential information from the
target dataset, realized by recording metrics such as gradients (Zhao et al., 2020), distributions (Zhao
& Bilen, 2021a), and training trajectories (Cazenavette et al., 2022), (2) Information Embedding: the
synthetic samples are optimized to incorporate the extracted information, realized by minimizing the
differences between the same metric calculated on the synthetic data and the one recorded in the first
step.

In this section, through analyses and experimental verification, we show the above two steps both
will introduce misaligned information to the synthetic data.
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Figure 2: Distillation performance on CIFAR-10 where data points are removed with different ratios.
Removing unnecessary data points helps to improve the performance of methods based on matching
gradients, distributions, and trajectories, both in low and high IPC cases.
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Figure 3: Distillation performances on CIFAR-10 where n% (ratio) shallow layer parameters are not
utilized during distillation. Discarding shallow-layer parameters is beneficial for methods based on
matching gradients, distributions, and trajectories, both in low and high IPC cases.

2.1 MISALIGNED INFORMATION EXTRACTED BY AGENT MODELS

In the information extraction step, an agent model is employed to extract information from the target
dataset. Generally, most existing methods (Cazenavette et al., 2022; Du et al., 2022; Zhao et al.,
2020; Zhao & Bilen, 2021c) allow the agent model to see the full dataset. This implies that the
information extracted by the agent model originates from samples with diverse levels of difficulty.
However, the expected difficulty of distilled information varies with changes in IPC: smaller IPCs
prefer easier information while larger IPCs should distill harder one (Guo et al., 2023).

To verify if this misalignment will influence the quality of synthetic data, we perform the distillation
where hard/easy samples of target dataset are removed with various ratios. As the results reported in
Figure 2, pruning unaligned data points is beneficial for all matching-based methods. This proves the
misalignment indeed will influence the distillation performance and can be alleviated by filtering out
misaligned data from the target dataset.

2.2 MISALIGNED INFORMATION EMBEDDED BY METRIC MATCHING

Most existing methods use all parameters of the agent model to compute the metric used for matching.
Intuitively, this helps to improve the distillation performance, since in this way all information
extracted by the agent model will be embedded into the synthetic dataset. However, since shallow
layers in DNNs tend to learn basic distributions of data (Mahendran & Vedaldi, 2016; Selvaraju et al.,
2016), using parameters from these layers can only provide low-level signals that turned out to be
redundant in most cases.
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As can be observed in Figure 3, it is evident that across all matching-based methods, the removal
of shallow layer parameters consistently enhances performance, regardless of the IPC setting. This
proves employing over-shallow layer parameters to perform the distillation will introduce misaligned
information to the synthetic data, compromising the quality of distilled data.

3 METHOD

To alleviate the information misalignment issue, based on trajectory matching (TM) (Cazenavette
et al., 2022; Guo et al., 2023), we propose Prioritizing Alignment in Dataset Distillation (PAD). PAD
can also be applied to methods based on matching gradients (Zhao et al., 2020) and distributions
(Zhao & Bilen, 2021a), which are introduced in Appendix A.1.

3.1 PRELIMINARY OF TRAJECTORY MATCHING

Following the two-step procedure, to extract information, TM-based methods (Cazenavette et al.,
2022; Guo et al., 2023) first train agent models on the real dataset DR and record the changes
of the parameters. Specifically, let {θ∗t }N0 be an expert trajectory, which is a parameter sequence
recorded during the training of agent model. At each iteration of trajectory matching, θ∗t and θ∗t+M
are randomly selected from expert trajectories as the start and target parameters.

To embed the information into the synthetic data, TM methods minimize the distance between the
expert trajectory and the student trajectory. Let θ̂t denote the parameters of the student agent model
trained on synthetic dataset DS at timestep t. The student trajectory progresses by doing gradient
descent on the cross-entropy loss l for N steps:

θ̂t+i+1 = θ̂t+i − α∇l(θ̂t+i,DS), (1)

Finally, the synthetic data is optimized by minimizing the distance metric, which is formulated as:

L =
||θ̂t+N − θ∗t+M ||
||θ∗t+M − θ∗t ||

. (2)

3.2 FILTERING INFORMATION EXTRACTION

In section 2.1, we show using data selection to filter out unmatched samples could alleviate the
misalignment caused in Information Extraction step. According to previous work (Guo et al., 2023),
TM-based methods prefer easy information and choose to match only early trajectories when IPC is
small. Conversely, hard information is preferred by high IPCs and they match only late trajectories.
Hence, we should use easy samples to train early trajectories, while late trajectories should be trained
with hard samples. To realize this efficiently, we first use the data selection method to measure
the difficulty of samples contained in the target dataset. Then, during training expert trajectories, a
scheduler is implemented to gradually incorporate hard samples into the training set while excluding
easier ones.

Difficulty Scoring Function Identifying the difficulty of data for DNNs to learn has been well
studied in data selection area (Mirzasoleiman et al., 2019; Killamsetty et al., 2020; 2021; Sorscher
et al., 2022). For simplicity consideration, we use Error L2-Norm (EL2N) score Paul et al. (2021)
as the metric to evaluate the difficulty of training examples (other metrics can also be chosen, see
Section 4.3.2). Specifically, let x and y denote a data point and its label, respectively. Then, the
EL2N score can be calculated by:

χt(x, y) = E||p(wt, x)− y||2. (3)

where p(wt, x) = σ(f(wt, x)) is the output of a model f at training step t transformed into a
probability distribution. In consistent with Sorscher et al. (2022), samples with higher EL2N scores
are considered as harder samples in this paper.

Scheduler The scheduler can be divided into the following stages. Firstly, the hardest samples are
removed from the training set, ensuring that it exclusively comprises data meeting a predetermined
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Dataset CIFAR-10 CIFAR-100 TinyImageNet
IPC 1 10 50 500 1000 1 10 50 100 1 10 50

Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 15.4±0.3 31.0±0.5 50.6±0.3 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 33.4±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
KIP 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

FRePo 46.8±0.7 65.5±0.4 71.7±0.2 - - 28.7±0.1 42.5±0.2 44.3±0.2 - 15.4±0.3 25.4±0.2 -
RCIG 53.9±1.0 69.1±0.4 73.5±0.3 - - 39.3±0.4 44.1±0.4 46.7±0.3 - 25.6±0.3 29.4±0.2 -

DC 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -
TESLA 48.5±0.8 66.4±0.8 72.6±0.7 - - 24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -
CAFE 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -

MTT 46.2±0.8 65.4±0.7 71.6±0.2 - - 24.3±0.3 39.7±0.4 47.7±0.2 49.2±0.4 8.8±0.3 23.2±0.2 28.0±0.3
FTD 46.0±0.4 65.3±0.4 73.2±0.2 - - 24.4±0.4 42.5±0.2 48.5±0.3 49.7±0.4 10.5±0.2 23.4±0.3 28.2±0.4
ATT 48.3±1.0 67.7±0.6 74.5±0.4 - - 26.1±0.3 44.2±0.5 51.2±0.3 - 11.0±0.5 25.8±0.4 -

DATM 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3
PAD 47.7±0.6 67.9±0.3 77.2±0.5 85.2±0.3 87.3±0.5 28.8±0.5 48.4±0.2 56.2±0.3 58.7±0.3 17.7±0.2 32.3±0.4 41.6±0.4

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparison with previous dataset distillation methods (bottom: matching-based, top: others)
on CIFAR-10, CIFAR-100 and Tiny ImageNet. ConvNet is used for the distillation and evaluation.
Our method consistently outperforms prior matching-based methods.

initial ratio (IR). Then, during training expert trajectories, samples are gradually added to the training
set in order of increasing difficulty. After incorporating all the data into the training set, the scheduler
will begin to remove easy samples from the target dataset. Unlike the gradual progression involved in
adding data, the action of reducing data is completed in a single operation, since now the model has
been trained on simple samples for a sufficient time. (Please refer to Appendix A.2 for experimental
comparisons)

3.3 FILTERING INFORMATION EMBEDDING

To filter out misaligned information introduced by matching shallow-layer parameters, we propose
to add a parameter selection module that masks out part of shallow layers for metric computation.
Specifically, parameters of an agent network can be represented as a flattened array of length L that
stores weights of agent models ordered from shallow to deep layers (parameters within the same
layer are sorted in default order). The parameter selection sets a threshold ratio α such that the first
k = L · α parameters are not used for distillation. Then the parameters used for matching can now be
formulated as:

θ̂t+N = {θ̂0, θ̂1, · · · , θ̂k−1︸ ︷︷ ︸
discard

, θ̂k, θ̂k+1, · · · , θ̂L︸ ︷︷ ︸
used for matching

}. (4)

In practice, the ratio α should vary with the change of IPC. For smaller IPCs, it is necessary to
incorporate basic information thus α should be lower. Conversely, basic information is redundant in
larger IPC cases, so α should be higher accordingly.

4 EXPERIMENTS

4.1 SETTINGS

We compare PAD with several prominent dataset distillation methods, which can be divided into two
categories: matching-based approaches including DC (Zhao et al., 2020), DM (Zhao & Bilen, 2021a),
DSA (Zhao & Bilen, 2021b), CAFE (Wang et al., 2022), MTT (Cazenavette et al., 2022), FTD (Du
et al., 2022), ATT (Liu et al., 2024), DATM (Guo et al., 2023), TESLA (Cui et al., 2022), and
kernel-based approaches including KIP (Nguyen et al., 2020), FRePo (Zhou et al., 2022), RCIG (Loo
et al., 2023). The assessment is conducted on widely recognized datasets: CIFAR-10, CIFAR-
100(Krizhevsky, 2009), and TinyImageNet (Le & Yang, 2015). We implemented our method based
on DATM (Guo et al., 2023). In both the distillation and evaluation phases, we apply the standard set
of differentiable augmentations commonly used in previous studies (Cazenavette et al., 2022; Du et al.,
2022; Guo et al., 2023). By default, networks are constructed with instance normalization unless
explicitly labeled with "-BN," indicating batch normalization (e.g., ConvNet-BN). For CIFAR-10
and CIFAR-100, distillation is typically performed using a 3-layer ConvNet, while Tiny ImageNet
requires a 4-layer ConvNet. Cross-architecture experiments also utilize LeNet (LeCun et al., 1998),
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Dataset Ratio Method ConvNet ConvNet-BN ResNet18 ResNet18-BN VGG11 AlexNet LeNet MLP Avg.

CIFAR-10 20%

Random 78.38 80.25 84.58 87.21 80.81 80.75 61.85 50.98 75.60
Glister 62.46 70.52 81.10 74.59 78.07 70.55 56.56 40.59 66.81

Forgetting 76.27 80.06 85.67 87.18 82.04 81.35 64.59 52.21 76.17
DATM 85.50 85.23 87.22 88.13 84.65 85.14 66.70 52.40 79.37
PAD 87.25 85.67 86.95 88.09 84.34 85.83 67.28 53.62 79.84
↑ +8.87 +5.42 +2.37 +0.88 +3.53 +5.08 +5.43 +2.64 +4.28

CIFAR-100 20%

Random 42.80 46.38 47.48 55.62 42.69 38.05 25.91 20.66 39.95
Glister 35.45 37.13 42.49 46.14 43.06 28.58 23.33 17.08 34.16

Forgetting 45.52 49.99 51.44 54.65 43.28 43.47 27.22 22.90 42.30
DATM 57.50 57.75 57.98 63.34 55.10 55.69 33.57 26.39 50.92
PAD 58.71 58.66 58.15 63.17 55.02 55.93 33.87 27.12 51.30
↑ +15.91 +12.28 +10.67 +7.55 +12.33 +17.88 +7.96 +6.46 +11.36

TinyImageNet 10%

Random 15.00 24.21 17.73 28.07 22.51 14.03 9.25 5.85 17.08
Glister 17.32 19.77 18.84 23.12 19.10 11.68 8.84 3.86 15.32

Forgetting 20.04 23.83 19.38 28.88 23.77 12.13 12.06 5.54 18.20
DATM 39.68 40.32 36.12 43.14 38.35 35.10 12.41 9.02 31.76
PAD 41.55 40.88 36.08 42.96 38.64 35.02 13.17 9.68 32.18
↑ +26.55 +16.67 +18.35 +14.89 +16.13 +20.99 +3.92 +3.83 +15.18

Table 2: Cross-architecture evaluation of distilled data on unseen networks. Results worse than
random selection are indicated with red color. ↑ denotes the performance improvement brought by
our method compared with random selection. Tiny denotes Tiny ImageNet.

AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2014), and ResNet18 (He et al.,
2015). More details can be found in the appendix.

4.2 MAIN RESULTS

CIFAR and Tiny ImageNet We conduct comprehensive experiments to compare the performance
of our method with previous works. As the results presented in Table 1, PAD outperforms previous
matching-based methods on three datasets except for the case when IPC=1. When compared with
kernel-based methods, which use a larger network to perform the distillation, our technique exhibits
superior performance in most cases, particularly when the compression ratio exceeds 1%. As can
be observed, PAD performs relatively better when IPC is high, enabling the setting of IPC500 on
CIFAR-10 to also achieve lossless performance. This suggests that our filtering out misaligned
information strategy becomes increasingly effective as IPC increases. More comparisons can be
found in Appendix A.3

Cross Architecture Generalization We evaluate the generalizability of our distilled data in both
low and high IPC cases. As reflected in Table 2, our distilled datasets on large IPCs also have the best
performance on most evaluated architectures, showing good generalizability in the low compressing
ratio case. Moreover, as results reported in Table 3a, when IPC is small, our distilled data outperforms
the previous SOTA method DATM on ResNet and AlexNet while maintaining comparable accuracy
on VGG. This suggests that our distilled data on high compressing ratios generalizes well across
various unseen networks.

4.3 ABLATION STUDY

To validate the effectiveness of each component of our method, we conducted ablation experiments
on modules (section 4.3.1) and their hyper-parameter settings (section 4.3.2 and section 4.3.2). For
the results below, we only report the mean performance of multiple runs.

4.3.1 MODULES

Our method incorporates two separate modules to filter information extraction (FIEX) and information
embedding (FIEM), respectively. To verify their isolated effectiveness, we conduct an ablation
study by applying two modules individually. As depicted in Table 3b, both FIEX and FIEM bring
improvements, implying their efficacy. By applying these two modules, we are able to effectively
remove unaligned information, improving the distillation performance.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method ConvNet ResNet18 VGG AlexNet

Random 33.5 32.0 32.2 26.7
FTD 48.9 46.7 43.2 42.2

DATM 55.0 51.7 45.4 45.7
PAD 56.2 52.4 45.0 45.9

(a) Datasets distilled by PAD generalize
well across various architectures.

FIEX FIEM Accuracy(%)

66.7
✓ 67.3

✓ 67.6
✓ ✓ 67.9

FIEX FIEM Accuracy(%)

55.0
✓ 55.5

✓ 55.8
✓ ✓ 56.2

(b) Both FIEX and FIEM bring non-trivial improvements to the
baseline.

Table 3: (a) Cross-Architecture evaluation on CIFAR-100 IPC50. (b) Ablation studies on the modules
of our method on CIFAR-10 IPC10 and CIFAR-100 IPC50.

IR
AEE

20 40 60

50% 66.2 66.1 65.9
75% 67.8 67.5 66.6
80% 67.6 67.4 66.5

(a) Set IR as 75% always per-
forms best on different add-end-
epochs.

Method
IPC

1 10 500

Loss 45.7 66.5 83.5
Uncertainty 46.2 67.0 84.2

EL2N 47.7 67.9 85.2

(b) Using EL2N to measure the diffi-
culty of samples has the best perfor-
mance.

IPC
Ratio

0% 25% 50% 75%

1 47.7 46.6 46.0 41.3
10 67.2 67.7 66.9 65.2
500 83.7 83.8 85.2 84.6

(c) As IPC increases, removing more
shallow-layer parameters becomes
more effective.

Table 4: (a) Ablation of the initial ratio for the trajectory training on CIFAR-10 IPC10. (b) Ablation
of different difficulty scoring functions on CIFAR-10. (c) Results of masking out different ratios of
shallow-layer parameters across various IPCs on CIFAR-10.

4.3.2 HYPER-PARAMETERS OF FILTERING INFORMATION EXTRACTION

Initial Ratio and Data Addition Epoch To filter the information learned by agent models, we
initialize the training set with only easy samples, and the size is determined by a certain ratio of
the total size. Then, we gradually add hard samples into the training set. In practice, we use two
hyper-parameters to control the addition process: the initial ratio (IR) of training data for training
set initialization and the end epoch of hard sample addition (AEE). These two parameters together
control the amount of data agent models can see at each epoch and the speed of adding hard samples.

In Table 4a, we show the distillation results where different hyper-parameters are utilized. In general,
a larger initial ratio and faster speed of addition bring better performances. Although the distillation
benefited more from learning simpler information when IPC is small (Guo et al., 2023), our findings
indicate that excessively removing difficult samples (e.g., more than a quarter) early in the training
phase can adversely affect the distilled data. This negative impact is likely due to the excessive
removal, which leads to distorted feature distributions within each category. On the other hand,
reasonably improving the speed of adding hard samples allows the agent model to achieve a more
balanced learning of information of varying difficulty across different stages.

Other Difficulty Scoring Functions Identifying the difficulty of data points is the key to filtering
out misaligned information in the extraction step. Here, we compare the effect of using other
difficulty-scoring functions to evaluate the difficulty of data. (1) prediction loss of a pre-trained
ResNet. (2) uncertainty score (Coleman et al., 2019). (3) EL2N (Paul et al., 2021). As can be
observed in Table 4b, EL2N performs the best across various IPCs; thus, we use it to measure how
hard each data point is as default in our method. Note that this can also be replaced with a more
advanced data selection algorithm.

4.3.3 RATIOS OF PARAMETER SELECTION

It is important to find a good balance between the percentage of shallow-layer parameters removed
from matching and the loss of information. In Table 4c, we show results obtained on different IPCs by
discarding various ratios of shallow-layer parameters. The impact of removing varying proportions
of shallow parameters on the distilled data and its relationship with changes in IPC is consistent
with prior conclusions. For small IPCs, distilled data requires more low-level basic information.
Thus, removing too many shallow-layer parameters causes a negative effect on the classification
performance. By contrast, high-level semantic information is more important when it comes to
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IPC 25% 50% 75% baseline

1 44.1 43.2 41.8 46.9
10 62.2 57.7 51.1 66.9
50 69.2 66.5 58.3 76.1

(a) Dicarding deep-layer param-
eters significantly harms the
performance.

IPC PAD BLiP

1 46.8 (+0.6, 80%) 46.3 (+0.2, 80%)
10 66.5 (+1.1, 90%) 65.7 (+0.4, 90%)
50 73.0 (+1.4, 95%) 72.0 (+0.4, 95%)

(b) Data selection (FIEX) in PAD is
more effective in improving trajec-
tory matching.

IPC SRe2L SRe2L + PAD

1 25.4 26.7 (↑ 1.3)
10 28.2 29.3 (↑ 1.1)
50 57.2 57.9 (↑ 0.7)

(c) PAD can also be applied to
SRe2L and brings non-trivial
improvements.

Table 5: (a) Ablation results of discarding deep-layer parameters during information embedding on
CIFAR-10. (b) We compare our data selection strategy with that of BLiP on CIFAR10. The left in
the bracket denotes the improvement over MTT, and the right denotes the percentage of real data
used for distillation. (c) Results of SRe2L on CIFAR-100 after applying PAD.

(a) with 100% parameters (b) with 75% parameters (c) with 50% parameters

Figure 4: Synthetic images of CIFAR-10 IPC50 obtained by PAD with different ratios of parameter
selection. Smoother image features indicate that by removing some shallow-layer parameters during
matching, PAD successfully filters out coarse-grained low-level information.

large IPCs. With increasing ratios of shallow-layer parameters being discarded, we can ensure that
low-level information is effectively filtered out from the distilled data.

5 DISCUSSION

5.1 DISTILLED IMAGES WITH FILTERING INFORMATION EMBEDDING

To see the concrete patterns brought by removing shallow-layer parameters to perform the trajectory
matching, we present distilled images obtained by discarding various ratios of shallow-layer parame-
ters in Figure 4. As can be observed in Figure 4a, without removing any shallow-layer parameters to
filter misaligned information, synthetic images are interspersed with substantial noises. These noises
often take the form of coarse and generic information, such as the overall color distribution and edges
in the image, which provides minimal utility for precise classification.

By contrast, images distilled by our enhanced methodology (see Figure 4b and Figure 4c), which
includes meticulous masking out shallow-layer parameters during trajectory matching according to the
compressing ratio, contain more fine-grained and smoother features. These images also encapsulate
a broader range of semantic information, which is crucial for helping the model make accurate
classifications. Moreover, we observe a clear trend: as the amount of the removed shallow-layer
parameters increases, the distilled images exhibit clearer and smoother features.

5.2 RATIONALE FOR PARAMETER SELECTION

In this section, we analyze why shallow-layer parameters should be masked out from the perspective
of trajectory matching. In Figure 5, we present the changes in trajectory matching loss across
different layers as the distillation progresses. Compared to the deep-layer parameters of the agent
model, a substantial number of shallow-layer parameters exhibit low loss values that fluctuate during
the matching. By contrast, losses of the deep layers are much higher but consistently decrease
as distillation continues. This suggests that matching shallow layers primarily conveys low-level
information that is readily captured by the synthetic data and quickly saturated. Thus, the excessive
addition of such low-level information produces noise, reducing the quality of distilled datasets.

For a concrete visualization, we provide distilled images resulting from using only shallow-layer
parameters or only deep-layer parameters to match trajectories in Figure 6. The coarse image features
depicted in Figure 6a further substantiate our analysis.
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(b) CIFAR-10 IPC10
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(c) CIFAR-10 IPC500

Figure 5: Losses of different layers of ConvNet after matching trajectories for 0, 1000, and 5000
iterations. We notice a similar phenomenon on both small (IPC1 and IPC10) and large IPCs (IPC500):
losses of shallow-layer parameters fluctuate along the matching process, while losses of deep-layer
parameters show a clear trend of decreasing.

(a) Match shallow layers only (b) Original (c) Match deep layers only

Figure 6: Synthetic images visualization with parameter selection. Matching parameters in shallow
layers produces an abundance of low-level texture features, whereas patterns generated by matching
deep-layer parameters embody richer high-level semantic information.

To further demonstrate the importance of deep-layer parameters, we show performances of discarding
deep-layer parameters in Table 5a. As can be observed, there are significant performance drops when
these parameters are not used for distillation. As the discarding ratio increases, the performance drop
becomes more serious for all IPCs. Also, the impact of discarding deep-layer parameters is more
significant on larger IPCs. These results verify that deep-layer parameters are more important than
shallow-layer parameters.

5.3 OTHER METHODS WITH DATA SELECTION

To further demonstrate the effectiveness of our FIEX, we compare ours with BLiP (Xu et al., 2023),
which also uses a data selection strategy before distillation. It proposes a data utility indicator to
evaluate if samples are ’useful’ given an IPC setting, and then samples with low utility are pruned.
As shown in Table 5b, PAD brings better performance improvements on IPC1/10/50. Under a given
data-dropping ratio, PAD’s improvements over BLiP get larger as the IPC increases. This supports
our conclusion that difficulty misalignment between IPCs and real data used is more harmful. PAD’s
data selection module is more effective in removing such misaligned information.

5.4 GENERALIZATION TO RECENT ADVANCEMENTS

In Section 2, we show that the two filtering modules of PAD can be applied on seminal matching-
based DD baselines (DC, DM, MTT) and improve their performances remarkably. To catch up with
the latest DD progress, we combine PAD with a more recent DD method that achieves great success
on high-resolution datasets, SRe2L (Yin et al., 2023), to show that PAD can also generalize well on
other methods. As shown in Table 5c, by filtering out misaligned information extracted in SRe2L’s
squeeze and recover stages, the performance of SRe2L improves on both small and large IPC
settings. Particularly, PAD’s information extraction filter brings more pronounced improvements to
smaller IPCs. This further validates PAD’s efficacy in aligning information of dataset distillation and

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

demonstrates that PAD also has decent generalizability on other methods that involve an information-
extraction-like or information-embedding-like component.

6 RELATED WORK

Introduced by Wang et al. (2020), dataset distillation aims to synthesize a compact set of data that
allows models to achieve similar test performances compared with the original dataset. Since then, a
number of studies have explored various approaches. Most of the popular methods can be divided
into three types: matching-based, generative-model-based, and knowledge-distillation-based.

Matching-based methods. These methods first use agent models to extract information from the
target dataset by recording a specific metric (Du et al., 2023; Lee et al., 2022; Shin et al., 2023; Liu
et al., 2023). Representative works that design different metrics include DC (Zhao et al., 2020) that
matches gradients, DM (Zhao & Bilen, 2021a) that matches distributions, and MTT (Cazenavette
et al., 2022) that matches training trajectories. Then, the distilled dataset is optimized by minimizing
the matched distance between the metric computed on synthetic data and the record one from the
previous step. Following this workflow, many works improved the efficacy of the distilled dataset.

For example, CAFE (Wang et al., 2022) preserves the real feature distribution and the discriminative
power of the synthetic data and achieves prominent generalization ability across various architectures.
DATM (Guo et al., 2023) proposes to match early trajectories for small IPCs and late trajectories
for large IPCs, achieving SOTA performances on several benchmarks. BLiP (Xu et al., 2023)
discovers the issue of data redundancy in the previous distillation framework and propose to prune
the real dataset before distillation. PDD (Chen et al., 2023) identifies the change of learned pattern
complexity at different training stages and proposes a multi-stage distillation process where each
synthetic subset is conditioned on the previous ones to alleviate the above challenge. Moreover,
new metrics such as spatial attention maps (Sajedi et al., 2023; Khaki et al., 2024) have also been
introduced and achieved promising performance in distilling large-scale datasets. Despite these
advancements, matching-based methods often overlook the misalignment in information extraction
and information embedding, restricting their performances to be further improved. Generative-
model based methods. GANs (Goodfellow et al., 2014; Karras et al., 2018; 2019; Wang et al.,
2023) and diffusion models (Rombach et al., 2021; Moser et al., 2024; Gu et al., 2023) can also
be used to synthesize high quality datasets. DiM (Wang et al., 2023) uses deep generative models
to store information of the target dataset. GLaD (Cazenavette et al., 2023) transfers synthetic data
optimization from the pixel space to the latent space by employing deep generative priors. It enhances
the generalizability of previous methods.

Knowledge-distillation-based methods. Different from previous dataset distillation approaches,
methods following this track apply knowledge distillation during the evaluation of synthetic data.
SRe2L (Yin et al., 2023) introduces a "squeeze, recover, relabel" procedure that decouples previous
bi-level optimization and achieves success on high-resolution settings with lower computational
costs. RDED (Sun et al., 2023) proposes a computationally efficient DD method that doesn’t require
synthetic image optimization by extracting and rearranging key image patches.

7 CONCLUSION

In this work, we find a limitation of existing Dataset Distillation methods in that they will introduce
misaligned information to the distilled datasets. To alleviate this, we propose PAD, which incorporates
two modules to filter out misaligned information. For information extraction, PAD prunes the target
dataset based on sample difficulty for different IPCs so that only information with aligned difficulty
is extracted by the agent model. For information embedding, PAD discards part of shallow-layer
parameters to avoid injecting low-level basic information into the synthetic data. PAD achieves SOTA
performance on various benchmarks. Moreover, we show PAD can also be applied to methods based
on matching gradients and distributions, bringing improvements across various IPC settings.

Limitations Our alignment strategy could also be applied to methods based on matching gradients
and distributions. However, due to the limitation of computing resources, for methods based on
matching distributions and gradients, we have only validated our method’s effectiveness on DM (Zhao
& Bilen, 2021a) and DC (Zhao et al., 2020) (see Table 6 and Table 7).
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RatioIPC 5% 10% 15% 20% 25% 30% 50% Baseline

1 28.0 28.4 28.5 29.1 28.8 28.1 27.9 27.8
10 45.2 45.5 45.7 46.1 46.3 45.3 44.5 44.7

500 71.7 71.9 71.2 71.4 70.3 69.8 67.1 71.4

(a) Removing various ratios of hard/easy samples improves DC on small/large IPCs.
RatioIPC 5% 10% 15% 20% 25% 30% 50% Baseline

1 26.8 27.1 27.3 27.9 28.2 28.5 29.2 26.4
10 48.6 48.9 49.7 50.3 49.6 49.2 48.5 48.4

500 75.6 76.2 76.3 75.8 75.3 74.6 74.2 75.1

(b) Removing various ratios of hard/easy samples improves DM on small/large IPCs.

Table 6: Results of filtering information extraction by removing hard/easy samples in DC(a) and
DM(b) on CIFAR-10.

APPENDIX

A ADDITIONAL EXPERIMENTAL RESULTS AND FINDINGS

A.1 FILTERING MISALIGNED INFORMATION IN DC AND DM

Although PAD is implemented based on trajectory matching methods, we also test our proposed
data alignment and parameter alignment on gradient matching and distribution matching. The
performances of enhanced DC and DM with each of the two modules are reported in Table 6 and
Tabl 7, respectively. We provide details of how we integrate these two modules into gradient matching
and distribution matching in the following sections.

Gradient Matching We use the official implementation1 of DC (Zhao et al., 2020). In the Information
Extraction step, DC uses an agent model to calculate the gradients after being trained on the target
dataset. We employ filter misaligned information in this step as follows: When IPC is small, a certain
ratio of hard samples is removed from the target dataset so that the recorded gradients only contain
simple information. Conversely, when IPC becomes large, we remove easy samples instead.

In the Information Embedding step, DC optimizes the synthetic data by back-propagating on the
gradient matching loss. The loss is computed by summing the differences in gradients between
each pair of model parameters. Thus, we apply parameter selection by discarding a certain ratio of
parameters in the shallow layers.

Distribution Matching We use the official implementation of DM (Zhao & Bilen, 2021a), which can
be accessed via the same link as DC. In the Information Extraction step, DM uses an agent model
to generate embeddings of input images from the target dataset. Similarly, filtering information
extraction is applied by removing hard samples for small IPCs and easy samples for large IPCs.

In the Information Embedding step, since DM only uses the output of the last layer to match
distributions, we modify the implementation of the network such that outputs of each layer in the
model are returned by the forward function. Then, we perform parameter selection following the
same practice as before.

A.2 DATA SCHEDULER

To support the way we design the data scheduler to remove easy samples at late trajectories directly,
we compare direct removal with gradual removal. The implementation of gradual removal is similar
to the hard sample addition. Experimental results are shown in Table 8(8a) on CIFAR-10 and
CIFAR-100. Only large IPCs are tested because only large IPCs match late trajectories. As can
be observed, compared with gradually removing easy data, deleting easy samples in one operation
performs better. This supports our conclusion that after being trained on the full dataset for some

1https://github.com/VICO-UoE/DatasetCondensation.git
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IPC Ratio Baseline25% 50% 75%

10 45.2 44.7 43.8 44.9
500 72.5 72.8 73.4 72.2

(a) Matching gradients from deep-layer parameters
leads to improvements.

IPC Ratio Baseline25% 50% 75%

10 49.5 49.1 48.3 48.9
500 75.5 75.9 76.3 75.1

(b) Matching distributions from deep-layer param-
eters leads to improvements.

Table 7: Results of filtering information embedding by masking out shallow-layer parameters for
metric computation in DC(a) and DM(b) on CIFAR-10.

CIFAR-10 CIFAR-100
IPC IPCStrategy

50 100 50 100

Gradually remove 84.2 86.4 55.6 58.3
Directly remove 84.6 86.7 55.9 58.5

(a) Directly removing easy samples at late trajecto-
ries brings better performances.

FIEX FIEM Accuracy(%)

55.0
✓ 55.5

✓ 55.8
✓ ✓ 56.2

(b) Each module brings non-trivial improvements
to the baseline.

Table 8: (a) Comparison between gradually removing easy samples and directly removing easy
samples during trajectory training. (b) Ablation results on CIFAR-100 IPC50.

epochs, it is more effective for the model to focus on learning hard information rather than easy
information by removing easy samples directly.

A.3 COMPARISON WITH RECENT ADVANCES

Although PAD is designed to filter out misaligned information in matching-based methods, we are
aware of the recent advancements in the DD field. Therefore, we compare two more recent methods,
RDED (Sun et al., 2023) and SPEED (Wei et al., 2023).

RDED is a non-optimization-based method that selects important image tokens and reconstructs
them back to images. During evaluation, knowledge distillation is applied by minimizing the
Kullback-Leibler (KL) divergence between the student model’s output and the teacher model’s output
on the same batch of synthetic data. To compare with such a method, we adopt its knowledge
distillation strategy during evaluation to ensure a fair comparison. Other experimental settings of
PAD are the same. As shown in Table 9, PAD demonstrates superior performances in most of the
settings, especially when the compressing ratio is higher (larger IPCs). On small IPCs, the knowledge
distillation leads to a drop in PAD’s pure DD performance (Table 1). This is because knowledge from
a well-trained teacher exceeds the capacity of small IPCs.

SPEED is a parameterization-based method that prioritizes proper parameterization of the synthetic
dataset. It proposes spatial-agnostic epitomic tokens and sparse coding matrices to reduce spatial
redundancy. In Table 10, we show that although SPEED excels at IPC1, it is difficult for the method
to scale to higher compressing ratios effectively. By contrast, PAD shows prominent scalability on
IPC10 and IPC50 with non-trivial performance improvements. In terms of computational efficiency,
both methods use trajectory-matching as the backbone, but SPEED requires more optimizations on
the feature-recurrent network.

A.4 INSENSITIVITY TO HYPER-PARAMETERS

Although PAD introduces two hyper-parameters in the FIEX module, its performance is not sensitive
to their values, and they are easy to tune. In Table 11, we show different combinations of AEE and
IR on three datasets. We find that when the AEE is 20 or 40, and IR is around 75% to 80%, the
change in performance is marginal. This shows that these two hyper-parameters do not significantly
influence PAD’s performance within a proper range.
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Dataset CIFAR10 CIFAR-100 TinyImageNet
IPC 1 10 50 1 10 50 1 10 50

RDED 23.5±0.3 50.2±0.3 68.4±0.1 19.6±0.3 48.1±0.3 57.0±0.1 12.0±0.1 39.6±0.1 47.6±0.2
PAD 26.8±0.6 62.3±0.5 78.5±0.3 16.4±0.4 50.2±0.3 59.3±.2 10.1±0.3 37.2±0.5 48.5±0.3

Table 9: Comparison between PAD and RDED on CIFAR-10, CIFAR-100, and TinyImageNet. PAD
achieves superior performances in 6 out of 9 settings. On larger IPCs, PAD’s advantage is more
pronounced.

Dataset CIFAR-100 TinyImageNet
IPC 1 10 50 1 10 50

SPEED 40.4±0.4 45.9±0.3 49.1±0.2 26.9±0.3 28.8±0.2 30.1±0.3
PAD 16.4±0.4 50.2±0.3 59.3±.2 10.1±0.3 37.2±0.5 48.5±0.3

Table 10: Comparison between PAD and SPEED on CIFAR-100 and TinyImageNet. PAD demon-
strates superior scalability on larger IPCs.

B EXPERIMENTAL SETTINGS

We use DATM (Guo et al., 2023) as the backbone TM algorithm, and our proposed PAD is built upon.
Thus, our configurations for distillation, evaluation, and network are consistent with DATM.

Distillation. We conduct the distillation process for 10,000 iterations to ensure full convergence of
the optimization. By default, ZCA whitening is applied in all the experiments.

Evaluation. We train a randomly initialized network on the distilled dataset and evaluate its per-
formance on the entire validation set of the original dataset. Following DATM (Guo et al., 2023),
the evaluation networks are trained for 1000 epochs to ensure full optimization convergence. For
fairness, the experimental results of previous distillation methods in both low and high IPC settings
are sourced from (Guo et al., 2023).

Network. We employ a range of networks to assess the generalizability of our distilled datasets.
For scaling ResNet, LeNet, and AlexNet to Tiny-ImageNet, we modify the stride of their initial
convolutional layer from 1 to 2. In the case of VGG, we adjust the stride of its final max pooling
layer from 1 to 2. The MLP used in our evaluations features a single hidden layer with 128 units.

Hyper-parameters. Hyper-parameters of our experiments on CIFAR-10, CIFAR-100, and TinyIma-
geNet are reported in Table 12. Hyper-parameters can be divided into three parts, including FIEX,
FIEM, and trajectory matching (TM). For FIEX, the ratio of easy samples removed for all IPCs is
10%. Soft labels are applied in all experiments, we set its momentum to 0.9.

Compute resources. Our experiments are run on 4 NVIDIA A100 GPUs, each with 80 GB of
memory. The amount of GPU memory needed is mainly determined by the batch size of synthetic
data and the number of steps that the agment model is trained on synthetic data. To reduce the GPU
usage when IPC is large, one can apply TESLA (Cui et al., 2022) or simply reducing the synthetic
steps N or the synthetic batch size. However, the decrement of hyper-parameters shown in Table 12
could result in performance degradation.
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IR
AEE

20 30 40

50% 66.2 65.9 66.1
75% 67.8 67.6 67.5
80% 67.6 67.7 67.4

(a) CIFAR-10 IPC10

IR
AEE

20 30 40

50% 47.8 47.7 47.7
75% 48.3 48.1 48.4
80% 48.2 48.3 48.3

(b) CIFAR-100 IPC10

IR
AEE

20 30 40

50% 16.9 16.8 17.3
75% 17.4 17.5 17.7
80% 17.3 17.4 17.6

(c) TinyImageNet IPC1

Table 11: Setting IR=75% and AEE=40 generalize well across various datasets. Generally, 75%-80%
for IR and 20-40 for AEE are good settings with minor performance fluctuation.

Dataset IPC
DA PA TM

IR AEE α N M T− T T+ Interval
Synthetic

Batch Size
Learning Rate

(Label)
Learning Rate

(Pixels)

CIFAR-10

1

0.75 20

0% 80 2 0 4 4 - 10 5 100
10 25% 80 2 0 10 20 100 100 2 100
50 25% 80 2 0 20 40 100 500 2 1000
500 50% 80 2 40 60 60 - 1000 10 50

1000 75% 80 2 40 60 60 - 1000 10 50

CIFAR-100

1

0.75 40

0% 40 3 0 10 20 100 100 10 1000
10 25% 80 2 0 20 40 100 1000 10 1000
50 50% 80 2 40 60 80 100 1000 10 1000
100 50% 80 2 40 80 80 - 1000 10 50

TI
1

0.75 40
0% 60 2 0 15 30 400 200 10 10000

10 25% 60 2 0 20 40 100 250 10 100
50 50% 80 2 20 40 60 100 250 10 100

Table 12: Hyper-parameters for different benchmarks.

Figure 7: Distilled images of CIFAR-10 IPC10
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Figure 8: Distilled images of CIFAR-100 IPC1
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Figure 9: Distilled images of Tiny-ImageNet IPC1
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