
Dynamic Option Creation in Option-Critic
Reinforcement Learning

Mateus B. Melchiades

Universidade do Vale do Rio dos Sinos

São Leopoldo, Brazil

mateusbme@edu.unisinos.br

Gabriel de O. Ramos

Universidade do Vale do Rio dos Sinos

São Leopoldo, Brazil

gdoramos@unisinos.br

Bruno C. da Silva

University of Massachusetts, Amherst

Amherst, United States of America

bsilva@cs.umass.edu

ABSTRACT
Reinforcement Learning (RL) is an increasingly popular technique

in the field of machine learning due to its ability to learn by in-

teracting directly with the environment. The options framework

introduces the concept of temporal abstraction in MDPs by com-

bining high level courses of action that may span over multiple

time steps with primitive, single-step actions, which can greatly

improve planning and learning speeds. Throughout the past two

decades, there has been active interest in autonomous option discov-

ery, as well as determining what characterizes a good option. The

Option-Critic Architecture and its successors accomplished several

improvements in autonomous option discovery. However, given the

fact that in most problems the ideal number of options for learning

an optimal policy is not evident, Option-Critic’s reliance on a fixed

set of options proves as a limitation. In the present work, we pro-

pose an algorithm for creating options dynamically in training time,

using the Fast-Planning Option-Critic implementation as a base.

The Dynamic Option Creation algorithm (DOC) analyzes the vari-

ance in episodic returns when selecting each option to determine

whether the learning process would benefit from a new option. The

variance in returns is expected to start high and decrease as the

agent learns the environment, which may not happen if the current

set of options cannot properly represent the desirable behavior.

Our method manages to achieve similar cumulative per-episode

reward in the four-rooms environment as FPOC adjusted to use the

best number of options, with the added benefit of discovering such

number automatically. The proposed method can also be adapted

to other Option-Critic algorithms, solving a major limitation of the

original architecture, which requires multiple runs with different

parameters to determine the ideal number of options for the task.

KEYWORDS
Reinforcement Learning, Options, Dynamic, Creation, Option-Critic

1 INTRODUCTION
The Options Framework [22] introduces the concept of temporally

abstracted actions in Reinforcement Learning, which has proven

paramount in learning complex behavior patterns. Options can

reduce the time to learn an optimal policy for a given environment

by abstracting desired courses of action into sub-policies, known

as intra-option policies, each representing some higher level action.

For instance, where a traditional MDP would need to handle a

robot’s movement as a series of voltages to apply to each stepper

motor controlling movement, options can learn a single extended

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

action such as moving a leg or turning 180 degrees. Then, a policy

over options would only have to learn how to best select this set

of temporally extended actions to complete the task at hand. This

method of choosing actions is comparable to human-like planning,

where actions are not considered as a series of muscle twitches,

but instead as higher order tasks like walking towards a place or

picking up an object [22].

Despite its clear advantage, what characterizes a good option,

as well as what should an option achieve, is still open for debate.

While some works defend that discovered options should reach

bottleneck states—i.e. hallways in a four-rooms environment—[15,

16, 18, 19], others suggest that options should instead focus on

being transferable across different tasks [4, 5, 11]. Furthermore,

most works in literature fail to acknowledge the extra planning cost

inherent from having more options [23]. We approach the option

discovery problem with the idea that options should complement

each other, and that new options should be created if, and only if,

the current set of options cannot cover the entire state space. Given

an environment with a set of options that span between dynamic—

learnable—and primitive—fixed—options, if no option is capable of

providing consistent returns for a region in the state space, we can

assume such region is not covered and a new option is necessary for

handling it. An inconsistent set of returns can be represented by the

variance in accumulated rewards over multiple episodes. When the

agent is in the process of learning an environment, its accumulated

return over time tends to vary drastically as it tries varied courses

of action, but decreases as it learns what behaviors are effective.

If we consider the high variability—variance—in returns as the

agent’s uncertainty towards an environment, we can interpret a

continuously high variance as the agent struggling to learn some

part of the environment.

In the present work, we introduce Dynamic Option Creation

(DOC): an algorithm capable of automatically scaling the number

of options dynamically by observing the variance in accumulated

rewards over time. If the variance in accumulated rewards fails to

decrease as training progresses, then a new option is automatically

created and initialized using experience replay from steps where

previous options are unlikely to be selected. We assess the effec-

tiveness of our method in the classical four-rooms environment

[22] and make a comparison against Fast-Planning Option-Critic

[23]—the implementation used as base for ours. Our results show

that our method achieves learning curves comparable to FPOC,

but with the added benefit of scaling to the necessary number of

options automatically. To the best of our knowledge, this is the first

approach capable of creating options dynamically in Option-Critic.

Given that traditional Option-Critic algorithms have to be executed

multiple times, each with a different number of options to discover

the ideal value for the given task, our method is able to speed up

training by only having to run once.

The main contributions of this work can be enumerated as:

(1) A method for evaluating a candidate set of options using a

metric based on each option’s return variance as a proxy for

epistemic uncertainty;

(2) A mechanism to dynamically determine whether new op-

tions may be needed given the task at hand;

(3) A method to initialize a new option’s policy by actively

selecting relevant experiences from a replay buffer;

(4) An empirical evaluation of the proposed method demon-

strating it can achieve equal (or better) performance than

variants of the Option-Critic algorithm, without requiring
prior knowledge of the optimal number of options for a given
set of tasks.

The rest of this paper is organized as follows. Section 2 reviews

related work. Section 3 details fundamental concepts. Section 4 in-

troduces our Dynamic Option Creation approach. Section 5 presents

the experimental evaluation. Concluding remarks and future direc-

tions are discussed in Section 6.

2 RELATEDWORK
Many of the initial work in option discovery was primarily focused

on autonomously discovering subgoals. One popular approach

for determining good subgoals was through the concept of bot-
tleneck states, which represent regions where the agent tends to

visit frequently on successful paths but not on unsuccessful ones

[15, 16, 18, 19]. The idea behind learning bottleneck states as op-

tions was that, by delegating the act of reaching important states

to a separate policy, the main policy could focus on reaching the

goal once it is there.

In recent years, however, there have been numerous option dis-

covery algorithms that go beyond just bottlenecks. Machado et al.

[12] introduce the concepts of eigenpurpose and eigenbehavior for
describing reward functions and policies by combining representa-

tion learning with option discovery. The authors construct proto-

value functions (PVFs) [14] from theMDP’s transition matrix which

represent the desire to reach some specific region in the state space.

Their conclusion was that eigenoptions—the options discovered by

their method—tend to incentivize exploration while not discovering

only bottlenecks, which they argue can hinder exploration when

naively added to the agent’s action set. Subsequent work focus on

expanding the concept of eigenoptions to stochastic environments

[13] and deep reinforcement learning [9], respectively.

Other authors take advantage of the abstraction capabilities of

options for learning skills that can be used in tasks similar to the

one the option was trained on. In Konidaris and Barto [11], the

authors propose learning options over two separate representa-

tions, one in problem-space that is Markov and particular for the

current task, and other in agent-space that may not be Markov but

is retained across tasks. Croonenborghs et al. [4] approach skill

transfer by extending the options framework to the relational set-

ting, which allows abstractions over object identities. More recently,

Han and Tschiatschek [5] propose finding abstract successor options,
which represents options through their successor features. Succes-

sor features can be described as the discounted sum of features of

state-action pairs encountered when starting from some state and

following a given policy [2].

The Option-Critic (OC) Architecture is derived from Actor-Critic

[10] and uses the policy gradient theorem [10, 21] to derive new

policies, thus addressing the scalability issues that arise with finding

subgoals and their respective optimal policies in more complex

problems [1]. One of the method’s greatest improvements over

previous work is that it can gradually learn the intra-option policies

and the policy over options at the same time, incurring no slowdown

when compared to the traditional RL learning process. In the context

of OC, the intra-option policies, termination functions, and policy

over options are part of the actor, while 𝑄𝑈 and 𝐴O belong to the

critic.

The Asynchronous Advantage Option-Critic (A2OC) [6] im-

proves upon Option-Critic by addressing its tendency to often

degenerate options into single-step actions by using the notion of

deliberation cost. The introduction of deliberation cost encourages

the agent to sustain an option for a longer period by penalizing

frequent option switching, leading to more stable and specialized

options. The proposed algorithm builds on top of the asynchronous

advantage actor-critic (A3C) [17], which leverages parallel agent

updates to stabilize learning in large-scale environments. Mean-

while, the Actor-Critic Termination-Critic (ACTC) [7] iterates upon

Option-Critic and A2OC by focusing on the predictability and com-
pressibility of options. The authors propose that the termination

condition of options should minimize the entropy of the final state

distribution, meaning that an option should ideally terminate in a

small, predictable set of states, thus leading to simpler and more

behaviorally meaningful abstractions.

Other notable variations of Option Critic are the Safe Option-

Critic and the Attention Option-Critic. The Safe Option-Critic [8]

is an extension of OC that focuses on safe behavior. The authors

consider a behavior as safe when it avoids regions of state-space

with high uncertainty in its outcomes. By defining controllable

states as those with a lower variance in TD error, the Safe Option-

Critic algorithm adds controllability to the optimization objective.

As a result, the proposed method managed to identify and avoid

areas in the state space with high variability, which, as expected,

result inmore predictable returns.Meanwhile, the AttentionOption-

Critic [3] uses an attention mechanism for learning options that

focus on different aspects of the observation space. The algorithm

learns an attention mechanism with the intent of maximizing the

expected cumulative return of the agent while also maximizing

the distance between the attentions of options. When compared

to Option-Critic, the learned options are not only more diverse,

but also do not degenerate over time, meaning that they are more

evenly selected and last longer.

We base ourmethod on the Fast Planning Option-Critic proposed

by Wan and Sutton [23], which extends option discovery to the

multi-task problem. In the authors’ implementation, all tasks share

the same state and action spaces, but each task has its own corre-

sponding set of terminal states. Once the agent reaches a terminal

state for the current task, both the episode and task are complete.

The proposed method manages to accomplish faster planning by

reducing the number of elementary operations in option-value

iterations. The proposed algorithm, however, is limited in three

major ways according to the authors. The first limitation is the

fact that the algorithm treats only the tabular setting, which limits

the complexity of problems that can be tackled. The second limi-

tation is the fixed set of tasks, which the authors argue should be

discovered by the agent. The last major limitation is the reliance

on a human-specified number of options, which we tackle in our

approach. Although some of the early work in option discovery

supported a dynamic number of options, recent implementations

rely on a user-defined number, which can hinder their quality if set

too low and hurt planning speeds if set too high. To the best of our

knowledge, this is the first work that focuses on implementing a

dynamic option scaling algorithm to Option-Critic algorithms.

3 PRELIMINARIES
A Markov Decision Process, MDP for short, is the formalization of

the sequential decision making problem, where taking an action in

the current time step affects not only the agent’s immediate reward,

but also the subsequent state, and, consequently, future rewards

as well [20]. We can mathematically define a finite MDP as a tuple

M � ⟨S,A, 𝛾, 𝑟, 𝑝⟩, where S and A denote the state and action

sets, respectively, 𝛾 the discount factor, 𝑟 : S × A × S → R the

reward function, and 𝑝 : S × R × S × A → [0, 1] the probability
distribution over next states and rewards given that an action 𝑎 ∈ A
is taken at state 𝑠 ∈ S [6]. Given a state 𝑠 ∈ S, the agent takes
action 𝑎 ∈ A, receives a reward 𝑟 ∈ R, and transitions to the next

state 𝑠′ ∈ S with regards to the probability distribution 𝑝 → [0, 1],
represented by Equation 1:

𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) � Pr{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎}. (1)

When a policy 𝜋 interacts with anMDPM, we say that 𝜋 induces

a Markov process over the states, actions, and rewards ofM over

which we can expect a discounted return as defined by the value

function 𝑣𝜋 (𝑠) ∀𝑠 ∈ S.
The options framework is a set of methods for working with tem-

poral abstraction in RL and can be described as closed-loop policies

that focus on taking high-level actions that span over an extended

period of time [22]. For instance, when planning a vacation, a hu-

man would normally think of steps like searching for a destination,

booking a flight, or checking hotel availability. However, as MDPs

are only capable of working with discrete time steps, each of these

actions would actually need to be represented as a series of muscle

twitches. By instead learning high level skills—sequences of actions

that can take a non-deterministic number of steps to complete—

as separate policies, an agent would only have to iterate over the

set of high-level tasks to plan ahead. These temporally extended

courses of actions are known as options. The authors build on the

theory of semi-Markov decision processes (SMDPs), a variation

of the regular MDP that is capable of modeling continuous-time

discrete-event systems—in other words, SMDPs allow a model to

support temporally-extended courses of action. A fixed set of op-

tions O defines a discrete-time SMDP embedded within the original

MDP, where the base system is an MDP with single-step transitions

and the options define potentially larger SMDP-like transitions.

An option can be represented by the triple ⟨I, 𝜋, 𝛽⟩, where
𝜋 : S × A → [0, 1] represents its internal policy, I ⊆ S is the

initiation set denoting in what states the option may be initiated,

and 𝛽 : S+ → [0, 1] is the option’s termination condition, where

S+ represents the set of states plus the terminal state, if the lat-

ter exists. After a state transition, the option can either terminate

with probability 𝛽 (𝑠𝑡+1) or continue its execution by determining

𝑎𝑡+1 from 𝜋 (𝑠𝑡+1, ·), transitioning to 𝑠𝑡+2, possibly terminating with

probability 𝛽 (𝑠𝑡+2), and so on. Once an option terminates, the agent

chooses a new option from the set of available options for the cur-

rent state, defined by O𝑠 . It is convenient to extend O𝑠 for every
𝑠 ∈ S to also cover the primitive actions in the set A𝑠 , which

can be represented as a special type of option that can be initi-

ated anywhere, only lasts a single time step, and always chooses

𝑎: O𝑎𝑠 = ⟨I : S, 𝜋 : 𝑎 ∀𝑠 ∈ S, 𝛽 : 1 ∀𝑠 ∈ S⟩. By extending the

option set, we have |O| = |dynamic options| + |A|. Although the

original options framework does not touch on the subject of auto-

matic option discovery, the authors define the concept of subgoals
by assigning a terminal subgoal value 𝑔(𝑠) for each state to indicate

how desirable it is for the learned option to terminate at 𝑠 .

The Fast Planning Option-Critic algorithm introduced in Sec-

tion 2 presents a tabular approach to multi-task option discovery,

where the objective becomes solving a finite set of episodic tasks

N , all of which share the same state and action spaces S and A,

respectively [23]. The authors propose using interest functions as a

replacement for the option’s initiation set, which allows an option’s

initiation to be stochastic and thus more selective. An option using

interest functions is defined as the tuple ⟨𝑖𝑜 , 𝜋𝑜 , 𝛽𝑜 ⟩, where 𝑖𝑜 ∈ Γ is

the option’s interest function, Γ : {𝑓 | 𝑓 : S → [0, 1]}. At each state,
its initiation set is determined by sampling the interest functions for

every option initializable in the current state: Pr(𝑜 ∈ Ω(𝑠)) = 𝑖𝑜 (𝑠).

4 DYNAMIC OPTION CREATION
The proposed algorithm consists of two major parts: option evalua-

tion via uncertainty, and option initialization with selective experi-

ence replay. The former, expanded in Section 4.1, uses the variance

in an option’s returns as a measure of uncertainty, where options

that struggle to learn specific behavior tend to consistently yield

high variances. The latter, explained in Section 4.2, occurs when

uncertainty crosses a defined threshold, which triggers the creation

of a new option using selective experience replay with a focus on

states where existing options fared poorly—that is, experience is

not applied if the policy over options is more likely to choose an

existing option over the newly created option. Figure 1 presents a

diagram of the Dynamic Option Creation algorithm acting over the

Fast-Planning Option Critic [23].

4.1 Defining Option Uncertainty
The return of an option has variance. This variance is influenced by

the stochasticity of the environment, the stochastic nature of the

option’s policy, and the ongoing updates to the policy during the

learning process—which may cause it to produce different returns

even within the same episode. The first component affecting return

variance—environmental stochasticity—cannot be controlled by

the agent and is determined solely by the dynamics of the MDP

itself. We refer to this as exogenous variance, as it arises from factors

outside the agent’s control.

During the learning process, policies (such as a meta-policy

or an option’s policy) are typically initialized randomly, e.g., by

initializing an actor network with random weights. This process

Option ⟨𝑖, 𝜋, 𝛽⟩
Option ⟨𝑖, 𝜋, 𝛽⟩

𝑊𝑖, 𝑊𝜋, 𝑊𝛽

𝑟𝑡

Environment

Policy over options 𝜇

Option ⟨𝑖, 𝜋, 𝛽⟩
Option ⟨𝑖, 𝜋, 𝛽⟩

Option ⟨𝑖, 𝜋, 𝛽⟩

𝑄𝑁

TD Error

𝑎𝑡𝑠𝑡

Replay buffer

Dynamic Option
Creation

Figure 1: Overview of the agent’s learning process with Dy-
namic Option Creation.

will temporarily result in increased return variance as the policy is

still being updated frequently and significantly in the early stages of

training. As the policy is updated towards convergence, the variance

in returns will naturally decrease. For these reasons, we posit that

variance in an option’s return can serve as a proxy for epistemic

uncertainty. Higher return variance often indicates that the agent

has not yet sufficiently interacted with the system for an option’s

policy to converge to an effective behavior. As a result, returns tend

to show higher variance early in training and when the option’s

policy is not yet reliable—both due to inherent policy stochasticity

and to the frequent, impactful policy updates occurring when the

option performs poorly and is far from convergence.

We propose a novel approach to assess the quality of an option by

observing its variance over a specified time period. After 𝑛 episodes,

the training process is interrupted and an evaluation process is

executed for 𝑚 episodes, where the agent always acts greedily.

Let P = 0, 1, 2, . . . ,𝑚 be the set of all evaluation episodes. We can

defineV𝑜 � {𝜎2𝑅𝑜
𝑝
| O𝑝 = 𝑜, 𝑝 ∈ P} as the variance in accumulated

rewards for option 𝑜 , where 𝑅𝑜𝑝 is the accumulated reward for every

step in episode 𝑝 where the agent chose option 𝑜 . If we repeat the

evaluation process enough times, we can build a set of variances

denominated 𝜍𝑜 �
{
V1

𝑜 ,V2

𝑜 ,V3

𝑜 , . . .
}
containing the variances of

multiple evaluation processes. By applying a definite integration

over 𝜍𝑜 , we can observe the increase in variance over time. Figure 2a

uses FPOC to demonstrate the variance of a single dynamic option

in a 13×13 four-rooms gridworld [22], where every empty space

represents a possible goal for any given episode (further details

about the environment are provided in Section 5).

As we can see, the variance is highest at the first half of training,

where the agent is still learning the environment. The definite

integral represents the area between the 𝑥 axis and the variance

line and behaves the same way as the variance, except it provides a

much clearer representation of growth over time.Whenwe compare

the integral with a linear function, we can see that some stages of

learning are below the line, while others are above it. If we define

the slope of this linear function as a threshold, we can use it to

determine whether the variance is continuously higher than desired.

We can determine the integral’s slope for a given window of data

by first applying a linear regression to the values inside it, which

gives us a linear function in the form of 𝑦 = 𝑤1𝑥 +𝑤0. We can then

derivate the result relative to 𝑥 and obtain𝑤1, which represents the

slope in the regression. When applying this logic to a small enough

window, the loss in precision is marginal, as shown in Figures 2b

and 2c.

We can define the definite integral of 𝜍𝑜 by using the trapezoidal

rule and then applying linear regression to its result, thus obtaining

a linear function:

lsreg
©«
|𝜍𝑜 |∑︁
𝑘=1

𝜍𝑜𝑘−1 + 𝜍𝑜𝑘
2

ª®¬ ≈ 𝑤1𝑥 +𝑤0 (2)

where lsreg(𝑥) is the linear regression over 𝑥 .

Definition 1. The uncertainty factor 𝜀𝑜 for the current option is
defined by the derivative obtained from the regression in Equation 2,
multiplied by a discount factor:

𝜀𝑜 � (𝑒 |O|)−
2

𝑓

[
𝑑

𝑑𝑥
𝑤1𝑥 +𝑤0

]
, (3)

where the discount factor (𝑒 |O|)−
2

𝑓
is used to prevent options

from being created too frequently, being 𝑓 the number of times the

algorithm has calculated the uncertainty factor but did not create a

new option, and |O| the number of existing options.

The uncertainty factor is the value compared against the thresh-

old for deciding whether a new option is necessary. If the factor is

above the threshold, it means that the variance’s integral is contin-

uously high.

4.2 Initializing New Options
Once the algorithm has decided that creating a new option will ben-

efit the learning process, it must initialize the new option in a way

that complements existing ones. In other words, the new option

must focus on where previous options struggle. We initialize a new

option 𝑜+ with pessimistic (negative) values for the option-value

function 𝑞𝑜+ with the goal of discouraging exploration. Given that

we want the new option to focus solely on states where previous op-

tions fail, exploration can lead 𝑜+ to copy behavior already learned

by other options. A pessimistic initialization, therefore, helps in

giving more attention to state spaces whose return values are worse,

leading to a more focused option. We also set the interest function

for 𝑜+ as 𝑖𝑜+ (𝑠) = −
∑O\𝑜+
𝑜 𝑖𝑜 (𝑠), for all 𝑠 ∈ S. Intuitively, this en-

sures that the new option has (1) greater interest in states where

the existing options have low interest—i.e., states where the exist-

ing options are likely to perform poorly; or (2) conversely, lower
interest in states where existing options have high interest—i.e.,

states where they are likely to perform well.

After conditioning 𝑜+ to give higher emphasis towards state

spaces where previous options perform poorly—pessimistic initial-

ization of 𝑞𝑜+—or are not covered by them—conditioning of 𝑖𝑜+—we

apply experience replay to the new option before resuming training.

0.0 0.2 0.4 0.6 0.8 1.0

Steps 1e8

0

2000

4000

6000

8000

10000

12000

V
a
ri

a
n
ce

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

In
te

g
ra

l
V

a
ri

a
n
ce

1e11

Option's Variance

Option's Variance Integral

y = 5500 * x (for reference)

(a) Option variance (blue) and its integral (red) in a sample envi-
ronment, compared to a linear slope (gray).

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Steps 1e7

1.3

1.4

1.5

1.6

1.7

In
te

gr
al

1e11

0.0

0.2

0.4

0.6

0.8

1.0

R-
Sq

ua
re

d

Option's Integral Variance
Regression

(b) Option’s integral variance (blue) and its linear regres-
sion (red) with a window size of 50 points

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

In
te

gr
al

1e11

0.80

0.85

0.90

0.95

1.00

R-
Sq

ua
re

d

Regression
R-Squared per window

(c) Linear regression (red) and the 𝑅2 for each window
(green)

Figure 2: Obtaining the slope from the variance’s definite
integration.

Let us define the replay buffer 𝐵 as an array that stores the history of

the previous 50,000 episodes. Each element in the buffer represents

a full episode, and is comprised of two values: the episode’s history,

and the episodic return. The former is a list of tuples ⟨𝑆, 𝑟, 𝑆 ′,⊥⟩
representing each step in the elapsed episode, where ⊥ = 1 if the

step is terminal and 0 otherwise. The latter, formalized as𝐺1:𝜏 , rep-

resents the sum of all returns gained in the current episode, starting

from the initial step 𝑡 = 1 until termination 𝑡 = 𝜏 if ⊥𝜏 = 1. The

replay buffer can be formalized as:

𝐵 �
{{
{𝑆1𝐸 , 𝑆

2

𝐸 , 𝑆
3

𝐸
, . . . , 𝑆𝑡𝐸 },𝐺1:𝑡

}𝐸 ��� 𝐸 ∈ E}
𝑆𝑖𝐸 � ⟨𝑆𝑖 , 𝑟𝑖 , 𝑆𝑖+1,⊥𝑖 ⟩,

(4)

where 𝐸 is one episode in the set of all experience replay episodes

E, each containing one or more steps 𝑆𝐸 , and 𝐺𝐸 �
∑
𝑖∈𝐸 𝑟𝑖 is the

sum of rewards in each episode 𝐸.

For each step recorded in the buffer, we use the same option

selection technique used in training to check whether the algorithm

would select the newly created option. In other words, for every

step in an experience replay episode, we run the option selection

algorithm as if in training; if the option with highest likelihood of

being selected is 𝑜+, then we apply the experience step, otherwise,

we skip to the next step. This process avoids training the new option

with behavior that is already handled by previous options. Instead,

we shift the new intra-option policy towards covering state spaces

less visited by previous options.

FPOC uses the concept of interest functions to reduce the number

of options being considered at any given step, thus helping achieve

its goal of faster planning. Once the initiation set is determined by

sampling the options’ interest functions, the best option is selected

with regards to its𝑄 value [23]. We retain the same option selection

process used by FPOC in DOC, as our main focus is in creating

options. Algorithm 1 shows the complete algorithm for DOC.

5 EXPERIMENTAL EVALUATION
The main goal of Dynamic Option Creation is to provide com-

parable learning capabilities to its base algorithm—FPOC, in this

paper—while reducing the need for retraining by autonomously

determining the right number of options for the given environ-

ment. With this in mind, we devised a benchmark to compare DOC

against the base FPOC algorithm [23] in the four rooms environ-

ment [22]. Although simple, we chose this environment as it is the

most common benchmark for assessing tabular option discovery

methods. More specifically, we compare both algorithms to assess

the following hypotheses:

(1) DOC reaches similar maximum accumulated reward and

learning speed when compared to FPOC;

(2) DOC creates new options only when necessary, that is, all

options have a policy that represents meaningful behavior,

with no noticeable overlap between them.

The four rooms environment, as the name implies, is composed

of four interconnected rooms in a square grid, where each room has

a 1 × 1 gap connecting it to its neighbor. Any tile that is not a wall

is a place where the goal can spawn at the beginning of an episode.

When an episode starts, the agent and goal are randomly placed in

the environment.When the agent reaches the goal state, the episode

Algorithm 1: Dynamic Option Creation.

Input: Replay buffer size 𝑧, option creation threshold 𝐿,

option adjust rate 𝑛, option evaluation episodes𝑚,

maximum training episodes 𝑒𝑝𝑚𝑎𝑥 , option consider

rate 𝜏

1 Initialize 𝑒𝑝, 𝑡, ⊥, 𝑛𝑒𝑙𝑎𝑝𝑠𝑒𝑑 , 𝑓 ← 0;

2 Initialize 𝜍𝑜 , 𝐵 ← {∅};
3 while 𝑒𝑝 < 𝑒𝑝𝑚𝑎𝑥 do
4 if ⊥ = 1 then
5 𝑛𝑒𝑙𝑎𝑝𝑠𝑒𝑑 ← 𝑛𝑒𝑙𝑎𝑝𝑠𝑒𝑑 + 1;
6 𝐵 ← {𝐵 ∪ {⟨𝑆𝑖 , 𝑟𝑖 , 𝑆𝑖+1,⊥𝑖 ⟩ ∀𝑖 ∈ 1 :𝑡}, 𝐺1:𝑡 }, drop

first element if |𝐵 | > 𝑧 ;

7 𝑡 ← 0;

8 end
9 if 𝑛𝑒𝑙𝑎𝑝𝑠𝑒𝑑 = 𝑛 then
10 Run evaluation for𝑚 episodes, store variance in 𝜍𝑜 ;

11 if |𝜍𝑜 | = 𝜏 then
12 foreach 𝑜 ∈ O do

13 𝜀𝑜 ← (𝑒 |O|)−
2

𝑓

[
𝑑
𝑑𝑥

𝑤1𝑥 +𝑤0

]
;

14 if 𝜀𝑜 > 𝐿 then
15 Create new option 𝑜+;
16 foreach 𝑆𝑖

𝐸
= ⟨𝑆𝑖 , 𝑟𝑖 , 𝑆𝑖+1,⊥𝑖 ⟩ ∈ 𝐵 do

17 𝑜 ← best option for 𝑆𝑖 ;

18 if 𝑜 = 𝑜+ then
19 Apply experience step 𝑆𝑖

𝐸
in 𝑜+;

20 end
21 end
22 𝑓 ← 0;

23 Jump to line 29;

24 else
25 𝑓 ← 𝑓 + 1;
26 end
27 end
28 end
29 𝑛𝑒𝑙𝑎𝑝𝑠𝑒𝑑 ← 0;

30 end
31 𝑆𝑡 , 𝐴𝑡 , 𝑟𝑡 ,⊥, 𝑆′𝑡 ← Run regular training step for 𝑡 ;

32 𝑡 ← 𝑡 + 1;
33 end

terminates, and a new episode is randomly generated. The agent

has four primitive actions available: 𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡 . When

the agent passes through a door—any tile that divides two rooms—

it receives a reward of −20; for any other action that does not

terminate the episode, the agent receives a reward of −1. The agent
receives a reward of 0 when it reaches the goal state. This subtle

variation in dynamics from the traditional four rooms environment

has the intention of further penalizing the agent for taking the

longer route towards the goal, increasing the need for more than

one option.

We compare FPOC and DOC using different parameters for num-

ber of options and threshold, respectively. Each experiment was

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Episodes 1e6

200

175

150

125

100

75

50

25

E
pi

so
di

c
R

et
ur

ns

Threshold
200
400
800
1000
1200

Figure 3: Average episodic return over time for Dynamic
Option Creation with different threshold values.

executed 30 times with the same set of random seeds. All experi-

ments consisted of 5,000,000 training episodes, although no method

took more than 1,300,000 episodes to reach maximum return. After

the training procedure was completed, we calculated the moving

average of the mean accumulated reward for every 10,000 episodes,

using a window size of 30 data points. We use the moving aver-

age as a way to reduce the variability in mean episodic returns,

thus helping better visualize the learning behavior. In the evalua-

tion process, we measure both the mean accumulated reward once

the training process completes, as well as the average number of

episodes each algorithm took to converge to the maximum return

value observed in the experiments. Section 5.1 analyzes the sensi-

tivity of the threshold parameter, describing how much it impacts

learning. Meanwhile, Section 5.2 compares the accumulated reward

over time and learned options for both FPOC and our method.

5.1 Threshold Sensitivity
The threshold is the most important parameter when configuring

Dynamic Option Creation, given that it indicates how much vari-

ance over time is acceptable before initializing a new option. If the

threshold is set too low, the algorithm may create options unneces-

sarily, while setting it too high can hinder learning performance.

Figure 3 demonstrates the mean episodic returns using DOC with

different threshold values.

As shown in Figure 3, the threshold parameter can have a percep-

tible impact on learning performance and in the number of created

options. Regardless, the algorithm was able to eventually reach the

maximum return for all threshold values. We cannot, however, en-

sure the same behavior will occur in more complex environments.

The learning curves for threshold 𝐿 = 400, 𝐿 = 800, and 𝐿 = 1000

present similar behavior, which can be attributed to the fact that

both resulted in 2 options at the end of training for all 30 runs.

Meanwhile, 𝐿 = 1200 oscillated between 2 and 3 options depending

on the seed, while 𝐿 = 200 always resulted in 4 options.

Table 1: Average number of episodes until reaching a mean
accumulated reward of -26 for FPOC and Dynamic Option
Creation with different threshold values. Methods sorted by
this average.

Algorithm Avg. Episodes Std Error
to Convergence

DOC (L=800) 1,078,092.86 9,209.72
DOC (L=400) 1,101,214.29 23,248.26

DOC (L=1000) 1,107,321.43 9,569.50

DOC (L=200) 1,152,632.14 8,818.80

DOC (L=1200) 1,171,682.14 11,673.91

FPOC (4 Options) 1,185,590.00 9,176.59

FPOC (2 Options) 1,236,082.76 10,528.60

FPOC (1 Option) 1,288,789.29 7,668.41

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episodes 1e6

200

175

150

125

100

75

50

25

E
pi

so
di

c
R

et
ur

ns

0.75 1.00 1.25 1.50 1.75 2.00
1e6

60

50

40

30

FPOC 1 Option
FPOC 2 Options
FPOC 4 Options
Dynamic Options
Dynamic Options. No Experience Replay

Figure 4: Evaluation curves for FPOC with 1, 2, and 4 options
and Dynamic Option Creation.

Whenever a new option is created, the episodic returns tend

to stagnate or decrease for some episodes as the new option gets

introduced into the training process. In general, the sooner an

option is introduced, the smaller the impact in learning performance

is. As evidenced by the comparison above, however, increasing

the threshold by six times did not have an impact on maximum

accumulated reward. Table 1 shows how many episodes on average

each threshold value took to reach a mean accumulated reward of

-26 over 10,000 episodes, which is close to the upper bound reached

by all algorithms in this experiment.

5.2 Numerical Results
Figure 4 shows the accumulated reward for FPOC with 1, 2, and

4 dynamic options alongside Dynamic Option Creation with and

without experience replay using a threshold of 800, the best value

found in Section 5.1. The shaded area around each line represents

the variability in results between different runs of the same experi-

ment.

Table 2: Mean (and standard deviation) episodic return over
the last 1000 episodes for FPOC with 1, 2, and 4 options,
compared to Dynamic Option Creation with and without
experience replay.

Algorithm Performance at Convergence

DOC -25.85 (± 1.72)

DOC (No Experience Replay) -25.87 (± 1.74)

FPOC (1 Option) -25.86 (± 1.73)

FPOC (2 Options) -25.91 (± 1.73)

FPOC (4 Options) -25.94 (± 1.73)

As we can see in Figure 4, DOC with experience replay, despite

learning slower than FPOC at first, managed to achieve maximum

reward before FPOC with any number of options. In fact, all DOC

variations analyzed in Table 1 converged faster than FPOC. The

sudden increase in learning speed can be attributed to the creation

of a new option with experience replay, which helps condition it

to a specific state space, instead of deferring this process to the

regular training loop. Meanwhile, the slower learning speed at the

beginning of training happens because, while DOC is undergoing

the cost of determining how many options are necessary, FPOC

already starts with knowledge about the number of options it will

use. Table 2 compares the mean episodic returns achieved by all

algorithms once the training completes.

5.3 Learned Policies
Figure 5 shows the learned intra-option policies for each dynamic

option alongside their interest and termination functions for two

different goal positions. In the figure, the goal positions are denoted

in green. In both experiments, two options were obtained.

By observing the policies on the left, we can see that DOC created

a second option that focuses on navigating towards the goal room,

while keeping the first option responsible for reaching the goal from

inside the room itself. The observed behavior can be considered

meaningful due to the fact that both policies represent some well-

defined course of action, thus confirming our second hypothesis.

Furthermore, by looking at the interest functions of both options,

we can see that the only overlap present in their initialization is at

the top-left corner of the goal room, which also corroborates our

second hypothesis.

When the goal is located at a door, we can see a slightly different,

but consistent, result. Instead of splitting behavior between walking

towards the goal room and moving to the goal from inside the room,

each option covers a different half of the environment. We attribute

this behavior to the fact that the goal is between two rooms, so we

can consider both the top and bottom-left rooms as the goal room.

When looking from this perspective, the option on the left focuses

on navigating towards the goal, while the option on the right goes

towards the goal room, which is the same behavior observed when

the goal is inside a single room.

6 CONCLUSION
This work proposed a novel method for dynamically creating op-

tions in training time in option-critic algorithms. Our approach

πo

io

βo

Learned Option #1 Learned Option #2 Learned Option #1 Learned Option #2

Sample Task 1 Sample Task 2

Figure 5: Policies learned by the Dynamic Option Creation algorithm in two sample tasks. Each task has a different goal
position. Our algorithm learned two options in each of these tasks. The images show the intra-option policy 𝜋𝑜 , the option’s
interest functions 𝑖𝑜 , and the option’s termination functions 𝛽𝑜 .

uses the variance in episodic returns as an indication of uncertainty,

which—assuming a deterministic environment—tends to decrease

as the intra-option policy converges to its optimality. When com-

pared to the Fast-Planning Option-Critic [23], our approach tends

to learn options only as necessary without a significant increase in

training steps needed for convergence. We consider learning op-

tions dynamically as a vastly superior approach, given that complex

problems heavily benefit from more options, but estimating the

best number for an environment is not possible most of the time.

Dynamic Option Creation has the potential to reduce re-training

efforts by guessing the correct number of options in the first try,

thus making the Option-Critic architecture more robust.

Despite the benefits mentioned above, our method has limita-

tions that are not handled in the scope of the current work. The

most noteworthy shortcoming is the reliance on a human-provided

uncertainty threshold, which can severely hinder learning if set

incorrectly, thus nullifying the benefit added by our algorithm. Fu-

ture work should focus on determining such threshold based on

parameters gathered from the training process or the environment

itself. Another opportunity for improvement lies in adapting and

testing the proposed algorithm with function approximation Rein-

forcement Learning, where we believe Dynamic Option Creation

could bring the greatest benefit given such model’s aptitude for

learning good policies for complex environments. Lastly, future

work should assess the viability of DOC in environments with high

amounts of exogenous variance.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.

This research was partially supported by Conselho Nacional de De-

senvolvimento Científico e Tecnológico - CNPq (grants 443184/2023-

2, 313845/2023-9, and 445238/2024-0).

REFERENCES
[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Archi-

tecture. Proceedings of the AAAI Conference on Artificial Intelligence 31, 1 (Feb
2017). https://doi.org/10.1609/aaai.v31i1.10916

[2] Andre Barreto, Will Dabney, Remi Munos, Jonathan J Hunt, Tom Schaul, Hado P

van Hasselt, and David Silver. 2017. Successor features for transfer in reinforce-

ment learning. In Advances in neural information processing systems, Vol. 30.
Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/

file/350db081a661525235354dd3e19b8c05-Paper.pdf

[3] Raviteja Chunduru and Doina Precup. 2022. Attention Option-Critic. arXiv
preprint arXiv:2201.02628 (Jan 2022). http://arxiv.org/abs/2201.02628

[4] Tom Croonenborghs, Kurt Driessens, and Maurice Bruynooghe. 2008. Learning
Relational Options for Inductive Transfer in Relational Reinforcement Learning.
Lecture Notes in Computer Science, Vol. 4894. Springer Berlin Heidelberg, Berlin,

Heidelberg, 88–97. https://doi.org/10.1007/978-3-540-78469-2_12

[5] Dongge Han and Sebastian Tschiatschek. 2022. Option Transfer and SMDP

Abstraction with Successor Features. In Proceedings of the Thirty-First Inter-
national Joint Conference on Artificial Intelligence. International Joint Con-

ferences on Artificial Intelligence Organization, Vienna, Austria, 3036–3042.

https://doi.org/10.24963/ijcai.2022/421

[6] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. 2018. When

Waiting Is Not an Option: Learning OptionsWith a Deliberation Cost. Proceedings
of the AAAI Conference on Artificial Intelligence 32, 1 (Apr 2018). https://doi.org/

10.1609/aaai.v32i1.11831

[7] Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Remi Munos,

and Doina Precup. 2019. The Termination Critic. arXiv:1902.09996 [cs.AI]

https://arxiv.org/abs/1902.09996

[8] Arushi Jain, Khimya Khetarpal, and Doina Precup. 2021. Safe Option-Critic:

Learning Safety in the Option-Critic Architecture. The Knowledge Engineering
Review 36 (2021), e4. https://doi.org/10.1017/S0269888921000035

[9] Martin Klissarov and Marlos C. Machado. 2023. Deep Laplacian-based Options

for Temporally-Extended Exploration. arXiv preprint arXiv:2301.11181 (Jan 2023).

http://arxiv.org/abs/2301.11181

[10] Vijay R Konda and John N Tsitsiklis. 1999. Actor-Critic Algorithms. In Advances
in Neural Information Processing Systems, Vol. 12. MIT Press.

[11] George Konidaris and Andrew Barto. 2007. Building Portable Options: Skill

Transfer in Reinforcement Learning. In Ijcai, Vol. 7. 895–900.
[12] Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. 2017. A Laplacian

framework for option discovery in reinforcement learning. In Proceedings of
the 34th international conference on machine learning (Proceedings of machine
learning research, Vol. 70). PMLR, 2295–2304. https://proceedings.mlr.press/v70/

machado17a.html

[13] Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald

Tesauro, and Murray Campbell. 2018. Eigenoption Discovery through the

Deep Successor Representation. arXiv preprint arXiv:1710.11089 (Feb 2018).

http://arxiv.org/abs/1710.11089

[14] Sridhar Mahadevan and Mauro Maggioni. 2007. Proto-value Functions: A Lapla-

cian Framework for Learning Representation and Control in Markov Decision

Processes. Journal of Machine Learning Research 8, 10 (2007).

[15] Amy McGovern and Andrew G Barto. 2001. Automatic Discovery of Subgoals in

Reinforcement Learning using Diverse Density. Computer Science Department
Faculty Publication Series. 8. (2001).

[16] Ishai Menache, Shie Mannor, and Nahum Shimkin. 2002. Q-Cut—Dynamic

Discovery of Sub-goals in Reinforcement Learning. In Machine Learning: ECML
2002, Gerhard Goos, Juris Hartmanis, Jan Van Leeuwen, Tapio Elomaa, Heikki

Mannila, and Hannu Toivonen (Eds.), Vol. 2430. Springer Berlin Heidelberg,

Berlin, Heidelberg, 295–306. https://doi.org/10.1007/3-540-36755-1_25

[17] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim

Harley, Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu. 2016. Asyn-

chronous methods for deep reinforcement learning. In Proceedings of the 33rd
International Conference on International Conference onMachine Learning - Volume
48 (New York, NY, USA) (ICML’16). JMLR.org, 1928–1937.

[18] Özgür Şimşek and Andrew Barto. 2008. Skill characterization based on be-

tweenness. In Advances in neural information processing systems, Vol. 21. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2008/file/

934815ad542a4a7c5e8a2dfa04fea9f5-Paper.pdf

[19] Martin Stolle and Doina Precup. 2002. Learning Options in Reinforcement

Learning. InAbstraction, Reformulation, and Approximation, G. Goos, J. Hartmanis,

J. Van Leeuwen, Sven Koenig, and Robert C. Holte (Eds.). Vol. 2371. Springer

Berlin Heidelberg, Berlin, Heidelberg, 212–223. https://doi.org/10.1007/3-540-

45622-8_16

[20] Richard S. Sutton and Andrew Barto. 2018. Reinforcement learning: an introduction
(second edition ed.). The MIT Press, Cambridge, Massachusetts London, England.

[21] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.

1999. Policy Gradient Methods for Reinforcement Learning with Function Ap-

proximation. Advances in neural information processing systems 12 (1999).

[22] Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and

semi-MDPs: A framework for temporal abstraction in reinforcement learning.

Artificial Intelligence 112, 1–2 (Aug 1999), 181–211. https://doi.org/10.1016/S0004-

3702(99)00052-1

[23] Yi Wan and Richard S. Sutton. 2022. Toward Discovering Options that Achieve

Faster Planning. arXiv arXiv:2205.12515 (Sep 2022). http://arxiv.org/abs/2205.

12515 arXiv:2205.12515 [cs].

https://doi.org/10.1609/aaai.v31i1.10916
https://proceedings.neurips.cc/paper_files/paper/2017/file/350db081a661525235354dd3e19b8c05-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/350db081a661525235354dd3e19b8c05-Paper.pdf
http://arxiv.org/abs/2201.02628
https://doi.org/10.1007/978-3-540-78469-2_12
https://doi.org/10.24963/ijcai.2022/421
https://doi.org/10.1609/aaai.v32i1.11831
https://doi.org/10.1609/aaai.v32i1.11831
https://arxiv.org/abs/1902.09996
https://arxiv.org/abs/1902.09996
https://doi.org/10.1017/S0269888921000035
http://arxiv.org/abs/2301.11181
https://proceedings.mlr.press/v70/machado17a.html
https://proceedings.mlr.press/v70/machado17a.html
http://arxiv.org/abs/1710.11089
https://doi.org/10.1007/3-540-36755-1_25
https://proceedings.neurips.cc/paper_files/paper/2008/file/934815ad542a4a7c5e8a2dfa04fea9f5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/934815ad542a4a7c5e8a2dfa04fea9f5-Paper.pdf
https://doi.org/10.1007/3-540-45622-8_16
https://doi.org/10.1007/3-540-45622-8_16
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
http://arxiv.org/abs/2205.12515
http://arxiv.org/abs/2205.12515

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Dynamic Option Creation
	4.1 Defining Option Uncertainty
	4.2 Initializing New Options

	5 Experimental Evaluation
	5.1 Threshold Sensitivity
	5.2 Numerical Results
	5.3 Learned Policies

	6 Conclusion
	References

