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ABSTRACT

Modeling complex systems using standard neural ordinary differential equations
(NODEs) often faces some essential challenges, including high computational
costs and susceptibility to local optima. To address these challenges, we pro-
pose a simulation-free framework, called Fourier NODEs (FNODEs), that effec-
tively trains NODEs by directly matching the target vector field based on Fourier
analysis. Specifically, we employ the Fourier analysis to estimate temporal and
potential high-order spatial gradients from noisy observational data. We then in-
corporate the estimated spatial gradients as additional inputs to a neural network.
Furthermore, we utilize the estimated temporal gradient as the optimization ob-
jective for the output of the neural network. Later, the trained neural network
generates more data points through an ODE solver without participating in the
computational graph, facilitating more accurate estimations of gradients based on
Fourier analysis. These two steps form a positive feedback loop, enabling accurate
dynamics modeling in our framework. Consequently, our approach outperforms
state-of-the-art methods in terms of training time, dynamics prediction, and ro-
bustness. Finally, we demonstrate the superior performance of our framework
using a number of representative complex systems.

1 INTRODUCTION

Complex dynamical systems have garnered considerable attention across various disciplines in the
natural and social sciences. These systems are typically characterized by ordinary differential equa-
tions (ODEs) or partial differential equations (PDEs) Perko (1991); Meiss (2007). However, the
explicit forms of these underlying systems are often completely unknown a priori, and the available
information about such systems is commonly obtained through experimentally collected time series
data. Unfortunately, these data are often noisy and limited due to measurement errors, resource
constraints, and the high cost of data collection. As a result, there is an urgent need to uncover the
underlying dynamics of these systems without prior knowledge of the specific governing equations,
relying solely on the measured time series data Legaard et al. (2021); Zhu et al. (2023). The success-
ful modeling of these systems enables downstream tasks such as prediction Carroll (2018); Pathak
et al. (2018) and control Sanhedrai et al. (2020); Zhang & Zhou (2022). Therefore, the development
of an efficient and robust data-driven approach for system modeling is of utmost significance.

Recently, there has been a tremendous amount of interest in applying machine learning technologies,
such as auto-regressive models Ding et al. (2018), sparsity-promoting methods Kaiser et al. (2017);
Meiss (2007), reservoir computing Pathak et al. (2018), and Neural ODEs (NODEs) Chen et al.
(2018), to model complex dynamical systems. In particular, NODEs and their extensions Holt et al.
(2022); Bilovs et al. (2021); Lanzieri et al. (2022), which involve continuously defined dynamics,
have been extensively utilized for coping with the continuous-time datasets due to the direct parame-
terization of the vector field of ODEs, enabling them to naturally capture the underlying dynamics of
continuous-time systems solely based on observational data. Despite their successes, NODEs often
encounter challenges related to high computational costs and susceptibility to local optima. During
the training process, the NODEs may gradually exhibit complex dynamic behaviors, such as drastic
fluctuations or stiffness. These behaviors significantly increase the time required for numerical solv-
ing and the memory consumption for backpropagation Chen et al. (2018); Kim et al. (2021); Finlay
et al. (2020). Furthermore, the corresponding adjoint method for computing gradients is numerically
sensitive Zhuang et al. (2020).
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To address the challenges mentioned above and enhance the speed and robustness of dynamic mod-
eling, we propose a framework called Fourier NODEs (FNODEs). The key advantages of our pro-
posed framework are summarized as follows.

• The utilization of Fourier analysis theory provides theoretical guarantees for accurately
estimating the gradient flows of dynamical systems with limited and noisy data.

• Directly matching the estimated gradient flows, serving as a simulation-free framework,
allows the FNODEs to significantly reduce the training time by more than tenfold compared
to the standard NODEs.

• The data augmentation training strategy is introduced by generating more data points for
better estimating the gradient flows and then retraining the model, which forms a positive
feedback loop, resulting in improved robustness and accuracy in dynamic modeling.

• Our framework can be easily applied for resolution-invariant modeling of PDEs by addi-
tionally incorporating the estimated higher-order spatial gradients based on Fourier analysis
into the model, expanding the scopes of classical NODEs.

2 RELATED WORK

NODEs Chen et al. (2018), a class of continuous-depth neural networks, have garnered substantial
interest in recent years due to their pivotal role across various scientific disciplines. The typical
residual block, represented as

z(t+ 1) = z(t) + Fθ[z(t), t],

can be construed as an Euler discretization (with a time step ∆t = 1) of an ODE Chen et al. (2018),

ż = Fθ[z(t), t],

where z(t) ∈ Rd denotes the state of the d-dimensional (-D) system, t is the time, also interpreted
as a continuous “depth” in the residual block, and Fθ : Rd × R → Rd can be any neural network
architecture with the parameter vector θ to be optimized. Consequently, given the initial value z(t0),
the state at any time t1 can be computed using an ODE solver:

z(t1) = ODEsolve[z(t0),Fθ, t0, t1] = z(t0) +

∫ t1

t0

Fθ[z(t), t]dt.

The successful application of NODEs in modeling continuous time data has led to the emergence
of numerous works aimed at addressing the limitations of the original NODEs. These include aug-
mented NODEs Dupont et al. (2019), neural delay differential equations Zhu et al. (2021), neural
controlled differential equations Kidger et al. (2020), neural stochastic differential equations Liu
et al. (2019), and neural integro-differential equations Zappala et al. (2022). Despite the effective-
ness of these methods in handling specific types of dynamical systems, they are not exempt from
the challenges of high computational cost during the training process and difficulties in converging
to the global optimal solution.

3 THE FRAMEWORK OF FNODES

To establish the Fourier NODEs (FNODEs) framework, we consider a controlled dynamical system
of the following general form,

ṡ = f [s(t),u(t)], (1)

where s(t) ∈ Rd represents the state of the d-D system, u(t) ∈ Rm is a time-dependent controller,
and f : Rd × Rm → Rd embodies the inherent dynamics of the system. Typically, the dynamical
system is often unknown. Consequently, a common scenario is to describe the underlying dynamics
via learning a surrogate model Fθ parameterized by a neural network solely based on the observa-
tional data. In this work, we assume that the controller u(t) is known, and sampled from a specific
family of functions.
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The approximation of temporal gradients. Let h(t) be a continuously differentiable vector-valued
function that is T -periodic. From a spectral approximation perspective, we can express h(t) as a
Fourier series expansion:

h(t) = lim
K→∞

HK(t) = lim
K→∞

{
a0

2
+

K∑
k=1

[
ak sin

(
2π

T
kt

)
+ bk cos

(
2π

T
kt

)]}
,

where HK(t) represents the K-th partial sum of the Fourier series, ak = 2
[∫ T

0
h(t) cos(kt)dt

]
/T ,

and bk = 2
[∫ T

0
h(t) sin(kt)dt

]
/T . We can then utilize the truncated Fourier series to approximate

the gradient of h(t). Specifically, we present the Theorem 1, and the proof can be found in Ap-
pendix A.1.
Theorem 1. Assume h(t) is a T -periodic and thrice differentiable function, and its second deriva-
tive h′′(t) satisfies the Lipschitz condition on [0, T ]. Then, for any ϵ > 0, there exists a positive
integer K0 such that for any K > K0 and for all t ∈ [0, T ], we have:

∥H ′
K(t)− h′(t)∥ < ϵ,

where H ′
K(t) = 2π

T

∑K
k=1 k[ak sin(2πkt/T ) + bk cos(2πkt/T )]. This implies that H ′

K(t) con-
verges uniformly to h′(t) on [0, T ].

In practice, we can collect a discrete-time observational time series S = {s0, s1, · · · , sN−1}
with a regular sampling rate at times {t0, t1, · · · , tN−1}. To estimate the Fourier coefficients
S̃ = {s̃0, s̃1, · · · , s̃K} from the observational data s, we can utilize the discrete Fourier transform
(DFT) F and its inverse DFT (IDFT) F−1 for all k ∈ {0, 1, · · · ,K} and n ∈ {0, 1, · · · , N − 1},
given by:

s̃k = F (S, k) =

N−1∑
n=0

sne−i 2πn
N k, sn = F−1(S̃, n) =

1

N

K∑
k=0

s̃kei
2πk
N n. (2)

According to the Nyquist sampling theorem, when N > 2K, we can estimate the temporal derivative
of the state at time tn, which can be expressed as:

ŝ′(tn) =
1

N

K∑
k=0

i
2πk

T
s̃kei

2πk
N n ≈ s′(tn), n ∈ {0, 1, · · · , N − 1}. (3)

The approximation of spatial gradients of PDEs. When considering systems described by PDEs,
the state of the system evolves over both time and space, with the underlying dynamics often influ-
enced by spatial gradients. In such cases, the ODE in Eq. (1) can be extended to:

∂ts = f(s,u, ∂xs, ∂ys, ∂xxs, · · · ), x = {x, y, · · · } ∈ Ω,

s(x, 0) = s0, x ∈ Ω,

where Ω represents the spatial domain x, and the system exhibits periodic boundary conditions.
To accurately model the underlying dynamics f , it is necessary to estimate the spatial gradients in
advance. Let’s consider a PDE with two spatial dimensions, denoted by x and y. The system’s state
at time t is sampled at the values sjxjy (t) = s(xjx , yjy , t), where jx ∈ {0, 1, . . . , Nx − 1} and
jy ∈ {0, 1, . . . , Ny − 1}. This leads to the following expressions:

s̃kxky
=

Nx−1∑
jx=0

Ny−1∑
jy=0

sjxjye−i2π
(

jxkx
Nx

+
jyky
Ny

)
, sjxjy =

1

NxNy

Kx∑
kx=0

Ky∑
ky=0

s̃kxky
ei2π

(
kxjx
Nx

+
kyjy
Ny

)
,

where Kx and Ky represent the cutoff frequencies in the dimensions of x and y, respectively.

Denote Lx and Ly as the periodic lengths in the dimensions of x and y, respectively. And let
eM = (0, 1, · · · ,M − 1)⊤, kx = 2π

Lx
(eLx

, · · · , eLx
), and ky = 2π

Ly
(eLy

, · · · , eLy
)⊤. Similar to

estimating temporal gradients, we can estimate the spatial gradients for all p, q ∈ {0, 1, · · · } using
the following equation:

∂p+qSt

∂px∂qy
= F−1

xy [(ikx)
p
(iky)

q Fxy(St)] , (4)
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Figure 1: Illustration of the FNODEs framework.

where St is the sampling matrix of the system at time t, with elements St[jx, jy] = sjxjy (t). Fxy

and F−1
xy represent the 2-D DFT and IDFT in space, respectively.

The framework of FNODEs. Unlike classical NODEs, we introduce the FNODEs framework,
which utilizes spatiotemporal gradients obtained from Fourier analysis for more precise dynamical
learning. As depicted in Figure 1, we start by estimating the gradients in the temporal and spatial
directions using Eqs. (3) and (4) based on the observational time series S and the corresponding
control signal U = {u0,u1, · · · ,uN−1}. Next, we construct a neural network Fθ to learn the
underlying dynamics of the system. Specifically, for any time t, this neural network takes the system
state s, control signal u, and spatial gradients {∂xs, ∂ys, · · · } (only for PDEs) as inputs, and outputs
the prediction of the temporal gradient at time t. During this process, we update the parameters θ
using the following gradient flow matching loss function:

L =
1

N

N−1∑
n=0

∥∥∥ĥ′(tn)− Fθ[s(tn),u(tn), ∂xs(tn), ∂ys(tn), · · · ]
∥∥∥ . (5)

Notably, in the training process, there is no need to utilize the ODE solvers, resulting in a simulation-
free training framework.

Data augmentation. In addition, we incorporate a data augmentation strategy to facilitate the mod-
eling of complex systems. This strategy involves simulating the trained NODEs to obtain the sys-
tem’s states at arbitrary times, thereby increasing the sampling frequency. By generating a larger
sample size, we can better satisfy the requirements of the Nyquist sampling theorem, leading to
more accurate estimations of the spatiotemporal gradients. The newly generated data is then fed
into our model for further training. This two-step process, consisting of data augmentation and
training, forms a positive feedback loop that enhances the accuracy and robustness of our approach.

It is important to note that the augmentation strategy does not participate in the computational graph,
resulting in a low computational cost limited to the forward simulation. In contrast, the classical
NODEs framework includes simulation in the training process, which incurs a high computational
cost due to solving extremely high-dimensional ODEs in the backward pass. The entire framework
is illustrated in Fig. 1, and we provide a detailed execution process in Algorithm 1 in Appendix A.2.

4 ILLUSTRATIVE EXPERIMENTS

In this section, we present a thorough analysis of our framework based on experiments conducted
using a computational setup with 64GB RAM and an NVIDIA Tesla V100 GPU equipped with
16GB memory. Specifically, we generate a set of control functions u using Gaussian random fields
(GRFs) with a radial-basis function kernel, as defined by

u ∼ c · G
{
µ, exp

[
||x1 − x2||2/(2l2)

]}
,
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Figure 2: The experimental results of system (6) using FNODEs. (a) Estimation of the derivatives based on
the observational data using Fourier analysis. (b) The test prediction using the trained model. (c) Comparison
of the FNODEs and baseline methods in terms of training time and prediction error.

where µ represents the mean value, l is the length scale that governs the smoothness of the sampling
function, and c is the scaling factor of the output. To validate our framework, we consider experi-
mental data s(x, t,u(x, t)) derived from multiple dynamical systems, and compare our results with
several state-of-the-art baseline methods, including NODEs Chen et al. (2018), Deep Operator Net-
work (DeepONet) Lu et al. (2019), Fourier Neural Operator (FNO) Li et al. (2020), PDE-Net Long
et al. (2018), Physics-Informed Neural Networks (PINN) Raissi et al. (2019), Deep Auto-Regressive
(DeepAR) Flunkert et al. (2017), and the message-passing PDE solvers (MP-PDE) Brandstetter et al.
(2022). Detailed descriptions of these baseline methods can be found in Appendix D.

4.1 PARAMETRIC ODES

We initially consider a 2-D parametric ODE system, which is described by

ds

dt
=

[
−0.1 2.0
−2.0 −0.1

]
s3 + u(t), s(0) = s0 (6)

where u(t) = [u1(t), u2(t)]
⊤ is a vector-valued function derived from Gaussian Random Fields

(GRF). We generate a dataset comprising 100 training samples, 30 validation samples, and 50 testing
samples, with µ = 0, c = 100, l = 0.1, and random initial values s0.

Here, we randomly select a segment of data Sg , and each temporal gradient of the state at the
time t in Sg is estimated directly using Eq. (3). The estimation of temporal gradients for different
truncation frequencies K is illustrated in Figure 2(a). It is evident that Eq. (3) is not effective in
approximating the true gradients when K is small. However, when K exceeds a certain threshold,
Fourier analysis can effectively approximate the true gradients. In our experiment, with N = 500
sampling points, the maximum value of K for recoverable signals, as per the Nyquist sampling
theorem, is 250. Therefore, setting K to 512 does not yield better performance compared to setting it
to 256. Moreover, our framework exhibits robustness to approximation errors in gradient estimation
from a statistical perspective due to the inclusion of multiple data points under different control
signals in the training set.

Table 1: Comparison of the prediction MSE and the training time of baseline methods under different
training set sizes and noise intensities. Here, we consider zero-mean Gaussian noise with Ntr =
1000, and the standard deviation is σsd times the mean absolute value of the data.

Models Training set sizes Ntr Noise intensify σsd Training time (s)
10 20 100 1000 0.1% 1% 5% 10%

Mid 0.129 0.102 0.075 0.072 0.103 0.115 0.134 0.285 320.1
DeepAR 3.467 2.318 0.633 0.801 0.783 0.884 1.386 2.297 101.8

NODE (Euler) 0.211 0.191 0.157 0.132 0.133 0.193 0.220 0.280 631.8
NODE (Dopri5) 0.156 0.096 0.087 0.062 0.111 0.172 0.188 0.264 9632.2

FNODE 0.049 0.030 0.018 0.012 0.016 0.013 0.083 0.184 62.4
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Figure 3: The experimental results of the KDV system using FNODEs Method. (a) The variation of the
training and validation loss during the training process. (b) Plot of u1(t) from a test data. (c) These three
subplots from top to bottom represent the ground truth, predicted results, and prediction errors of test data.

After training our model, we assess its performance on the test data. As depicted in Figure 2(b),
our framework consistently achieves high prediction accuracy for long-term forecasting. To further
demonstrate its effectiveness, we introduce a new baseline method called the “Mid” method, which
estimates gradients using the classical central difference numerical method. Additionally, we con-
duct experiments using the NODEs with two numerical ODE solvers, namely “Euler” and “Dopri”.
Figure 2(c) displays the training time and the prediction mean squared error (MSE) of the differ-
ent baselines on the test data. It is evident that the FNODEs require the shortest training time and
simultaneously achieve the lowest prediction error.

We note that the classical NODE method tends to get trapped in local optima in this particular exam-
ple, resulting in longer training times. To further verify the robustness of our proposed framework,
we conduct experiments with varying training set sizes and noise intensities. Table 1 demonstrates
that the FNODEs outperform the baselines in our experiments, showcasing stronger robustness and
superior prediction capabilities.

4.2 PARAMETRIC PDES

To further assess the effectiveness of our framework, we conduct experiments on various common
parametric PDEs, including the Korteweg-de Vries (KDV) system, diffusion-reaction (DR) system,
Kuramoto-Sivashinsky (KS) system, and a 2-D Navier-Stokes (NS) system. These systems are
summarized in Table 2.

Table 2: The explicit forms of four parametric PDEs considered in our experiments.
Systems Equations Domain

KDV ∂ts = ∂xxxs+ u(x, t)∂x(s
2/2) x ∈ [0, 16π], t ∈ [0, 20]

DR ∂ts = 0.01∂xxs+ 0.01s2 + u(x, t) x ∈ [0, 1], t ∈ [0, 1]

KS ∂ts = −∂x(s2/2)− ∂xxs− u(x, t)∂xxxxs x ∈ [0, 32π], t ∈ [0, 20]

NS ∂ts = ∂xγ∂ys− ∂yγ∂xs+ 0.001∆s+ u(x, y, t), ∆γ = −s (x, y) ∈ [0, 2]2, t ∈ [0, 10]

Korteweg-de Vries system. We begin by considering the KDV system, which is commonly used
to describe the evolution of water waves. In this equation, s(x, t) represents the wave displacement,
x denotes the spatial coordinate and t represents time. The control parameter is denoted as u(x, t).
In this example, we consider u(x, t) = sin(x/8) + u1(t), where u1(t) is a 1-D function sampled
from GRFs. To validate the effectiveness of our framework, we fix the initial value s0 and generate
100 training data, 30 validation data, and 30 test data. During the training process, we estimate the
spatial partial derivatives F−1{ikx, (ikx)

2, (ikx)
3, (ikx)

4} using Eq. (4) as additional inputs to
the neural network Fθ. Then, we employ the gradient flow matching loss Eq. (5) to train our model.
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Figure 4: The experimental results of the NS system using FNODEs Method. (a) The initial state s0 of a
certain test data. (b) The initial state u0 of the parameter u(x, y, 0). (c)-(e) These subfigures depict the ground
truth, prediction results, and prediction errors at different time instances. From left to right, the time instances
t correspond to 2.5s, 5s, 7.5s, and 10s.

During the training process, both the training loss and validation loss rapidly decrease to lower levels
(see Fig. 3(a)). The entire training process is completed in just 28 seconds for 2000 epochs, indi-
cating the efficiency of our framework. In addition, our framework exhibits outstanding predictive
performance on the test data with an average prediction error of only 0.04. Figures 3(b)-(c) depict
the prediction results for one sample of the test data set, clearly demonstrating the sustained high
prediction accuracy over an extended period, successfully revealing the underlying dynamics of the
KDV system. For the 1-D DR and KS, we provide the corresponding results in Appendix C in a
similar manner.

Navier-Stokes system. Next, we turn our attention to the more complex 2-D NS system in the
vorticity form, which involves two spatial dimensions, namely x and y. In this case, we consider
u(x, y, t) = u0(x, y) + u1(t), where u0 and u1 are 1-D functions sampled from GRFs. Similar to
the process in the KDV system, we incorporate the estimated spatial partial derivatives as inputs into
the neural network using Eq. (4).

In addition to the conventional terms F−1{(ikx), (iky), (ikx)
2, (iky)

2, (−kxky), · · · }, we intro-
duce two additional prior terms F−1[ikx/(k

2
x + k2

y)] and F−1[iky/(k
2
x + k2

y)] to better capture
the intrinsic variable γ in the equation. Consequently, our framework successfully learns the dynam-
ics of the NS system, achieving an average prediction error of only 0.03. We present the predicted
results of the test data in Fig. 4, which clearly demonstrate the excellent predictive performance of
our framework within the specified time range. Moreover, the FNODEs exhibit fast training speed
in a runtime of 283 seconds for 5000 epochs.

Evaluation against baseline methods. To substantiate the efficacy of our proposed framework, we
compare it with the state-of-the-art techniques, considering factors such as the size of the training
set, robustness to noise, and training time. Specifically, we conduct experiments on four distinct
PDE systems under three varying experimental configurations, and the results are shown in Table 3.
It is unequivocally clear that our framework is capable of discerning the underlying dynamics in the
shortest time, particularly surpassing the standard NODEs method by more than 10 times. For an
in-depth understanding of the baseline methods, please refer to Appendix D.

Table 3: Comparing the training time of different methods in multiple experiments.
Systems NODEs DeepONet FNO PDE-NET PINN MP-PDE FNODEs

KDV 3938 751 271 398 1540 560 130
DR 2910 652 262 311 1532 367 65
KS 5120 641 241 492 1660 589 74
NS 21747 8484 549 1323 2430 734 283
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Furthermore, Table 4 illustrates the MSE of the test data under diverse experimental configurations.
It is observed that our proposed framework consistently yields lower prediction errors in compar-
ison to the baseline methods. Here, it should be noted that our framework may require a longer
prediction time compared to neural operator methods such as DeepONet and FNO, it exhibits su-
perior performance in terms of the generalization, especially for NS systems with random initial
values. Additionally, our framework surpasses the performance of the PDE-NET, thereby further
validating the effectiveness of Fourier analysis-based estimation of spatiotemporal gradients over
traditional numerical gradient estimation methods. As for the MP-PDE method, as a black-box
method in deep learning, it did not demonstrate satisfactory predictive performance in our experi-
ments with a limited training set. In addition, the PINN method demonstrates performance similar
to our approach, exhibiting robustness against fluctuations in training set size and noise levels. This
is attributable to the necessity of employing underlying dynamical equations for training. Therefore,
in data-driven modelling tasks (PINN is not applicable), our method indeed learned the underlying
dynamics, demonstrating significant advantages in predictive capability.

Table 4: Prediction MSE under different methods, systems, and experimental conditions.

Models Ntr = 10, σsd = 0 Ntr = 1000, σsd = 0 Ntr = 1000, σsd = 5%

KDV DR KS NS KDV DR KS NS KDV DR KS NS

NODEs 1.93 1.68 2.56 4.21 0.45 0.58 1.69 3.61 1.02 1.46 2.34 5.19
DeepONet 0.83 2.75 3.02 38.3 0.09 0.17 0.63 7.30 0.74 0.87 1.20 14.7

FNO 1.88 1.56 2.21 23.9 0.21 0.13 0.92 5.3 0.89 1.58 2.13 12.6
PDE-NET 1.64 1.38 2.32 2.09 0.11 0.27 0.78 0.92 1.34 0.97 1.73 2.30

PINN 0.17 0.19 0.24 0.31 0.17 0.19 0.24 0.31 0.17 0.19 0.24 0.31
MP-PDE 2.39 2.74 4.23 6.62 0.44 0.49 1.33 2.07 1.22 1.11 1.93 2.59
FNODEs 0.23 0.16 0.28 0.29 0.023 0.016 0.11 0.083 0.14 0.12 0.46 0.11

4.3 ADDITIONAL VALIDATION AND DISCUSSION OF OUR FRAMEWORK

Handling Sparse and Irregularly Sampled Time Series. Our framework can be extended to the
case of irregularly sampled time series by replacing Eqs. (2) and (3) with the nonuniform discrete
Fourier transform (NDFT). The computation of NDFT can be expedited using the nonuniform fast
Fourier transform (NFFT) Dutt & Rokhlin (1993); Barnett et al. (2018). Moreover, in scenarios
where the number of sampling data points is limited, the restorable signal frequency N/2, as per the
Nyquist sampling theorem, may be less than the cutoff frequency K of the true signal. Under such
circumstances, Fourier analysis may fail to accurately estimate the temporal gradients of the system.
However, our data augmentation training strategy can circumvent this obstacle by integrating the
predicted results of the FNODEs into the original dataset, thereby significantly enhancing the data
utilization.

Resolution-invariant property of the FNODEs.

To investigate the relationship between the truncated frequency K and the number of sampling
points N , we conduct experiments on the system (6) by generating data with varying sparsity lev-
els, while maintaining other hyperparameters consistent with the previous section. As depicted in
Fig. 5(a), we employ Fourier analysis to estimate the temporal gradients at different sparsity levels.
The optimal truncated frequency for each dataset is almost near N/2, which underscores the non-
negligible role of Fourier basis with K < 256 in system modeling. Therefore, a larger number of
sampling points N allows for a higher usable cutoff frequency K, facilitating the capture of the true
signal gradients.

Then, we initially consider 100 training time series with only 200 sampling points with K = 100.
Under this setting, the prediction of the trained model on test data is displayed in Fig. 5(c). Subse-
quently, we use the trained model to predict 200 additional data points to augment the training data
and retrain our model with K = 200. The prediction result in this case is depicted in Fig. 5(d). In the
same manner, we further predict 400 points and set K = 400 to train our model. The corresponding
predicted result is shown in Fig. 5(e). Moreover, Figure 5(b) presents the boxplots of prediction
errors on all test data under previous settings. It is clear that the data augmentation training strategy
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Figure 5: Experimental results of the data augmentation and the resolution-invariant predictions using the
FNODEs. In system (6), (a) Prediction errors of time gradients under different sampling rates N and cutoff
frequencies K. (b) A boxplot depicting the testing errors at different stages under the utilization of feedback
data, with the median of prediction errors represented by a yellow horizontal line. (c)-(e) The prediction results
of test data under different feedback settings (0, 200, and 600 feedback points respectively). In DR system, (f)
The prediction MSE of temporal gradient under different Nx in training data. (g) A training sample with a low
resolution. (h) A predicted sample with a high resolution.

can further enhance the modeling performance without measuring additional data samples, which
may be prohibited in the real-world experiments.

Indeed, our framework can be directly employed for resolution-invariant modeling of PDE systems.
In the temporal dimension, the employment of ODEsolve in the trained model can predict the system
state at an arbitrary time point. For the spatial dimension, our model can be trained on data with
lower sampling frequencies but make predictions on data with higher sampling frequencies. To
verify this property, we train our model on training data of the DR system with Nx equal to 32,
64, and 128, respectively, and make predictions on the test set with Nx = 128. The corresponding
prediction errors are shown in Fig. 5(f). Figure 5(g), as a case study, is the prediction with the
number of spatial samples Nx = 128 based on the trained model using the lower sampling frequency
data with Nx = 32 as shown in Fig. 5(h). It is evident that our framework can achieve effective
predictions of PDEs with zero-shot super-resolution.

5 CONCLUDING REMARKS

In this article, we propose the FNODEs framework, a novel approach for efficient and robust dy-
namical system modeling. Our framework addresses the challenges faced by standard NODEs,
including high computational cost and susceptibility to local optima. The proposed framework
combines Fourier analysis and NODEs to transform the modeling problem of complex dynamics
into a gradient flow matching task.

We validate our framework on multiple ODE and PDE systems, and experimental results demon-
strate that our framework exhibits significantly faster training speed, surpassing the standard NODE
by more than tenfold. The FNODEs outperform NODEs and other state-of-the-art methods in
various prediction tasks, particularly demonstrating strong robustness in noisy data. Furthermore,
we validate, both theoretically and experimentally, that the data augmentation training strategy ex-
tremely enhances the maximum truncated frequency of Fourier analysis, facilitating the spatiotem-
poral gradient estimations and system modeling.

However, our method has certain limitations. For instance, estimating the gradient flow within an
acceptable truncated frequency using Fourier analysis becomes challenging when dealing with more
complex systems. One potential direction for resolution is to extend our framework by combining
Koopman and uncertainty quantification theories. Additionally, our method exhibits inefficiency
similar to NODEs when predicting high-dimensional systems, necessitating further optimization by
integrating the idea of neural operators.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Alex H. Barnett, Jeremy F. Magland, and Ludvig af Klinteberg. A parallel non-uniform fast fourier
transform library based on an ”exponential of semicircle” kernel. ArXiv, abs/1808.06736, 2018.
URL https://api.semanticscholar.org/CorpusID:52055548.

Marin Bilovs, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan Gun-
nemann. Neural flows: Efficient alternative to neural odes. In Neural Information Processing
Systems, 2021. URL https://api.semanticscholar.org/CorpusID:239768892.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural pde solvers.
ArXiv, abs/2202.03376, 2022.

Thomas L. Carroll. Testing dynamical system variables for reconstruction. Chaos, 28 10:103117,
2018.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Kristjanson Duvenaud. Neural ordi-
nary differential equations. In Neural Information Processing Systems, 2018.

Feng Ding, Ling Xu, Fuad E. Alsaadi, and Tasawar Hayat. Iterative parameter identification for
pseudo-linear systems with arma noise using the filtering technique. Iet Control Theory and Appli-
cations, 12:892–899, 2018. URL https://api.semanticscholar.org/CorpusID:
125115188.

Emilien Dupont, A. Doucet, and Yee Whye Teh. Augmented neural odes. ArXiv, abs/1904.01681,
2019.

A. Dutt and Vladimir Rokhlin. Fast fourier transforms for nonequispaced data. SIAM J. Sci. Com-
put., 14:1368–1393, 1993.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to train your
neural ode. arXiv preprint arXiv:2002.02798, 2, 2020.

Valentin Flunkert, David Salinas, and Jan Gasthaus. Deepar: Probabilistic forecasting with
autoregressive recurrent networks. ArXiv, abs/1704.04110, 2017. URL https://api.
semanticscholar.org/CorpusID:12199225.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Neural laplace: Learning diverse classes of
differential equations in the laplace domain. In International Conference on Machine Learning,
2022.

Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Sparse identification of nonlinear dy-
namics for model predictive control in the low-data limit. Proceedings. Mathematical, Physi-
cal, and Engineering Sciences, 474, 2017. URL https://api.semanticscholar.org/
CorpusID:49216558.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. ArXiv, abs/2005.08926, 2020.

Suyong Kim, Weiqi Ji, Sili Deng, and Chris Rackauckas. Stiff neural ordinary differential equations.
Chaos, 31 9:093122, 2021. URL https://api.semanticscholar.org/CorpusID:
232404648.

Denise Lanzieri, Franccois Lanusse, and Jean-Luc Starck. Hybrid physical-neural odes for fast n-
body simulations. ArXiv, abs/2207.05509, 2022. URL https://api.semanticscholar.
org/CorpusID:250451236.

Christian Møldrup Legaard, Thomas Schranz, Gerald Schweiger, J’an Drgovna, Basak Falay,
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Appendix

A THEOREMS AND ALGORITHMS

A.1 PROOF OF THEOREM 1

We aim to prove that the derivative of the truncated Fourier series converges uniformly to h′(t).
Let’s denote HK(t) as the partial sum of the Fourier series of h(t):

HK(t) = a0+

K∑
k=1

[ak cos(
2π

T
kt)+bk sin(

2π

T
kt)], h′(t) =

2π

T

∞∑
k=1

[kbk cos(
2π

T
kt)−kak sin(

2π

T
kt)].

We consider the derivative of the partial sum of the Fourier series of h(t), denoted as H ′
K(t):

H ′
K(t) =

2π

T

K∑
k=1

[kbk cos(
2π

T
kt)− kak sin(

2π

T
kt)].

We define GK(t) = h′(t)−H ′
K(t), so we have:

GK(t) =
2π

T

∞∑
k=K+1

[kbk cos(
2π

T
kt)− kak sin(

2π

T
kt)].

Since h′′(t) satisfies the Lipschitz condition, there exists a Lipschitz constant M such that:

∥h′′(t1)− h′′(t2)∥ ≤M0|t1 − t2|, ∀t1, t2 ∈ [−π, π],

where M0 is a positive real number. Given the existence of h’s third derivative, we have:

|h′′′(t)| = lim
h→0

∥∥∥∥h′′(t+ h)− h′′(t)

h

∥∥∥∥ ≤M, t ∈ [−π, π).

Consequently, M0 also serves as the upper bound of the third-order derivative of h. Now, we can
find the upper bounds for |ak| and |bk|. We have:

ak =
2

T

∫ T

0

h(t) cos(
2π

T
kt)dt, bk =

2

T

∫ T

0

h(t) sin(
2π

T
kt)dt.

Integrating by parts three times, we get:

ak =
1

k3
× T 2

4π3

∫ π

−π

h′′′(t) cos(
2π

T
kt)dt, bk = − 1

k3
× T 2

4π3

∫ π

−π

h′′′(t) sin(
2π

T
kt)dt.

Using the triangle inequality, we have:

|ak| ≤
M1

k3

∫ T

0

|h′′′(t)|dt, |bk| ≤
M1

k3

∫ T

0

|h′′′(t)|dt,

where M1 = T 2/(4π3) > 0. Then we have:

|ak|, |bk| ≤
M0M1T

k3
.

Let M = M0M1T > 0, we get:

|GN (t)| ≤
∞∑

k=K+1

M

k3
|k cos(kt)− k sin(kt)| ≤

∞∑
k=K+1

M

k2
.

The right-hand side is a p-series, where p = 2 > 1, which is a convergent series. Therefore, as
K → ∞, we have |GK(t)| → 0. This means that H ′

K(t) converges uniformly to h′(t). This
completes the proof.
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Algorithm 1: Execution process of the FNODEs framework
Data: The observed data s(tn), n ∈ {0, 1, · · · , N − 1}; Control parameter u(t).
Result: The trained agent model Fθ.
Step1: Set an appropriate truncation frequency K, neural network Fθ ;
Step2: Estimate the temporal gradient ĥ′(tn) using Eqs. (2) and (3) of the main text, and the
spatial gradient (if it is a PDE) using Eqs. (5) and (6) of the main text;

Step3: Compute the loss function using Eq. (7) of the main text and update the parameters θ ;
Step4: If the prediction results of Fθ have a validation loss below a certain threshold, the

algorithm terminates; otherwise, proceed to the next step ;
Step5: Predict s((tn + tn+1)/2) using Fθ, where n ∈ {0, 1, · · · , N − 2} ;
Step6: Let N ← 2N − 1 and merge the observed data and predicted data in chronological
order, still denoted as s(tn), n ∈ {0, 1, · · · , N − 1}. Return to Step 2.

Table S1: Experimental hyperparameters in different systems
Experiment Ntr N Nx di µ l c K lh

2-D ODE 100 1000 / 3 0 0.1 20 300 3

KDV PDE 100 1000 64 6 0 0.2 1.0 512 3

DR PDE 100 1000 64 6 0 0.1 1.0 512 3

KS PDE 100 1000 64 6 2 0.2 1.0 512 3

NS PDE 100 1000 32× 32 8 0 0.1 1.0 256 4

A.2 EXECUTION PROCESS OF THE FNODES FRAMEWORK

To provide a clearer description of our method’s execution process, we present a concise procedure
as Algorithm 1.

B EXPERIMENTAL HYPERPARAMETERS

In this section, we present the hyperparameter settings for all experiments conducted in the main
text and appendix. First, we construct a multi-layer fully connected neural network to model the
underlying dynamics f , and use the neural network to predict the vector field of the dynamical sys-
tem from a dynamical perspective. The neural network consists of four hyperparameters: the input
dimension di, the hidden layer dimension dh, the number of hidden layers lh, and the output dimen-
sion do. Regarding the training data, it comprises three hyperparameters: the number of training
samples Ntr, the number of time domain sampling points N , and the number of spatial domain sam-
pling points Nx and/or Ny . For Fourier analysis, it is necessary to consider the truncation frequency
K. For the training process, In Gaussian random field sampling, we consider the output scale c,
mean µ, and length scale l. Therefore, unless otherwise specified, the hyperparameter settings for
our experiments are shown in Table S1.

During the training process, we set the learning rate to 0.001, weight decay to 1e-5, and employed
the Adam optimizer for training. In addition, the initial values for the NS and 2D-ODE experiments
are randomly generated, while for the KDV, DR, and KS experiments, the initial values are given as
follows:

sKDV = 2 cos(x/LKDV)× (1 + sin(x/LKDV)),

sDR = cos(2πx/LDR),

sKS = 2 cos(x/LKS)× (1 + sin(x/LKS)),

where LKDV, LDR, and LKS represent the spatial lengths of the KDV, DR, and KS systems, respec-
tively.
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(a)

(b)

(c)

Figure S1: The experimental results of the DR system using FNODEs Method. (a) The variation of the training
and validation loss during the training process. (b) Plot of u2(t) from a test data. (c) These three subplots from
top to bottom represent the ground truth, predicted results, and prediction errors of test data.

C EXPERIMENTAL DETAILS

In this section, we provide additional experiments and explanations to illustrate the content in the
main text better.

C.1 POTENTIAL SPATIAL GRADIENTS

To improve the modeling of PDE systems, we consider the potential spatial derivative terms esti-
mated from equations (7) and (8) as additional inputs to the neural network. In fact, these partial
derivatives are commonly used in the majority of PDE systems. For instance, in one-dimensional
PDE systems, the most prevalent spatial partial derivatives are {∂xs, ∂xxs, ∂xxxs, . . .}, and the
highest order d of the partial derivatives is typically chosen to be a small finite value (we set it to 4
in our experiments in this paper). Therefore, for a PDE system with a spatial dimension of D, the
number of possible spatial derivative terms satisfies the following recursive formula:

SD(d) = d+ 1, D = 1

SD(d) =

d∑
i=0

SD−1(i), D > 1

where SD(d) represents the total number of potential derivative terms in a PDE system with a spatial
dimension of D and a maximum derivative order of d.

It should be noted that these spatial partial derivatives are inherent to almost all PDE systems and
can be estimated directly from observational data. Therefore, we do not introduce any additional
specific prior knowledge.

C.2 EXPERIMENTAL RESULTS FOR DR AND KS SYSTEMS

First, we consider the DR system with control variable u. The mathematical formulation can be
found in Table 2 of the main text. Here, we consider u(x, t) = sin(2πx/LDR)+u2(t), and u2(t) is
a sampling function from GRF. After training using the FNODEs method, the experimental results
are shown in Fig. S1. It is evident that our method exhibits high training efficiency and satisfactory
predictive accuracy.

Similarly, we conducted experiments in the KS system using the function form described in Table
2 of the main text. Here, we consider u(x, t) = sin(2πx/LKS) + u3(t), and u3(t) is a sampling
function from GRF. After training, the experimental results are shown in Figure S2. It is evident that
our method also exhibits excellent predictive performance in the KS system.
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(a)

(b)

(c)

Figure S2: The experimental results of the KS system using FNODEs Method. (a) The variation of the training
and validation loss during the training process. (b) Plot of u3(t) from a test data. (c) These three subplots from
top to bottom represent the ground truth, predicted results, and prediction errors of test data.

Figure S3: The prediction results of a test data in Lorenz system using FNODEs Method.

C.3 EXPERIMENTAL RESULTS ON A CHAOTIC SYSTEM

Here, we consider a 3-D ODE system, known as the Lorenz63 system, which exhibits chaotic be-
havior. The system is described by the following equations:

ẋ = 10(y − x),

ẏ = ρ(t)x− y − xz,

ż = xy − 8/3z,

where ρ(t) is a time-varying system parameter sampled from a Gaussian Random Field (GRF).
Following the methods described in the main text, the training was completed in just 64.78 seconds
for a total of 20,000 epochs. The experimental results are presented in Fig. S3. It is evident that our
method demonstrates pretty good reconstruction performance on the chaotic Lorenz system.

C.4 EXPERIMENTAL RESULTS ON A REAL-WORLD SYSTEM

To explore the potential applicability of the method presented in this paper in real-world systems, we
conducted preliminary experiments in the time series data of polar motion (the data can be accessed
via https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/
eop.html). The polar motion components as the crucial Earth Orientation Parameters (EOPs),
denoted usually by xp and yp, describe the position of the Earth’s instantaneous rotation axis with
respect to the Earth’s surface. In the field of geodesy, it is necessary to have accurate predictions of
these parameters.

To enhance the accuracy of the dynamics modeling and prediction, we incorporate multiple dis-
tinct sources of physical information as features, following the guidelines of reference Shahvandi
et al. (2022). Specifically, we utilize dUT1 = UT1 − UTC and Length of Day (LOD) as the
initial two features. Additionally, we also incorporate four Effective Angular Momentum (EAM)
functions as features, namely: (a) Atmospheric Angular Momentum (AAM); (b) Hydrological An-
gular Momentum (HAM); (c) Oceanic Angular Momentum (OAM); and (d) Sea-Level Angular
Momentum (SLAM) (the data can be accessed via http://rz-vm115.gfz-potsdam.de:
8080/repository).
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Figure S4: The prediction performance for a data segment using FNODE and NODE methods.

Figure S5: The prediction results for the polar motion data using different methods. Here, MAE refers to
mean absolute error.

We partition the data as follows: 70% for training, 10% for validation, and the remaining 20% for
testing. As shown in Fig. S4, our approach not only outperforms the traditional NODE method in
prediction accuracy, but also reduces the training time by over an order of magnitude. Furthermore,
we conducted a prediction for the subsequent 100 days from 50 randomly selected starting points
under various methods, with the results depicted in Fig. S5. It is discernible that our method out-
performs the baselines in both short-term and long-term predictions. Additionally, we also conduct
a ablation experiment on data augmentation strategies (see FNODE (augmentation) and FNODE
(no augmentation) in Fig. S5 for details). It is apparent from the results that incorporating feed-
back mechanisms during the training process can further enhance the predictive performance of the
model.

D BASELINE METHODS

In this section, we provide a brief overview of the application of baseline methods in our experi-
ments.

Firstly, in Section 4.2 of the main text, we utilize DeepONet as a baseline approach Lu et al. (2019).
This method comprises a branch net and a trunk net. The branch net receives m equidistantly
sampled points from the parameter function u(x, t) as input and outputs a p-dimensional vector
b = {b1, · · · , bp}. On the other hand, the trunk net takes the time t and space x as input and
outputs a p-dimensional vector t = {t1, · · · , tp}. Then, the system state of any input variable can
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be predicted as follows:

G (u)(x, t) =

p∑
k=1

bk(u)tk(x, t) + q,

where q ∈ R is a bias. After training, we can predict the state value s(x, t) under any sampling
function u.

Then, we consider the Fourier Neural Operator (FNO) Li et al. (2020) method, which formulates a
neural operator by directly parameterizing the integral kernel in Fourier space. In practice, we take
the system state s(x, t) and the parameter function u(x, t) at time t as input and directly output the
system state s(x, t + δt) at time t + δt. The FNO and DeepONet methods, as two neural operator
approaches, effectively learn the prediction from the parameter function u(t) to the system state.
However, these methods lack interpretability and struggle to achieve better performance in extrapo-
lation tasks beyond the distribution. Particularly, they exhibit poor performance in NS experiments
where the initial values also vary.

Thirdly, we consider the PDE-NET Long et al. (2018) method, which leverages finite differences
to approximate spatial derivative terms and uses a simple backward Euler for training and testing.
In particular, for 2-d PDE systems, this method employs specific convolution kernels to compute
spatial derivatives. In fact, this approach can be regarded as a numerical estimation of spatial partial
derivatives and Euler iteration in the temporal direction. Although this is also an approach to esti-
mating the gradient flow, in our experiments, the accuracy and speed of this method were inferior to
the performance of the Fourier method.

Fourthly, we consider the NODEs for PDE systems. Indeed, due to the spatial derivatives of the PDE
system, its dynamical behavior becomes highly intricate, posing numerous challenges in directly
predicting the PDE system using NODEs. To execute the NODE method, we take the system state
s and the parameter u as inputs to a neural network and obtain the temporal gradient of the system.

Fifthly, we contemplate utilizing the Physics-Informed Neural Networks (PINN) method Raissi et al.
(2019) for the experiment. Unlike other methods, this approach does not train the neural network
based on the prediction error of observational data. The method operates on the premise of known
dynamical equations and employs a neural network to directly fit the initial conditions, boundary
conditions, and dynamical equations. However, this approach cannot directly model a family of
dynamical systems. Therefore, for each test data, the neural network must be retrained for dynamics
prediction.

Sixthly, we consider the DeepAR method Flunkert et al. (2017), a forecasting method based on
auto-regressive recurrent networks, which learns such a global model from historical data of all
time series in the data set. However, our experimental results revealed that this method demon-
strated poor performance in long-term prediction in differential equation systems, particularly in
high-dimensional data within PDE systems. As a result, we only employ it as a baseline method for
parametric ODE experiments.

Finally, we consider the message passing PDE solvers (MP-PDE) method Brandstetter et al. (2022).
This method models the grid as a graph G = (V, E) with nodes i ∈ V , edges ij ∈ E , and node
features fi ∈ Rc. Here, the feature f consists of the spatial derivative terms for finite difference
method (FDM), finite volume method (FVM), and WENO schemes. Then, we can update the graph
representation through message passing, which in turn enables us to predict the future state of the
system.

In spite of the effectiveness of the aforementioned methods in addressing parametric PDE problems,
there is still room for improvement in terms of learning accuracy and extrapolation capabilities. To
address this, we introduce the FNODEs method, which demonstrates superior performance com-
pared to baseline methods across various experimental scenarios.

17


	Introduction
	Related work
	The framework of FNODEs
	Illustrative experiments
	Parametric ODEs
	Parametric PDEs
	Additional Validation and Discussion of Our Framework

	Concluding Remarks
	Theorems and Algorithms
	Proof of Theorem 1
	Execution process of the FNODEs framework

	Experimental Hyperparameters
	Experimental Details
	Potential spatial gradients
	Experimental results for DR and KS systems
	Experimental results on a chaotic system
	Experimental results on a real-world system

	Baseline methods

