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Abstract

We introduce RIPT-VLA, a simple and scalable001
reinforcement-learning-based interactive post-training002
paradigm that fine-tunes pretrained Vision-Language-Action003
(VLA) models using only sparse binary success rewards.004
Existing VLA training pipelines rely heavily on offline expert005
demonstration data and supervised imitation, limiting their006
ability to adapt to new task and environments under low-data007
regimes. RIPT-VLA addresses this by enabling interactive008
post-training with a stable policy optimization algorithm009
based on dynamic rollout sampling and leave-on-out010
advantage estimation. Without requiring shaped rewards or011
value models, RIPT-VLA achieves state-of-the-art results012
across a wide range of tasks and benchmarks. It improves013
the lightweight QueST model by up to 21.2% in few-shot014
settings, achiving state-of-the art 94.3% on LIBERO-90,015
and pushes the large-scale OpenVLA-OFT model to achieve016
97.6% on the LIBERO 4-Suite benchmark. Remarkably,017
when only one demonstration is given, RIPT-VLA enables a018
unworkable SFT model (4%) to succeed with 97% success019
rate within 15 iterations. These results highlight RIPT-VLA020
as a practical and effective paradigm for post-training VLA021
models through minimal supervision. Code and checkpoints022
will be released.023

1. Introduction024

Vision-Language-Action (VLA) models [40] aim to enable025
agents to perceive, reason, and act in the physical world with026
a unified interface. Current VLA models are trained with027
two supervised stages: large-scale pretraining on diverse028
human demonstrations, followed by supervised fine-tuning029
(SFT) on smaller-scale task-specific datasets. This paradigm030
has some distinct advantages: Pre-training enables the VLA031
model to build general visuomotor skills while SFT allows032
it to specialize in specific environments [12]. Supervised033
training allows VLAs to learn from large-scale pre-recorded034
vision-language-action datasets. However, this supervised035
approach also has two core limitations: First, data is col-036
lected offline. The VLA learns to imitate interactions with037

the environment, but never sees the consequences of its own 038
actions. The result is a policy often fails to handle the com- 039
plexities of real-world scenarios, especially for long-horizon 040
tasks. Second, task-specific SFT via imitation learning relies 041
heavily on large-scale high-quality human demonstrations. 042
This data is expensive and time-consuming to collect, and 043
performance degrades significantly when only a small num- 044
ber of demonstrations are available. 045

In this paper, we propose RIPT-VLA: a third stage for 046
VLA training paradigm with Reinforcement Interactive Post- 047
Training. After pretraining and supervised fine-tuning, we 048
allow the VLA model to interact with the multitask environ- 049
ment and receive binary success/failure rewards. We then 050
optimize the VLA model to directly improve its success 051
rate across multiple tasks through reinforcement learning. 052
Inspired by prior RL frameworks for LLMs reasoning [8], 053
we propose a stable and efficient RL framework for VLA 054
finetuning in Section 4. Specifically, we extend the LOOP 055
framework [4] which combines REINFORCE leave-one- 056
out (RLOO) advantage estimation [14] and proximal policy 057
optimization (PPO) [28]. Unlike LOOP, we construct uni- 058
form batches of non-zero advantage samples, filtering out 059
any group of trajectories with zero-advantage, and sampling 060
rollouts until sufficient samples exist. This uniform batch 061
construction leads to improved training stability, especially 062
as training progresses and the VLA becomes more success- 063
ful. RIPT-VLA allows efficient and stable VLA policy update 064
without relying on shaped or learned rewards, or critic mod- 065
els. Using Reinforcement Learning in a third training stage 066
has a few distinct advantages: It is more data efficient, yield- 067
ing close to state-of-the-art performance with only a single 068
SFT demonstration. The resulting VLA has a much higher 069
performance on the end-task, as it gets to see interactions 070
with the environment during training. RIPT-VLA works with 071
both tokenized [22] and continuous actions [13]. 072

RIPT-VLA resonates with the recent trend of paradigm 073
shift in LLM training [8]. While pretraining on large-scale 074
text corpora equips LLMs with broad knowledge and power- 075
ful skills, they often struggle with challenging tasks that re- 076
quire precise reasoning, multi-step planning, or tool use [34]. 077
To address these limitations, reinforcement learning has 078
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Figure 1. Overview of RIPT-VLA. While VLA models are typically trained with two supervised stages, we propose a third stage:
Reinforcement Interactive Post-Training for VLA. RIPT-VLA sets state-of-the-art results across diverse benchmarks. It also presents
remarkable improvement under low-data regime: transforms a 1-demo SFT model from near failure to 97% success.

emerged as a critical third stage—used to reactivate and079
steer pretrained knowledge with only a small amount of080
interactive feedback [24]. Similarly, we observe that pre-081
trained VLA models also encode rich visuomotor skills, yet082
struggle to apply them effectively for new tasks and scenar-083
ios. RIPT-VLA bridges this gap by using only sparse binary084
rewards to unlock and specify these latent skills with a small085
number of optimization steps.086

In Section 5, we demonstrate that RIPT-VLA achieves087
state-of-the-art results when combined with both large-088
scale and lightweight VLA models across a diverse set of089
tasks. On the LIBERO benchmark [19], RIPT-VLA improves090
QueST [22], the best lightweight VLA model, on all four091
task suites by 10.9% absolute success rate (SR) on average092
(Table 1). When evaluated on OpenVLA-OFT [13], the best-093
performing large VLA model with an already high success094
rate (96.7%), RIPT-VLA still helps by further reducing the095
failure rate from 3.3% to 2.4%. We also achieve top perfor-096
mance on many-task benchmarks LIBERO-90 (94.3%) and097
MetaWorld45 [36] (92.2%), showing the effectiveness of098
RIPT-VLA in improving multi-task (up to 90) performance099
with a single model (Table 2). Most notably, in the extreme100
low-data regime with only a single training demo, RIPT-VLA101
adapts pretrained knowledge to new tasks goals or scenar-102
ios with remarkable efficiency: boosting success rate from103
below 4% to over 97% within only 15 RL iterations.104

2. Related Works105

Vision-Language-Action Models. Vision-Language-106
Action (VLA) models empower embodied agents to interpret107
multimodal inputs—such as visual observations and natural-108
language instructions—and translate them into meaningful109
actions within the physical world [40]. Seminal works like110
RT-2 [40], RT-1 [3], PaLM-E [6], Octo [32], Dita [9], π0 [1],111
and π0.5 [11], together with OpenVLA [12], showcase VLAs112
achieving emergent semantic reasoning and generalization113
to novel tasks and environments. These models are typically114

developed through a two-stage supervised-learning paradigm 115
that begins with an initial pre-training phase on extensive, 116
web-scale datasets [2, 6], which is crucial for acquiring gen- 117
eralizable visuomotor skills, grounding language in percep- 118
tion, and building robust internal representations. While 119
this two-stage approach has advanced the field, its offline 120
nature imposes key limitations. The supervised fine-tuning 121
(SFT) stage typically requires vast expert demonstrations 122
for new tasks or environments, thereby degrading few-shot 123
performance. This highlights a critical gap: the need for 124
methods that adapt pretrained VLAs beyond static imitation 125
by leveraging interactive experience and reducing reliance 126
on extensive expert data. 127

Reinforcement Learning for LLMs. Large Language 128
Models (LLMs) offer a precedent for enhancing pretrained 129
models. While LLMs gain broad capabilities via pre-training 130
and SFT, they often struggle with complex reasoning, plan- 131
ning, or constraint satisfaction [34]. To address this, Rein- 132
forcement Learning (RL) has emerged as a transformative 133
third stage in LLM training—enabling learning from interac- 134
tive feedback rather than static datasets [24]. Recent progress 135
shows RL can unlock latent capabilities for math [17, 29], 136
self-verifiable proofs [18], long-horizon planning through 137
tree-of-thoughts [35], and preference-aligned generation 138
with AI feedback [15]. This paradigm, in which pretrained 139
knowledge is steered by targeted feedback, strongly mo- 140
tivates a similar approach for VLA models: RL has the 141
potential to adapt pretrained VLAs more effectively to the 142
interactive and consequential nature of embodied tasks. 143

Reinforcement Learning for VLA. Recent works have 144
explored applying reinforcement learning to pretrained VLA 145
models to overcome limitations of supervised fine-tuning and 146
adapt to novel tasks without collecting new demonstrations. 147
iRe-VLA [20] addresses optimization instability by alternat- 148
ing between PPO-based updates on a frozen VLM backbone 149
and supervised distillation stages. However, it still relies on 150
a learned value critic during PPO, and requires shaped re- 151
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ward functions or success weighting to guide policy learning.152
ConRFT [21] further combines offline Q-learning with on-153
line consistency-policy updates, but similarly depends on a154
parameterized value function. Both methods require careful155
coordination between offline and online stages to stabilize156
critic learning. In contrast, RIPT-VLA introduces a fully157
critic-free optimization framework with simpler training dy-158
namics under sparse binary rewards.159

3. Preliminary160

3.1. Vision-Language-Action Models161

Autoregressive VLA rollout. A vision-language-action162
(VLA) model πθ maps a sequence of observations and previ-163
ous actions (o1:t, a1:t−1), along with a natural language goal164
g, to a probability distribution over the next action at. These165
models operate autoregressively: at ∼ πθ(· | o1:t, g, a1:t−1).166
Given an initial observation-goal pair context c = (o1, g),167
the model generates a sequence of actions conditioned on168
past information in an autoregressive way:169

πθ(a1:T | o1:T , g) =
T∏
t=1

πθ(at | o1:t, g, a1:t−1). (1)170

We denote this sampling process as a = a1:T ∼ πθ(· | c),171
the observations alone the sequence as o = o1:T . Sequences172
terminate upon task success or reaching a time limit. For173
each rollout sequence and task goal g, the environment E174
returns a binary reward R = 1 when the task goal is success-175
fully reached, and R = 0 otherwise. The environment E can176
be either a simulator [19, 36] or the real world.177

There are two common ways of action prediction in VLAs.178
The tokenized action head represents actions as discrete to-179
kens from a fixed vocabulary and predicts actions via classi-180
fication over the token set. In contrast, the regression action181
head directly predicts real-values action vectors via regres-182
sion.183
Current VLA training paradigm. Current Vision-184
Language-Action (VLA) models are typically trained in two185
stages: Stage 1: Pretraining and Stage 2: Supervised186
Fine-tuning.187

In Stage 1, a base policy πθ is pretrained on a large-scale,188
diverse dataset of real-world demonstrations, denoted by189
Dpretrain = {(o,a, g)}Ni=1. The policy is trained to imitate190
the ground-truth actions given offline data in Dpretrain. For191
VLA with tokenized action head, the loss is:192

Lpre(θ) = −E(o,a,g)∼Dpretrain

[
T∑
t=1

log πθ(at | o1:t, g, a1:t−1)

]
,

(2)193
while for regression action head Lpre(θ) is implemented as194
an MSE or L1 loss. This stage enables VLA capture strong195
representations and learn general visuomotor and instruction-196
following capabilities.197

In Stage 2, the pretrained policy is supervised fine-tuned 198
on a smaller, multitask dataset to improve performance on 199
a small set of target tasks, denoted by Dsft = {(o,a, g)}N

′

i=1. 200
Typically, Dsft contains around 50 high-quality human 201
demonstrations per task [22]. The VLA is trained with the 202
same objective function as in Stage 1. This stage enables the 203
model to adapt its learned skills from Stage 1 to a specialized 204
set of skills for the target tasks. 205

Although being the standard process of VLA training, 206
this two-stage process has two significant issues. Firstly, it 207
relies only on offline supervision and lack interactive feed- 208
back from the environment. Therefore, the learned policy 209
may often fail in real rollouts due to distribution shift and 210
cascading errors, especially for long-term rollout. Further- 211
more, the performance of VLA heavily relies on the high 212
quality and quantity of the task-specific data in Dsft, which 213
is often hard and costly to obtain. 214
VLA as Markov decision processes. To better optimize 215
VLA models, we define its task as a Markov decision process 216
(MDP). Each episode is initialized with a context c = (o1, g). 217
The state is represented as [o1:t, g, a1:t−1], which includes 218
the language goal g, the sequence of past observations o1:t, 219
and past actions a1:t−1. At each timestep t, the VLA policy 220
produces an action sampled from the policy distribution: 221
at ∼ πθ(· | o1:t, g, a1:t−1). The environment transitions 222
to the next observation ot+1 based on hidden environment 223
dynamics, producing a new state [o1:t+1, g, a1:t]. After a 224
sequence of actions a1:T , the agent receives a binary reward 225
R(c, a) ∈ {0, 1} from the environment E , indicating task 226
success or failure. The objective of VLA optimization is 227
essentially learning a policy πθ that maximizes expected 228
task success reward: 229

Lθ(c) = Ea∼πθ(·|c) [R(c,a)] . (3) 230

3.2. Reinforcement Policy Optimization 231

We consider the reinforcement learning setting where 232
an agent interacts with an environment E to learn a 233
policy πθ(a | c) that maximizes the expected return: 234
Ec∼Dcontext, a∼πθ [R(c,a)], where c is the context (e.g., goal 235
and initial observation), a is a trajectory (e.g., sequence of 236
actions), and R(c,a) ∈ {0, 1} is a sparse binary reward 237
returned by the environment. To optimize this objective, a 238
standard approach is policy gradient, which updates πθ with: 239

∇θLθ(c) = Ea∼πθ [∇θ log πθ(a | c) ·A(c,a)], (4) 240

where A(c,a) is the advantage function indicating how 241
much better the action a is compared to a baseline. In 242
practice, computing A(c,a) is challenging, especially under 243
sparse rewards. To address this issue, a recent work proposed 244
a critic-free optimization framework called Leave-One-Out 245
Proximal Policy Optimization (LOOP) [4]. Specifically, it 246
combines the two methods below. 247
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Leave-One-Out Advantage Estimation (RLOO) [14].248
For each sampled context c, we draw K rollouts {ak ∼249
πψ(· | c)}Kk=1 under a fixed sampling policy πψ. Each250
rollout receives a binary reward Rk = R(c,ak). The leave-251
one-out baseline for rollout k is computed by averaging the252
other rewards:253

bk =
1

K − 1

∑
j ̸=k

Rj , Ak = Rk − bk. (5)254

This group-normalized advantage indicates how much bet-255
ter or worse a rollout performance relative to others from256
the same context. This allows use to efficiently compute a257
stable advantage signal from sparse binary rewards, without258
requiring learning value functions.259
Proximal Policy Optimization (PPO) [28]. To update260
πθ using collected rollouts {(ck,ak, Ak)}, we compute the261
importance ratio rk = πθ(ak | ck)/πψ(ak | ck), where πθ262
is the current updating policy and πψ is the fixed sampling263
policy (normally set to the last checkpoint of πθ). We then264
optimize πθ with the following clipped objective:265

LPPO = −min (riAi, clip(ri, 1− ϵ, 1 + ϵ)Ai) , (6)266

where ϵ is a small updating threshold (we set to 0.2). This267
objective encourages rollouts with positive advantages while268
preventing unstable updates when πθ deviates too far from269
its previous version πψ .270

LOOP adopts PPO to optimize the advantage estimated by271
RLOO, which enables sample-efficient policy optimization272
in sparse reward settings without critics. It serves as an273
out-of-box working implementation for our interactive post-274
training framework in Section 4.275

4. RIPT-VLA276

As mentioned above, there is a gap between the current VLA277
training paradigm and our essential goal of making it work in278
our downstream tasks. On one hand, pure supervised training279
on offline data makes the policy fragile in real rollout due280
to compounding errors and the distribution gap between281
offline dataset and online rollout. Furthermore, one has to282
collect a sufficient number of high-quality demonstrations283
for the offline datasets, especially Dsft, the model can easily284
overfit to the training distribution. In other words, optimizing285
VLA through Equation 2 does not necessarily improve the286
VLA’s task execution success rate in Equation 3. To bridge287
this gap, we propose a new VLA training paradigm that288
directly optimize pretrained VLA through interaction with289
the environment E through Reinforcement Interactive Fine-290
Tuning. We call this paradigm RIPT-VLA.291

4.1. Interactive Post-Training for VLA292

The first two stages of our VLA training paradigm are the293
same as standard setting. In Stage 1, We pretrain the VLA294

Algorithm 1 RIPT-VLA: Reinforcement Interactive Post-
Training for VLA Model

Input: Pretrained VLA πθ, reward function R(c,a),
1: context dataset Dcontext
2: for step = 1 to M do
3: Update sampling VLA πψ ← πθ
4: Initialize empty dataset Drollout ← ∅
5: while |Drollout| < B do
6: Sample a context c← (g, o1) ∼ Dcontext
7: Generate K rollouts {ak ∼ πψ(· | c)}Kk=1

8: Compute rewards {Rk ← R(c,ak)}Kk=1

9: Compute baselines: bk ← 1
K−1

∑
j ̸=k Rj

10: Compute advantages: Ak ← Rk − bk for each k
11: if all A = 0 then
12: continue
13: end if
14: Add (c,ak, Ak) for all k to Drollout
15: end while
16: for iteration = 1 to N do
17: Update πθ with PPO loss over Drollout
18: end for
19: end for

model on a large diverse dataset Dpretrain to learn visual- 295
language representation and general visuomotor skills. Then, 296
in Stage 2 we finetune VLA on a small datasetDsft to adapted 297
it to follow instructions to solve a small set of target tasks. 298
These stages produce a pretrained VLA policy πθ that can 299
achieve non-zero success rate (can be very low) on the target 300
tasks. 301

In RIPT-VLA, we then conduct Stage 3: Reinforcement 302
Interactive Post-Training. In this stage we assume we can 303
rollout πθ in an environment E and receive a binary reward 304
R(c, a) ∈ {0, 1} given a ∼ πθ(· | c), where c is the initial 305
context. In addition, we use an initial context dataset Dc = 306
{(o1, g)} to set up task initializations for model rollouts. 307
Typically, we obtain Dc by directly extracting the initial 308
states from sequences in Dsft. For each optimization step, 309
we iterate between two steps: rollout collection and policy 310
optimization. 311

During rollout collection, we randomly sample contexts 312
ci ∼ Dc and let πθ interact with the environment E to 313
output a sequence ai. For each rollout we collect its reward 314
R(ci,ai) and compute its advantage Ai = A(ci,ai), which 315
indicate how strong the model should be encouraged (A > 0) 316
or penalized (A < 0) for generating rollout a. We add all 317
rollouts and rewards (ci,ai, Ai) to a rollout dataset Drollout 318
until we obtain B rollouts: Drollout = {(ci,ai, Ai)}Bi=1 319

During policy optimization, we optimize πθ with rein- 320
forcement learning algorithms on Drollout to maximize its 321
expected task success rate in Equation 3 for N iterations. 322
After optimization, we use the updated VLA policy π′

θ to 323
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collect new rollouts and a new step begins. This process324
repeats until we reach M steps and outputs the final policy325
π∗
θ , concluding the full VLA training paradigm. We then326

deploy π∗
θ in the environment for testing.327

Although RIPT-VLA is simple in concept, it presents sev-328
eral challenges. First, we only have sparse binary rewards329
from each rollout sequence, no shaped reward is available.330
Training a learned reward model to predict shaped reward331
values can easily lead to reward hacking [30], especially with332
limited rollout data. Second, as VLA models operate over333
long-horizon, multi-task environments, credit assignment be-334
comes highly ambiguous. This causes the value target (e.g.,335
from TD error) to be extremely noisy and uninformative.336
Third, training a stable value function for VLA requires a337
model of comparable capacity to the VLA itself, which sig-338
nificantly increases GPU memory usage and training cost for339
large VLA models [38]. Finally, in multitask environments,340
different task contexts can vary significantly in difficulty:341
some lead to trivial success while others consistently fail342
across all rollouts. This results in highly imbalanced success343
rates and unstable policy gradient updates.344

4.2. Dynamic-Sampling Leave-One-Out Proximal345
Policy Optimization.346

To implement RIPT-VLA in a stable and sample-efficient347
way, we propose a simple yet effective policy optimization348
framework in Algorithm 1. First, we adopt LOOP (Sec-349
tion 3.2) as the foundation of our implementation. LOOP350
is particularly well-suited for our VLA setting, where roll-351
outs are long-horizon and efficient advantage estimation is352
required for its sparse reward signal. Furthermore, for VLA353
in multitask environments, we design a dynamic rollout sam-354
pling mechanism to filter out uninformative contexts for355
more stable and efficient policy optimization.356

LOOP for RIPT-VLA. We apply LOOP [4] for both the357
rollout collection and policy optimization stage. During roll-358
out collection, we conduct RLOO [14] advantage estimiation.359
In this step, we use the most recent policy πθ as the sampling360
policy πψ. Given a single context c ∼ Dc, we collect K361
trajectories by repeatingly sampling K times from the policy362
given the same context: {ak ∼ πψ(· | c)}Kk=1. We obtain363
their corresponding rewards {Rk}Kk=1 from the environment364
E . For each rollout k, we compute the advantage Ak with365
Equation 5. For each epoch, we conduct group sampling on366
B/K contexts sampled from Dc, obtaining Drollout with B367
rollouts.368

During policy optimization, we use PPO [28] to sta-369
bilize policy gradient updates. For each rollout sample370
(ci,ai, Ai) ∈ Drollout, we can compute its training objec-371
tive LPPO with Equation 6. We perform this update over the372
collected rollout dataset Drollout using mini-batches for N373
optimization steps each epoch. When N = 1, the method374
corresponds to on-policy RLOO; when N > 1, the same375

samples are reused for additional updates, resulting in a 376
partially off-policy optimization. 377
Dynamic rollout sampling. VLA models often operate 378
in multitask environments [12, 22, 31], where task difficulty 379
varies widely across different contexts. Some contexts have 380
been already well solved by VLA, leading to trivial success 381
across K-group sampling, while others consistently fail due 382
to inherent task complexity or distribution gap. Both cases 383
result in rollout groups where all rollout samples receive 384
identical rewards (all 1s or all 0s), producing all 0 advantage 385
in Equation 5. Therefore there is no gradient signal from 386
Equation 6. Adding these samples to Drollout makes unstable 387
gradient updates during batch optimization, as they con- 388
tribute zero gradients that can dominate or dilute meaningful 389
learning signals. 390

To address this, we apply a simple yet effective dynamic 391
rejection strategy: we discard any sampled context for which 392
all K rollouts receive the same reward and resample a new 393
context from Dcontext for group sampling. As training pro- 394
gresses and the policy improves, an increasing number of 395
task contexts yield uniformly successful rollouts. Dynamic 396
rejection naturally filters out these solved contexts, allowing 397
optimization to concentrate on the remaining harder contexts. 398
Importantly, this method make the batch optimization of the 399
PPO loss (Equation 6) to have the same effective batch size 400
over all the minibatches across Drollout, which we empiri- 401
cally found to be important for stable policy optimization in 402
RIPT-VLA. 403

The full implementation of our optimization procedure is 404
summarized in Algorithm 1. 405

4.3. Generalize to Different VLA models. 406

RIPT-VLA is compatible with both discrete and continuous 407
action representations commonly used in VLA models. To 408
perform stable policy optimization, we compute the trust re- 409

gion ri =
πθ(ai|ci)
πψ(ai|ci) in Equation 6 to constrain policy updates 410

within a small region of the original policy. A key compo- 411
nent in this formulation is computing the log-probability of 412
the sampled action sequences under both policies. At each 413
step, we assume the policy outputs a probability distribution 414
over actions. We compute the log-probability of a sampled 415
action sequence a = (a1, . . . , aT ) as the sum of the per-step 416
log-probabilities: 417

log πθ(a | c) =
T∑
t=1

log πθ(at | a<t, c). (7) 418

Therefore, we can apply RIPT-VLA to any VLA model πθ 419
that we can compute log πθ(at | a<t, c). 420
Tokenized action head. For VLA models with discrete 421
action outputs, e.g. QueST [22], actions are predicted as 422
sequences of discrete tokens from a fixed vocabulary, where 423
the action header is a classification head trained with NLL 424
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loss. Therefore, log πθ(at | a<t, c) is directly obtained from425
applying softmax function to the model’s classification head426
output logits.427
Regression action head. For continuous-action VLA mod-428
els [13], actions are regressed using MSE or L1 loss, which429
do not produce a log-probability. To enable policy gradient430
optimization, we extend the model with a light-scale pre-431
diction head that estimates the scale σθ of the action value.432
Assuming the original output head provides the mean µθ, we433
treat the policy as a factorized Gaussian (MSE) or Laplace434
(L1) distribution and train the scale head using the NLL loss435
in Equation 2 for a few iterations on Dsft. After that, we can436
compute log πθ(at | a<t, c) with predicted µθ and σθ in a437
closed form.438

5. Experiments439

We evaluate RIPT-VLA on two widely used benchmarks for440
VLA learning: LIBERO [19] and MetaWorld [36]. We study441
several settings: (1) standard multitask (up to 90 tasks) set-442
ting in Sec. 5.2, (2) few-shot (1 ∼ 5 demonstration) setting443
in Sec. 5.3, and (3) cross-task and cross-scenario setting444
in Secs. 5.4 and Appendix A.1 to showcase the ability of445
fast generalization leveraging prior knowledge during pre-446
training. Additionally, we additional studies to analyze the447
practical behavior of RIPT-VLA, including training curves,448
ablation studies as well as its sensitivity to the variance and449
diversity of the context dataset.450

5.1. Setup451

Benchmark. LIBERO [19] is a lifelong learning bench-452
mark with 5 task suites. Each suite consists of a set of453
language-guided manipulation tasks across multiple object454
types, task definitions and environment scenarios. Specifi-455
cally, it includes 4 suites: Goal, Spatial, Object, and Long.456
Each suite is designed to evaluate a specific aspect of object457
manipulation and containing 10 distinct tasks. In addition,458
it also includes a LIBERO-90 suite that contains 90 differ-459
ent tasks to access multitask performance at scale. Meta-460
World [36] is a manipulation task benchmark for few-shot461
learning models. We use Meta-Learning 45 (ML45) suite462
that contains 45 training tasks and 5 held-out tasks.463

For both benchmarks, each task comes with 50 expert464
demonstrations for training. At evaluation time, a single465
VLA model is deployed across all tasks in a suite and per-466
forms rollouts on 50 held-out test contexts per task. We467
measure performance with the average task success rate.468
Base models. We conduct RIPT-VLA on two pretrained469
VLA with different design choices.470

OpenVLA-OFT [13] is an Optimized Fine-Tuned variant471
of the 7B OpenVLA model [12]. OpenVLA is initialized472
from a multimodal backbone that combines a Llama-2 7B473
language model with dual vision encoders [23, 37] and is474
pretrained on 970k robot-manipulation demonstrations. OFT475

replaces the original tokenized action decoder with a contin- 476
uous decoding head and trains with an L1 regression loss. 477
This architecture represents the large-scale regression action 478
VLA. 479

QueST [22] on the other hand, is a small-scale tokenized 480
action VLA model with 20 million parameters. QueST first 481
learns a VQ-VAE that compresses short motion segments 482
into a discrete skill codebook; a GPT-style transformer then 483
autoregressively predicts these skill tokens conditioned on 484
images and language, and a small decoder turns tokens back 485
into continuous joint commands. 486

Implementation details. We implement RIPT-VLA with 487
method described in Section 4.2. Unless otherwise specified, 488
we construct Dc from all initial states in the supervised fine- 489
tuning dataset Dsft. 490

For OpenVLA-OFT, we finetune the model from official 491
checkpoints for each task suite. We train on 4 NVIDIA RTX 492
A5000 GPUs using LoRA [10] with rank 32 on 4 GPUs, and 493
set K = 8, B = 192, N = 1 and ϵ = 0.1. We set a learning 494
rate of 1e−4 for the LoRA modules and 1e−5 for the action 495
head. Following Section 4.3, before applying RIPT-VLA, we 496
first train a small Laplace scale header from scratch (with 497
the same architecture as the action header) with NLL loss on 498
Dsft for 500 steps. 499

For QueST, as official checkpoints are not provided, we 500
first train the base model from scratch for each task suite 501
following the official code and hyper-parameters. In the 502
multitask setting, we conduct RIPT-VLA on 3 GPUs with 503
K = 16, B = 2880 (16× 180). For single-task setting, we 504
use 1 GPU with K = 16, B = 160. For both settings, we 505
set N = 20, PPO mini-batch size as 24, a learning rate of 506
1e−6, and the clipping parameter ϵ = 0.2. 507

5.2. Standard Multitask Training 508

In this section we evaluate RIPT-VLA under standard mul- 509
titask benchmarks. For each suite we use all the 50 expert 510
demonstrations per task as its SFT dataset Dsft. We conduct 511
RIPT-VLA to finetune a base model on the corresponding 512
dataset for each task suite. 513

Table 1 compares multitask performance on four LIBERO 514
suites for different VLA models. We organize the results 515
into two sets based on VLA training paradigm. In the Stage 516
1+ Stage 2 set, we include 5 state-of-the-art large VLA 517
models: Octo [32], OpenVLA [12], Dita [9], π0 [1] and 518
OpenVLA-OFT [13]. These models are typically larger 519
than 500M parameters, pretrained (Stage-1) on large-scale 520
general-purpose datasets, e.g., Open-X Embodiment [25], 521
and then finetuned using 50 demonstrations per task for 522
each LIBERO suite (Stage-2). In contrast, the Stage 2 set 523
includes 4 representative small models: Diffusion Policy [5], 524
Seer [33], MDT [27] and QueST [22]. These models are 525
within 50M parameters and are directly trained on each 526
LIBERO suite from scratch. 527
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Stage 1 + Stage 2 Models

Method Goal Spatial Object Long Average

Octo [32] 84.6 78.9 85.7 51.1 75.1
OpenVLA [12] 79.2 84.7 88.4 53.7 76.5
Dita [9] 85.4 84.2 96.3 63.8 82.4
π0 + FAST [26] 88.6 96.4 96.8 60.2 85.5
π0 [1] 95.8 96.8 98.8 85.2 94.2
OpenVLA-OFT* [13] 97.9 97.6 98.4 92.9 96.7
OpenVLA-OFT + RIPT 98.2 (+0.3) 99.0 (+1.4) 98.6 (+0.2) 94.4 (+1.5) 97.6 (+0.9)

Stage-2 Models

Method Goal Spatial Object Long Average

Diffusion Policy [5] 68.3 78.3 92.5 50.5 72.4
Seer [33] – – – 78.7 –
MDT [27] 73.5 78.5 87.5 64.8 76.1
MDT+ [27] – 95.2 97.8 83.0 –
QueST [22] 80.8 87.4 93.6 68.8 82.7
QueST + RIPT 92.7 (+11.9) 95.6 (+8.2) 98.4 (+4.8) 87.5 (+18.7) 93.6 (+10.9)

Table 1. Multitask SR(%) on the four LIBERO suites. Bold indicates best result and underline marks the second-best. Improvements from
RIPT-VLA are marked in red. *: OpenVLA-OFT results are obtained from running official checkpoints for each suite.

We show that RIPT-VLA significantly improves the best-528
performing VLA model in both types, setting new state-of-529
the-art performance on the 4 LIBERO suites. Specifically,530
RIPT-VLA improves QueST on all four task suites by 10.9531
absolute SR on average, and yields even larger gains of 18.7532
for the challenging LONG suite. Notably, with RIPT-VLA,533
the small 20M QueST model achieves much better perfor-534
mance with large models like Dita (334M) and compara-535
ble with π0 (2B). When applying to OpenVLA-OFT, the536
best-performing large VLA model with already high SR,537
RIPT-VLA still further reduces the average failure rate from538
3.3% to 2.4%. By applying RIPT-VLA, we set new state-of-539
the-art performance on 3 out of the 4 LIBERO suites (with540
only a 0.2 gap on the Object suite), and achieve the highest541
average success rate across all tasks. These results show542
the RIPT-VLA is broadly effective: it can both unlock latent543
capabilities in small-scale models and further push the limits544
of the high-performing ones.545

In addition, in the left two columns of Table 2, we show546
the results on LIBERO-90 and ML45, which contain 90 and547
45 diverse tasks respectively. These benchmarks assess the548
scalibility and generalization of a single VLA model across549
many skills. We apply RIPT-VLA to QueST and compare550
with representative imitation learning methods: ACT [7],551
PRISE [39], Diffusion Policy [5], VQ-BeT [16] and ResNet-552
T [22]. We show that RIPT-VLA improves performance of553
QueST by 5.7 and 1.2 absolute SR for LIBERO-90 and554
ML45, again setting new SOTA performance for both bench-555
marks. This confirms the utility of RIPT-VLA not only for556
improving performance on a few related task, but also scale557
up to broader, more realistic scenarios where a single model558
solving many different tasks.559

5.3. Few-shot Multitask Training 560

In this section we evaluate RIPT-VLA under few-shot mul- 561
titask setting. For each suite, we uniformly sample 1 to 10 562
expert demonstrations from each task to constitute the few- 563
shot SFT dataset Dsft. This setting reflects practical situation 564
where large-scale data collection is not available. 565

The right two columns of Table 2 show results un- 566
der the 5-shot setting, where each task in the LIBERO- 567
LONG and ML45 suites is trained with only 5 demon- 568
strations. While baseline models struggle in this low-data 569
regime, RIPT-VLA significantly improves QueST by 21.2 on 570
LIBERO-LONG and 12.4 on ML45. These results demon- 571
strate that RIPT-VLA effectively addresses a key limitation 572
of standard VLA training with SFT: it enables strong perfor- 573
mance even with minimal demonstrations. 574

To further investigate the effect of the number of few- 575
shot demonstrations, we conduct experiments under varying 576
few-shot settings with QueST, ranging from 1 to 10 demon- 577
strations per task on LIBERO-LONG. As shown in Figure 2, 578
RIPT-VLA consistently largely improve the performance of 579
standard SFT model across all data scales. Note that even for 580
the extremely low-data regime, where we only have 1 demon- 581
stration per task, RIPT-VLA can still acehive a 20.8 absolute 582
gain. As the number of demonstrations increases, RIPT-VLA 583
continues to yield performance improvements, indicating 584
its strong sample efficiency and scalability. These results 585
confirm that RIPT-VLA is robust across different levels of 586
data scarcity and is applicable in both low- and high-data 587
settings. 588
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Full Data 5-shot Data
Method LIBERO-90 ML45 LONG ML45

ACT [7] 50.8 90.8 42.0 70.8
PRISE [39] 54.4 80.4 52.7 66.8
DP [5] 75.4 90.3 45.9 65.0
VQ-BeT [16] 81.3 87.6 41.8 65.6
ResNet-T [22] 84.4 88.4 51.9 54.0
QueST [22] 88.6 91.0 50.2 63.6
QueST + RIPT 94.3 92.2 71.4 76.0
(improvement) (+5.7) (+1.2) (+21.2) (+12.4)

Table 2. Mean Success Rate (SR%) across four evaluation settings.

1 3 5 10
Number of Demos

40

60

80
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Figure 2. Few-shot curve on LIBERO-LONG.
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Figure 3. Cross-scenario task generalization from Scenario A to Scenario B with the same goal.

5.4. Cross-scenario Generalization589

Recent paradigm shift in LLM training demonstrate that590
reinforcement learning can reactivate and steer pretrained591
knowledge with only a small amount of interactive feed-592
back [24]. We adopt a similar approach for VLA and ask:593
can RIPT-VLA enable sample-efficient pretrained visuomo-594
tor skill transfer across scenarios and goals?595

In this section, we conduct experiment on the few-shot596
cross-scenario generalization setup. For each experiment,597
we consider a pair of tasks that have the same taks goal598
(e.g., ’turn on the stove and put the frying pan on it’), but599
operate in different scenarios: Scenario A and Scenario600
B - with distanct background layouts and object configu-601
rations. In Stage 1, we pretrain QueST on |Dpretrain| = 50602
demonstrations from Scenario A to acquire general visuo-603
motor skill for this task goal. In Stage 2, we conduct SFT604
on |Dsft| = {1, 2, 3, 4, 5} demonstrations from Scenario B.605
Then, in Stage 3 we apply RIPT-VLA to optimize the policy606
through interactive rollouts on contexts Dcontext extracted607
from Dsft. We then evaluate the model performance on the608
50 testing contexts of Scenario B.609

Figure 3 show results on 5 scenario pairs. We observe that610
standard SFT on VLA models clearly struggles in the 1-shot611
regime, achieving an average success rate of only around612
5%, and in some cases dropping as low as 2%. Clearly,613
SFT fails to generalize the task knowledge from the pre-614
training stage to the new scenario. In contrast, RIPT-VLA615
dramatically improves performance, with absolute SR gain616

as high as 93.7% (from 3.5% SFT to 97.2%). As the size 617
of Dsft increases, both SFT and RIPT-VLA performance im- 618
prove, but RIPT-VLA consistently maintains a strong im- 619
provement, often reaching near-100% performance with just 620
3-5 demonstrations. These results supports our core assump- 621
tion: RIPT-VLA enables pretrained VLA models to activate 622
and adapt learned skills with sparse binary rewards. 623

In the Appendix, we provide additional study on 1) cross- 624
goal generalization; 2) effect of dynamic rollout sampling; 3) 625
effect of context dataset size and 4) effect of context variance 626
in RLOO group. Please refer to the Appendix for details. 627

6. Conclusion 628

We presented RIPT-VLA, a simple yet powerful reinforce- 629
ment learning paradigm for post-training pretrained VLA 630
models using sparse binary task rewards. RIPT-VLA enables 631
stable and data-efficient optimization without the need for 632
shaped rewards, value functions, or reward modeling. Our 633
method significantly improves performance across multiple 634
VLA benchmarks, and demonstrates remarkable adaptability 635
even in extremely low-data settings. RIPT-VLA serves as 636
a scalable third-stage training paradigm that complements 637
existing pretraining and supervised fine-tuning pipelines, un- 638
locking the latent potential of large VLA models through 639
direct environment interaction. An exciting future direction 640
is to combine RIPT-VLA with reasoning and planning in 641
VLA models to enable more sophisticated and generalizable 642
behaviors in complex environments. 643
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A. Additional Experiments840

A.1. Cross-goal Generalization841

In this section, we investigate RIPT-VLA in a cross-goal842
generalization setting. Here we focus on task pairs that843
operate in the same scenario but different goals. Specifically,844
we select Task A and Task B such that they require the same845
visuomotor skills but have different goals. For example,846
Task A is "put the red mug on the right plate" while Task847
B is "put the red mug on the left plate". This setting tests848
whether pretrained visuomotor primitive skills (e.g., pick849
up and move) can be reused and recomposed to solve novel850
task goals (e.g., left vs. right). We again follow the 3 Stage851
paradigm: pretrain QueST on 50 demonstrations of Task A,852
SFT on a 3-10 demonstrations on Task B, and then apply853
RIPT-VLA for Task B.854

Figure 8 presents result over 5 set of tasks. We observe855
that cross-goal generalization is significantly more challeng-856
ing. With 3 demonstrations, SFT models still struggles and857
reach only 0.7% success rate on average, almost not work-858
able at all. With RIPT-VLA, we can improve model perfor-859
mance to 59.7% on average. Remarkably, for one task pair,860
RIPT-VLA improves the performance from near 0% success861
rate to 84.7%. As the number of demonstration increases,862
RIPT-VLA consistently maintains a large advantage across863
all data regions. At 10 demonstrations, the average success864
rate of RIPT-VLA reaches 79.7%, compared to only 29.4%865
for SFT.866

These results further show the limitation of SFT paradigm867
for VLA generalization under low-data regime. In contrast,868
we show that RIPT-VLA is not only help adapt pretrained869
skills to new environments, but also excels in fast general-870
ization of task goal semantics.871

A.2. Effect of dynamic rollout sampling.872

We ablate the impact of our dynamic rollout sampling strat-873
egy described in Section 4.2. We compare the full RIPT-VLA874
method with a variant that disables dynamic rejection. As875
shown in Table 3, dynamic sampling significantly boosts876
performance across all task categories and suites. By fil-877
tering out uninformative rollout groups, dynamic sampling878
ensures stable and efficient learning with consistent gradi-879
ent signal across batches. On average, we observe a +3.3880
absolute improvement in success rate compared to the non-881
dynamic variant, demonstrating its crucial role in stabilizing882
RIPT-VLA training. In Figure 5, we show training curve883
(averaged over 3 seeds) of Column 2 of Figure 8. We see884
that dynamic rollout sampling accelerates convergence of885
RIPT-VLA, achieving consistently higher performance and886
more stable optimization.887
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Figure 4. RIPT-VLA improves SFT models with extremely low
success rate.

A.3. Effect of context dataset size. 888

To study how the size of the context dataset Dc impacts 889
performance, we fix the QueST model SFT-trained with 890
only 1 demonstration for Column 2 of Figure 3 and vary the 891
number of rollout contexts used in the RIPT-VLA stage. As 892
shown in Figure 6, increasing the number of rollout contexts 893
significantly improves performance. This is because more 894
contexts provide greater diversity in initial states for the 895
rollouts interaction, allowing the model to better generalize 896
across different setups in the testing environments. Notably, 897
expanding Dc requires no additional human annotations: 898
each context only consists of the initial observation state and 899
no action is needed. This makes context dataset scaling a 900
cost-effective way to enhance generalization of RIPT-VLA. 901

A.4. Effect of context variance in RLOO group. 902

In Equation 5, each batch of rollouts is grouped by shared 903
initial state contexts. In realistic deployments, however, per- 904
fectly matching initial states is impractical due to inevitable 905
setup noise. To simulate this, we compute the standard devia- 906
tion of object initial positions across LIBERO-LONG, which 907
is around 2.5 cm. Starting with a QueST model SFT on 1 908
demo, we run RIPT-VLA while injecting Gaussian noise into 909
the initial states with increasing scales of std. As shown in 910
Figure 7, performance remains stable up to 1.0× (2.5 cm), 911
and only begins to degrade beyond 2.0×. Remarkably, even 912
at 7.0× variance (17.5 cm), RIPT-VLA still outperforms the 913
SFT baseline by a significant margin. 914

A.5. Extreme low-success rate SFT analysis. 915

In Figure 4, we observe that standard supervised finetun- 916
ing (SFT) yields extremely low success rates in cross-goal 917
generalization settings under few-shot conditions. In con- 918
trast, RIPT-VLA allows the model to internalize transferable 919
behaviors and adapt rapidly even from sparse supervision, 920
leading to +84.7% and +93% absolute gains over SFT. 921

These results highlight the issue of SFT in generaliza- 922
tion regimes and motivate the necessity of interactive post- 923
training like RIPT for robust multitask generalization. 924
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Method Goal Spatial Object Long 90 ML45 Average

QueST 80.8 87.4 93.6 68.8 88.6 91.0 85.0
+ RIPT-VLA w/o Dynamic Sampling 90.6 91.3 97.5 78.3 92.2 91.3 90.2
+ RIPT-VLA (Ours) 92.7 95.6 98.4 87.5 94.3 92.2 93.5

Table 3. Ablation on dynamic sampling. We compare full RIPT-VLA against a variant without dynamic sampling and the QueST baseline
across task types and multitask suites.
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Figure 5. Training curve analysis.
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Figure 6. Analysis on context dataset size.
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Figure 7. Analysis on initial state std scale.
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Figure 8. Cross-goal task generalization from Goal A to Goal B in the same scenario.
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