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ABSTRACT

The generalization of adversarial defense methods remains a critical open chal-
lenge, and optimization-based adversarial purification methods employing ten-
sor network representations have recently shown strong potential. However, such
tensor-based defense methods operate solely on the given input without relying on
prior knowledge, which inevitably leads to overfitting to adversarial perturbations.
Moreover, their iterative optimization procedures incur substantial computational
overhead during inference. In this paper, we propose Pro-Trans, a novel tensor-
based adversarial purification method that integrates progressive tensor ring with
attention guided local smoothing regularization. Specifically, our progressive ten-
sor ring avoids redundant upsampling operations, thereby reducing computational
overhead and accelerating convergence. In addition, the proposed regularizer
adaptively applies varying degrees of local smoothing regularization across dif-
ferent regions, thereby suppressing perturbations while mitigating semantic loss.
Experimental results show that Pro-Trans consistently outperforms existing meth-
ods across diverse adversarial settings on CIFAR-10, CIFAR-100, and ImageNet,
achieving state-of-the-art performance while maintaining low computational cost.
The code will be available upon acceptance.

1 INTRODUCTION

Deep learning models have achieved remarkable success in diverse applications, yet their perfor-
mance degrades sharply under adversarial attacks (Szegedy et al., 2013; Goodfellow et al., 2015).
To counter such risks, numerous adversarial defense methods have been proposed, and they can
be divided into two main categories: adversarial training (AT) and adversarial purification (AP).
AT enhances robustness by retraining models against known attacks but often struggles to unseen
ones (Laidlaw et al., 2020). AP introduces a purifier before the classifier to remove perturbations,
generally achieving better transferability than AT, though its reliance on pretrained generators limits
adaptability to new datasets and increases computational cost (Nie et al., 2022; Lin et al., 2023).

Recent tensor-based AP methods have demonstrated stronger defense generalization compared to
prior approaches (Yang et al., 2019; Entezari & Papalexakis, 2022; Bhattarai et al., 2023; Lin et al.,
2025). This advantage stems from their optimization-based nature, which avoids reliance on pre-
trained generators, specific datasets, or fixed model parameters, thereby reducing vulnerability to
both white-box and black-box attacks. Consequently, tensor-based AP holds great promise for de-
fense generalization performance under diverse adversarial settings. Despite the above advantages,
certain intrinsic properties of tensor networks (TNs) hinder the further improvement of TN-based
AP methods. In particular, TNs tend to reconstruct both semantic image details and adversarial
perturbations, increasing the risk of overfitting to adversarial examples. To mitigate this, Lin et al.
(2025) propose a novel TN-based AP method (TNP), which integrates upsampling, downsampling,
and adversarial optimization process, thus better removing perturbation and demonstrating promis-
ing defense generalization performance across diverse adversarial settings. However, it still incurs
high computational overhead, as noted by Lin et al. (2025). In addition, the adversarial optimization
process makes the optimization unstable, which may result in ineffective purification or even am-
plify perturbations (Goodfellow et al., 2014; Salimans et al., 2016). Collectively, achieving efficient
and stable adversarial purification with TNs still remains a challenging problem.
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To address the aforementioned challenges, we propose Pro-Trans, a novel tensor network-based ad-
versarial purification method that integrates Progressive Tensor Ring (PTR) with Attention-Guided
Local Smoothing Regularization (AGLSR). Unlike traditional coarse-to-fine optimization strategies
that progressively modify the structure of tensor network, our proposed PTR progressively modifies
optimization objectives within a fixed, pre-defined Tensor Ring structure. This design eliminates the
need for interpolation-based upsampling and avoids the computational overhead of dynamic struc-
tural changes, which is commonly used in conventional coarse-to-fine TNs (Loeschcke et al., 2024;
Lin et al., 2025), resulting in a more efficient optimization. Moreover, by removing the instabil-
ity introduced by interpolation-based upsampling, PTR achieves more stable convergence. Finally,
the coarse-stage optimization naturally provides better parameter initialization for subsequent finer
stages, further enhancing both efficiency and stability of the purification process.

Additionally, recent studies have shown that the damage of adversarial perturbations increases
monotonically with frequency, whereas low-frequency structures and image contents remain rel-
atively unaffected (Pei et al., 2025). Besides, the natural images not only exhibit low-rank structures
but also adhere to the local smoothness prior (Lan et al., 2023). Naively applying smoothing tech-
niques may lead to over-smoothing, thereby degrading essential semantic information. Motivated
by these observations, we introduce AGLSR, specifically designed to further improve purification
performance in PTR. AGLSR adaptively applies varying degrees of local smoothing regularization
across different regions, guided by the model’s attention. This mechanism effectively suppresses
perturbations while minimizing semantic distortion, thereby enhancing the purification quality.

To demonstrate the effectiveness of our proposed method, we conduct extensive empirical exper-
iments on three benchmark datasets, comparing its performance against state-of-the-art defense
methods under diverse attack settings, including cross-dataset, cross-threat, and cross-attack scenar-
ios. The results show that our approach achieves competitive robustness with mainstream methods
while exhibiting superior defense generalization performance. Furthermore, convergence analysis
of the PTR highlights its faster and more stable optimization compared with existing approaches.
Finally, ablation studies on Pro-Trans confirm that PTR substantially reduces computational over-
head, while AGLSR effectively balances perturbation suppression and semantic detail preservation.
In general, our contributions can be summarized as follows:

• We propose the first coarse-to-fine Progressive Tensor Ring (PTR) for AP. By avoiding
interpolation-based upsampling and progressively freezing/unfreezing core tensors, PTR
achieves significantly faster and more stable convergence than existing TNs.

• We design an Attention-Guided Local Smoothing Regularization (AGLSR) that integrates
total variation with attention masks to adaptively balance semantic preservation and pertur-
bation suppression, thereby effectively reducing over-smoothing.

• By combining PTR and AGLSR, we establish the first TN-based AP framework that simul-
taneously improves efficiency, stability, and defense generalization, directly addressing the
core limitations of prior TN-based AP methods.

• Extensive experiments on various datasets demonstrate that Pro-Trans achieves state-of-
the-art robustness while significantly reducing computational overhead. Ablation studies
and visualizations further highlight the individual contributions of PTR and AGLSR.

2 RELATED WORKS

2.1 EXISTING PARADIGMS OF ADVERSARIAL DEFENSE

To counter the impact of adversarial attacks and improve the robustness of deep learning models, re-
search has mainly focused on AT and AP. AT enhances robustness against known attacks by retrain-
ing the model with adversarial examples incorporated into the training set (Goodfellow et al., 2015).
TRADES (Zhang et al., 2019) introduce explicit loss functions that balance standard accuracy (SA)
and robust accuracy (RA). Wong et al. (2020) propose approaches to reduce computational overhead.
However, AT still suffers from poor generalization when facing unseen attacks or new datasets. In
contrast, AP methods insert a purification module before the classifier, leveraging pre-trained gener-
ative models to project adversarial examples back onto the benign data manifold (Samangouei et al.,
2018; Yoon et al., 2021; Nie et al., 2022). Compared to AT, AP tends to perform better against
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unseen attacks, but this capability is usually confined to the distribution of the training data used for
the generator, limiting its ability to generalize to new distributions. In general, AT and AP together
constitute the main paradigms of adversarial defense, but both exhibit limited generalization across
diverse attack scenarios and introduce additional computational costs.

2.2 TENSOR-BASED DEFENSE METHOD

To address the limitations of existing defense methods, tensor-based adversarial purification meth-
ods have recently emerged as a promising research direction. As a long established tool in signal
processing, TNs include Tensor Train (TT, Oseledets, 2011), Quantized Tensor Train (QTT, Os-
eledets, 2009), Tensor Ring (TR, Zhao et al., 2016), Quantized Tensor Ring (QTR, Zhao et al.,
2016), and PuTT (Loeschcke et al., 2024). By leveraging low-rank property and multi-dimensional
structure representations, TNs enhance robustness from the perspective of data purification. ME-
Net employs matrix estimation to reconstruct sampled images and disrupt adversarial perturbation
structures (Yang et al., 2019). TensorShield utilizes tensor decomposition to approximate inputs
with low-rank representations, filtering out high-frequency noise (Entezari & Papalexakis, 2022).
TNP adopts downsampling, upsampling, and an adversarial optimization process, exploiting the
TN’s ability to remove Gaussian noise, thereby achieving stronger generalization ability when fac-
ing diverse attack scenarios (Lin et al., 2025). Nonetheless, these approaches still face challenges in
simultaneously reconstructing image details and removing perturbations, as well as inefficiencies in
TN optimization. In contrast, we aim to design a tensor-based AP method that exploits the intrinsic
low-rank and local smooth properties of natural images through efficient TN, thereby enhancing
both generalization and efficiency while significantly reducing computational overhead.

3 METHOD

This section presents Pro-Trans, which combines PTR and AGLSR. PTR is a novel TN that performs
coarse-to-fine optimization without redundant upsampling by progressively adjusting optimization
objectives and participating core tensors. AGLSR is a regularizer that adaptively suppresses pertur-
bations while preserving semantics. We next detail each component before introducing Pro-Trans.

3.1 PROGRESSIVE TENSOR RING
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Figure 1: Tensorization and decomposition of an RGB image: height and width are decomposed
into size-2 height and width modes and grouped into size-4 grid modes from coarse to fine, and
finally decomposed by TR.

Although existing coarse-to-fine TNs are effective at purifying Gaussian-like noise at coarse
stages (Lin et al., 2025), their design typically relies on interpolation-based matrix product oper-
ators (MPOs) for upsampling and TT-SVD (Oseledets, 2011) to prevent exponential rank growth,
both of which introduce considerable computational overhead and negatively impact the stability
and convergence of the TN-based purification process, as previously discussed.

To address these challenges, we propose Progressive Tensor Ring (PTR) to achieve coarse-to-fine
TN optimization without the extra upsampling steps, thereby enhancing the stability and efficiency
of the optimization process. As shown in Figure 1, an RGB image can be represented as a third-
order tensor X ∈ RH×W×C , where H , W , and C denote the height, width, and channel dimensions,
respectively. For simplicity, we assume that H = W = 2D, where D represents the maximum de-
composition depth. To enable coarse-to-fine optimization, we perform a quantization on the spatial
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Figure 2: Illustration of PTR. Optimization targets are obtained by average pooling and pixel repli-
cation. PTR is initialized with Gaussian-distributed parameters for the first D − l cores and the
channel core, while the remaining cores are set as identity tensors. At each stage d, PTR optimizes
the first d cores and the channel core with target xd, then progressively shifts to higher resolutions
by unfreezing additional cores in a coarse-to-fine manner.

dimensions (height and width) as:

H =

D∏
k=1

hk, W =

D∏
k=1

wk, hk = wk = 2. (1)

At each scale k, the pair (hk, wk) forms a grid mode, yielding a hierarchical four-dimensional
representation from coarse to fine granularity (Oseledets, 2009): X(q) ∈ Rgrid1×grid2×···×gridD×C .
We then adopt the TR to factorize the input into a channel factor and multiple grid factors:

X(q)
g1,g2,...,gD,c ≈ tr

(
G(1)[g1]G

(2)[g2] · · ·G(D)[gD]G(C)[c]
)
,

G(d) ∈ Rrd−1×nk×rd , nk = dim(gridk) = 4, G(C) ∈ RrD×C×r0 ,
(2)

where rd denote the adjacent rank that connect the d-th and (d + 1)-th cores in the TR, and the
circular constraint r0 = rD+1 closes the ring structure. Unlike other TNs, the ring structure enables
TR to achieve stronger expressive power and higher parameter efficiency, providing a symmetric
representation that avoids the boundary constraints inherent in TT (Zhao et al., 2016). With the PTR
topology formally defined, we next describe its optimization process, which follows a coarse-to-fine
strategy to progressively refine reconstruction while ensuring stability and efficiency.

As shown in Figure 2, we first apply average pooling to downsample the target image, and then
upsample it back to the original resolution by pixel replication, therefore constructing optimization
targets at different coarse-to-fine stages. Before optimization starts, the core tensors in PTR are
initialized by combining Gaussian random initialization with identity tensors I, as follows:

G(k) ∼ N (0, σ2), k = 1, . . . , d; G(C) ∼ N (0, σ2); G(k) = I, k = d+ 1, . . . , D. (3)

More details about the identity tensor can be found in the Appendix A.2. In this way, PTR re-
constructs images at resolution 2d using the first d cores, while the remaining cores {G(i) | i =
d+ 1, d+ 2, . . . , D} are set as identity tensors to replicate pixels. This design naturally aligns with
the previously described pixel-replication upsampling used to match low-resolution optimization tar-
gets to the original resolution. Thus, at d-th optimization stage, the optimization target is the image
xd at resolution 2d, and the optimization variables are the first d core tensors {G(i) | i = 0, 1, . . . , d}
and the channel core tensor G(C), while the other core tensors remain frozen. Once the optimization
at stage d is completed, the resolution is increased to 2d+1. The optimization target then shifts to
xd+1 at resolution 2d+1, with the (d + 1)-th core tensor unfrozen and incorporated into the set of
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Figure 3: Overview of the proposed Pro-Trans. Multi-resolution targets are first generated through
average pooling and pixel replication, and the attention mask is derived from the downstream clas-
sifier. PTR then performs coarse-to-fine optimization: in the coarse stage it captures long-range
structures and suppresses Gaussian-like perturbations, while the effect of AGLSR becomes increas-
ingly dominant in the fine stage, suppressing perturbations and reducing the loss of semantic details.

optimization variables. Formally, the optimization at stage d can defined as:

min
{G(i)}d

i=1, G(C)
Ld = ∥Xd − Yd∥2, s.t. Yd = TR

(
G(1), . . . ,G(d), I, . . . , I︸ ︷︷ ︸

D−d

,G(C)). (4)

where Xd is the downsampled target and Yd is given by the contraction of PTR. This progressive
procedure is repeated until the final stage, where the optimization target is the input image and
all core tensors are jointly optimized. Overall, PTR provides a novel coarse-to-fine optimization
scheme that avoids complex upsampling and instead achieves flexibility by progressively adjusting
the optimization targets and the set of trainable core tensors.

3.2 ATTENTION-GUIDED LOCAL SMOOTHING REGULARIZER

Adversarial purification aims to remove perturbations while preserving semantic content. Coarse-
to-fine TNs first reconstruct low-frequency structures, where downsampled perturbations resemble
Gaussian noise and can be effectively removed (Lin et al., 2025). As optimization proceeds to
high-frequency details, perturbations with stronger destructive effects are inevitably reconstructed,
leading to unsatisfying purification effect. Natural images exhibit the local smoothness prior: pixels
change smoothly in flat regions but sharply at edges and textures (Lan et al., 2023). Leveraging this
property, we introduce a local smoothing regularizer to encourage purified results to align with the
natural image manifold and suppress high-frequency perturbations.

Among various smoothing technique such as Gaussian blur, Laplacian smoothing, or bilateral filter-
ing, most either overblur semantic content or introduce optimization challenges. In contrast, Total
Variation (TV) regularization penalizes the l1 norm of image gradients, offering a mathematically
simple and optimization-friendly formulation (Chambolle, 2004) that has been widely applied in
image denoising and restoration (Wang et al., 2017). Unlike quadratic penalties such as Laplacian
smoothing that overly suppress edges, TV effectively reduces local noise while preserving sharp
edges and structural details. Thus, we adopt TV as our regularizer, yielding the following objective
function: Ld = ∥Xd − Yd∥2 + α · TV (Yd), where α controls the strength of the regularization.

To avoid semantic degradation caused by smoothing regularization, we further introduce an
attention-guided mechanism that adaptively adjusts the regularization strength across regions.
Specifically, we extract activation maps from different blocks of the downstream classifier, aggregate
each across channels, upsample each to the input resolution and normalize each. The final attention
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mask M is then obtained by taking the maximum value across all blocks:

Mi,j = max
m∈[M ]

∅
(
Bi(

Cm∑
c=1

|fm(Y )c|2)
)
i,j
, ∀i ∈ [H], ∀j ∈ [W ], (5)

where fm(Y ) denotes the activation maps of the m-th block, Cm denotes the number of channel,
Bi(·) denotes bilinear upsampling, and ∅(·) denotes normalization. The final objective function is:

Ld = ∥Xd − Yd∥2 + α · TV (M ⊙ Yd). (6)

3.3 PRO-TRANS FRAMEWORK

Based on PTR and AGLSR, we propose a novel TN-based AP method, termed Pro-Trans. Lever-
aging the efficient and stable convergence of PTR, we employ it as the backbone for adversarial
purification. To mitigate the tendency of tensor-based AP methods to restore perturbations, AGLSR
introduces attention-guided, region-dependent local smoothing. As shown in Figure 3, the pipeline
first constructs multi-resolution targets via average pooling and pixel replication, then derives an
attention mask from the downstream classifier. PTR is initialized to perform coarse-to-fine opti-
mization, with the loss defined in Equation 6. In the coarse stage, PTR primarily models long-range
structures of the image, while the perturbations, transformed into Gaussian-like noise by average
pooling, can be easily removed by TNs (Lin et al., 2025). In the fine stage, the role of AGLSR be-
comes increasingly prominent, imposing varying degrees of local smoothing regularization across
regions to suppress perturbations while reducing semantic loss.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset and Model Architecture. We conduct experiments on three benchmark datasets: CIFAR-
10, CIFAR-100 (Krizhevsky & Hinton, 2009), and ImageNet (Deng et al., 2009). For classification
tasks, we employ ResNet (He et al., 2016) and WideResNet (Zagoruyko & Komodakis, 2017) ar-
chitectures, using pretrained model weights provided by RobustBench (Croce et al., 2021).

Adversarial Attacks. We evaluate the defense performance of Pro-Trans against mainstream ad-
versarial attack methods. AutoAttack was chosen as a well-established benchmark (Croce & Hein,
2020). In addition, we also test Pro-Trans under PGD (Madry et al., 2018) with EOT (Athalye et al.,
2018) attacks, following Lee & Kim (2023).

Implementation Details. Due to the high computational cost of the experiments, we randomly
selected 512 images from the test set for robustness evaluation, following Nie et al. (2022). All
experiments are conducted on an NVIDIA RTX 4070 Ti Super GPU with 16 GB of memory, using
CUDA version 12.6 and PyTorch (Paszke et al., 2019) version 2.8. For more implementation details,
please refer to the Appendix A.3.

4.2 COMPARISON OF DEFENSE PERFORMANCE

Following the RobustBench protocol, we evaluated Pro-Trans using AutoAttack with l2 and l∞
threats on CIFAR-10, CIFAR-100 and ImageNet, and compared its performance with other reported
methods. As shown in Table 1 to 4, the results indicate that our method performs on the same level
as the mainstream approaches, while achieving improvements of 1.56% in RA on CIFAR-10, 0.77%
on CIFAR-100, and 8.40% on ImageNet compared to the TNP method (Lin et al., 2025). Following
the experimental setting of TNP, we also observed that the standard WideResNet-28-10 suffers from
overfitting to the limited dataset, which prevents Pro-Trans from achieving satisfactory performance.
To address this, we also performed experiments with a robust classifier (Cui et al., 2024). Compared
to using a robust classifier alone, our method still achieves an additional improvement of 5.47% in
RA against AutoAttack l∞ threat (ϵ = 8/255) on CIFAR-10. Overall, these results demonstrate that
our approach holds considerable promise in enhancing robustness and further reveal the potential
of tensor-based AP methods. In the tables, † indicates the usage of additional synthetic images and
∗ indicates the usage of the robust classifier.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Standard and robust accuracy (%)
against AutoAttack l∞ threat (ϵ = 8/255) on
CIFAR-10 with WideResNet-28-10 classifier.

Defense Extra data SA RA

Gowal et al. (2020) ✓ 90.82 60.55

Pang et al. (2022) ×† 88.87 60.94
Wang et al. (2023) ×† 93.16 68.36
Cui et al. (2024) ×† 93.16 68.55

Nie et al. (2022) × 89.02 70.64
Lin et al. (2025)* × 91.99 72.85

Ours × 82.42 59.76
Ours* × 87.69 74.02

Table 2: Standard and robust accuracy (%)
against AutoAttack l2 threat (ϵ = 0.5) on
CIFAR-10 with WideResNet-28-10 classifier.

Defense Extra data SA RA

Rebuffi et al. (2021) ×† 92.77 79.69

Rony et al. (2019) × 88.45 68.75
Ding et al. (2019) × 88.87 65.43
Nie et al. (2022) × 91.03 78.58
Lin et al. (2025)* × 91.99 79.49

Ours × 82.42 69.92
Ours* × 87.69 81.05

Table 3: Standard and robust accuracy (%)
against AutoAttack l∞ threat (ϵ = 4/255) on
ImageNet with ResNet-50 classifier.

Defense Extra data SA RA

Wong et al. (2020) ×† 54.49 27.15

Engstrom et al. (2019) × 64.45 32.81
Salman et al. (2020) × 66.99 38.28

Nie et al. (2022) × 67.79 40.93
Chen & Lee (2024) × 70.90 44.92

Lin et al. (2025) × 65.43 42.77
Ours × 64.84 51.17

Table 4: Standard and robust accuracy (%)
against AutoAttack l∞ threat (ϵ = 8/255) on
CIFAR-100 with WideResNet-28-10 classifier.

Defense Extra data SA RA

Hendrycks et al. (2019) ✓ 59.23 28.42

Rebuffi et al. (2021) ×† 59.77 33.01
Pang et al. (2022) ×† 61.52 32.03
Wang et al. (2023) ×† 71.29 38.28
Cui et al. (2024) ×† 72.85 39.45

Lin et al. (2025)* × 62.30 44.34
Ours* × 65.62 45.11

4.3 COMPARISON OF DEFENSE GENERALIZATION UNDER DIVERSE ATTACK SCENARIOS

To evaluate generalization performance, we test Pro-Trans under cross-dataset, cross-threat, and
cross-attack settings. As shown in Table 5, traditional AP methods suffer from poor cross-dataset
generalization, while Pro-Trans, relying only on intrinsic image properties (low-rankness and
smoothness), exhibits greater flexibility. In Table 6, l∞ and l2 indicate the threat model used during
adversarial training. Table 6 shows that AP methods outperform AT under cross-threat setting, and
Pro-Trans achieves the best robustness, improving RA by 1.0% and 4.2% over TNP under l∞ and l2,
respectively. In the cross-attack setting, as show in Table 7, Pro-Trans still delivers the best overall
performance, with average RA gains of 5.37%.

Table 5: Standard and robust accuracy (%) against AutoAttack l∞ threat (ϵ = 8/255) on CIFAR-10
and CIFAR-100 with WideResNet-28-10 classifier.

Defense method CIFAR-10 CIFAR-100 Average

SA RA SA RA SA RA

AT (Cui et al., 2024) 91.99 68.55 72.85 39.45 82.42 54.00
AP (Nie et al., 2022) 89.02 70.64 38.09 33.79 63.56 52.22

TNP (Lin et al., 2025)* 91.99 72.85 62.30 44.34 77.14 58.59
Ours* 87.69 74.02 65.62 45.11 76.65 59.56

4.4 CONVERGENCE ANALYSIS

To evaluate PTR’s convergence performance, we compare it with PuTT, QTT, and QTR on CIFAR-
10 and ImageNet. During optimization, we record the loss at each iteration and report final re-
construction metrics including Peak Signal-to-Noise Ratio(PSNR), Normalized Root Mean Square
Error(NRMSE), and Mean Squared Error(MSE).

As shown in Figure 4, PTR demonstrates faster convergence and better convergence performance.
PTR converged in only 937 and 1561 iterations on CIFAR-10 and ImageNet, respectively, with a
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Table 6: Standard and robust accuracy (%)
against AutoAttack l∞ (ϵ = 8/255) and l2
(ϵ = 1.0) threats on CIFAR-10 with stan-
dard ResNet-50 classifier.

Type Defense method SA RA

l∞ l2

AT

Engstrom et al. (2019) l∞ 89.8 52.1 27.7
Engstrom et al. (2019) l2 92.1 30.6 38.0

Chen et al. (2020) l∞ 87.7 52.1 32.4
Augustin et al. (2020)† l2 91.8 41.6 47.2

AP
Nie et al. (2022) 88.2 70.0 70.9
Lin et al. (2025) 88.3 73.2 67.0

Ours 86.3 74.2 71.2

Table 7: Standard and robust accuracy (%) against
AutoAttack l∞ (ϵ = 8/255) and PGD+EOT l∞ (ϵ =
8/255) threats on CIFAR-10 with WideResNet-28-
10 classifier.

Type Defense method SA RA

PGD+EOT AA Avg.

AT
Gowal et al. (2020)✓ 90.82 62.50 60.55 61.52
Rebuffi et al. (2021)† 88.48 64.26 60.35 62.30
Gowal et al. (2021)† 89.06 65.04 63.28 64.16

AP

Yoon et al. (2021) 86.76 37.11 60.86 48.99
Nie et al. (2022) 90.43 51.13 66.06 58.60

Lee & Kim (2023) 90.53 56.88 70.31 63.60
Ours* 88.28 66.60 72.46 69.53

Figure 4: Loss curves comparison on CIFAR-10 (left) and ImageNet (right).

final reconstruction loss lower than that of the other methods. As novel coarse-to-fine TNs, PTR and
PuTT both demonstrate higher efficiency compared to traditional QTT and QTR. However, PuTT re-
quires interpolation-based upsampling via MPO followed by TT-SVD to compress redundant ranks,
which leads to unstable reconstruction performance. It is observed that the PuTT optimization pro-
cess exhibits noticeable jumps, which severely impact its convergence performance. In contrast,
PTR maintains a stable decrease in reconstruction loss, resulting in a more efficient optimization
process. Moreover, as shown in Table 8 and Table 9, PTR achieved the best reconstruction perfor-
mance with the fewest parameters, consistently outperforming other TNs in PSNR, NRMSE, and
MSE across datasets.

Table 8: Reconstruction performance compari-
son on CIFAR-10.

TN Parameters PSNR NRMSE MSE

QTT 27420 32.11 0.0550 0.00294
QTR 26955 30.28 0.0666 0.00119
PuTT 27025 33.41 0.0477 0.00069
PTR 26955 34.02 0.0463 0.00047

Table 9: Reconstruction performance compari-
son on ImageNet.

TN Parameters PSNR NRMSE MSE

QTT 2296 25.76 0.1036 0.00079
QTR 2187 29.74 0.0668 0.00114
PuTT 2237 32.36 0.0502 0.00061
PTR 2187 33.70 0.0423 0.00057

4.5 VISUALIZATION

To highlight the effect of AGLSR, we visualize the reconstructions of adversarial examples (AE)
by PTR, Pro-Trans (w/o attention mask), and Pro-Trans in Figure 5, alongside the clean example
(CE) and ground-truth perturbation. PTR achieves small reconstruction errors but also restores
perturbations. Pro-Trans (w/o attention mask) suppresses perturbations more effectively, though
with noticeable blurring. By applying attention mask, Pro-Trans better preserves semantic details
while removing perturbations, achieving a more balanced purification effect.
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AE

CE Rec. image
PTR

Rec. image
Pro-Trans 

(w/o attention mask)

Rec. image
Pro-Trans

Perturbation 
/ rec. error

Figure 5: Visualization comparison of purification performance. The first row shows the adversarial
example, clean example, and reconstructed images from PTR, Pro-Trans (w/o attention mask), and
Pro-Trans. The second row presents the corresponding perturbations or reconstruction errors.

To provide a more intuitive demonstration of the attention mask, we visualize one image together
with four activation maps generated by the ResNet-50 classifier and the corresponding attention
mask, as shown in Figure 10. It can be clearly seen that the model pays stronger attention to decision-
critical regions while assigning lower attention to the background. Therefore, the attention mask
guides PTR to apply stronger local smoothing in critical regions while preserving more details in
other areas. These results further highlight the effectiveness of our method.

4.6 ABLATION STUDY

Table 10: Standard and robust accuracy (%)
against AutoAttack l∞ (ϵ = 8/255) threat and av-
erage purification time (s) on ImageNet.

Method Time SA RA

TNP (Lin et al., 2025) 8.002 65.43 42.77
PTR 2.054 66.01 47.07

Pro-Trans (w/o attention mask) 3.093 62.10 51.36
Pro-Trans 2.997 64.84 51.17

We conduct ablation studies on ImageNet, com-
paring TNP, PTR, Pro-Trans without attention
mask, and Pro-Trans (Table 10). Compared to
TNP, all PTR-based methods greatly reduce pu-
rification time (from 8s to 2–3s). Introducing
local smoothing regularization (Pro-Trans w/o
attention mask) substantially improves RA over
both TNP and PTR, but at the cost of reduced
SA, indicating that semantic details are over-
smoothed. By incorporating the attention mask,

Pro-Trans achieves nearly the same RA as Pro-Trans w/o attention mask but recovers much of the
SA, thereby mitigating semantic degradation and achieving the most favorable RA–SA trade-off.

5 CONCLUSION

In this work, we introduced Pro-Trans, a novel tensor-based AP method that integrates PTR with
AGLSR. PTR avoids redundant upsampling operations and enables coarse-to-fine optimization, sig-
nificantly improving convergence efficiency and stability. Meanwhile, AGLSR leverages feature-
level attention to adaptively apply local smoothing regularization, effectively suppressing pertur-
bation while retaining semantic fidelity. Experiments on CIFAR-10, CIFAR-100, and ImageNet
demonstrated that Pro-Trans achieves state-of-the-art robustness and strong generalization on cross-
dataset, cross-threat, and cross-attack scenarios, with significantly reduced computational overhead,
thus offering a favorable balance between robustness, efficiency, and generalization. These results
establish TNs as a promising method for practical and generalizable adversarial purification.

Limitations: Despite the large improvements achieved and extensive experiments empirically sup-
porting our claims, our work currently lacks a comprehensive theoretical analysis to fully explain
the observed robustness. We leave this as an important direction for future research.
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ETHICS STATEMENT

This work only relies on publicly available datasets (CIFAR-10, CIFAR-100, ImageNet) and does
not involve human subjects, private, or sensitive data. Our method is designed to improve the ro-
bustness and security of machine learning models against adversarial attacks. It does not introduce
direct negative societal impacts, as its primary purpose is to strengthen defenses rather than enable
new forms of attack.

REPRODUCIBILITY STATEMENT

We have taken care to ensure the reproducibility of our work. All experimental settings, including
optimization details, hyperparameters, and initialization strategies, are described in the main text and
Appendix. The datasets used are all publicly available. The source code and scripts for reproducing
our results will be released upon paper acceptance.
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A APPENDIX

A.1 LLM USAGE DISCLOSURE

We used large language models (LLMs) to assist with improving the clarity, grammar, and phras-
ing of the manuscript. No LLMs were used to generate novel method content, and all technical
contributions were developed and validated solely by the authors.

A.2 IDENTITY TENSOR

In PTR, each core tensor models information at a specific granularity. The two dimensions that
connect to other granularities capture inter-granularity relationships, while the remaining physical
dimension represents the information of the current granularity. Core tensors that are not optimized
at a given stage are initialized as identity tensors, which serve to replicate pixels in the reconstruc-
tion process. This design corresponds to the initialization of PTR’s optimization objective, where
images of different resolutions are upsampled to the original resolution through pixel replication.
Concretely, we first construct a diagonal matrix and then stack it along the physical mode to obtain
the identity tensor, formally expressed as follows:

I ∈ Rrank×4×rank, Ii,j,k = δik,

where δik denotes the Kronecker delta, i.e.,

δik =

{
1 if i = k,

0 otherwise.

Thus, for any fixed j, the slice I:j: corresponds to an rank×rank identity matrix. Figure 6 provides
a more intuitive visualization of the identity tensor. In practice, this construction ensures that non-
optimized core tensors act as pixel replication operators during the coarse-to-fine reconstruction
process in PTR.

Figure 6: Illustration of Identity Tensor.

A.3 IMPLEMENTATION DETAILS

We provide here a comprehensive description of the experimental settings and hyperparameters to
ensure clarity and reproducibility of our results. For all TN–based experiments, we used the Adam
optimizer with a learning rate of 0.008 and optimized for 2048 iterations. Images from CIFAR-10
and CIFAR-100 (32× 32) were upsampled via bilinear interpolation to 256× 256, while ImageNet
images (224× 224) were upsampled to 256× 256.

DEFENSE EVALUATION

For adversarial defense experiments, we set the maximum rank of TNP to 10 and that of Pro-Trans
to 14 on CIFAR-10/100. For ImageNet, the maximum rank of TNP was set to 200 and that of
Pro-Trans to 50.
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CONVERGENCE ANALYSIS

For PuTT and PTR, the initial optimization resolution was 8 × 8. On CIFAR-10, the optimization
target switched progressively at steps 64, 128, 256, 512, and 1024, while on ImageNet the switching
steps were 16, 32, 64, 128, and 256. On CIFAR-10, the maximum rank was set to 10 for Ten-
sor Train-based QTT and PuTT, and 9 for Tensor Ring-based QTR and PTR. On ImageNet, the
maximum rank was set to 43 for QTT, 100 for PuTT, and 33 for TR-based QTR and PTR.

Table 11: Summary of experimental settings and hyperparameters.

Setting CIFAR-10/100 ImageNet

Optimizer Adam (lr = 0.008, 2048 iters) Adam (lr = 0.008, 2048 iters)
Image resolution 32× 32 → 256× 256 224× 224 → 256× 256

Defense evaluation
TNP rank 10 200
Pro-Trans rank 14 50

Convergence analysis
Initial resolution 8× 8 8× 8
Switching steps 64, 128, 256, 512, 1024 16, 32, 64, 128, 256
QTT rank 10 43
PuTT rank 10 100
QTR rank 9 33
PTR rank 9 33

A.4 ADDITIONAL VISUALIZATIONS

In this section, we present additional visualization results of ImageNet for reference, including re-
construction outputs across different resolutions, extended comparative visualizations, and attention
mask visualizations.

Figure 7: PTR reconstruction results at different
resolutions.

Figure 8: Pro-Trans reconstruction results at
different resolutions.
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AE CE
Rec. image

PTR

Rec. image
Pro-Trans 

(w/o attention mask)
Rec. image
Pro-Trans

Perturbation 
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/ rec. error
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Figure 9: More Visualization Comparison of Purification Effect.

Figure 10: Visualization of the attention mask. From left to right are the input image, its activation
maps from ResNet-50, and the derived attention mask.
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Figure 11: Visualization of Attention Mask.
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