PRO-TRANS: PROGRESSIVE TENSOR RING WITH ATTENTION GUIDED LOCAL SMOOTHING REGULARIZATION

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028029030

031

033

034

035

037

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

The generalization of adversarial defense methods remains a critical open challenge, and optimization-based adversarial purification methods employing tensor network representations have recently shown strong potential. However, such tensor-based defense methods operate solely on the given input without relying on prior knowledge, which inevitably leads to overfitting to adversarial perturbations. Moreover, their iterative optimization procedures incur substantial computational overhead during inference. In this paper, we propose Pro-Trans, a novel tensorbased adversarial purification method that integrates progressive tensor ring with attention guided local smoothing regularization. Specifically, our progressive tensor ring avoids redundant upsampling operations, thereby reducing computational overhead and accelerating convergence. In addition, the proposed regularizer adaptively applies varying degrees of local smoothing regularization across different regions, thereby suppressing perturbations while mitigating semantic loss. Experimental results show that Pro-Trans consistently outperforms existing methods across diverse adversarial settings on CIFAR-10, CIFAR-100, and ImageNet, achieving state-of-the-art performance while maintaining low computational cost. The code will be available upon acceptance.

1 Introduction

Deep learning models have achieved remarkable success in diverse applications, yet their performance degrades sharply under adversarial attacks (Szegedy et al., 2013; Goodfellow et al., 2015). To counter such risks, numerous adversarial defense methods have been proposed, and they can be divided into two main categories: adversarial training (AT) and adversarial purification (AP). AT enhances robustness by retraining models against known attacks but often struggles to unseen ones (Laidlaw et al., 2020). AP introduces a purifier before the classifier to remove perturbations, generally achieving better transferability than AT, though its reliance on pretrained generators limits adaptability to new datasets and increases computational cost (Nie et al., 2022; Lin et al., 2023).

Recent tensor-based AP methods have demonstrated stronger defense generalization compared to prior approaches (Yang et al., 2019; Entezari & Papalexakis, 2022; Bhattarai et al., 2023; Lin et al., 2025). This advantage stems from their optimization-based nature, which avoids reliance on pretrained generators, specific datasets, or fixed model parameters, thereby reducing vulnerability to both white-box and black-box attacks. Consequently, tensor-based AP holds great promise for defense generalization performance under diverse adversarial settings. Despite the above advantages, certain intrinsic properties of tensor networks (TNs) hinder the further improvement of TN-based AP methods. In particular, TNs tend to reconstruct both semantic image details and adversarial perturbations, increasing the risk of overfitting to adversarial examples. To mitigate this, Lin et al. (2025) propose a novel TN-based AP method (TNP), which integrates upsampling, downsampling, and adversarial optimization process, thus better removing perturbation and demonstrating promising defense generalization performance across diverse adversarial settings. However, it still incurs high computational overhead, as noted by Lin et al. (2025). In addition, the adversarial optimization process makes the optimization unstable, which may result in ineffective purification or even amplify perturbations (Goodfellow et al., 2014; Salimans et al., 2016). Collectively, achieving efficient and stable adversarial purification with TNs still remains a challenging problem.

To address the aforementioned challenges, we propose Pro-Trans, a novel tensor network-based adversarial purification method that integrates Progressive Tensor Ring (PTR) with Attention-Guided Local Smoothing Regularization (AGLSR). Unlike traditional coarse-to-fine optimization strategies that progressively modify the structure of tensor network, our proposed PTR progressively modifies optimization objectives within a fixed, pre-defined Tensor Ring structure. This design eliminates the need for interpolation-based upsampling and avoids the computational overhead of dynamic structural changes, which is commonly used in conventional coarse-to-fine TNs (Loeschcke et al., 2024; Lin et al., 2025), resulting in a more efficient optimization. Moreover, by removing the instability introduced by interpolation-based upsampling, PTR achieves more stable convergence. Finally, the coarse-stage optimization naturally provides better parameter initialization for subsequent finer stages, further enhancing both efficiency and stability of the purification process.

Additionally, recent studies have shown that the damage of adversarial perturbations increases monotonically with frequency, whereas low-frequency structures and image contents remain relatively unaffected (Pei et al., 2025). Besides, the natural images not only exhibit low-rank structures but also adhere to the local smoothness prior (Lan et al., 2023). Naively applying smoothing techniques may lead to over-smoothing, thereby degrading essential semantic information. Motivated by these observations, we introduce AGLSR, specifically designed to further improve purification performance in PTR. AGLSR adaptively applies varying degrees of local smoothing regularization across different regions, guided by the model's attention. This mechanism effectively suppresses perturbations while minimizing semantic distortion, thereby enhancing the purification quality.

To demonstrate the effectiveness of our proposed method, we conduct extensive empirical experiments on three benchmark datasets, comparing its performance against state-of-the-art defense methods under diverse attack settings, including cross-dataset, cross-threat, and cross-attack scenarios. The results show that our approach achieves competitive robustness with mainstream methods while exhibiting superior defense generalization performance. Furthermore, convergence analysis of the PTR highlights its faster and more stable optimization compared with existing approaches. Finally, ablation studies on Pro-Trans confirm that PTR substantially reduces computational overhead, while AGLSR effectively balances perturbation suppression and semantic detail preservation. In general, our contributions can be summarized as follows:

- We propose the first coarse-to-fine Progressive Tensor Ring (PTR) for AP. By avoiding
 interpolation-based upsampling and progressively freezing/unfreezing core tensors, PTR
 achieves significantly faster and more stable convergence than existing TNs.
- We design an Attention-Guided Local Smoothing Regularization (AGLSR) that integrates total variation with attention masks to adaptively balance semantic preservation and perturbation suppression, thereby effectively reducing over-smoothing.
- By combining PTR and AGLSR, we establish the first TN-based AP framework that simultaneously improves efficiency, stability, and defense generalization, directly addressing the core limitations of prior TN-based AP methods.
- Extensive experiments on various datasets demonstrate that Pro-Trans achieves state-ofthe-art robustness while significantly reducing computational overhead. Ablation studies and visualizations further highlight the individual contributions of PTR and AGLSR.

2 RELATED WORKS

2.1 Existing Paradigms of Adversarial Defense

To counter the impact of adversarial attacks and improve the robustness of deep learning models, research has mainly focused on AT and AP. AT enhances robustness against known attacks by retraining the model with adversarial examples incorporated into the training set (Goodfellow et al., 2015). TRADES (Zhang et al., 2019) introduce explicit loss functions that balance standard accuracy (SA) and robust accuracy (RA). Wong et al. (2020) propose approaches to reduce computational overhead. However, AT still suffers from poor generalization when facing unseen attacks or new datasets. In contrast, AP methods insert a purification module before the classifier, leveraging pre-trained generative models to project adversarial examples back onto the benign data manifold (Samangouei et al., 2018; Yoon et al., 2021; Nie et al., 2022). Compared to AT, AP tends to perform better against

unseen attacks, but this capability is usually confined to the distribution of the training data used for the generator, limiting its ability to generalize to new distributions. In general, AT and AP together constitute the main paradigms of adversarial defense, but both exhibit limited generalization across diverse attack scenarios and introduce additional computational costs.

2.2 Tensor-based Defense Method

To address the limitations of existing defense methods, tensor-based adversarial purification methods have recently emerged as a promising research direction. As a long established tool in signal processing, TNs include Tensor Train (TT, Oseledets, 2011), Quantized Tensor Train (QTT, Oseledets, 2009), Tensor Ring (TR, Zhao et al., 2016), Quantized Tensor Ring (QTR, Zhao et al., 2016), and PuTT (Loeschcke et al., 2024). By leveraging low-rank property and multi-dimensional structure representations, TNs enhance robustness from the perspective of data purification. ME-Net employs matrix estimation to reconstruct sampled images and disrupt adversarial perturbation structures (Yang et al., 2019). TensorShield utilizes tensor decomposition to approximate inputs with low-rank representations, filtering out high-frequency noise (Entezari & Papalexakis, 2022). TNP adopts downsampling, upsampling, and an adversarial optimization process, exploiting the TN's ability to remove Gaussian noise, thereby achieving stronger generalization ability when facing diverse attack scenarios (Lin et al., 2025). Nonetheless, these approaches still face challenges in simultaneously reconstructing image details and removing perturbations, as well as inefficiencies in TN optimization. In contrast, we aim to design a tensor-based AP method that exploits the intrinsic low-rank and local smooth properties of natural images through efficient TN, thereby enhancing both generalization and efficiency while significantly reducing computational overhead.

3 METHOD

This section presents Pro-Trans, which combines PTR and AGLSR. PTR is a novel TN that performs coarse-to-fine optimization without redundant upsampling by progressively adjusting optimization objectives and participating core tensors. AGLSR is a regularizer that adaptively suppresses perturbations while preserving semantics. We next detail each component before introducing Pro-Trans.

3.1 PROGRESSIVE TENSOR RING

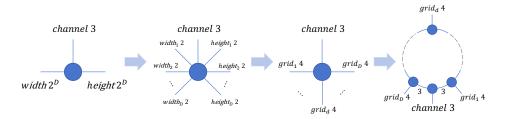


Figure 1: Tensorization and decomposition of an RGB image: height and width are decomposed into size-2 height and width modes and grouped into size-4 grid modes from coarse to fine, and finally decomposed by TR.

Although existing coarse-to-fine TNs are effective at purifying Gaussian-like noise at coarse stages (Lin et al., 2025), their design typically relies on interpolation-based matrix product operators (MPOs) for upsampling and TT-SVD (Oseledets, 2011) to prevent exponential rank growth, both of which introduce considerable computational overhead and negatively impact the stability and convergence of the TN-based purification process, as previously discussed.

To address these challenges, we propose Progressive Tensor Ring (PTR) to achieve coarse-to-fine TN optimization without the extra upsampling steps, thereby enhancing the stability and efficiency of the optimization process. As shown in Figure 1, an RGB image can be represented as a third-order tensor $\mathbf{X} \in \mathbb{R}^{H \times W \times C}$, where H, W, and C denote the height, width, and channel dimensions, respectively. For simplicity, we assume that $H = W = 2^D$, where D represents the maximum decomposition depth. To enable coarse-to-fine optimization, we perform a quantization on the spatial

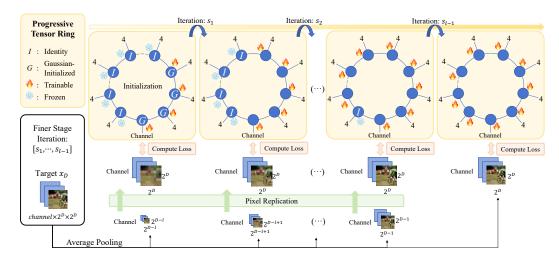


Figure 2: Illustration of PTR. Optimization targets are obtained by average pooling and pixel replication. PTR is initialized with Gaussian-distributed parameters for the first D-l cores and the channel core, while the remaining cores are set as identity tensors. At each stage d, PTR optimizes the first d cores and the channel core with target x_d , then progressively shifts to higher resolutions by unfreezing additional cores in a coarse-to-fine manner.

dimensions (height and width) as:

$$H = \prod_{k=1}^{D} h_k, \quad W = \prod_{k=1}^{D} w_k, \quad h_k = w_k = 2.$$
 (1)

At each scale k, the pair (h_k, w_k) forms a grid mode, yielding a hierarchical four-dimensional representation from coarse to fine granularity (Oseledets, 2009): $\mathbf{X}^{(q)} \in \mathbb{R}^{\text{grid}_1 \times \text{grid}_2 \times \cdots \times \text{grid}_D \times C}$. We then adopt the TR to factorize the input into a channel factor and multiple grid factors:

$$\mathbf{X}_{g_1,g_2,\dots,g_D,c}^{(q)} \approx \operatorname{tr}\left(\mathbf{G}^{(1)}[g_1]\mathbf{G}^{(2)}[g_2] \cdots \mathbf{G}^{(D)}[g_D]\mathbf{G}^{(C)}[c]\right),$$

$$\mathbf{G}^{(d)} \in \mathbb{R}^{r_{d-1} \times n_k \times r_d}, \quad n_k = \dim(\operatorname{grid}_k) = 4, \quad \mathbf{G}^{(C)} \in \mathbb{R}^{r_D \times C \times r_0},$$
(2)

where r_d denote the adjacent rank that connect the d-th and (d+1)-th cores in the TR, and the circular constraint $r_0 = r_{D+1}$ closes the ring structure. Unlike other TNs, the ring structure enables TR to achieve stronger expressive power and higher parameter efficiency, providing a symmetric representation that avoids the boundary constraints inherent in TT (Zhao et al., 2016). With the PTR topology formally defined, we next describe its optimization process, which follows a coarse-to-fine strategy to progressively refine reconstruction while ensuring stability and efficiency.

As shown in Figure 2, we first apply average pooling to downsample the target image, and then upsample it back to the original resolution by pixel replication, therefore constructing optimization targets at different coarse-to-fine stages. Before optimization starts, the core tensors in PTR are initialized by combining Gaussian random initialization with identity tensors I, as follows:

$$\mathbf{G}^{(k)} \sim \mathcal{N}(0, \sigma^2), \ k = 1, \dots, d; \quad \mathbf{G}^{(C)} \sim \mathcal{N}(0, \sigma^2); \quad \mathbf{G}^{(k)} = \mathbf{I}, \ k = d + 1, \dots, D.$$
 (3)

More details about the identity tensor can be found in the Appendix A.2. In this way, PTR reconstructs images at resolution 2^d using the first d cores, while the remaining cores $\{\mathbf{G}^{(i)} \mid i = d+1, d+2, \ldots, D\}$ are set as identity tensors to replicate pixels. This design naturally aligns with the previously described pixel-replication upsampling used to match low-resolution optimization targets to the original resolution. Thus, at d-th optimization stage, the optimization target is the image x_d at resolution 2^d , and the optimization variables are the first d core tensors $\{\mathbf{G}^{(i)} \mid i = 0, 1, \ldots, d\}$ and the channel core tensor $\mathbf{G}^{(C)}$, while the other core tensors remain frozen. Once the optimization at stage d is completed, the resolution is increased to 2^{d+1} . The optimization target then shifts to x_{d+1} at resolution 2^{d+1} , with the (d+1)-th core tensor unfrozen and incorporated into the set of

Figure 3: Overview of the proposed Pro-Trans. Multi-resolution targets are first generated through average pooling and pixel replication, and the attention mask is derived from the downstream classifier. PTR then performs coarse-to-fine optimization: in the coarse stage it captures long-range structures and suppresses Gaussian-like perturbations, while the effect of AGLSR becomes increasingly dominant in the fine stage, suppressing perturbations and reducing the loss of semantic details.

optimization variables. Formally, the optimization at stage d can defined as:

$$\min_{\{\mathbf{G}^{(i)}\}_{i=1}^{d}, \; \mathbf{G}^{(C)}} L_{d} = \|X_{d} - Y_{d}\|_{2}, \quad \text{s.t. } Y_{d} = \text{TR}(\mathbf{G}^{(1)}, \dots, \mathbf{G}^{(d)}, \underbrace{\mathbf{I}, \dots, \mathbf{I}}_{D-d}, \mathbf{G}^{(C)}). \tag{4}$$

where X_d is the downsampled target and Y_d is given by the contraction of PTR. This progressive procedure is repeated until the final stage, where the optimization target is the input image and all core tensors are jointly optimized. Overall, PTR provides a novel coarse-to-fine optimization scheme that avoids complex upsampling and instead achieves flexibility by progressively adjusting the optimization targets and the set of trainable core tensors.

3.2 ATTENTION-GUIDED LOCAL SMOOTHING REGULARIZER

Adversarial purification aims to remove perturbations while preserving semantic content. Coarse-to-fine TNs first reconstruct low-frequency structures, where downsampled perturbations resemble Gaussian noise and can be effectively removed (Lin et al., 2025). As optimization proceeds to high-frequency details, perturbations with stronger destructive effects are inevitably reconstructed, leading to unsatisfying purification effect. Natural images exhibit the local smoothness prior: pixels change smoothly in flat regions but sharply at edges and textures (Lan et al., 2023). Leveraging this property, we introduce a local smoothing regularizer to encourage purified results to align with the natural image manifold and suppress high-frequency perturbations.

Among various smoothing technique such as Gaussian blur, Laplacian smoothing, or bilateral filtering, most either overblur semantic content or introduce optimization challenges. In contrast, Total Variation (TV) regularization penalizes the l_1 norm of image gradients, offering a mathematically simple and optimization-friendly formulation (Chambolle, 2004) that has been widely applied in image denoising and restoration (Wang et al., 2017). Unlike quadratic penalties such as Laplacian smoothing that overly suppress edges, TV effectively reduces local noise while preserving sharp edges and structural details. Thus, we adopt TV as our regularizer, yielding the following objective function: $L_d = \|X_d - Y_d\|_2 + \alpha \cdot TV(Y_d)$, where α controls the strength of the regularization.

To avoid semantic degradation caused by smoothing regularization, we further introduce an attention-guided mechanism that adaptively adjusts the regularization strength across regions. Specifically, we extract activation maps from different blocks of the downstream classifier, aggregate each across channels, upsample each to the input resolution and normalize each. The final attention

mask M is then obtained by taking the maximum value across all blocks:

$$M_{i,j} = \max_{m \in [M]} \varnothing \left(\operatorname{Bi}(\sum_{c=1}^{C_m} |f_m(Y)_c|^2) \right)_{i,j}, \quad \forall i \in [H], \forall j \in [W],$$
 (5)

where $f_m(Y)$ denotes the activation maps of the m-th block, C_m denotes the number of channel, $\mathrm{Bi}(\cdot)$ denotes bilinear upsampling, and $\varnothing(\cdot)$ denotes normalization. The final objective function is:

$$L_d = ||X_d - Y_d||_2 + \alpha \cdot TV(M \odot Y_d). \tag{6}$$

3.3 Pro-Trans Framework

Based on PTR and AGLSR, we propose a novel TN-based AP method, termed Pro-Trans. Leveraging the efficient and stable convergence of PTR, we employ it as the backbone for adversarial purification. To mitigate the tendency of tensor-based AP methods to restore perturbations, AGLSR introduces attention-guided, region-dependent local smoothing. As shown in Figure 3, the pipeline first constructs multi-resolution targets via average pooling and pixel replication, then derives an attention mask from the downstream classifier. PTR is initialized to perform coarse-to-fine optimization, with the loss defined in Equation 6. In the coarse stage, PTR primarily models long-range structures of the image, while the perturbations, transformed into Gaussian-like noise by average pooling, can be easily removed by TNs (Lin et al., 2025). In the fine stage, the role of AGLSR becomes increasingly prominent, imposing varying degrees of local smoothing regularization across regions to suppress perturbations while reducing semantic loss.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset and Model Architecture. We conduct experiments on three benchmark datasets: CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and ImageNet (Deng et al., 2009). For classification tasks, we employ ResNet (He et al., 2016) and WideResNet (Zagoruyko & Komodakis, 2017) architectures, using pretrained model weights provided by RobustBench (Croce et al., 2021).

Adversarial Attacks. We evaluate the defense performance of Pro-Trans against mainstream adversarial attack methods. AutoAttack was chosen as a well-established benchmark (Croce & Hein, 2020). In addition, we also test Pro-Trans under PGD (Madry et al., 2018) with EOT (Athalye et al., 2018) attacks, following Lee & Kim (2023).

Implementation Details. Due to the high computational cost of the experiments, we randomly selected 512 images from the test set for robustness evaluation, following Nie et al. (2022). All experiments are conducted on an NVIDIA RTX 4070 Ti Super GPU with 16 GB of memory, using CUDA version 12.6 and PyTorch (Paszke et al., 2019) version 2.8. For more implementation details, please refer to the Appendix A.3.

4.2 Comparison of Defense Performance

Following the RobustBench protocol, we evaluated Pro-Trans using AutoAttack with l_2 and l_∞ threats on CIFAR-10, CIFAR-100 and ImageNet, and compared its performance with other reported methods. As shown in Table 1 to 4, the results indicate that our method performs on the same level as the mainstream approaches, while achieving improvements of 1.56% in RA on CIFAR-10, 0.77% on CIFAR-100, and 8.40% on ImageNet compared to the TNP method (Lin et al., 2025). Following the experimental setting of TNP, we also observed that the standard WideResNet-28-10 suffers from overfitting to the limited dataset, which prevents Pro-Trans from achieving satisfactory performance. To address this, we also performed experiments with a robust classifier (Cui et al., 2024). Compared to using a robust classifier alone, our method still achieves an additional improvement of 5.47% in RA against AutoAttack l_∞ threat ($\epsilon=8/255$) on CIFAR-10. Overall, these results demonstrate that our approach holds considerable promise in enhancing robustness and further reveal the potential of tensor-based AP methods. In the tables, † indicates the usage of additional synthetic images and * indicates the usage of the robust classifier.

Table 1: Standard and robust accuracy (%) against AutoAttack l_{∞} threat ($\epsilon=8/255$) on CIFAR-10 with WideResNet-28-10 classifier.

Defense	Extra data	SA	RA
Gowal et al. (2020)	✓	90.82	60.55
Pang et al. (2022)	× [†]	88.87	60.94
Wang et al. (2023)	\times^{\dagger}	93.16	68.36
Cui et al. (2024)	\times^{\dagger}	93.16	68.55
Nie et al. (2022)	×	89.02	70.64
Lin et al. (2025)*	×	91.99	72.85
Ours	×	82.42	59.76
Ours*	×	87.69	74.02

Table 3: Standard and robust accuracy (%) against AutoAttack l_{∞} threat ($\epsilon=4/255$) on ImageNet with ResNet-50 classifier.

Defense	Extra data	SA	RA
Wong et al. (2020)	× [†]	54.49	27.15
Engstrom et al. (2019)	×	64.45	32.81
Salman et al. (2020)	×	66.99	38.28
Nie et al. (2022)	×	67.79	40.93
Chen & Lee (2024)	×	70.90	44.92
Lin et al. (2025)	×	65.43	42.77
Ours	×	64.84	51.17

Table 2: Standard and robust accuracy (%) against AutoAttack l_2 threat ($\epsilon=0.5$) on CIFAR-10 with WideResNet-28-10 classifier.

Defense	Extra data	SA	RA
Rebuffi et al. (2021)	\times^{\dagger}	92.77	79.69
Rony et al. (2019)	×	88.45	68.75
Ding et al. (2019)	×	88.87	65.43
Nie et al. (2022)	×	91.03	78.58
Lin et al. (2025)*	×	91.99	79.49
Ours	×	82.42	69.92
Ours*	×	87.69	81.05

Table 4: Standard and robust accuracy (%) against AutoAttack l_{∞} threat ($\epsilon=8/255$) on CIFAR-100 with WideResNet-28-10 classifier.

Defense	Extra data	SA	RA
Hendrycks et al. (2019)	√	59.23	28.42
Rebuffi et al. (2021)	׆	59.77	33.01
Pang et al. (2022)	\times^{\dagger}	61.52	32.03
Wang et al. (2023)	\times^{\dagger}	71.29	38.28
Cui et al. (2024)	\times^{\dagger}	72.85	39.45
Lin et al. (2025)*	×	62.30	44.34
Ours*	×	65.62	45.11

4.3 COMPARISON OF DEFENSE GENERALIZATION UNDER DIVERSE ATTACK SCENARIOS

To evaluate generalization performance, we test Pro-Trans under cross-dataset, cross-threat, and cross-attack settings. As shown in Table 5, traditional AP methods suffer from poor cross-dataset generalization, while Pro-Trans, relying only on intrinsic image properties (low-rankness and smoothness), exhibits greater flexibility. In Table 6, l_{∞} and l_2 indicate the threat model used during adversarial training. Table 6 shows that AP methods outperform AT under cross-threat setting, and Pro-Trans achieves the best robustness, improving RA by 1.0% and 4.2% over TNP under l_{∞} and l_2 , respectively. In the cross-attack setting, as show in Table 7, Pro-Trans still delivers the best overall performance, with average RA gains of 5.37%.

Table 5: Standard and robust accuracy (%) against AutoAttack l_{∞} threat ($\epsilon=8/255$) on CIFAR-10 and CIFAR-100 with WideResNet-28-10 classifier.

Defense method	CIFA	CIFAR-10 CIF		R-100	Ave	Average	
Berense method	SA	RA	SA	RA	SA	RA	
AT (Cui et al., 2024)	91.99	68.55	72.85	39.45	82.42	54.00	
AP (Nie et al., 2022)	89.02	70.64	38.09	33.79	63.56	52.22	
TNP (Lin et al., 2025)*	91.99	72.85	62.30	44.34	77.14	58.59	
Ours*	87.69	74.02	65.62	45.11	76.65	59.56	

4.4 Convergence Analysis

To evaluate PTR's convergence performance, we compare it with PuTT, QTT, and QTR on CIFAR-10 and ImageNet. During optimization, we record the loss at each iteration and report final reconstruction metrics including Peak Signal-to-Noise Ratio(PSNR), Normalized Root Mean Square Error(NRMSE), and Mean Squared Error(MSE).

As shown in Figure 4, PTR demonstrates faster convergence and better convergence performance. PTR converged in only 937 and 1561 iterations on CIFAR-10 and ImageNet, respectively, with a

Table 6: Standard and robust accuracy (%) against AutoAttack l_{∞} ($\epsilon=8/255$) and l_2 ($\epsilon=1.0$) threats on CIFAR-10 with standard ResNet-50 classifier.

Type	Type Defense method		R	A
1) PC	Berense memou	SA	l_{∞}	l_2
	Engstrom et al. (2019) l_{∞}	89.8	52.1	27.7
A.T.	Engstrom et al. (2019) l_2	92.1	30.6	38.0
AT	Chen et al. (2020) l_{∞}	87.7	52.1	32.4
	Augustin et al. $(2020)^{\dagger} l_2$	91.8	41.6	47.2
	Nie et al. (2022)	88.2	70.0	70.9
AP	Lin et al. (2025)	88.3	73.2	67.0
	Ours	86.3	74.2	71.2

Type	Defense method	SA		RA	
1) pe	Bereise memod	J. 1	PGD+EOT	AA	Avg.
	Gowal et al. (2020)√	90.82	62.50	60.55	61.52
AT	Rebuffi et al. (2021) [†]	88.48	64.26	60.35	62.30
	Gowal et al. $(2021)^{\dagger}$	89.06	65.04	63.28	64.16
	Yoon et al. (2021)	86.76	37.11	60.86	48.99
AP	Nie et al. (2022)	90.43	51.13	66.06	58.60
AP	Lee & Kim (2023)	90.53	56.88	70.31	63.60
	Ours*	88.28	66.60	72.46	69.53

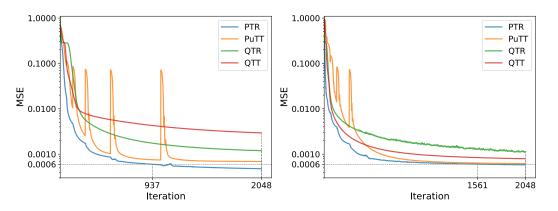


Figure 4: Loss curves comparison on CIFAR-10 (left) and ImageNet (right).

final reconstruction loss lower than that of the other methods. As novel coarse-to-fine TNs, PTR and PuTT both demonstrate higher efficiency compared to traditional QTT and QTR. However, PuTT requires interpolation-based upsampling via MPO followed by TT-SVD to compress redundant ranks, which leads to unstable reconstruction performance. It is observed that the PuTT optimization process exhibits noticeable jumps, which severely impact its convergence performance. In contrast, PTR maintains a stable decrease in reconstruction loss, resulting in a more efficient optimization process. Moreover, as shown in Table 8 and Table 9, PTR achieved the best reconstruction performance with the fewest parameters, consistently outperforming other TNs in PSNR, NRMSE, and MSE across datasets.

Table 8: Reconstruction performance comparison on CIFAR-10.

Table 9: Reconstruction performance comparison on ImageNet.

TN	Parameters	PSNR	NRMSE	MSE
QTT	27420	32.11	0.0550	0.00294
QTR	26955	30.28	0.0666	0.00119
PuTT	27025	33.41	0.0477	0.00069
PTR	26955	34.02	0.0463	0.00047

TN	Parameters	PSNR	NRMSE	MSE
QTT	2296	25.76	0.1036	0.00079
QTR	2187	29.74	0.0668	0.00114
PuTT	2237	32.36	0.0502	0.00061
PTR	2187	33.70	0.0423	0.00057
	QTT QTR PuTT	QTT 2296 QTR 2187 PuTT 2237	QTT 2296 25.76 QTR 2187 29.74 PuTT 2237 32.36	QTT 2296 25.76 0.1036 QTR 2187 29.74 0.0668 PuTT 2237 32.36 0.0502

4.5 VISUALIZATION

To highlight the effect of AGLSR, we visualize the reconstructions of adversarial examples (AE) by PTR, Pro-Trans (w/o attention mask), and Pro-Trans in Figure 5, alongside the clean example (CE) and ground-truth perturbation. PTR achieves small reconstruction errors but also restores perturbations. Pro-Trans (w/o attention mask) suppresses perturbations more effectively, though with noticeable blurring. By applying attention mask, Pro-Trans better preserves semantic details while removing perturbations, achieving a more balanced purification effect.

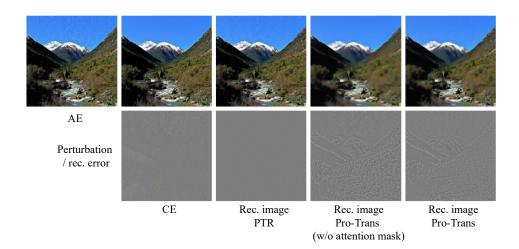


Figure 5: Visualization comparison of purification performance. The first row shows the adversarial example, clean example, and reconstructed images from PTR, Pro-Trans (w/o attention mask), and Pro-Trans. The second row presents the corresponding perturbations or reconstruction errors.

To provide a more intuitive demonstration of the attention mask, we visualize one image together with four activation maps generated by the ResNet-50 classifier and the corresponding attention mask, as shown in Figure 10. It can be clearly seen that the model pays stronger attention to decision-critical regions while assigning lower attention to the background. Therefore, the attention mask guides PTR to apply stronger local smoothing in critical regions while preserving more details in other areas. These results further highlight the effectiveness of our method.

4.6 ABLATION STUDY

Table 10: Standard and robust accuracy (%) against AutoAttack l_{∞} ($\epsilon=8/255$) threat and average purification time (s) on ImageNet.

Method	Time	SA	RA
TNP (Lin et al., 2025) PTR Pro-Trans (w/o attention mask) Pro-Trans	8.002	65.43	42.77
	2.054	66.01	47.07
	3.093	62.10	51.36
	2.997	64.84	51.17

We conduct ablation studies on ImageNet, comparing TNP, PTR, Pro-Trans without attention mask, and Pro-Trans (Table 10). Compared to TNP, all PTR-based methods greatly reduce purification time (from 8s to 2–3s). Introducing local smoothing regularization (Pro-Trans w/o attention mask) substantially improves RA over both TNP and PTR, but at the cost of reduced SA, indicating that semantic details are oversmoothed. By incorporating the attention mask,

Pro-Trans achieves nearly the same RA as Pro-Trans w/o attention mask but recovers much of the SA, thereby mitigating semantic degradation and achieving the most favorable RA–SA trade-off.

5 Conclusion

In this work, we introduced Pro-Trans, a novel tensor-based AP method that integrates PTR with AGLSR. PTR avoids redundant upsampling operations and enables coarse-to-fine optimization, significantly improving convergence efficiency and stability. Meanwhile, AGLSR leverages feature-level attention to adaptively apply local smoothing regularization, effectively suppressing perturbation while retaining semantic fidelity. Experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrated that Pro-Trans achieves state-of-the-art robustness and strong generalization on cross-dataset, cross-threat, and cross-attack scenarios, with significantly reduced computational overhead, thus offering a favorable balance between robustness, efficiency, and generalization. These results establish TNs as a promising method for practical and generalizable adversarial purification.

Limitations: Despite the large improvements achieved and extensive experiments empirically supporting our claims, our work currently lacks a comprehensive theoretical analysis to fully explain the observed robustness. We leave this as an important direction for future research.

ETHICS STATEMENT

This work only relies on publicly available datasets (CIFAR-10, CIFAR-100, ImageNet) and does not involve human subjects, private, or sensitive data. Our method is designed to improve the robustness and security of machine learning models against adversarial attacks. It does not introduce direct negative societal impacts, as its primary purpose is to strengthen defenses rather than enable new forms of attack.

REPRODUCIBILITY STATEMENT

We have taken care to ensure the reproducibility of our work. All experimental settings, including optimization details, hyperparameters, and initialization strategies, are described in the main text and Appendix. The datasets used are all publicly available. The source code and scripts for reproducing our results will be released upon paper acceptance.

REFERENCES

- Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial examples. In *International Conference on Machine Learning*, pp. 284–293. PMLR, 2018.
- Maximilian Augustin, Alexander Meinke, and Matthias Hein. Adversarial robustness on in-and out-distribution improves explainability. In *European Conference on Computer Vision*, pp. 228–245. Springer, 2020.
- Manish Bhattarai, Mehmet Cagri Kaymak, Ryan Barron, Ben Nebgen, Kim Ø Rasmussen, and Boian S. Alexandrov. Robust Adversarial Defense by Tensor Factorization. In *ICMLA*, January 2023.
- Antonin Chambolle. An algorithm for total variation minimization and applications. *Journal of Mathematical imaging and vision*, 20(1):89–97, 2004.
- Erh-Chung Chen and Che-Rung Lee. Data filtering for efficient adversarial training. *Pattern Recognition*, 151:110394, 2024.
- Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial robustness: From self-supervised pre-training to fine-tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 699–708, 2020.
- Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In *International Conference on Machine Learning*, pp. 2206–2216. PMLR, 2020.
- Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. RobustBench: A standardized adversarial robustness benchmark. In *Thirty-Fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, August 2021.
- Jiequan Cui, Zhuotao Tian, Zhisheng Zhong, XIAOJUAN QI, Bei Yu, and Hanwang Zhang. Decoupled kullback-leibler divergence loss. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
- Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Mma training: Direct input space margin maximization through adversarial training. In *International Conference on Learning Representations*, 2019.
- Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras. Robustness (python library), 2019. URL https://github.com/MadryLab/robustness.

- Negin Entezari and Evangelos E. Papalexakis. Tensorshield: Tensor-based Defense Against Adversarial Attacks on Images. In *MILCOM 2022 2022 IEEE Military Communications Conference (MILCOM)*, pp. 999–1004, November 2022. doi: 10.1109/MILCOM55135.2022.10017763.
 - Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information processing systems*, 27, 2014.
 - Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial Examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
 - Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering the limits of adversarial training against norm-bounded adversarial examples. *arXiv* preprint *arXiv*:2010.03593, 2020.
 - Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and Timothy A Mann. Improving robustness using generated data. *Advances in Neural Information Processing Systems*, 34:4218–4233, 2021.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778, 2016.
 - Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness and uncertainty. In *International conference on machine learning*, pp. 2712–2721. PMLR, 2019.
 - Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical Report Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.
 - Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual Adversarial Robustness: Defense Against Unseen Threat Models. In *International Conference on Learning Representations*, October 2020.
 - Mengcheng Lan, Xinjiang Wang, Yiping Ke, Jiaxing Xu, Litong Feng, and Wayne Zhang. SmooSeg: Smoothness Prior for Unsupervised Semantic Segmentation. In *Thirty-Seventh Conference on Neural Information Processing Systems*, November 2023.
 - Minjong Lee and Dongwoo Kim. Robust evaluation of diffusion-based adversarial purification. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 134–144, 2023.
 - Guang Lin, Chao Li, Jianhai Zhang, Toshihisa Tanaka, and Qibin Zhao. Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization. In *The Twelfth International Conference on Learning Representations*, October 2023.
 - Guang Lin, Duc Thien Nguyen, Zerui Tao, Konstantinos Slavakis, Toshihisa Tanaka, and Qibin Zhao. Model-free adversarial purification via coarse-to-fine tensor network representation. *arXiv* preprint arXiv:2502.17972, 2025.
 - Sebastian Bugge Loeschcke, Dan Wang, Christian Munklinde Leth-Espensen, Serge Belongie, Michael Kastoryano, and Sagie Benaim. Coarse-To-Fine Tensor Trains for Compact Visual Representations. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 32612–32642. PMLR, July 2024.
 - Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks. In *International Conference on Learning Representations*, February 2018.
 - Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar. Diffusion Models for Adversarial Purification. In *Proceedings of the 39th International Conference on Machine Learning*, pp. 16805–16827. PMLR, June 2022.

- I. V. Oseledets. Approximation of matrices with logarithmic number of parameters. *Doklady Mathematics*, 80(2):653–654, October 2009. ISSN 1531-8362. doi: 10.1134/S1064562409050056.
- I. V. Oseledets. Tensor-Train Decomposition. SIAM Journal on Scientific Computing, 33(5):2295–2317, January 2011. ISSN 1064-8275, 1095-7197. doi: 10.1137/090752286.
- Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng Yan. Robustness and accuracy could be reconcilable by (proper) definition. In *International Conference on Machine Learning*, pp. 17258–17277. PMLR, 2022.
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, and Luca Antiga. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
- Gaozheng Pei, Ke Ma, Yingfei Sun, Qianqian Xu, and Qingming Huang. Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain. In *Forty-Second International Conference on Machine Learning*, June 2025.
- Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Florian Stimberg, Olivia Wiles, and Timothy Mann. Fixing data augmentation to improve adversarial robustness. *arXiv preprint arXiv:2103.01946*, 2021.
- Jérôme Rony, Luiz G Hafemann, Luiz S Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric Granger. Decoupling direction and norm for efficient gradient-based 12 adversarial attacks and defenses. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4322–4330, 2019.
- Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. *Advances in neural information processing systems*, 29, 2016.
- Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially robust imagenet models transfer better? *Advances in Neural Information Processing Systems*, 33:3533–3545, 2020.
- Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models. In *International Conference on Learning Representations*, February 2018.
- Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.
- Yao Wang, Jiangjun Peng, Qian Zhao, Yee Leung, Xi-Le Zhao, and Deyu Meng. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 11(4):1227–1243, 2017.
- Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion models further improve adversarial training. *International conference on machine learning*, 2023.
- Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. *arXiv preprint arXiv:2001.03994*, 2020.
- Yuzhe Yang, Guo Zhang, Dina Katabi, and Zhi Xu. ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation. In *Proceedings of the 36th International Conference on Machine Learning*, pp. 7025–7034. PMLR, May 2019.
- Jongmin Yoon, Sung Ju Hwang, and Juho Lee. Adversarial purification with score-based generative models. In *International Conference on Machine Learning*, pp. 12062–12072. PMLR, 2021.
- Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks, June 2017.
- Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. Theoretically Principled Trade-off between Robustness and Accuracy. In *Proceedings of the 36th International Conference on Machine Learning*, pp. 7472–7482. PMLR, May 2019.
 - Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring decomposition. *arXiv preprint arXiv:1606.05535*, 2016.

A APPENDIX

A.1 LLM USAGE DISCLOSURE

We used large language models (LLMs) to assist with improving the clarity, grammar, and phrasing of the manuscript. No LLMs were used to generate novel method content, and all technical contributions were developed and validated solely by the authors.

A.2 IDENTITY TENSOR

In PTR, each core tensor models information at a specific granularity. The two dimensions that connect to other granularities capture inter-granularity relationships, while the remaining physical dimension represents the information of the current granularity. Core tensors that are not optimized at a given stage are initialized as identity tensors, which serve to replicate pixels in the reconstruction process. This design corresponds to the initialization of PTR's optimization objective, where images of different resolutions are upsampled to the original resolution through pixel replication. Concretely, we first construct a diagonal matrix and then stack it along the physical mode to obtain the identity tensor, formally expressed as follows:

$$\mathbf{I} \in \mathbb{R}^{rank \times 4 \times rank}, \quad \mathbf{I}_{i,i,k} = \delta_{ik},$$

where δ_{ik} denotes the Kronecker delta, i.e.,

$$\delta_{ik} = \begin{cases} 1 & \text{if } i = k, \\ 0 & \text{otherwise.} \end{cases}$$

Thus, for any fixed j, the slice $\mathcal{I}_{:j:}$ corresponds to an $rank \times rank$ identity matrix. Figure 6 provides a more intuitive visualization of the identity tensor. In practice, this construction ensures that non-optimized core tensors act as pixel replication operators during the coarse-to-fine reconstruction process in PTR.

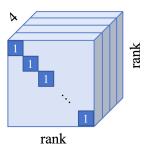


Figure 6: Illustration of Identity Tensor.

A.3 IMPLEMENTATION DETAILS

We provide here a comprehensive description of the experimental settings and hyperparameters to ensure clarity and reproducibility of our results. For all TN-based experiments, we used the Adam optimizer with a learning rate of 0.008 and optimized for 2048 iterations. Images from CIFAR-10 and CIFAR-100 (32×32) were upsampled via bilinear interpolation to 256×256 , while ImageNet images (224×224) were upsampled to 256×256 .

DEFENSE EVALUATION

For adversarial defense experiments, we set the maximum rank of TNP to 10 and that of Pro-Trans to 14 on CIFAR-10/100. For ImageNet, the maximum rank of TNP was set to 200 and that of Pro-Trans to 50.

CONVERGENCE ANALYSIS

For PuTT and PTR, the initial optimization resolution was 8×8 . On CIFAR-10, the optimization target switched progressively at steps 64, 128, 256, 512, and 1024, while on ImageNet the switching steps were 16, 32, 64, 128, and 256. On CIFAR-10, the maximum rank was set to 10 for Tensor Train-based QTT and PuTT, and 9 for Tensor Ring-based QTR and PTR. On ImageNet, the maximum rank was set to 43 for QTT, 100 for PuTT, and 33 for TR-based QTR and PTR.

Table 11: Summary of experimental settings and hyperparameters.

Setting	CIFAR-10/100	ImageNet			
Optimizer Image resolution	Adam (lr = 0.008, 2048 iters) $32 \times 32 \rightarrow 256 \times 256$	Adam (lr = 0.008, 2048 iters) $224 \times 224 \rightarrow 256 \times 256$			
Defense evaluation					
TNP rank	10	200			
Pro-Trans rank	14	50			
Convergence ana	lysis				
Initial resolution	8×8	8×8			
Switching steps	64, 128, 256, 512, 1024	16, 32, 64, 128, 256			
QTT rank	10	43			
PuTT rank	10	100			
QTR rank	9	33			
PTR rank	9	33			

A.4 ADDITIONAL VISUALIZATIONS

In this section, we present additional visualization results of ImageNet for reference, including reconstruction outputs across different resolutions, extended comparative visualizations, and attention mask visualizations.

Figure 7: PTR reconstruction results at different resolutions.

Figure 8: Pro-Trans reconstruction results at different resolutions.

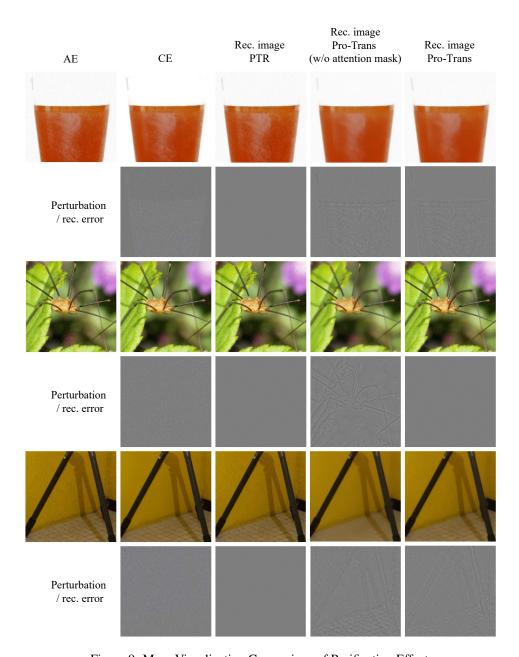


Figure 9: More Visualization Comparison of Purification Effect.

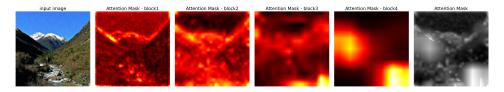


Figure 10: Visualization of the attention mask. From left to right are the input image, its activation maps from ResNet-50, and the derived attention mask.

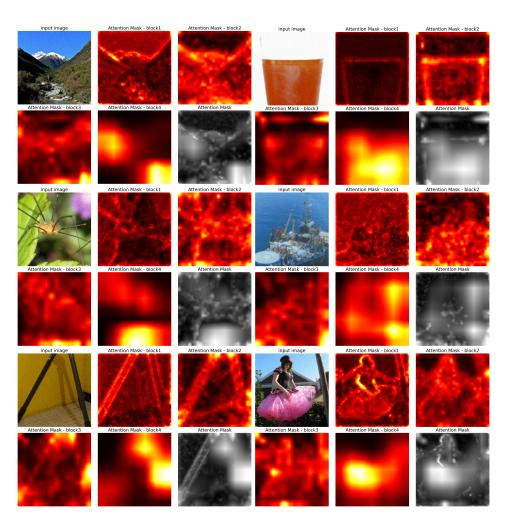


Figure 11: Visualization of Attention Mask.