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Abstract

Neural message passing serves as a cornerstone framework in graph neural networks, pro-
viding a clear and intuitive mathematical guideline for the propagation and aggregation
of information among interconnected nodes within graphs. Throughout this process, node
representations undergo dynamic updates, considering both the individual states and con-
nections of neighboring nodes. Concurrently, social networks, as prominent forms of inter-
connected data, form dynamic systems that achieve stability through continuous internal
communications and opinion exchanges among social actors along their social ties. Draw-
ing upon the shared concepts between these two domains, our study establishes an explicit
connection between message passing and opinion dynamics in sociology. Moreover, we intro-
duce a novel continuous message passing scheme termed ODNet, which integrates bounded
confidence to refine the influence weight of local nodes for message propagation. By adjust-
ing the similarity cutoffs of bounded confidence and influence weights within ODNet, we
define opinion exchange rules that align with the characteristics of neural message passing
and can effectively mitigate the oversmoothing issue. We extend the framework to hyper-
graphs and formulate corresponding continuous message passing rules, which reveal a close
association with particle dynamics. Empirically, we showcase that ODNet enhances predic-
tion performance across various social networks presented as homophilic graphs, heterophilic
graphs, and hypergraphs. Notably, our proposed ODNet outperforms existing GNNs with
its straightforward construction and robust theoretical foundation.

1 Introduction

Graph neural networks have emerged as a powerful deep learning framework for analyzing the intercommu-
nication of entities on a graph, offering versatile tools for node, edge, and graph-level representation learning
(Scarselli et al., 2008; Bronstein et al., 2017). The primary challenge in designing GNN models lies in effec-
tively aggregating information based on local interactions for efficiently extracting hidden representations.
This design philosophy has been generalized as neural message passing (Gilmer et al., 2017) and later became
a fundamental feature extraction unit of graph for aggregating features of neighbors.

Concurrently, opinion dynamics studies the evolving social relations with the opinions dynamically changed
over time through interactions (Acemoglu & Ozdaglar, 2011). A social network establishes a system with
individual social actors and the social ties among them. It uses a graph as an abstract representation of
a group’s structure (Proskurnikov & Tempo, 2017). To analyze the formation, evolution, and spread of
opinions within social networks or communities, statistical physics has contributed by introducing methods
and tools from dynamical systems theory (Helbing, 2010; Weidlich, 2006).

Despite originating from different disciplines, neural message passing and opinion dynamics share core princi-
ples of information propagation and aggregation within interconnected systems. Both fields focus on under-
standing how local interactions among individuals (nodes) contribute to the emergence of global behaviors
in social networks (graphs). This inherent connection motivates our exploration of an efficient alternative
to neural message passing inspired by popular models in opinion dynamics. We aim to address three key
research questions: (1) How to integrate models of opinion dynamics into the neural message passing frame-
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Figure 1: An illustration of the propagation rule in ODNet with bounded confidence. Colored nodes
represent individuals with different opinions. The central node (dark blue) interacts with light blue nodes
sharing similar opinions and a red node with significantly divergent thoughts. During message passing,
ODNet enhances the aggregation weight of similar nodes (light blue) and adjusts the weights of conflict
nodes (red). Bounded confidence defines the range of similar/conflict nodes and the extent of adjustments,
and it is influenced by the graph’s position on the opinion spectrum. See Section 5 for modeling details.

work? (2) What are the implications of opinion dynamics models’ properties for mitigating the oversmoothing
issue in neural message passing? (3) How can we apply opinion dynamics-inspired neural message passing
rules to typical graphs encountered in social networks, such as heterophilic graphs and hypergraphs?

To address the first two questions, we analyze the formulation and dynamic behavior of two representative
models in opinion dynamics: the French-DeGroot (FD) model (DeGroot, 1974; French Jr, 1956) and the
Hegselmann-Krause (HK) model (Rainer & Krause, 2002). We reformulate the FD and HK models to estab-
lish explicit connections with the message passing framework. Based on the unified formulation, we analyze
the convergence behavior of the two models and provide a novel explanation of the oversmoothing issue in
GNNs from the perspective of opinion dynamics. We demonstrate that the FD message passing converges
exponentially to a stable state when exhibiting strong local connectivities. This property is frequently ob-
served in hypergraphs and significantly contributes to the oversmoothing issue. Alternatively, the HK model
mitigates the issue by introducing heterophilious dynamics to avoid consensus or environmental averaging.

Based on this connection, we answer the third question by integrating the concept of bounded confidence from
the HK model and introduce an opinion dynamics-inspired message passing formulation named ODNet.
A few recent studies combine opinion dynamics to define propagation rules on graphs. However, they are
based on position-based first-order message passing (Okawa & Iwata, 2022) or ignore data-driven propaga-
tion rules (Giráldez-Cru et al., 2022), resulting in limited expressivity. This framework, instead, incorporates
a confidence-based filtration mechanism on initial edge connections and incorporates second-order diffusion
processes. By considering the similarity of node pairs and connection proximity, ODNet aggregates neigh-
boring information through automatic adjustment to edge weights. Through its piecewise message passing
schemes, the model can strengthen, weaken, or remove initial links within the graph. Furthermore, it al-
lows for the assignment of negative weights to capture conflicting viewpoints from neighboring nodes with
substantial disparities. This capability proves essential especially when examining heterophilic networks,
where connected entities exhibit dissimilar characteristics. The propagation scheme mirrors the dynamic
spreading of opinions within a community, where effective communication channels converge individuals or
agents towards consensus or a few dominant viewpoints (Figure 1). When exchanging information, individ-
uals tend to support opinions aligned with themselves. However, when encountering significantly divergent
thoughts, individuals may choose to disregard or oppose them, depending on position of the social network
on the opinion spectrum. For example, researchers (on the right side of the spectrum) typically concentrate
on studies within their expertise but are open to learning new perspectives from other domains, whereas
politicians (on the left side of the spectrum) often encounter strong conflicts and resist propositions from
competing parties.

We evaluate the versatile ODNet across three categories of graphs: homophilic graphs, heterophilic graphs,
and hypergraphs, each characterized by unique properties resembling real-world social networks such as the
small-world effect (Girvan & Newman, 2002) and scale-free networks (Barabasi & Oltvai, 2004). Empiri-
cally, the introduced piecewise aggregation behavior enhances the performance of well-established message
passing methods. In summary, our work has three main contributions: (1) We demonstrate an explicit
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connection between opinion dynamics and the neural message passing framework, which used
to be two parallel research fields in modeling social networks (Section 4). By formulating opinion dynamics
models under neural message passing frameworks, we offer a new interpretation of oversmoothing from the
perspective of opinion dynamics. (2) We propose ODNet, a novel message passing scheme inspired
by opinion dynamics (Section 5.1). ODNet provides a promising alternative to traditional neural message
passing methods. It incorporates bounded confidence to refine the influence weight of local node features,
boasting a clean formulation, solid theoretical support, and effective mitigation of the oversmoothing issue.
Notably, the introduction of bounded confidence does not introduce additional computational cost to the
propagation. (3) We defines the continuous ODNet for hypergraphs and provide theoretical
analysis (Section 5.2). By extensive experiments, we validate its superior performance on different types of
graphs and compare it with both classic and SOTA discrete or continuous message passing schemes.

2 Related Work

Neural Message Passing on Graphs and Hypergraphs Neural message passing establishes a gen-
eral computational rule for updating node representations in attributed graphs (Gilmer et al., 2017). By
implementing different types of propagation rules, information at the node and edge levels is communicated
among neighborhoods. In parallel, Feng et al. (2019) and Gao et al. (2022b) established a general convolution
framework employing the incidence matrix for hypergraph learning. Various techniques have also undergone
expansion, such as the attention mechanism (Bai et al., 2021) and spectral theory (Yadati et al., 2019).

Continuous Message Passing and the Oversmoothing Issue The concept of continuous GNN dy-
namics was first introduced by Poli et al. (2020) and Chamberlain et al. (2021), which explicitly generalizes
discrete propagation frameworks such as GAT (Veličković et al., 2018). This diffusion framework has seen
active extensions into more continuous graph convolutions with additional considerations of graph rewiring
(Brandstetter et al., 2021; Bodnar et al., 2022) Meanwhile, the energy conservation of second-order diffusion
processes circumvents the oversmoothing issue and training instability by capturing long-range interactions
(Wang et al., 2023; Han et al., 2024).

Opinion Dynamics for Social Networks and Graph Neural Networks The natural connection
between graphs and social networks has inspired pioneering works exploring the possibility of extending the
analysis of social networks to graph neural networks. Sheaf networks build connections with socialdynamics
by separating messages from nodes into public and private opinions (Caralt et al.; Duta et al., 2024; Zaghen
et al., 2024; Hansen & Ghrist, 2021). SINN (Okawa & Iwata, 2022) follows a first-order formulation of
information exchange to capture the positions of individuals without considering mechanisms to prevent
excessive attraction or repulsion from neighbors, thus ignoring the inherent oversmoothing issue.To extend to
the second-order formulation with Newtonian dynamics, social networks analysis defines collective dynamics
(Carrillo et al., 2010; Motsch & Tadmor, 2014) that depicts the phenomenon of agents moving together based
on attraction and repulsion forces (Cucker & Smale, 2007; Fang et al., 2019; Jin & Shu, 2021b). ATBCR
(Giráldez-Cru et al., 2022) followed opinion dynamic rules and introduced the concept of attraction and
repulsion between nodes. However, the explicit propagation rule excludes learnable message passing layers,
which restricts its performance on more sophisticated networks such as heterophilic graphs.

3 Graphs from the View of Message Passing and Opinion Dynamics

3.1 Graphs and Hypergraphs

A graph G[W ] = (V, E [W ]) of N nodes can be associated with any square non-negative weight matrix
W ∈ RN×N , where V represents the node set and E is the edge set. We denote xi as the feature of node
vi or the opinion of individual i. G is strongly connected (Godsil & Royle, 2001) if there exists a path from
every node to every other node. A cycle is a directed path that both begins and ends at the same node with
no repeated nodes except for the initial/final one. The length of a cycle is defined by the number of edges
in the cyclic path. The periodicity of a graph is defined as the smallest integer k that divides the length of
every cycle in the graph. When k = 1, G is termed aperiodic (Bullo et al., 2009).
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A hypergraph is a generalization of a graph in which an edge can connect any number of vertices. It can be
denoted by a triple H[W h] = {V, E ,W h}. To avoid notation confusion, we still use V for the set of nodes
and E for the set of hyperedges. We set |V| = N and |E| = M , and E(i) denotes a set containing all the
nodes sharing at least one hyperedge with node i. Usually, W h is a diagonal matrix for hyperedges, where
Wh

ee represents the weight of the hyperedge e. In this paper, we extend the weight representation to a triple
tensor W h ∈ RN×N×M , where we

i,j designates an element in W h. The incidence matrix H ∈ RN×M defines
Hi,e = 1 if the node i belongs to the hyperedge e, otherwise Hi,e = 0. We generalize the indicator within
W h by setting we

i,j as nonzero if node i, j are connected by a hyperedge e, otherwise 0.

3.2 Neural Message Passing on Graphs and Hypergraphs

Neural Message Passing (Gilmer et al., 2017) stands as the prevailing propagator for updating node repre-
sentations in GNNs. We denote x

(k−1)
i as the features of node i in layer (k − 1) and aj,i ∈ Rd as the edge

features from node j to node i. A message passing layer reads as follows:

x(k)
i = γ(k)

(
x(k−1)

i ,□j∈Ni ϕ
(k)
(

x(k−1)
i ,x(k−1)

j , aj,i

))
, (1)

where □ denotes a differentiable, node permutation-invariant function, such as summation, mean, or max-
imization. The γ and ϕ denote differentiable functions such as MLPs (Multi-Layer Perceptrons), and Ni

represents the set of one-hop neighbors of node i. The message passing mechanism updates the feature of
each node by aggregating their self-features with neighbors’ features. On hypergraphs, the message passing
scheme considers interactions among multiple nodes reflected in a hyperedge. At the kth layer:

x(k+1)
i = Ψ(k)

(
x(k)

i ,Φ1,e∈E(i)

(
e,Φ(k)

2,j∈e({x(k)
j }, {ae

j,i})
))

, (2)

where Φ(k)
1 (·) denotes a differentiable, hyperedge permutation-invariant function, and Φ(k)

2 (·) is a differen-
tiable, node permutation invariant function. The Ψ(k)(·) denotes another differentiable function of propaga-
tion, and j ∈ e implies Hj,e = 1 or ae

j,i ̸= 0.

4 Opinion Dynamics

This section introduces the FD and HK models, two iconic models in opinion dynamics, following a discussion
on the interconnection of their formulation with message passing and the oversmoothing issue in GNNs.

4.1 French-DeGroot Model

The French-DeGroot (FD) model (DeGroot, 1974) is a groundbreaking agent-based model that simulates
the evolution of opinions. In a given population of N individuals, each individual holds an opinion xi(k) at
discrete time instances k = 0, 1, · · · . An individual’s opinion is evolved by

xi(k + 1) =
∑N

j=1
wijxj(k), (3)

where the non-negative influence weight wij satisfies
∑N

j=1 wij = 1. If wij > 0, individuals i and j are
considered neighbors. The influence weight signifies the relative impact that individual j exerts on i during
each opinion update. Importantly, all individuals concurrently update their opinions at each time step. The
FD model captures how individual opinions converge within a group that potentially leading to a consensus.
This opinion pooling process could also be interpreted as a message passing scheme, which emulates how
information is exchanged within a specific type of neural network.

Connection to Neural Message Passing The FD model is often regarded as a micro-level model based
on individuals simulating the evolution of individual opinions. We show that it shares similarities with
GRAND (Chamberlain et al., 2021), which describes a diffusion process on graphs by connecting heat
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conduction with neural message passing. The connection between the two models is established through the
discretization of a partial differential equation on graphs:

∂

∂t
x(t) = (A(x(t)) − IN )x(t), (4)

where A(x(t)) denotes the N×N attention matrix on nodes and IN is an identity matrix. GRAND coincides
with the FD model when (A(x(t)) − IN ) satisfies the row-stochastic property and a simple forward-Euler
method is applied with a time step of one. This intriguing parallel between the two models highlights the
interconnection of designs from the two different domains of social network modeling.

Opinion Consensus and the Oversmoothing Issue A fundamental result regarding the convergence of
the FD model is well-established, demonstrating that consensus is achieved exponentially fast for a strongly
connected and aperiodic graph (Bullo et al., 2009; Proskurnikov & Tempo, 2017; Ye, 2019).
Proposition 1. Consider the evolution of opinions xi(k) for each individual i within the network G[W]
according to (3). Assuming that G[W] is strongly connected and aperiodic, and that W is row-stochastic.
Define ζ as the dominant left eigenvector of W, then limk→0 x(k) = (ζ⊤x(0))1N exponentially fast.

The proposition above shows that any graph with a self-loop is considered aperiodic, implying that ex-
ponential decay often occurs in graphs with strong connectivity. In GNNs, this phenomenon is known as
oversmoothing (Nt & Maehara, 2019; Oono & Suzuki, 2019), which has been widely studied for its association
with the exponential decay of the Dirichlet energy – a measure of feature convergence weighted by graph
structure. Despite their distinct origins, these phenomena describe similar processes.

4.2 Hegselmann-Krause Model

In the FD model, each agent could interact with any other agent, regardless of their opinions. However, the
previous analysis shows that such trivial aggregation behavior inevitably leads to oversmoothing the signals
in the system. In real-life scenarios, individuals typically engage in conversations primarily with those who
share similar viewpoints. In sociodynamics, this phenomenon is termed as collective behaviors, where a
group of individuals collectively exhibit coordinated patterns. The Hegselmann-Krause (HK) model (Holm
& Putkaradze, 2006; Kolokolnikov et al., 2013; Motsch & Tadmor, 2014) characterizes this behavior by

xi(k + 1) = |B(i,xi))|−1 ∑
j∈B(i,xi)

xj(k), (5)

where the bounded confidence B(i,xi) = {j : |xj(k) − xi(k)| < ϵ} includes all the peers j associated with the
individual i whose opinions diverges within a confined region ϵi ∈ R. This parameter defines the degree of
uncertainty or tolerance for opinion exchanges. It restricts that an individual i with an opinion xi will only
engage in interactions with those of their peers whose opinions fall within a confined region.

Consensus versus Opinion Polarization The HK model is a first-order opinion dynamics model that
directly incorporates the influence of neighboring opinions on individual updates through bounded confidence.
Nevertheless, bounded confidence does not inherently prevent the oversmoothing issue. In scenarios of
significant heterophily, agents preferentially connect with dissimilar others. In this case, the model often
leads to consensus and mirrors the oversmoothing problem in GNNs. It thus becomes pivotal to guide the HK
model to capture opinion polarization and form multiple distinct and stable clusters. One way to approach
this target involves employing strategies like bi-clustering with repulsion mechanisms (Fang et al., 2019; Jin
& Shu, 2021b; Wang et al., 2023), which ensures a lower bound for the Dirichlet energy of the input signal.

5 Opinion Dynamics-Inspired Message Passing

This section defines ODNet, a novel message passing framework that employs the influence function ϕ(s)
with bounded confidences. We offer a comprehensive interpretation of each component in ODNet. We
introduce the discrete and continuous forms of the proposed model on both graphs and hypergraphs.
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5.1 ODNet on Graphs

Discrete Formulation Denote ϕ(·) as a non-decreasing function of the similarity measure si,j to node i
and node j. The update rule for ODNet reads:

xi(t+ 1) =
N∑

i=1
ϕ(sij)(xj(t) − xi(t)) + xi(t) + u(xi(t)). (6)

The matrix sij has different definitions, such as the normalized adjacency matrix (Kipf & Welling, 2017)
and attention coefficients (Veličković et al., 2018). The control term u(xi) is deployed for stability. One
straightforward choice of formulation is u(xi) = ∇P (x)|x=xi with a potential function P (x), such that
∇P (x) → ∞ as x → ∞ (Kolokolnikov et al., 2011). It acts as a moral constraint preventing individuals from
resorting to extreme violence in conflict situations in sociodynamics.

Continuous Formulation In opinion dynamics, individual perspectives tend to evolve gradually rather
than through sudden changes. This observation suggests enhancing the discrete message passing model into
a continuous framework. This adaptation can be understood as transforming a traditional message passing
approach into a numerical approximation of the continuous model by rewriting (4) into:

∂xi(t)
∂t

=
N∑

i=1
ϕ(sij)(xj(t) − xi(t)) + u(xi). (7)

The continuous formulation (7) facilitates the application of numerous numerical approximation methods,
transforming it back into a discrete model equipped with a specific scheme for residual adjustment. This
adaptability allows applying diverse Ordinary Differential Equation (ODE) solvers to ODNet, including
Neural ODEs (Chen et al., 2018). The associated explorations can be found in Section 6.

Choice of Influence Function The monotonic influence function ϕ(·) characterizes the influence weight
associated with the similarity of node pairs. It describes the diverse behaviors of opinion exchange in a
system, which is determined by the systems’ positions along the opinion spectrum (Figure 1). We define a
piecewise ϕ(·) to delineate influence regions akin to bounded confidence. For instance, with

ϕ(s) =


µs, if ϵ2 < s

s, if ϵ1 ≤ s ≤ ϵ2

0, otherwise,
(8)

the propagation rule (6) can be rewritten as

xi(t+ 1) =µ
∑

ϵ2<si,j

si,j(xj(t) − xi(t)) +
∑

ϵ1≤si,j≤ϵ2

si,j(xj(t) − xi(t)) + xi(t). (9)

This formulation amplifies the influence weight for highly similar node pairs with coefficient µ > 0 while
cutting connections for node pairs with low similarity, resembling how individuals tend to ignore opinions
beyond their bounded confidence.

The previous choice (8) corresponds to when individuals maintain neutral opinions toward each other. Con-
versely, when individuals holding significantly divergent opinions and the network leans towards the ‘strong
opinion’ side of the spectrum, interactions may become hostile. In such cases, ϕ(·) can be defined as

ϕ(s) =


µs, if ϵ2 < s

s, if ϵ1 ≤ s ≤ ϵ2

ν(1 − s), otherwise,
(10)

where µ > 0 and ν < 0. This configuration allows the neural network to learn from positive neighbors
with high similarities and to extract negative information from nodes with discrepancies. Specifically, the

6



Under review as submission to TMLR

negative coefficient ν indicates that certain node pairs consistently repel each other, potentially leading to
undesirable system expansion. Consequently, the previously introduced control term u(xi) is essential for
the model towards enhanced system stability.
Remark 1. The choice of ϕ(·) can be guided by the graph’s intrinsic characteristics or by using the homophily
level (Pei et al., 2020) as a quantitative measure. We recommend using (8) for homophilic graphs and (10)
for heterophilic graphs. The empirical analysis is in Section 6.

5.2 ODNet on Hypergraphs

It is conceivable to extend a graph diffusion framework, e.g., GRAND, to hypergraphs with macroscopic in-
terpretations. However, these diffusion-type dynamics at the macro level are susceptible to oversmoothing of
feature evolution, similar to traditional GNNs. Especially on hypergraphs, since are generally characterized
with denser local connections than traditional graphs, addressing the oversmoothing issue becomes partic-
ularly important when constructing message passing propagation rules for hypergraphs. In this section, we
will first analyze the oversmoothing issue of diffusion-based hypergraph message passing, then propose the
continuous update rule of ODNet for hypergraphs that circumvent the oversmoothing issue.

Diffusion-based Hypergraph Message Passing When incorporated with macroscopic interpretations,
diffusion-based hypergraph message passing propagates the attractions of individuals or agents. Consider
the node feature space Ω = Rd and the tangent vector field space TΩ = Rd. For x,y ∈ Ω and x, y ∈ TΩ
where xi,j = −xj,i, we adopt the following inner products:

⟨x,y⟩ =
∑
i,j

xiyj , [x, y] =
∑
i>j

∑
e∈E

he
i,j xi,jyi,j . (11)

Here he
i,j represents a tuple related to node i, j and the associated hyperedge e, where he

i,j = 0 if Hi,e = 0.
We set he

i,j to satisfy
∑
j

∑
e∈E

he
i,j = 1. For any u ∈ TΩ, by the adjoint relation [u,∇x] = ⟨x,div u⟩ with

∇x = xj − xi, we derive:
(div u)j =

∑
i

∑
e∈E

he
i,jui,j .

This leads to a formal diffusion process of a hypergraph:

dxi

dt
= div ∇xi =

∑
j

∑
e∈E

he
i,j(xj − xi). (12)

For simplicity, we define the hypergraph operator L = I − (
∑
e∈E

he
i,j) and rewrite (12) as

dx
dt

= −Lx.

When L is semi-positive definite (s.p.d), we define (12) as a diffusion-type propagation of a hypergraph. The
different choices of he

i,j lead to diverse diffusion-type equations. For example, when we take forward Euler
discretization on (12) and define ∑

e∈E
he

i,j = D
− 1

2
v HWD−1

e HTD
− 1

2
v ,

we have a simplified HGNN (Gao et al., 2022a) without channel mixing.

Oversmoothing Problem of Hypergraph Message Passing To understand this claim, we first define
the Dirichlet energy of a hypergraph H of vector field x ∈ RN×d for diffusion-type hypergraph networks:

E(x) :=
N∑

i,j=1

∑
e∈E

Hi,eHj,e∥xi − xj∥2. (13)
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When formulating the Dirichlet energy on hypergraph, rather than following the conventional formulation
of E(x) := tr(x⊤Lx), we adopt a simplified definition by Rusch et al. (2022) due to the non-deterministic
nature of L, which also facilitates a straightforward analysis of the variations in node features.
Definition 1. Let xl represent the hidden features at the lth layer. Oversmoothing in a hypergraph neural
network is defined as the exponential decay of layer-wise Dirichlet energy as a function of layer depth l, i.e.,

E(xl) ≤ C1e
−C2l, (14)

where C1 and C2 are positive constants.

Given that |x| ≤ C1e
−γt with γ being the smallest positive eigenvalue of L, it is easy to see that oversmoothing

is a common issue in general hypergraph diffusion networks. This observation comes from the diffusion
structure, where the node features x decay exponentially to zero with the s.p.d kernel L.

Continuous Formulation of ODNet on Hypergraphs ODNet offers a comprehensive message pass-
ing framework that can be directly extended to hypergraphs. The primary distinction between hypergraphs
over graphs lies in how hyperedges facilitate connectivity beyond traditional pairwise edges. Following the
continuous representation of (12), we define:

∂xi

∂t
=
∑
e:i∈e

∑
j∈e

ϕ(se
i,j)(xj − xi) + u(xi). (15)

This model formulates collective behaviors-based diffusion-type dynamics for hypergraphs. It suggests that
in a large community, information spreads through subgroups (nodes connected by a hyperedge) rather than
solely through direct pairwise exchanges. As with graphs, the selection of se

i,j can include different metrics,
such as attention coefficients (Bai et al., 2021) or convolution coefficients (Gao et al., 2022a).

The HK model can be interpreted as a diffusion process on graphs featuring piecewise attraction and repulsion
behaviors, as outlined in (7) and (15). When devising message passing aggregation rules, employing a
comprehensive framework for microscopic models based on collective behaviors within a complete interaction
system proves effective in mitigating the oversmoothing issue. The complete proof is in Appendix A.
Remark 2. The diffusion process of a hypergraph by (12) is also closely related to self-organized dynamics
in particle systems (Motsch & Tadmor, 2014), where (12) represents a particle dynamics scenario with he

i,j

signifying the interactive force between nodes i, j under a specific field e. Note that (12) corresponds to a
particular case of (15) where only attractive forces influence the message evolution. However, this assumption
is not universal for particle systems, and as demonstrated above, it can lead to the oversmoothing issue.

6 Empirical Analysis

We validate the performance of ODNet through classic node-level representation learning tasks on a variety
of social networks described by homophilic/heterophilic graphs or hypergraphs.

6.1 Experimental Protocol

Training Setup We compare our model to a diverse set of top-performing baseline GNN models, including
classic message passings with discrete or continuous updating schemes, as well as the latest hypergraph
models. For ODNet, we trained the model using a neural ODE solver with Dormand–Prince adaptive
step size scheme (DOPRI5). For homophilic datasets, we utilized 10 random weight initializations and
random splits, with each combination randomly selecting 20 instances from each class. In heterophilic and
hypergraph datasets, we used the fixed 10 training/validation splits in Pei et al. (2020) and Yadati et al.
(2019). All implementations are programmed with PyTorch-Geometric (version 2.0.1) (Fey & Lenssen,
2019) and PyTorch (version 1.7.0) and run on NVIDIA® Tesla A100 GPU with 6, 912 CUDA cores and
80GB HBM2 mounted on an HPC cluster. All the details to reproduce our results have been included in the
submission. The program will be publicly available upon acceptance. The searching space of hypergraphs is
reported in Table 7. We compare ODNet with a variety of previous methods on graphs and hypergraphs
(see Appendix B.1).
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Table 1: Average test accuracy on homophilic graphs over 10 random splits.

Cora CiteSeer PubMed Coauthor CS Computer Photo ogb-arXiv
homophily level 0.83 0.71 0.79 0.80 0.77 0.83 0.61
GCN 81.5±1.3 71.9±1.9 77.8±2.9 91.1±0.5 82.6±2.4 91.2±1.2 72.2±0.3
MoNet 81.3±1.3 71.2±2.0 78.6±2.3 90.8±0.6 83.5±2.2 91.2±2.3 N/A
GraphSage-avg 79.2±7.7 71.6±1.9 77.4±2.2 91.3±2.8 82.4±1.8 91.4±1.3 N/A
GraphSage-max 76.6±1.9 67.5±2.3 76.1±2.3 85.0±1.1 N/A 90.4±1.3 N/A
GAT 81.8±1.3 71.4±1.9 78.7±2.3 90.5±0.6 78.0±1.9 85.7±2.0 73.6±0.1
GAT-PPR 81.6±0.3 68.5±0.2 76.7±0.3 91.3±0.1 85.4±0.3 90.9±0.3 N/A
CGNN 81.4±1.6 66.9±1.8 66.6±4.4 92.3±0.2 80.3±2.0 91.4±1.5 58.7±2.5
GDE 78.7±2.2 71.8±1.1 73.9±3.7 91.6±0.1 82.9±0.6 92.4±2.0 56.7±10.9
GRAND-l 83.6±1.0 73.4±0.5 78.8±1.7 92.9±0.4 83.7±1.2 92.3±0.9 71.8±0.2
SINN 83.2±0.4 73.9±0.6 80.0±1.7 93.0±0.5 84.6±1.1 90.4 ±2.4 N/A
ODNet (ours) 85.7±0.3 75.5±1.2 80.6±1.1 93.1±0.7 83.9±1.5 92.7±0.6 74.65±0.16

Figure 2: Impact of scaling factors ν and µ on Texas and Cora.

6.2 Node Classification on Graphs

Benchmark Datasets To evaluate a diverse set of scenarios, we encompass seven homophilic graphs
(Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008), Pubmed (Namata et al., 2012), Coauthor
CS (Shchur et al., 2018), Computer (Namata et al., 2012), Photo (Namata et al., 2012), and ogb-arXiv
Hu et al. (2020)), three heterophilic graphs (Texas, Wisconsin, and Cornell from the WebKB dataset
(García-Plaza et al., 2016)). An overview of the statistical information for the six homophilic graphs and
three heterophilic graphs is provided in Table 4 of Appendix B. The benchmarks used for evaluation cover
a wide range of homophily level (Pei et al., 2020). A low homophily level indicates that the dataset leans
more towards being heterophilic, where most neighbors do not share the same class as the central node.
Conversely, a high homophily level signifies that the dataset tends towards homophily, with similar nodes
more likely to be interconnected.

Result Analysis Tables 1-2 present the average accuracy for predicting node labels in homophilic and het-
erophilic graphs, respectively. ODNet consistently ranks among the top-performing methods with minimal
variance. The performance results for baseline methods are sourced from prior studies (Chamberlain et al.,
2021; Chien et al., 2021; Wang et al., 2022). Notably, our model outperforms other continuous message pass-
ing techniques, such as GRAND, by introducing the potential term and the bounded confidence mechanism.
This superiority is particularly evident on heterophilic graphs, where the repulsive force among dissimilar
node pairs significantly enhances prediction accuracy. Furthermore, Figure 2 illustrates the distinct pref-
erences of the influence function for homophilic and heterophilic graphs. Based on the theoretical analysis
and empirical evidence, we recommend following (8) for the former and (10) for the latter in general. The
similarity cutoff also exhibits differing preferences. In homophilic graphs, nodes tend to amplify attraction
among similar entities, while in heterophilic graphs, dissimilar nodes benefit more from emphasizing repul-
sion. Additional evidence is provided in Section 6.5. Furthermore, the introduced bounded confidence in
ODNet, similar to an activation function, does not increase the computational cost. For instance, training
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Table 2: Average test accuracy on heterophilic graphs over 10 fixed split datasets.
Texas Wisconsin Cornell

homophily level 0.11 0.21 0.30
MLP 80.8±4.8 85.3±3.3 81.9±6.4
GCN 55.1±5.2 51.8±3.1 60.5±5.3
GAT 52.2±6.6 49.4±4.1 61.9±5.1
GPRGNN 78.4±4.4 82.9±4.2 80.3±8.1
H2GCN 84.9±7.2 87.7± 5.0 82.7±5.3
GCNII 77.6±3.8 80.4±3.4 77.9±3.8
Geom-GCN 66.8±2.7 64.5±3.7 60.5±3.7
PairNorm 60.3±4.3 48.4±6.1 58.9±3.2
GraphSAGE 82.4±6.1 81.2±5.6 76.0±5.0
GraphCON 85.4±4.2 87.8±3.3 84.3±4.8
ODNet 88.3±3.2 89.1± 2.9 86.5±5.5

Table 3: Average test accuracy on hypergraphs over 10 random splits.

Cora-coauthor Cora-cocitation CiteSeer-cocitation PubMed-cocitation
HGNN 82.6±1.7 79.4±1.4 72.5±1.2 86.4±0.4
HyperGCN 79.5±2.1 78.5±1.3 71.3±0.8 82.8±8.7
HCHA 82.6±1.0 79.1±1.0 72.4±1.4 86.4±0.4
HNHN 77.2±1.5 76.4±1.9 72.6±1.6 86.9±0.3
UniGCNII 83.6±1.1 78.8±1.1 73.0±2.2 88.3±0.4
HyperND 80.6±1.3 79.2±1.1 72.6±1.5 86.7±0.4
AllDeepSets 82.0±1.5 76.9±1.8 70.8±1.6 88.8±0.3
AllSetTrans 83.6±1.5 78.6±1.5 73.1±1.2 88.7±0.4
SheafHGCN 83.2±1.2 80.1±1.1 73.2±0.5 87.1±0.7
ED-HNN 84.0±1.6 80.3±1.4 73.7±1.4 89.0±0.5
ODNet (Ours) 84.5±1.6 80.7±0.9 74.0±0.9 89.0±0.4

one round of CORA (on a single A100 card) requires approximately 120 seconds for ODNet, 135 seconds
for GRAND, and 164 seconds for SINN.

6.3 Node Classification on Hypergrpahs

Benchmark Datasets The hypergraph variant of ODNet undergoes an evaluation through semi-
supervised node classification tasks conducted on four benchmark hypergraphs extracted from Yadati et al.
(2019). For co-citation networks (Cora-cocitation, CiteSeer-cocitation, and PubMed-cocitation),
documents cited by a given document are interconnected by a hyperedge. Similarly, the co-authorship net-
works (Cora-coauthor) aggregates all documents co-authored by an individual into a single hyperedge. A
statistical summary of the four benchmarks is provided in Table 5 in Appendix B.

Result Analysis In contrast to graph data with relatively sparse connections, hypergraphs utilize a few
hyperedges and establish densely connected local communities. As reported in Table 3, ODNet consistently
outperforms baseline methods with a significant improvement. It is worth noting that our ODNet adopts the
hypergraph weights ae

ij from HGNN (Feng et al., 2019) with a simple Euler scheme of first-order forward dif-
ferences. In this sense, our method demonstrates great potential for significantly enhancing the performance
of a basic method with minimal additional complexity, surpassing even more advanced methods.
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Figure 3: Decays of Dirichlet energy with layers on Texas.

6.4 Dirichlet Energy and Community Consensus

Many message passing methods encounter the issue of oversmoothing, limiting their ability to enable deep
networks to achieve expressive propagation. A GNN model is considered to alleviate the oversmoothing
problem if its Dirichlet energy rapidly approaches a lower bound as the number of network layers increases
(Cai & Wang, 2020). Figure 3 illustrates the decay of Dirichlet energy on Texas with all network parameters
randomly initialized. The two conventional message passings, GCN and GAT, exhibit a sudden progression
of Dirichlet energy with exponential decay. In contrast, GRAND employs a small multiplier to delay all
nodes’ features to collapse to the same value. ODNet stabilizes the energy decay with bounded confidence
and the influence weights, offering a simple and efficient solution to alleviate the oversmoothing issue. Since
stable Dirichlet energy reflects the disparity of feature clusters, the observation that a decreasing profile of
ϕ reduces Dirichlet energy under stable conditions is consistent with simulation results in opinion dynamics
that heterophily dynamics enhances consensus (Motsch & Tadmor, 2014). Note that the ‘heterophily’ in
opinion dynamics refers to the tendency of a graph to form stronger connections with those who are different
rather than those who are similar, which is a different term from the ‘heterophilic graph’ in GNNs.

6.5 Additional Investigation

Neural ODE Solvers The Dormand–Prince adaptive step size scheme (DOPRI5) served as the neural
ODE solver for ODNet. Additionally, we evaluated the performance of two other solvers across various
datasets: the Runge-Kutta method (rk4) and the first-order Euler scheme (Euler). The outcomes are
presented in Figure 4. Although different solvers did not consistently demonstrate a significant and sustained
advantage of one over the others, our selection of DOPRI5 yielded the overall best results.

Figure 4: Prediction performance with different neural ODE solvers.

Embedding Dynamics We employ the t-SNE algorithm to visualize the embedded features in a two-
dimensional plane for the Texas dataset. We choose the output embeddings from the last layer at different
epochs. Figure 5 demonstrates an evident clustering trend as the number of training epochs increases. By
the 50th epoch, nodes with different labels are distinctly separable in the reduced two-dimensional space.

Influence Function We next delve into the impact of different selections of the influence function ϕ on
the performance of ODNet. This investigation encompasses various aspects, including the choice of scaling
factors (µ and ν) and the definition of the similarity cutoffs (ϵ1 and ϵ2). Our findings are meticulously detailed
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Figure 5: t-SNE visualization on node embeddings for Texas.

in Tables 8-9 in Appendix B, with a particular focus on the homophilic graph (Cora) and the heterophilic
graph (Texas), respectively. An interesting trend emerges concerning the parameter ν, indicating a clear
preference. Specifically, it is advisable to incorporate a repulsive effect on heterophilic graphs by assigning
a negative value to ν. Conversely, for homophilic graphs, where similarity plays a pivotal role, setting ν = 0
is more appropriate. To provide a direct comparison, Figure 6 showcases ODNet’s performance under
different similarity cutoffs, i.e., ϵ1 and ϵ2. For Cora, we maintain µ = 1.4 and ν = 0, while for Texas, we
set µ = 1.0 and ν = −50. Generally, in the context of homophilic graphs, setting a relatively small value for
ϵ2 tends to expand the region of nodes considered similar. This approach may be beneficial in mitigating
the oversmoothing issue. Conversely, for heterophilic graphs, it is advisable to reverse information from only
highly similar nodes, reflected in the choice of a larger ϵ2 value (up to 0.8). However, it is crucial to exercise
caution when pushing ϵ2 towards 1.0, as a discernible reduction in performance becomes evident.

Figure 6: The impact of different ϵ1 and ϵ2 on ODNet.

6.6 Case Study: Biological Social Network Architecture Simplification

Microorganisms are the most extensively distributed and numerous group on Earth, which thrive in a wide
array of moderate and extreme environments, such as deep-sea hydrothermal vents, ocean trenches, and
plateaus (Shu & Huang, 2022). They present the greatest diversity of life on Earth. The remarkable diversity
among microorganisms finds its primary expression through their intricate metabolic pathways (Louca et al.,
2018; Coelho et al., 2022). Consequently, investigating the connections between microbial metabolism in
distinct environments carries profound significance in unraveling the intricate interplay between Earth’s
diverse ecosystems and the lives inhabiting them. Metagenomic analyses have revealed the remarkable
complexity inherent to metabolic gene networks, due to the diversity and richness of functional genes and
their interconnections. It thus becomes a necessity to simplify metabolic gene networks for investigating
relationships among functional genes and key genes. Presently, the prevailing approach involves adjusting
connection weights to streamline the network, often relying on biological expertise. However, the absence
of a standardized simplification criterion results in a heavy bias in network structures influenced by the
subjective opinions of biologists.

Problem Formulation and Training Setup As an example of the environmental microbiome analysis,
the co-occurrence network is challenging to interpret due to the massive and complicated characteristics of
genes and the unclear standard for assessment. The target here is to learn meaningful influence weights
between gene pairs that simplify the co-occurrence network with effective biological justification. To this
end, two networks originated from the microbial comparison between the Mariana Trench (MT) and Mount
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Figure 7: Co-occurrence network of selected metabolic genes in ME or MT before (a-b) and after (c-d) being
simplified by ODNet. Connections are considered strong with weights> 0.05, and genes without a strong
connection with any other peers are removed.

Everest (ME) networks (Liu et al., 2022) are utilized, where nodes are functional genes and edges are weighted
by the probability of two key functional gene sets simultaneously occurring in the same species. Edges with
exceptionally small weights will be discarded as noisy observations. As we are eager to identify the key
genes and gene clusters from gene interactions, we construct the graph with initial connectivity (edges and
edge weights), leaving any node attributes (e.g., function and pathway) unobserved. We define a node-level
classification task for predicting whether a node is a ‘strong’, ‘medium’, or ‘weak’ influencer to its community,
where the three levels are cut by their degree. Further details are provided in Appendix D.

Result Analysis We trained two independent ODNets on ME and MT networks, which achieved predic-
tion accuracy as high as 96.9% and 75.0%, respectively. For both networks, metabolic genes were classified
based solely on topological information, without the introduction of any a priori node features. Figure 7 visu-
alizes the two networks in their original and the simplified appearance, respectively. For all the networks, an
edge weight cutoff of 0.05 was applied to eliminate weak connections that could not be distinguishable from
background noise. The original network without any simplification appeared cluttered and difficult to inter-
pret (Figure 7a-b). In contrast, the simplified networks greatly enhanced the readability of the co-occurrence
network while retaining reasonable biological significance (Figure 7c-d). Furthermore, the simplified network
was able to identify the biologically key genes that acted as “opinion leaders”, serving as bridges connecting
different metabolic pathways. For example, in the MT network, the key gene nitrous oxide reductase (nos)
bridged the carbon (Alkane, Aromatic, Complex sugar, D-AA and L-sugar) and nitrogen metabolism (N)
in Figure 7c, whereas in the ME network, the key genes of sulfate reduction (sat and aprA) coupled the
carbon and sulfur metabolism (S) (Figure 7d). Thus, ODNet could be employed to present more discernible
networks in environmental microbiome studies, and aid in comprehending key metabolic functions within
microbiomes from diverse environments.

7 Conclusion

This study establishes intriguing connections between sociodynamics and graph neural networks, two distinct
fields that both actively investigate social networks from different perspectives. By bridging concepts from
these two fields, we introduce bounded confidence for neural message passing, a novel mechanism inspired
by opinion dynamics. The proposed ODNet effectively addresses the oversmoothing issue and consistently
achieves top-notch performance in node prediction tasks across graphs with diverse local connectivity pat-
terns. This success is attributed to the simplicity and efficacy of our piecewise message propagation rule.

In addition to providing strong theoretical support and empirical performance, ODNet integrates theories
from social networks, offering intuitive explanations for hyperparameter settings and the significance of net-
work parameter learning. This integration showcases ODNet’s significant potential in simplifying complex
real-world social networks, presenting a fresh analytical approach that does not rely on existing attributive
classification conventions. The robust performance of ODNet extends its applicability to simplifying in-
tricate networks containing a wealth of biological information, such as genes, gene-gene interactions, and
metabolic pathways. This method’s exceptional capacity to extract accurate insights and unveil the intrinsic
mechanisms of cellular physiology provides invaluable support to biologists in deciphering the mechanisms
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of adaptation and pathway functions in the microbial realm. These findings are significant in understanding
the interactions between Earth’s environments and the metabolism of life.
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A Theoretical results and proof

In this section, we prove that for our proposed ODNet on hypergraph convolution, the Dirichlet energy
does not decay to zero. In other words, the proposed propagation rule mitigates the oversmoothing issue.

We set {ui} := {xi|i ∈ I1} and {vj} := {xj |j ∈ I2}. Then we can rewrite (15) as
u̇i = 1

N1

N1∑
i′=1

ae,+
i,j (ui′ − ui) − 1

N2

N2∑
j=1

ae,−
i,j (vj − ui) + δui(1 − (ui)2)

v̇j = 1
N2

N2∑
j′=1

ae,+
i,j (vj′ − vi) − 1

N1

N1∑
i=1

ae,−
i,j (ui − vj) + δv

(
j1 − (vj)2)

(16)

In the following proof, we will use x to replace x by x to consider channel-wise variables. For clarity, we
define the following notations:

• M2(U) :=
N1∑
i=1

u2
i , M2(V ) :=

N2∑
j=1

v2
j ;

• M̂2 := M2(Û) +M2(V̂ ) = var(u) + var(v);

• ψe,±
i :=

∑
j∈e

ae,±
i,j , ψ

±
i :=

∑
e∈E

∑
j∈e

ae,±
i,j ;

• k := max
k

{|E(k)|};

• D−
e := max

k
{ψe,−

k }, D− := max
e

{D−
e };

• D−
2 := max

e
{∥ψe,−∥2}.

We assume N1 = N2 := N0, which implies N1 is comparable to N2, i.e., there exists a positive constant κ
satisfying 1

κN1 ≤ N2 ≤ κN1.

Lemma 2 (L2 estimate for M2). There exists a positive constant M∞
2 such that

sup
0≤t<∞

≤ M∞
2 ≤ ∞. (17)

Proof. We start from the derivatives of dtM2(U) and dtM2(V ). For the former,

d

dt
M2(U) = 2

N1

N1∑
i=1

uiu̇i

= 2
N1

N1∑
i=1

∑
e∈E(i)

∑
i′∈e

ae,+
i,i′ (ui′ − ui)2 − 2

N1

N1∑
i=1

∑
e∈E(i)

∑
j∈e

ae,−
i,j (vj − ui)ui + 2δ

N1

N1∑
i=1

(ui)2(1 − (ui)2)

= 2
N1

∑
e∈E

∑
i,i′∈e

ae,+
i,i′ (ui′ − ui)ui − 2

N1

∑
e∈E

∑
i,j∈e

ae,−
i,j (vj − ui)ui + 2δ

N1

N1∑
i=1

(ui)2(1 − (ui)2)

= − 1
N1

∑
e∈E

N1∑
i,,i′∈e

ae,+
i,i′ (ui′ − ui)2 − 2

N1

∑
e∈E

∑
i,j∈e

ae,−
i,j (vj − ui)ui + 2δ

N1

N1∑
i=1

(ui)2(1 − (ui)2).

(18)
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Similarly,

d

dt
M2(W ) = 2

N2

N2∑
j=1

vj v̇j

= 1
N2

∑
e∈E

N1∑
j,,j′∈e

ae,+
i,i′ (vj′ − vj)2 − 2

N2

∑
e∈E

∑
j,i∈e

ae,−
j,i (ui − vj)vj + 2δ

N3

N2∑
j=1

(vj)2(1 − (vj)2).

(19)

Note that ae,±
i,j = ae,±

j,i . Sum the M2(U) and M2(V ), then

d

dt
M2 ≤ − 2

N1

∑
e∈E

∑
i,j∈e

ae,−
i,j (vj − ui)ui − 2

N2

∑
e∈E

∑
j,i∈e

ae,−
j,i (ui − vj)vj

+ 2δ
N1

N1∑
i=1

(ui)2(1 − (ui)2) + 2δ
N2

N2∑
i=1

(vi)2(1 − (vi)2).
(20)

By the Cauchy-Schwarz inequality,(
N1∑
i=1

(ui)2

)2

≤ N1

N1∑
i=1

(ui)4,

(
N1∑
i=1

(ui)2

)2

≤ N2

N2∑
i=1

(vi)4,

(ui − vj)2 ≤ 2((ui)2 + (vj)2).

Then we have

d

dt
M2 ≤D−

N1

∑
e∈E

∑
i,j∈e

(
(vj − ui)2 + u2

i

)
+ D−

N2

∑
e∈E

∑
j,i∈e

(
(ui − vj)2 + v2

j

)
+ 2δ
N1

N1∑
i=1

(ui)2(1 − (ui)2) + 2δ
N2

N2∑
i=1

(vi)2(1 − (vi)2)

≤D−

N1

∑
e∈E

∑
i,j∈e

(
3u2

i + 2v2
j

)
+ D−

N2

∑
e∈E

∑
i,j∈e

(
2u2

i + 3v2
j

)
+ 2δM2 − δM2

2 .

(21)

These relations yield a Riccati-type differential inequality:

d

dt
M2 ≤5D− max{ 1

N1
,

1
N2

}
∑
e∈E

∑
i,j∈e

(
u2

i + v2
j

)
+ 2δM2 − δ(M2)2

≤5D−kmax{ 1
N1

,
1
N2

}M2 + 2δM2 − δ(M2)2

≤(C1 + 2δ)M2 − δ(M2)2,

(22)

where
C1 := 5D−kmax{ 1

N1
,

1
N2

}. (23)

Let y be a solution of the following ODE:

y′ = αC1y − δy2. (24)

Then, by phase line analysis, the solution y(t) to (24) satisfies

M2(t) ≤ y(t) ≤ max
{
C1

δ
+ 2,M2(0)

}
=: M∞

2 . (25)
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Lemma 3. Let u, v be the solution to (16). Then |ū− v̄|2 satisfies

1
2
d

dt
|ū− v̄|2 ≥

(
2cm

N0
− c1

)
|ū− v̄|2 − 4(D−

2 )2

c1N0
kM̂2. (26)

Proof. The time evolution of ū is given by

˙̄u = 1
N1

N1∑
i=1

∑
i′∈E(i)

ae,+
i,i′ (ui′ − ui) − 1

N1

N1∑
i=1

∑
j∈E(i)

ae,−
j,i (vj − ui)

= − 1
N1

∑
e∈E

∑
i,j∈e

ae,−
i,j (vj − ui)

= − 1
N1

∑
e∈E

ψe,−
j vj + 1

N1

∑
e∈E

ψe,−
i ui

=
∑
e∈E

(
− 1
N1

ψe,−
j vj + 1

N1
ψe,−

i ui

)
.

(27)

The first equality uses the relation
N1∑
i=1

ûi = 0. Then we have

1
2
d

dt
|ū− v̄|2 = (ū− v̄)( ˙̄u− ˙̄v)

= (ū− v̄)
[∑

e∈E

(
− 1
N1

ψe,−
j vj + 1

N1
ψe,−

i ui

)
−
∑
e∈E

(
− 1
N2

ψe,−
i ui + 1

N2
ψe,−

j vj

)]

= (ū− v̄)
∑
e∈E

(
− 1
N1

ψe,−
j vj − 1

N2
ψe,−

j vj + 1
N1

ψe,−
i ui + 1

N2
ψe,−

i ui

)
= (ū− v̄)

∑
e∈E

(
− 1
N1

ψe,−
j (v̄ + v̂j) − 1

N2
ψe,−

j (v̄ + v̂j) + 1
N1

ψe,−
i (ū+ ûi) + 1

N2
ψe,−

i (ū+ ûj)
)

= (ū− v̄)


−

(
1
N1

+ 1
N2

)∑
e∈E

∑
j∈e

ψe,−
j

 v̄ +
[(

1
N1

+ 1
N2

)∑
e∈E

∑
i∈e

ψe,−
i

]
ū

−
(

1
N1

+ 1
N2

)∑
e∈E

∑
j∈e

ψe,−
j

 v̂j +
[(

1
N1

+ 1
N2

)∑
e∈E

∑
i∈e

ψe,−
i

]
ûi


= 2
N0

(ū− v̄)

∑
e∈E

∑
i∈e

ψe,−
i ū−

∑
e∈E

∑
j∈e

ψe,−
j v̄

+ 2
N0

(ū− v̄)

∑
e∈E

∑
i∈e

ψe,−
i ûi −

∑
e∈E

∑
j∈e

ψe,−
j v̂j

 .
(28)

We denote
Pse(û, v̂) :=

∑
e∈E

∑
i∈e

ψe,−
i ûi −

∑
e∈E

∑
j∈e

ψe,−
j v̂j

and
Pse(ū, v̄) :=

∑
e∈E

∑
i∈e

ψe,−
i ū−

∑
e∈E

∑
j∈e

ψe,−
j v̄.

Assume there exist constants cm, cv, such that

Pes(ū, v̄) ≥ cm(ū− v̄). (29)
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Then, by Cauchy inequality, for any c1, we have

1
2
d

dt
|ū− v̄|2 = 2

N0
Pes(ū, v̄)(ū− v̄) + 2

N0
Pes(û, v̂)(ū− v̄) ≥

(
2cm

N0
− c1

)
|ū− v̄|2 + c1|ū− v̄|2

+ 2
N0

Pes(û, v̂)(ū− v̄)

≥
(

2cm

N0
− c1

)
|ū− v̄|2 − 1

c1

2
N0

(Pes(û, v̂))2

≥
(

2cm

N0
− c1

)
|ū− v̄|2 − 4

c1N0

∑
e∈E

(∑
i∈e

ψe,−
i ûi

)2

+

∑
j∈e

ψe,−
j v̂j

2


≥
(

2cm

N0
− c1

)
|ū− v̄|2 − 4

c1N0

∑
e∈E

∥ψe,−∥2
∑
i∈e

û2
i + ∥ψe,−∥2

∑
j∈e

v̂2
j


≥
(

2cm

N0
− c1

)
|ū− v̄|2 − 4(D−

2 )2

c1N0

∑
e∈E

∑
i∈e

û2
i +

∑
j∈e

v̂2
j


≥
(

2cm

N0
− c1

)
|ū− v̄|2 − 4(D−

2 )2

c1N0
k[M̂2]

(30)

Lemma 4. Let u, v be the solution to equation 16. Then M̂2 satisfies

1
2
d

dt
M̂2 ≤ C2M̂2 + 2c2|ū− v̄|2, (31)

where

C2 := −k
(
CA − 2D− + (D−)2

4c2
− δ

k

)
, (32)

and c2 is an arbitrary positive constant.

Proof. Subtracting equation 27 gives ˙̂ui. Then we have

1
2
d

dt

(
1
N1

N1∑
i=1

|ûi|2
)

= 1
N1

N1∑
i=1

ûi
˙̂ui

= 1
N1

N1∑
i=1

ûi

∑
e∈E(i)

∑
i′∈e

ae,+
i,i′ (ui′ − ui) −

∑
j∈e

ae,−
i,j (vj − ui)

+ δ

N1

N1∑
i=1

ûiui(1 − u2
i )

= 1
N1

N1∑
i=1

ûi

∑
e∈E(i)

∑
i′∈e

ae,+
i,i′ (ûi′ − ûi) −

∑
j∈e

ae,−
i,j (vj − ui)

+ δ

N1

N1∑
i=1

ûiui(1 − u2
i )

= 1
N1

N1∑
i=1

ûi

∑
e∈E(i)

∑
i′∈e

ae,+
i,i′ (ûi′ − ûi) − 1

N1

N1∑
i=1

ûi

∑
e∈E(i)

∑
j∈e

ae,−
i,j (v̂j − ûi)

− 1
N1

N1∑
i=1

ûi

∑
e∈E(i)

∑
j∈e

ae,−
i,j (v̄ − ū) + δ

N1

N1∑
i=1

ûiui(1 − u2
i )

=:I1 + I2 + I3 + I4.

(33)
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In particular,

I1 = 1
N1

N1∑
i=1

ûi

∑
e∈E(i)

∑
i′∈e

ae,+
i,i′ (ûi′ − ûi)

= 1
N1

∑
e∈E

∑
i,i′∈e

ae,+
i,i′ (ûi′ − ûi)ûi

= 1
N1

∑
e∈E

(ûe)⊤Aeûe,

(34)

where ûe := (ûi1 , · · · , ûi|e|)⊤ for each e. Thus I1 is bounded by

1
N1

∑
e∈E

(ûe)⊤Aeûe ≤ − 1
N1

∑
e∈E

CA|ûe|2 ≤ − cr

N1

N1∑
i=1

CA|ûi|2, (35)

where cr is a constant larger than 1 related to the repetition of {ûi} in all hyperedges.

I2 can be controlled by

I2 = − 1
N1

N1∑
i=1

ûi

∑
e∈E(i)

∑
j∈e

ae,−
i,j (v̂j − ûi)

= − 1
N1

∑
e∈E

∑
i,j∈e

ae,−
i,j (v̂j − ûi)ûi

= − 1
N1

∑
e∈E

∑
i,j∈e

ae,−
i,j v̂j ûi + 1

N1

∑
e∈E

∑
i,j∈e

ae,−
i,j |ûi|2

≤ 1
N1

∑
e∈E

∑
i,j∈e

ae,−
i,j

1
2(|v̂j |2 + |ûi|2) + 1

N1

∑
e∈E

D−
e

∑
i∈e

|ûi|2

≤ 1
2N1

∑
e∈E

∑
j∈e

ψe,−
j |v̂j |2 + 3D−

2N1

∑
e∈E

∑
i∈e

|ûj |2

≤ D−

2N1

∑
e∈E

∑
j∈e

|v̂j |2 + 3D−

2N1

∑
e∈E

∑
i∈e

|ûj |2

≤ D−k

2N1

N2∑
j=1

|v̂j |2 + 3D−k

2N1

N1∑
i=1

|ûi|2.

(36)

I3 has the below estimate for any constant c2 > 0:

I3 = − 1
N1

N1∑
i=1

ûi

∑
e∈E(i)

∑
j∈e

ae,−
i,j (v̄ − ū)

≤c2|ū− v̄|2 + 1
4c2N1

∑
e∈E

∑
i,j∈e

|ae,−
i,j |2|ûi|2

≤c2|ū− v̄|2 + (D−)2

4c2N1

∑
e∈E

∑
i,j∈e

|ûi|2

≤c2|ū− v̄|2 + (D−)2k

4c2N1

∑
e∈E

N1∑
i=1

|ûi|2.

(37)

Define

I4 := 1
N1

δ

N1∑
i=1

ûiui(1 − |ui|2). (38)
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I4 = δ

N1

N1∑
i=1

ûi(ûi + ū)(1 − u2
i )

= δ

N1

N1∑
i=1

û2
i − δ

N1

N1∑
i=1

û2
iu

2
i + δ

N1

N1∑
i=1

ûiū− δ

N1

N1∑
i=1

ûiu
2
i ū

= δ

N1

N1∑
i=1

û2
i − δ

N1

N1∑
i=1

ûi|ui|2ui

(39)

Note that
N1∑
i=1

ûi|ui|2ui =
N1∑
i=1

|ui|2(|ui|2 − uiū)

≥1
2

N1∑
i=1

|ui|2(|ui|2 − |ū|2)

=1
2

N1∑
i=1

|ui|4 − 1
2

N1∑
i=1

|ui|2|ū|2

≥1
2

N1∑
i=1

|ui|4 − 1
2N1

N1∑
i=1

(|ui|2)2

≥0.

(40)

Hence,
I4 ≤ δM̂2(u). (41)

Then

d

dt

(
1

2N1

N1∑
i=1

|ûi|2
)

≤ k

(
−CA

N1
+ 3D−

2N1
+ (D−)2

4c2N1

) N1∑
i=1

|ûi|2 + k
D−

2N2

N2∑
j=1

|v̂j |2 + c2|ū− v̄|2

≤
[
k

(
−CA + 3D−

2 + (D−)2

4c2

)
+ δ

]
M̂2(u) + k

D−

2 M̂2(v) + c2|ū− v̄|2.

(42)

Similarly,

d

dt

 1
2N2

N2∑
j=1

|v̂j |2
 ≤

[
k

(
−CA + 3D−

2 + (D−)2

4c2

)
+ δ

]
M̂2(v) + k

D−

2 M̂2(u) + c2|ū− v̄|2. (43)

Sum them together. We have

1
2
d

dt
(M̂2) ≤ −k

(
CA − 2D− + (D−)2

4c2
− δ

k

)
(M̂2) + 2c2|ū− v̄|2. (44)

This gives an exponential growth estimate or M̂2 up to an error term of |ū− v̄|2.

Lemma 3 gives an exponential growth estimate of |ū− v̄|2 up to an error term of M̂2. If N0 is large enough,
the coefficient of the error term will be small.

Lemma 4 gives an exponential growth estimate or M̂2 up to an error term of |ū− v̄|2. If N0 is large enough,
the coefficient of the error term is small.

Set
A11 := 2cm

N0
− c1, A12 := 4(D−

2 )2k

c1N0
, A21 = 2c2, A22 = k

(
CA − 2D− + (D−)2

4c2

)
. (45)
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If N0 is large enough, (45) will be satisfied.
(A11 +A12)2 − 4A21A12 > 0. (46)

Apply Lemma 4.1 in Jin & Shu (2021a), we can then obtain the L2 separation.

The relative size between |ū− v̄|2 and M̂2 is an indicator of group separation in the sense of L2. If |ū− v̄|2

is much larger, M̂2, then the two groups are well-separated in an average sense. Since the hypergraph is
connected, there is a positive bound between different clusters, hence the Dirichlet energy does not decay to
zero.

B Additional Experimental Details

B.1 Baseline Methods

We compare ODNet with a range of discrete and continuous message-passing methods across homophilic,
heterophilic, and hypergraphs.

Homophilic Graphs We compare the performance of ODNet with classical graph convolutions such
as Graph Convolutional Network (GCN; Yadati et al. (2019)), Graph Attention Network (GAT; Veličković
et al. (2018)), Mixture Model Networks (MoNet; Monti et al. (2017)), and GraphSage (Hamilton et al., 2017).
We also include ODE-based continuous graph convolutions, including Continuous Graph Neural Networks
(CGNN; Xhonneux et al. (2020)), Graph Neural Ordinary Differential Equations (GDE; Poli et al. (2020)),
and Graph Neural Diffusion with linear diffusion (GRAND-l; Chamberlain et al. (2021)). Furthermore, we
include the other opinion-dynamic inspired network, SINN Okawa & Iwata (2022).

Heterophilic Graphs For the heterophilic graphs, we make comparisons with representative graph neural
networks that are known for encoding heterophilic graphs (GPRGNN (Chien et al., 2021), GraphCON
(Rusch et al., 2022), and H2GCN (Zhu et al., 2020)) or for mitigating the oversmoothing issue (GCNII (Chen
et al., 2020), Geom-GCN (Pei et al., 2020), and PairNorm (Zhao & Akoglu, 2020)). For completeness, we
also include the classic graph convolutions, including GraphSAGE (Hamilton et al., 2017), GAT (Veličković
et al., 2018), and GCN (Kipf & Welling, 2017)

Hypergraphs The performance of ODNet on the four hypergraphs are compared with a diverse of
baselines, including HGNN (Feng et al., 2019), HyperGCN (Yadati et al., 2019), HCHA (Bai et al.,
2021), HNHN (Dong et al., 2020), UniGCNII (Huang & Yang, 2021), HyperND Tudisco et al. (2021),
AllDeepSets (Chien et al., 2022), AllSetTransformer (Chien et al., 2022), ED-HNN (Wang et al.,
2022), and SheafHGNN (Duta et al., 2024).

B.2 Experimental Details

Table 4-5 reports summary statistics of the graphs and hypergraphs used in Section 6, respectively.

Table 6 provides the optimal combination of hyperparameters for each benchmark to reproduce the perfor-
mance of ODNet reported in the paper.

Table 7 details the searching space of the hyperparameters. For general hyperparameters, such as learning
rate and weight decay, we used Ray Tune with a hundred trials using an asynchronous hyperband scheduler
with a grace period of 50 epochs. Table 8-9 reports the influence of selecting different scaling factors on the
model performance. We test the impacts on Cora and Texas for both homophilic and heterophilic graphs
representation learning.

C Additional Background: Co-Occurrence Network of Metabolic Genes

The co-occurrence network of metabolic genes is a graph representation that illustrates the statistical asso-
ciations and co-occurrence patterns among various metabolic genes within a biological system (Bello et al.,
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Table 4: Summary of graph benchmarks used in experiments.
Dataset # classes # features # nodes # edges H
Cora (McCallum et al., 2000) 7 1,433 2,708 5,429 0.83
CiteSeer (Sen et al., 2008) 6 3,703 3,327 4,732 0.71
PubMed (Namata et al., 2012) 3 500 19,717 44,338 0.79
CoauthorCS (Shchur et al., 2018) 15 6,805 18,333 100,227 0.80
Computer (Namata et al., 2012) 10 767 13,381 245,778 0.77
Photo (Namata et al., 2012) 8 745 7,487 119,043 0.83
Texas García-Plaza et al. (2016) 5 1,703 183 309 0.11
Wisconsin García-Plaza et al. (2016) 5 1,703 251 499 0.21
Cornell García-Plaza et al. (2016) 5 1,703 183 295 0.30

Table 5: Summary of hypergraph benchmarks used in experiments.

Cora-coauthor Cora-cocitation CiteSeer-cocitation PubMed-cocitation
# classes 7 7 6 3
# features 1,433 1,433 3,703 500
# hypernodes 2,708 2,708 3,312 19,717
# hyperedges 1,072 1,579 1,079 7,963
avg. hyperedge size 4.2±4.1 3.0±1.1 3.2±2.0 4.3±5.7

Table 6: Optimal setting of hyperparameters in reproducing the results in Section 6.
Dataset ϵ1 ϵ2 time (T) ν µ

Cora 0.012 0.40 12 0 1.4
CiteSeer 0.01 0.90 10 0 3.0
PubMed 0.01 0.40 20 0 2.2

CoauthorCS 0.01 0.40 15 0 1.7
Computer 0.01 0.50 15 0 5.0

Photo 0.01 0.40 12 0 10.0
Texas 0.50 0.80 12 -50 1.0

Wisconsin 0.60 0.80 12 -10 2.0
Cornell 0.12 0.40 12 0 2.0

Cora-coauthor 0 1 0.1 1.0 1.0
Cora-cocitation 0 1 0.1 1.0 1.0

PubMed-cocitation 0 1 0.1 1.0 1.0
CiteSeer-cocitation 0 1 0.1 1.5 1.0

2020). This network emerges from computational analyses of extensive genomic data, with each node denot-
ing metabolic genes linked to distinct biochemical functions, such as sugar production and TMAO (trimethy-
lamine N-oxide) synthesis. These connections are quantified by the likelihood of two crucial functional genes
co-occurring within the same species at a given time (Liu et al., 2022). Due to the complexity of the co-
occurrence network of metabolic genes in different microorganism species, which arise from a large number of
genes and connections, simplifying the network enables us to identify how key metabolic genes in microorgan-
isms can be gathered into several interdependent modules. This is significantly important for revealing the
mechanism of how genes work together within metabolic pathways, how they respond to different environ-
mental conditions, and which genes may have essential roles in specific biological processes, highlighting the
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Table 7: Hyperparameter Search Space
Hyperparameters Search Space Distribution
learning rate [10−6, 10−1] log-uniform
weight decay [10−3, 10−1] log-uniform
dropout rate [0.1, 0.8] uniform
hidden dim {64, 128, 256} categorical

Table 8: Choices of influence function and scaling factors for Cora.
ϵ1 ϵ2 µ ν Accuracy

0.04 0.45 1.4 0 79.6±0.3
0.012 0.40 2.0 0 80.2±0.3
0.03 0.45 1.4 0 81.0±0.2
0.02 0.45 1.4 0 81.8±0.2
0.012 0.20 1.4 0 82.3±0.2
0.012 0.40 1.4 -1 83.7±0.4
0.012 0.40 1.8 0 83.9±0.2
0.012 0.40 1.6 0 84.1±0.3
0.012 0.30 1.4 0 84.2±0.3
0.012 0.40 1.2 0 85.0±0.3
0.012 0.40 1.0 0 85.0±0.3

Table 9: Choices of influence function and scaling factors for Texas.
ϵ1 ϵ2 µ ν Accuracy

0.50 0.80 2.0 -1000 73.0±10.1
0.50 0.80 1000.0 -50 78.2±8.4
0.50 0.80 2.0 -100 78.8±7.2
0.50 0.80 2.0 0 78.8±1.6
0.50 0.80 100.0 -50 80.5±4.2
0.50 0.60 1.0 -50 81.0±3.0
0.70 0.80 1.0 -50 81.1±4.2
0.50 0.80 2.0 -80 81.6±3.4
0.50 0.80 2.0 -1 81.6±2.0
0.60 0.80 1.0 -50 86.5±3.5
0.50 0.90 1.0 -50 86.5±3.0
0.50 0.70 1.0 -50 87.0±3.4
0.50 0.80 2.0 -10 86.7±3.2
0.40 0.80 1.0 -50 87.0±3.0
0.50 0.80 2.0 -50 87.6±4.0
0.50 0.80 2.0 -50 87.6±4.0
0.50 0.80 10.0 -50 88.1±4.2
0.50 0.80 1.0 -50 88.3±3.2

significance of the adaptation of microorganisms to changing environmental conditions (Levy & Borenstein,
2013).
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Figure 8: Distribution of node degree on ME and MT networks.

Figure 9: Distribution of edge weights on ME and MT networks.

D Experimental Details for the Co-Occurrence Network Simplification Task

We established two distinct graphs for the Mariana Trench (MT) and Mount Everest (ME) gene co-occurrence
networks, utilizing source data from Liu et al. (2022). In both networks, the nodes represent the same set
of functional genes. The primary difference between them lies in the edge weights, which reflect unique
co-occurrence patterns of gene pairs in MT and ME. This distinction is visually evident when comparing the
top two histograms in Figure 9, illustrating the varying distributions of gene influence weights in MT and
ME graphs.

To construct these graphs, we connected all node pairs with non-zero edge weights, resulting in a total of
2, 517 edges for 96 nodes. Each node was associated with a 20-dimensional unit vector as pseudo-features.
Additionally, we assigned a three-class categorical label to each node, categorizing them as ‘strong,’ ‘medium,’
or ‘weak’ influencers within their respective local communities. The label assignment was determined based
on the nodes’ degrees with cutoffs at 20 and 60. For example, a node with a degree of 30 would be classified
as a ’medium influencer.’
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To facilitate model training, we applied random masking to the training, validation, and test sets, ensuring
equal proportions in each set. During the training process, we recorded the learned similarity scores sij at
the final layer for later use in generating the simplified network.

Figure 9 highlights a noticeable divergence between the top two histograms (representing the weight dis-
tributions in the original networks) and the bottom two histograms (depicting the weight distributions in
the simplified networks). Specifically, a higher concentration of weights is observed at the extreme regions
(with weights close to 0 and 1) in the simplified networks. This divergence underscores the impact of our
simplification approach on the network’s edge weight distribution.
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