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ABSTRACT

Joint pose estimation and instance segmentation combines keypoint heatmaps
with segmentation masks for multi-person pose and instance-level segmenta-
tion. Unlike easy cases with explicit heatmap activation, hard cases with im-
plicit heatmap due to multi-person entanglement, overlap, and occlusions requires
joint representation with a segmentation mask in end-to-end training. This pa-
per presents a new centroid-based joint representation method called CENTER-
FOCUS. It follows a bottom-up paradigm to generate Strong Keypoint Feature
Maps for both soft and hard keypoints and improve keypoints detection accuracy
as well as the confidence score by introducing KeyCentroids and a Body Heat
Map. CENTERFOCUS then uses the high-resolution representation of keypoint as
a center of attraction for the pixels in the embedding space to generate MaskCen-
troid to cluster the pixels to a particular human instance to whom it belongs, even
if 70% of the body is occluded. Finally, we propose a new PoseSeg algorithm
that collects the feature representation of a 2D human pose and segmentation for
the joint structure of the pose and instance segmentation. We then experimentally
demonstrate the effectiveness and generalization ability of our system on chal-
lenging scenarios such as occlusions, entangled limbs, and overlapping people.
The experimental results show the effectiveness of CENTERFOCUS outperforms
representative models on the challenging MS COCO and OCHuman benchmarks
in terms of both accuracy and runtime performance, Ablation experiments analyze
the impact of each component of the system. The code will be released publicly.

1 INTRODUCTION

Joint pose estimation and body segmentation are widely used for human-computer interactions and
real-time image/video analytics. The main goal is to identify individuals and their activities from
2D positioning of human joints and their body shape structure. There are two primary challenges in
multi-person joint pose estimation and instance segmentation: (i) an unknown number of individuals
are overlapped, occluded, or have entangled limbs, and (ii) computational complexity increases with
the number of individuals. An image can have an undefined number of individuals at any location
and distance. Moreover, human-to-human interactions, especially for those who are socially en-
gaged, incur complex spatial interference because of contacts, obstructions, and articulation of their
limbs, making it difficult to associate body parts. As a result, the computational cost and complexity
increase rapidly with the number of people in the image, necessitating an efficient, scalable, and
accurate pose and segmentation model.

Existing proposals for pose estimation He et al. (2017); Chen et al. (2018); Fang et al. (2017); Huang
et al. (2017); Li et al. (2019) acknowledge these challenges and rely on a top-down approach to first
detect people in the image and then estimate the pose of each detected person. Recent studies by He
et al. (2017); Papandreou et al. (2018) suggest that large-scale pose and segmentation datasets (e.g.,
COCO, Lin et al. (2014), OCHuman Zhang et al. (2019)) enable joint estimation of the human pose
and body segmentation producing state-of-the-art (SOTA) results for both tasks. However, these top-
down approaches Chen et al. (2018); Fang et al. (2017); Huang et al. (2017); Li et al. (2019) require
a pose estimator to run iteratively for each detected person, resulting in severe runtime performance.
Moreover, establishing a segmentation head using a top-down approach increases the computational
cost He et al. (2017), rendering them infeasible for real-time applications.

This paper presents CENTERFOCUS, a new centroid-based joint representation for human pose esti-
mation and instance segmentation model. CENTERFOCUS uses a bottom-up approach to first detect
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Figure 1: CENTERFOCUS produces (a) a strong keypoint feature map (SKFM) to detect each in-
dividual keypoint, (b) a body heat map (BHM) along with the KeyCentroid to improve keypoint
accuracy in crowds, (c) semantic feature map (SFM) for each individual, (d) MaskCentroid to im-
prove pixel-level classification and instance-level segmentation, and (e) Finally pose & instance
segmentation.

keypoints employing the pose head network for pose estimation and then perform pixel-level classi-
fication employing the segmentation head network where the detected keypoints are used as a center
of attraction to associate the pixels to the right instance. Unlike top-down approaches Chen et al.
(2018); Fang et al. (2017); Huang et al. (2017); Li et al. (2019), CENTERFOCUS detects the human
body without requiring a box detector or incurring runtime complexity.

CENTERFOCUS is not the first method to jointly perform human pose estimation and instance seg-
mentation Ahmad et al. (2022); He et al. (2017); Zhang et al. (2019) or leverage bottom-up ap-
proaches Papandreou et al. (2018). However, existing models Papandreou et al. (2018) use human
poses to refine pixel-wise clustering for segmentation and thus do not perform segmentation task
well. Moreover, they have high overheads because of the extra computation of a person detector He
et al. (2017), scalability issues for instance segmentation Zhang et al. (2019), and a high compu-
tational cost Ahmad et al. (2022), which makes them unsuitable for crowd scenarios and real-time
applications. Unlike existing models, CENTERFOCUS does not incur the high overheads associated
with top-down approaches because of the person detector, or the segmentation performance and
scalability concerns associated with bottom-up approaches due to pixel-wise clustering. Instead,
CENTERFOCUS leverages high confident keypoints for centroid-based joint representation for both
pose and segmentation tasks.

CENTERFOCUS addresses the aforementioned challenges using two primary networks: the pose
head network and the segmentation head network. The pose head network generates an SKFM that
estimates the relative displacement between pairs of keypoints and improves the precision of the
long-range, occluded, and proximate keypoints (Figure 1a). Using extracted keypoint features, a
KeyCentroid is produced to define 2D offset vectors for each pixel that points at the center of attrac-
tion for each keypoint, helping CENTERFOCUS to identify the precise human keypoint coordinates.
Along with the KeyCentroid, CENTERFOCUS generates BHM using the SKFM, helps CENTERFO-
CUS to increase the intensity of each keypoint and improve the keypoint detection confidence score
(Figure 1b). The segmentation head network performs pixel-level classification and generates SFM
for each individual (Figure 1c) using the MaskCentroid. The MaskCentroid defines the embedding
space to associate pixels to the right instance by defining the keypoint as a centroid (Figure 1d).
The MaskCentroid helps to produce an instance-level classification for the human class. At last,
we designed a new PoseSeg algorithm that utilizes all the components of the system to present the
human pose and instance-level segmentation (Figure 1e).

We evaluated the performance of CENTERFOCUS using the COCO Lin et al. (2014) and OCHuman
Zhang et al. (2019) datasets. To the best of our knowledge, CENTERFOCUS is the first reliable
application for the task of human pose estimation and instance segmentation. This paper makes the
following contributions.

• KeyCentroid defines 2D offset vectors points to the center coordinates in the keypoint fea-
ture map, that helps to identify the precise keypoint coordinates for pose estimation (§3.2);

• MaskCentroid defines the keypoint as a centroid for the 2D offset vectors in the embedding
space, that helps to associate the pixels to the right instance to perform pixel-level instance
segmentation (§3.3);

• Our in-depth evaluation (§4) and ablation experiments (§5) demonstrate the effectiveness
in human pose and instance segmentation.
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2 RELATED WORK

Human Pose Estimation. Human pose estimation uses two main techniques: top-down and
bottom-up methods. The top-down approach identifies keypoints surrounded by a bounding box
detector. Representative works include: HRNet Cheng et al. (2020), RMPE Fang et al. (2017),
Multiposenet Kocabas et al. (2018), Hourglass Newell et al. (2016), convolutional pose machine
Wei et al. (2016), CPN Chen et al. (2018), Mask r-cnn He et al. (2017), simple baseline Xiao et al.
(2018), CSM-SCARB Su et al. (2019), RSN Cai et al. (2020), and Graph-PCNN Wang et al. (2020).
These methods explore the human pose in a person detector, thus achieving satisfactory perfor-
mance; however, the person box detection is costly. The bottom-up methods detect the keypoint in
one shot some pioneering methods, such as DeepCut Pishchulin et al. (2016) and DeeperCut Insafut-
dinov et al. (2016). These methods formulate the association between keypoints as an integer linear
scheme and require a longer processing time. Other part-affinity field techniques like OpenPose
Cao et al. (2017) and other extensions, such as Pif-Paf Kreiss et al. (2019), associative embedding
Newell et al. (2017), PersonLab Papandreou et al. (2018), and HGG Jin et al. (2020) are developed
based on grouping techniques that often fail in crowded scenarios. We aim to improve hard keypoint
detection performance by introducing the SKFM, KeyCentroid, and BHM.

Instance Segmentation. There are two primary approaches for instance-level segmentation: (1)
single-stage instance segmentation Dai et al. (2016); Long et al. (2015); Bolya et al. (2019) and (2)
multi-stage instance segmentation He et al. (2017); Ren et al. (2015). The single-stage approach
creates intermediate and distributed feature maps based on the entire image. The InstanceFCN
Dai et al. (2016) create several instance-sensitive scoring maps and apply the assembly module to
the output instance. This approach is faster than the multi-stage approach; however, it requires
repooling and other non-trivial computations (e.g., mask voting) that affect real-time processing.
YOLACT Bolya et al. (2019) generate a set of prototype masks and then use coefficients per mask
to produce the instance-level segmentation; however, it is critical to obtain a high resolution. Multi-
stage instance segmentation follows the detect-then-segment paradigm. This approach first performs
bounding box detection, and then the pixels are classified to obtain the final mask in the bounding
box region. Mask R-CNN He et al. (2017) is based on multi-stage instance segmentation that extends
Faster R-CNN Ren et al. (2015) by adding a branch for predicting segmentation masks for each
Region of Interest (RoI). The method presented by Liu et al. (2018) improves the accuracy of the
Mask R-CNN by enriching the Feature Pyramid Network (FPN) features.

Pose Estimation and Instance Segmentation. SOTA developments have been made in human
pose estimation and instance segmentation. Mask R-CNN He et al. (2017) was the first pioneer
method; however, suffers from heavy computational cost. Pose2Seg Zhang et al. (2019) proposed
human pose-based instance segmentation. This method separates instances based on the human
pose, rather than the proposal region. It takes already generated pose as input that makes concerns
an end-to-end training model. PersonLab Papandreou et al. (2018) group keypoints by using greedy
decoding. This method also reports a part-induced geometric embedding descriptor for human class
instance segmentation. However, this approach fails to perform segmentation on highly entangled
instances. A new PosePlusSeg Ahmad et al. (2022) played an important role in this regard; however,
it compromises a couple of backbone and refined networks making it a complex structure model.
We propose a simple, yet effective system to handle the above complications by introducing Mask-
Centroid that defines a keypoint as a centroid in the embedding space to associate the pixels to the
right instance and improve the segmentation performance.

3 METHODS

CENTERFOCUS comprises one core pipeline, as shown in Figure 2. First, a ResNet backbone is
used to extract the features from the image. The learned feature maps are then fed into the pose and
segmentation head. The pose head is designed based on the same residual unit in ResNet He et al.
(2016) allowing CENTERFOCUS to generate the SKFM from the learned features and present it as
a human skeletal structure (§3.1). KeyCentroid and BHM are introduced to improve the keypoint
prediction and confidence score (§3.2). The segmentation head is designed as the same residual
unit in ResNet He et al. (2016) and performs pixel-level classification with mask features for each
human instance. A MaskCentroid is defined to better align the 2D shape by defining the keypoint as
a center of attraction to associate the pixels to the right instance in the embedding space to predict
instance-level segmentation (§3.3). CENTERFOCUS uses the features from both heads as input to
the PoseSeg module and generates the final human pose and instance segmentation.
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Figure 2: CENTERFOCUS comprising one core pipeline where the pose head generates a strong
keypoint feature map (SKFM) and KeyCentroid to predict the optimal 2D keypoint coordinates
localized by a body heat map (BHM) to enrich the keypoint confidence score. The segmentation
head is designed to produce a semantic feature map (SFM) using the MaskCentroid as a center of
attraction for the pixels in the embedding space to assign the pixel to the right instance. Finally,
the PoseSeg Module uses the information of both heads for the final output, i.e., human pose and
instance segmentation.

3.1 STRONG KEYPOINT FEATURE MAP

CENTERFOCUS generates SKFM by employing the pose head network, as illustrated in Figure 2, as
the base for the pose estimation. In this stage, each individual keypoint is detected and concatenated
for the output feature maps. Specifically, we adopt the residual-based network for our multi-person
pose setting to produce SKFM, one channel per keypoint and KeyCentroid two channels per key-
point for the vertical and horizontal displacement.

Let pi represent the keypoint position in the image, where i = {1, . . . , N} are mapped to the 2D
positions of the pixels. A keypoint disk DR(q) = {p : ∥p–q∥ ≤ R} of radius R is focused at
point q. Additionally, let qj,k be the 2D position of the jth keypoint of the kth person instance,
where j = {1, . . . , I} and I is the number of individual keypoints in the image. For each known
keypoint j, a binary classification approach is followed. Specifically, every predicted keypoint pixel
pi is binary classified such that pi=1 if pi ∈ DR for each person keypoint j, otherwise pi=0. Thus,
for every keypoint, there are independent dense binary classification tasks. To obtain the SKFM for
each keypoint j, we define a disk DR of radius R = 32 (diameter = 64) independent of the keypoint
scale. To equally weigh person keypoints in the classification loss, we choose a disk radius that does
not scale according to the instance size. Note that R is constant for all experiments in this paper for
optimal results. While training the network, SKFM loss is computed based on the annotated image
positions, back-propagating across the entire image, excluding the regions with individuals who are
not fully annotated with keypoints (e.g., crowded areas and small individual segments).

Point-wise Gaussian Optimization. To achieve impact-full coordinates of keypoints we employ
Gaussian smooth Chung (2020) for each individual keypoint, i.e., point-wise Gaussian optimization,
to reduce the noise and retain the useful information while producing the SKFM. such as:

Gq(x, y) =
1

2πσ2
e
−
x2 + y2

2σ2 , (1)

where σ is the standard deviation of the distribution and x,y represent the 2D keypoint coordinates.
To handle the variation between keypoints, we set the σ range from 0 to 1. For High Variant Key-
points (HVK) (e.g., wrist, ankle, elbow, and knee), we set 0.1 ≤ σ < 0.5; however, for Low Variant
Keypoints (LVK) (e.g., nose, shoulder, hip), we set 0.5 ≤ σ < 1, as shown in Figure 3. A σ near to
0 increases the pixel intensity of the keypoints and works better in crowded and entangled scenarios.
A σ near to 1 works best in non-crowded cases. We analyze how the values of σ contribute to the
performance of the system in ablation (§5.4).
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Figure 3: Point-wise Gaussian
optimization where σ values are
defined for each keypoint.

Figure 4: KeyCentroid defined
for right knees. BHM is gener-
ated using the keypoint disk.

Figure 5: MaskCentroid of each
individual. The right shoulder is
the center of attraction.

3.2 KEYCENTROID AND BODY HEAT MAP

In addition to SKFM, our pose head along with the residual network defines KeyCentroid kc per
keypoint. The purpose of KeyCentroid is to improve keypoint localization accuracy. For each
keypoint pixel pi within the keypoint disk DR, the 2D KeyCentroid vector kv = qj,k−pi locus from
the position x in the image to the jth keypoint of the k person instance, as illustrated in Figure 4. We
generate a number of vector fields in the keypoint disk DR by solving a 2D regression problem at
each keypoint position pi. During training, we penalize the kc error by L1 loss and back-propagate
the error at position p ∈ DR in the keypoint disk. The disk radius is fixed as R = 32 to normalize
the KeyCentroid and make its dynamic range equivalent to the SKFM loss. We aggregate the SKFM
and KeyCentroid for the optimal keypoint coordinates generally for soft and specifically for hard
keypoints. Our ablation experiments analyze the impact of SKFM and KeyCentroid on keypoint
detection (§5.1).

Body Heat Map. Along with KeyCentroid, we use DR to produce a BHM as shown in Figure 4
that captures the important parts of the body (e.g., leg, torso, head, and hand), working like a fine-
grained human detector rather than a box detector Zhou & Yuan (2017; 2018). BHM specifically
enriches the keypoint prediction confidence score and helps CenterFocus to select a visible keypoint
for the MaskCentroid. BHM is produced utilizing the keypoint disk DR, where radius R=32 for all
predicted pixels pi belonging to the DR for every individual k. pi is a group of pixels that represents
the keypoint disk. The BHM representation is summarized in Eq. 2.

k =

n∑
i=1

pi(α),where pi = 2πR. (2)

α ranges from 0 to 1 to maintain the bright resolution of each keypoint disk. During inference, the
BHM helps to detect individuals and also increases the keypoint confidence score. In our experi-
ments, we analyze the impact of BHM on the keypoint confidence score (§5.2).

3.3 MASKCENTROID

Human instance segmentation is a pixel-level classification challenge where to connect pixels with
the right person instance I . For this task, we define MaskCentroid as illustrated in Figure 5 to cluster
the mask pixels with the defined centroid Ci inside each annotated person instance with 2-D mask
pixels, which points from image position xi to the position of Ci of the corresponding instance.
At each image position xi of a semantically identified human instance, the embedding vector e(xi)
reflects a local approximation of the absolute location of each mask pixel of an individual to whom
it corresponds, i.e., it represents the person’s expected shape. To this end, for each pixel, we learn
the pixel offset, which points to Ci (right shoulder). Here, we take advantage of the high confident
keypoint localization to use them as a center of attraction for each instance pixel. The purpose of
instance segmentation is to cluster a set of pixels P = {m0,m1,m2, ...,mi} and its 2-D embedding
vectors e(mi), into a set of instances I = {n0, n1, n2, ..., nj} to provide a 2D mask for the human
instance. Pixels are assigned to their corresponding centroid:

Ci =
1

N

∑
mi∈nj

mi. (3)

This is attained by defining pixel offset vector vi for each known pixel mi, so that the resulting
embedding ei = mi + vi points from its respective instance centroid. We penalize pixel offset loss
by the L1 loss function throughout model training, averaging and back-propagating at the image
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position xi that corresponds to an instance of a specific individual entity:

L =

n∑
i=0

∥vi − v̂i∥, (4)

where v̂i = Ci − nj for nj ∈ mi. In order to cluster the pixels to their centroid, it is important to
specify the positions of the instance centroids and to assign pixels to a particular instance centroid.
We use a density-based clustering algorithm Kriegel et al. (2011) to first locate a set of centroids as
a center of attraction. Having obtained an array of centroids C = {C0, C1, ..., CK}, we add pixels
to a particular instance based on a minimum distance-to-centroid:

ei ∈ mi : k = arg minC∥ei − C∥. (5)

During inference, the MaskCentroid effectively addresses the challenging scenarios where 70% of
the human body is occluded. Our experimental study demonstrates the effectiveness of the Mask-
Centroid on human instance segmentation (§5.3).

Instance-wise Gaussian Optimization. Once the segmentation head performs pixel-level classi-
fication and identifies the individual semantically, CENTERFOCUS performs Gaussian smoothing
Chung (2020) at the instance level, i.e., instance-wise Gaussian optimization. We apply instance-
wise smoothing individually using the σ ranging from 0 to 1. Based on our experiments, σ near 0.1
produces a more precise segmentation mask when individuals are entangled and overlapping. The
ablation experiment demonstrates the observation of instance-wise smoothing (§5.4).

4 EVALUATION

We evaluate CENTERFOCUS using the standard benchmarks, COCO Lin et al. (2014) and OCHu-
man Zhang et al. (2019), focus on heavily occluded individuals and compare the computational cost
and inference time with SOTA models. The model is trained end-to-end using the COCOPersons
training set. Ablations are conducted on the COCO val set. We used the CNN backbone networks
ResNet-101 and ResNet-152 He et al. (2016) for training and testing. The hyperparameters for train-
ing were: learning rate = 0.1× e−4, image size = 401× 401, batch size = 4, and Adam optimizer.
We performed various transformations during model training, such as scale, flip, and rotate oper-
ations. We conducted synchronous training for 400 epochs with stochastic gradient descent using
TensorFlow 1.13 on a single TITAN RTX.

Models Backbone AP AP.50 AP .75 APM APL AR
Top-down:
8-stage Hourglass - 0.671 - - - - -
CPN ResNet-50 0.727 - - - - -
SimpleBaseline ResNet-152 0.720 0.893 0.798 0.687 0.789 0.778
Bottom-up:
CMU-Pose ∗ - 0.610 0.849 0.675 0.563 0.693 -
PersonLab ResNet-152 0.665 0.862 0.719 0.623 0.732 0.707
PifPaf × - 0.674 - - - - -
HGG † Hourglass 0.683 0.867 0.758 - - 0.720
Point-Set Anchors † HRNet-W48 0.698 0.888 0.763 0.659 0.766 0.756
DEKR48 HRNet-W48 0.723 0.883 0.786 0.686 0.786 0.777
PosePlusSeg ResNet-152 0.744 0.894 0.748 0.675 0.811 0.810
CENTERFOCUS (ours) ResNet-101 0.735 0.898 0.819 0.715 0.797 0.798
CENTERFOCUS (ours) ResNet-152 0.749 0.899 0.824 0.718 0.816 0.815

Table 1: Performance comparison using the COCO keypoint val set. ∗ indicates refinement. ×
indicates single-scale testing † indicates multi-scale testing. AP is at IOU=0.5:0.05:0.95, AP0.50 at
IOU=0.50 (Pascal VOC metric), AP0.75 at IOU=0.75 (strict metric), APM corresponds to AP for
medium objects: 322 <area <962, and APL corresponds to AP for large objects: area >962.

Keypoint Detection Results. Table 1 summarizes the results on the COCO val dataset. CENTER-
FOCUS (0.749 mAP) outperformed top-down 8-stage Hourglass Newell et al. (2016), CPN Chen
et al. (2018), and SimpleBaseline Xiao et al. (2018). CENTERFOCUS also surpassed bottom-up
models: pifpaf Kreiss et al. (2019) by 0.075 AP, HGG Jin et al. (2020) by 0.066 AP, Point-Set An-
chors Wei et al. (2020) by 0.051 AP, DEKR48 Geng et al. (2021b) by 0.026 AP, and PosePlusSeg
Ahmad et al. (2022) by 0.005.

Table 2 presents the performance of CENTERFOCUS using the COCO keypoint test set, outper-
forms SOTA bottom-up techniques including HGG Jin et al. (2020), Point-Set Anchors Wei et al.
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Models Backbone AP AP.50 AP .75 APM APL AR
Top-down:
Mask-RCNN ResNet-50-FPN 0.631 0.873 0.687 0.578 0.714 -
G-RMI COCO-only ResNet-101 0.649 0.855 0.713 0.623 0.700 0.697
Integral Pose Regression ResNet-101 0.678 0.882 0.748 0.639 0.740 -
G-RMI + extra data ResNet-101 0.685 0.871 0.755 0.658 0.733 0.733
CPN ResNet-50 0.721 0.914 0.800 0.687 0.772 0.785
RMPE PyraNet 0.723 0.892 0.791 0.680 0.786 -
CFN - 0.726 0.861 0.697 0.783 0.641 -
CPN (ensemble) ResNet-Inception 0.730 0.917 0.809 0.695 0.781 0.790
HRNet-W48 HRNet-W48 0.755 0.925 0.833 0.719 0.815 0.790
Bottom-up:
OpenPose ∗ - 0.618 0.849 0.675 0.571 0.682 0.665
Directpose † ResNet-101 0.648 0.878 0.711 0.604 0.715 -
Ass. Emb. † ∗ Hourglass 0.655 0.868 0.723 0.606 0.726 0.702
PifPaf ResNet-152 0.667 - - 0.624 0.729 0.722
SPM Hourglass 0.669 0.885 0.729 0.626 0.731 -
PersonLab † ResNet-152 0.687 0.890 0.754 0.641 0.755 0.754
MultiPoseNet ResNet-101 0.696 0.863 0.766 0.650 0.763 0.735
HGG † Hourglass 0.676 0.851 0.737 0.627 0.746 0.713
Point-Set Anchors † HRNet-W48 0.687 0.899 0.763 0.648 0.753 -
HigherHRNet † HRNet-W48 0.705 0.893 0.772 0.666 0.758 0.749
SIMPLE-W32 † HRNet-W32 0.711 0.902 0.794 0.691 0.791 -
DEKR † HRNet-W48 0.723 0.883 0.786 0.686 0.786 0.777
PosePlusSeg ResNet-152 0.728 0.884 0.787 0.678 0.794 0.798
CENTERFOCUS (ours) ResNet-101 0.722 0.870 0.772 0.663 0.791 0.788
CENTERFOCUS (ours) ResNet-152 0.731 0.889 0.789 0.681 0.795 0.804

Table 2: Performance comparison using the COCO keypoint test set. ∗ indicates refinement. †
indicates multi-scale test.

(2020), HigherHRNet Cheng et al. (2020), SIMPLE Zhang et al. (2021), DEKR Geng et al. (2021a),
and PosePlusSeg Ahmad et al. (2022). Specifically, CENTERFOCUS yields a mAP of 0.731 using
ResNet-152 as a backbone feature extractor.

Table 3 demonstrates the results of our proposed model CENTERFOCUS against SOTA models us-
ing the OCHuman challenging dataset. We compared keypoint prediction accuracy with SOTA
approaches: HGG Jin et al. (2020) and MIPNet Khirodkar et al. (2021) using the OCHuman val and
test sets. CENTERFOCUS improves 0.07 AP over HGG Jin et al. (2020) and 0.005 AP over MIPNet
Khirodkar et al. (2021) in the test set.

Models Backbone Val mAP Test mAP
HGG Hourglass 0.356 0.348
HGG † Hourglass 0.418 0.360
MIPNet ResNet101 0.420 0.425
CENTERFOCUS (ours) ResNet101 0.434 0.429
CENTERFOCUS (ours) ResNet152 0.439 0.430

Table 3: Performance comparison using OCHuman keypoint val and test datasets. † indicates
multi-scale testing.

Models Backbone AP AP.50 AP .75 APM APL AR
PersonLab × ResNet101 0.382 0.661 0.397 0.476 0.592 0.162
PersonLab × ResNet152 0.387 0.667 0.406 0.483 0.595 0.163
PersonLab † ResNet101 0.414 0.684 0.447 0.492 0.621 0.170
PersonLab † ResNet152 0.418 0.688 0.455 0.497 0.621 0.170
Pose2Seg ResNet50-fpn 0.555 - - 0.498 0.670 -
PosePlusSeg ResNet-152 0.563 0.701 0.557 0.509 0.683 0.701
CENTERFOCUS (ours) ResNet101 0.559 0.721 0.559 0.521 0.691 0.699
CENTERFOCUS (ours) ResNet152 0.570 0.724 0.565 0.547 0.698 0.706

Table 4: Performance comparison using the COCO Segmentation val set. × indicates single-scale
testing. † indicates multi-scale testing.

Segmentation Results. Table 4 and Table 5 present the results of COCO Segmentation val and
test sets. CENTERFOCUS achieved a mAP of 0.570 on the val set, and improved the AP by 0.152
compared with PersonLab Papandreou et al. (2018), 0.015 AP compared with Pose2Seg Zhang
et al. (2019), and 0.007 compared with PosePlusSeg Ahmad et al. (2022). Moreover, on the test
set, CENTERFOCUS achieved a mAP of 0.456 and improved the AP by 0.085 over Mask-RCNN He
et al. (2017), 0.039 over PersonLabPapandreou et al. (2018), and 0.011 over PosePlusSeg Ahmad
et al. (2022). Table 6 shows segmentation performance compared with Pose2Seg Zhang et al. (2019)
using the OCHuman val and test sets.
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Models Backbone AP AP.50 AP .75 APM APL AR
Mask-RCNN ResNeXt-101 0.371 0.600 0.394 0.399 0.535 -
PersonLab × ResNet101 0.377 0.659 0.394 0.480 0.595 0.162
PersonLab × ResNet152 0.385 0.668 0.404 0.488 0.602 0.164
PersonLab † ResNet101 0.411 0.686 0.445 0.496 0.626 0.169
PersonLab † ResNet152 0.417 0.691 0.453 0.502 0.630 0.171
PosePlusSeg ResNet152 0.445 0.794 0.471 0.524 0.651 0.677
CENTERFOCUS (ours) ResNet101 0.439 0.804 0.478 0.535 0.674 0.677
CENTERFOCUS (ours) ResNet152 0.456 0.818 0.487 0.546 0.678 0.682

Table 5: Performance comparison using the COCO Segmentation test set. × indicates single-scale
testing. † indicates multi-scale testing.

Models Backbone Val mAP Test mAP
Pose2Seg ResNet50-fpn 0.544 0.552
CENTERFOCUS (ours) ResNet101 0.555 0.550
CENTERFOCUS (ours) ResNet152 0.559 0.556

Table 6: Performance comparison using the OCHuman segmentation val and test datasets.

Computation Cost and Inference Time. We calculate the computational cost in GFLOPs and the
number of parameters for an approximate image size of 401 × 401 resolution. Table 7 shows that
CENTERFOCUS with ResNet-50 has the lowest FLOPs and highest mAP compared with Hourglass
Newell et al. (2016) and CPN Chen et al. (2018). CENTERFOCUS with ResNet-101 and ResNet-152
also incurs lower FLOPs and number of parameters compared with the representative top competi-
tors, including SimpleBaseline Xiao et al. (2018), HRNet Sun et al. (2019), DEKR Geng et al.
(2021a), PersonLab Papandreou et al. (2018), and PosePlusSeg Ahmad et al. (2022).

Table 10 in the Appendix presents the inference time and runtime measurements of CENTERFOCUS
on a single GPU (Titan RTX).

Models Backbone Input Size GFLOPs # Parameters mAP
Hourglass 8-stage 256 × 192 14.3 25.1M 0.669
CPN ResNet-50 256 × 192 6.20 27.0M 0.686
CPN* ResNet-50 384 × 288 6.20 27.0M 0.694
SimpleBaseline ResNet-152 256× 192 15.7 68.6M 0.720
HrHRNet HRNet-W48 640× 640 154.3 63.8M 0.723
DEKR48 HRNet-W48 640× 640 141.5 65.7M 0.710
PersonLab ResNet-101 1401× 1401 405.5 68.7M 0.665
PosePlusSeg ResNet-152 256 × 192 11.34 60.1M 0.744
CENTERFOCUS ResNet-50 ≈401 4.04 25.5M 0.697
CENTERFOCUS ResNet-101 ≈401 7.69 44.5M 0.736
CENTERFOCUS ResNet-152 ≈401 11.34 60.1M 0.751

Table 7: Comparison of GFLOPs and # parameters on the val set. CPN* is with online hard key-
points mining.

5 ABLATION EXPERIMENTS

5.1 SKFM AND KEYCENTROID

We first compare the SKFM with keypoint detection algorithms relying on keypoint feature maps to
qualitatively analyze SKFM. Table 8 presents the performance of SKFM and KeyCentroid (kc) with
the SOTA bottom-up approaches including CMU-Pose Cao et al. (2017), MultiPoseNet Kocabas
et al. (2018), PersonLab Papandreou et al. (2018), HGG Jin et al. (2020), SimpleBaseline Xiao et al.
(2018), and PosePlusSeg Ahmad et al. (2022). The SKFM generated with the help of a keypoint
disk outperforms the SOTA methods, yielding a mAP of 0.725 using ResNet152. In addition, we
define KeyCentroids and aggregated them with the SKFM to find the optimal 2D keypoint value.
Thus, CENTERFOCUS further improved the keypoint accuracy to 0.024 points and secured a 0.749
mAP resulting in a significant improvement over PosePlusSeg Ahmad et al. (2022).

5.2 KEYPOINT CONFIDENCE SCORING

We assess the BHM on the keypoint confidence score prediction. Figure 6 shows the 17 keypoint
detection confidence scores generated by the keypoint disks at radius R = 8, 16, and 32. The
keypoint detection confidence score for a large radius (R = 32) is high because it provides optimal
space for the classifier to reach the local minimum.
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Models AP AP.50 AP .75 APM APL

CMU-Pose 0.610 0.849 0.675 0.563 0.693
MultiPoseNet 0.643 0.882 0.750 0.596 0.739
PersonLab 0.665 0.862 0.719 0.623 0.732
HGG 0.683 0.867 0.758 - -
SimpleBaseline 0.720 0.893 0.798 0.687 0.789
PosePlusSeg 0.744 0.894 0.748 0.675 0.811
CENTERFOCUS (ours):
ResNet101 (SKFM) 0.717 0.782 0.726 0.611 0.776
ResNet152 (SKFM) 0.725 0.897 0.816 0.703 0.791
ResNet101 (SKFM + kc) 0.735 0.898 0.819 0.715 0.797
ResNet152 (SKFM + kc) 0.749 0.899 0.824 0.718 0.816

Table 8: Keypoint detection comparison between CENTERFOCUS SKFM and SKFM + kc variant
with existing keypoint feature maps approaches.
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5.3 ANALYZING MASKCENTROID

We analyze the MaskCentroid that plays an important role in human instance segmentation by defin-
ing centroids as a center of attraction for the pixels in the embedding space. We compared CENTER-
FOCUS’s MaskCentroid with human segmentation models. Table 9 shows the MaskCentroid accu-
racy trade-off compared with PersonLab Papandreou et al. (2018), Pose2Seg Zhang et al. (2019),
and PosePlusSeg Ahmad et al. (2022).

Models AP AP.50 AP .75 APM APL

PersonLab 0.418 0.688 0.455 0.497 0.621
Pose2Seg 0.555 - - 0.498 0.670
PosePlusSeg 0.563 0.701 0.557 0.509 0.683
CENTERFOCUS:
ResNet101 0.550 0.705 0.548 0.518 0.685
ResNet152 0.558 0.711 0.558 0.528 0.691
ResNet101 (MaskCentroid) 0.559 0.721 0.559 0.531 0.690
ResNet152 (MaskCentroid) 0.570 0.724 0.565 0.547 0.698

Table 9: MaskCentroid performance using the COCO Segmentation.

5.4 IMPACT OF POINT-WISE AND INSTANCE-WISE GAUSSIAN OPTIMIZATION

We generated SKFM using 0<σ<1 for different keypoints, i.e., point-wise Gaussian optimization.
Figure 7 summarizes the mAP for different σ with high variation keypoints (HVK) and low variation
keypoints (LVK).

Finally, we examine the impact of instance-wise Gaussian optimization on instance segmentation
task. We tested the sensitivity of σ ranging from 0.1 to 0.5 on human instance segmentation. Figure
8 shows the results with different σ values, where low σ performs better in crowded cases.

6 CONCLUSION

We propose CENTERFOCUS, a bottom-up reliable approach, to tackle the task of human pose esti-
mation and instance segmentation. CENTERFOCUS introduced a Strong Keypoint Feature Map and
KeyCentroid to find the optimal 2D keypoint position. In addition, a MaskCentroid was used that
defines the keypoint as a centroid in the embedding space to associate the pixels to the right instance
for instance-level segmentation. The effectiveness of CENTERFOCUS was tested using the COCO
and OCHuman challenging datasets and showed incredible performance.
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Figure 9: Pose estimation and instance segmentation.

A APPENDIX

A.1 POSE AND INSTANCE SEGMENTATION

We introduce a new PoseSeg algorithm to present the human pose estimation along with the instance
segmentation, as visualized in Figure 9. The PoseSeg module uses the features generated from both
head networks to get the final pose and instance segmentation as shown in Figure 2. At first, the
keypoints and their 2D coordinates are cached in a priority queue. These keypoints are then used to
make a body skeleton by gradually connecting keypoints with common vertices. If two keypoints
are overlapped, entangled, or more than one keypoint (x and y coordinates) are identified for a single
keypoint position pi, non-maximum suppression is leveraged to select the final keypoint coordinates.
Next, a new instance k′ starts with the jth keypoint detected at image position xi and is considered
a new point.

CENTERFOCUS also performs instance-level segmentation for all detected human instances. It iden-
tifies pixel positions pi belonging to an instance, i.e., those pixels with the highest probability that
lie in the embedding space. These pixels are then assigned to the relevant instance if the pixel
embedding is close to the centroid of the instance. Specifically, if the probability P of a pixel pi,
P (pi) ≥ 0.5, then the pixel at position xi is assigned to the relevant human instance. We assume that
pixels with a probability threshold ≥ 0.5 are close to the centroid of the instance and are considered
as part of a particular instance. Otherwise, the pixels belong to another instance or background.

A.2 INFERENCE TIME

The measure system inference time is compared with SOTA multi-task models, including Mask-
RCNN He et al. (2017), Pose2seg Zhang et al. (2019), MultiPoseNet Kocabas et al. (2018), and
PosePlusSeg Ahmad et al. (2022). Table 10 presents the inference time and runtime measurements
of CENTERFOCUS on a single GPU (Titan RTX), demonstrating its efficiency in processing for
human pose, instance segmentation, and joint human pose and segmentation.

Models Backbone Task Inference Time GPU
Mask R-CNN ResNet-101 Boxes, segmentation & pose 200ms (5fps) Tesla M40
Pose2Seg ResNet50-fpn Instance segmentation 50ms (20fps) GTX Titan X
MultiPoseNet ResNet-101 pose estimation 43ms (23fps) GTX 1080Ti
PosePlusSeg ResNet-152 Pose & segmentation 34ms (28fps) Titan RTX
CENTERFOCUS ResNet-152 Pose estimation 28ms (35fps) Titan RTX
CENTERFOCUS ResNet-152 Instance segmentation 30ms (32fps) Titan RTX
CENTERFOCUS ResNet-152 Pose & segmentation 34ms (29fps) Titan RTX

Table 10: Comparison of the runtime performance.

A.3 REAL-WORLD VISUALIZATION

We investigate the significance of each component of CENTERFOCUS and illustrate them visually.
All the results are generated from the same resolution defined in the COCO Lin et al. (2014) dataset
using the ResNet 152 He et al. (2016). Section A.4 visualizes the impact of Strong Keypoint Feature
Map (SFHM), Point-wise Gaussian Optimization (PGO), KeyCentroid, and Body Heat Map (BHM)
on human pose estimation. Section A.5 illustrates the impacts of MaskCentroid and Instance-wise
Gaussian Optimization (IGO) on instance segmentation. Finally, Section A.6 displays the examples
of human pose along with instance segmentation.
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A.4 POSE ESTIMATION

Figure 10 illustrates examples of pose estimation generated from different components of the system.
Figure 11 shows examples of pose estimation results. Figure 12 shows PGO along with body heat
map from COCO Lin et al. (2014) val dataset.

(a) SKFM (b) KeyCentroid
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Figure 10: (a) shows SKFM generated from Pose Head network, (b) shows KeyCentroid to find
optimal 2D keypoint, (c) shows the PGO by defining the optimal σ values for high and low variant
keypoints, and (d) defines the final pose estimation.

Figure 11: Pose estimation examples illustrating keypoints.
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Figure 12: Point-wise Gaussian optimization along with body heat map.

A.5 INSTANCE SEGMENTATION

Figure 13 illustrates examples of instance segmentation generated at each stage of the system. Figure
14 shows examples of the instance segmentation from COCO Lin et al. (2014) val dataset.

(a) MaskCentroid (b) SFM (c) IGO + Instance
Segmentation

(d) Pose & Instance
Segmentation

Figure 13: (a) shows MaskCentroid to assign pixels to a particular human instance, (b) shows Se-
mantic Feature Map (SFM) generated from the Segmentation Head network, (c) defines the instance
segmentation after applying the IGO, and (d) combines the pose estimation and instance segmenta-
tion.

A.6 POSE AND INSTANCE SEGMENTATION

Figure 15 illustrates examples of the pose estimation and instance segmentation from the COCO Lin
et al. (2014) val dataset.

15



Under review as a conference paper at ICLR 2023

Figure 14: Instance segmentation.
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Figure 15: Pose and instance segmentation.
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