
Differentiable Soft Min-Max Loss to Restrict Weight Range for Model
Quantization

Arnav Kundu * 1 Chungkuk Yoo * 1 Minsik Cho 1 Saurabh Adya 1

Abstract

The range of weights in a model disrupts effec-
tive lower bit quantization. Penalizing the range
of weights improve quantization accuracy, but
calculation of range (max-min) is not differen-
tiable. In this work, we propose Differentiable
Soft Min-Max Loss (DSMM) to restrict weight
ranges so that we can get a quantization-friendly
model which has narrow weight ranges. We ap-
ply DSMM with a learnable parameter which can
adjust hardness of DSMM without requiring a spe-
cial hyper-parameter. DSMM improves lower bit
quantization accuracy with state-of-the-art post-
training quantization (PTQ), quantization-aware
training (QAT), and weight clustering across vari-
ous domains and model sizes.

1. Introduction
Quantization bit-resolution is inversely proportional to the
range of weights and affects accuracy of the quantized mod-
els. Since outliers tend to increase range, outliers are detri-
mental for quantization friendly models.

As an example, lets assume we want to quantize the weight
distributions shown in Figure 1 (left) into 4 bins. For the
original distribution in red most of the weights will be quan-
tized to the central 2 bins and the model accuracy would
drop significantly. This problem gets worse for low bit
quantization such as 1 or 2 bit quantization. To this end,
we introduce Differentiable Soft Min-Max Loss (DSMM),
a simple yet powerful method that helps to reduce weight
range during training without severely affecting full preci-
sion accuracy and provides a quantization friendly check-
point. Using DSMM loss we intend to trim the edges of the
black distribution and convert it to the red distribution as
shown in Figure 1 (left). Such a restriction might regress
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the full-precision model’s accuracy slightly as the model
has to operate under new constraints, but it would have a
quantization friendly weight distribution removing outlier
weights. Therefore, lower bit quantization accuracy can be
improved as shown in Figure 1 (right). In case of higher bit
quantization such as 4bit or 8bit, a model might already have
enough bits to properly represent wide ranges of weights.
Therefore the benefit of DSMM loss could be limited.

Soft max operation has been proposed in previous works [1],
but we bring it to the quantization domain for the first time
by modifying the function. The key innovation of our work
is DSMM loss for reducing a range of weights by oper-
ating on outliers more preferably to quantization. To this
end, we make the degree of smoothness (temperature α in
Equation (1)) in the function as a learnable parameter so
that it automatically fits to an optimal value without further
hyper-parameter search for the temperature factor. We then
add a new term e−α term into the function to encourage the
temperature to increase. Without the additional term, the
temperature would move towards negative infinite direction
to minimize the DSMM always and it disrupts the purpose
of DSMM, making quantization-friendly pre-trained model.

We show that DSMM loss works well with state of the
art post-training quantization (PTQ), quantization aware
training (QAT) and weight clustering algorithms. We also
show that our method is applicable to multiple domains like
computer vision and natural language processing.

2. Related Works
In this paper we have applied our DSMM loss with vari-
ous training time quantization (quantization-aware training,
QAT) algorithms like LSQ [2] and DoReFa [3] used in
PACT [4]. PACT clips activation values with a trainable
parameter for activation quantization and uses DoReFa for
weight quantization. LSQ quantizes weights and activations
with learnable step size (scale or bin size).

Also, we have compared our DSMM loss with a state-of-
the-art post-training quantization (PTQ) methods. DFQ
[5] equalizes per-channel weight ranges by applying per-
channel scaling factors. It resolves the wide weight range
problem across channels, but still the weight range would
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Figure 1. (Left) Example weight distribution for quantization using 4 bins. (Right) Benefit of DSMM loss for low bit quantization.

remain wide for lower bit quantization like 4bit as DFQ
does not target outliers within a channel. AdaRound [6]
proposed adaptive rounding for quantization bin assignment
instead of nearest rounding. SQuant [7] decomposes a layer
by the Hessian-based optimization objective into sub-items,
then composes them in a quantized domain. PD-Quant [8]
quantizes weights by comparing model prediction result
before and after quantization of each layer. Additionally,
we show DSMM loss is effective not only for integer quan-
tization but also for weight clustering. DKM [9] introduces
differentiable k-means clustering for weights to represent
them in n-bit centroids which have arbitrary float values.

In our extensible experiments, we show our DSMM loss im-
proves accuracies with cutting-edge QAT, PTQ and weight
clustering for lower bit quantization like 1bit, 2bit and 4bit.

3. Differentiable Soft Min-Max Loss
We introduce Differentiable Soft Min-Max Loss as an auxil-
iary loss to reduce the range of weights for every layer to get
better pre-trained models for further quantization or com-
pression. Just like L1 and L2 regularization our approach is
invariant to the quantization or compression technique used.
But as opposed to L1 or L2 regularization, Differentiable
Soft Min-Max Loss only affects the range of the distribution
and not the absolute magnitude of it. In our experiments,
we demonstrate that L2 regularization (1x(baseline) and
10x(heavy L2)) only affects the magnitude of the weights
but does not remove outliers from the distribution. As evi-
dent from Figure 1, heavier L2 regularization just reduces
the scale of weights but does affect the shape of the dis-
tribution whereas DSMM loss reshapes the distribution.
To capture the range we intend to calculate the difference
between the maximum and minimum value of the weights
in a easily differentiable form as illustrated below. The loss
for a given weight W is described in Equation (1).

Here temperature α is a learnable parameter per layer. e−α

term in the auxiliary loss Ldsmm, encourages temperature
α to increase during training time optimization process to

approach hard-min-max loss towards the end of training.
This loss smoothly penalizes not only outliers but also near-
outlier weights together. We allow α to be learnable because
in our experiments we found that fixing it introduces a new
hyper-parameter to tune while worsening the accuracy of the
model. A trainable α also allows us to control the smooth-
ness of the loss per layer therefore, introducing more degrees
of freedom to the loss.

smax =
Σ(W ⊙ eα×(W−Wmax))

Σeα×(W−Wmax)

smin =
Σ(W ⊙ e−α×(W−Wmin))

Σe−α×(W−Wmin)

LDSMM = (smax − smin) + e−α

(1)

DSMM loss was employed during training time of the base
model itself and not during quantization. This was done
because the purpose of DSMM loss is to provide effective
initial weights for quantization. This ensures extensibility
of DSMM loss to any quantization technique.

4. Experiment
4.1. Post-Training Quantization with DSMM loss

We compare models trained using DSMM loss and other
weight regularization, L2 and heavy L2, using PTQ meth-
ods such as DFQ [5], AdaRound [6], SQuant [7], and
PD-Quant [8]. As shown in Table 1, models trained with
DSMM loss are more quantization friendly than other regu-
larization. DSMM loss shows the best accuracy as it reduces
outliers as well as weight range. On the other hand, heavy
L2 regularization makes weight ranges smaller, but it does
not remove outliers, therefore prove to be ineffective here.

Compared to FP32 accuracy of baseline models, models
trained with DSMM loss, have slight accuracy regression in
full-precision inference as we expected in Figure 1 (right).
However, after quantizing, the models trained with DSMM
loss shows better accuracies.
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Figure 2. Weight distribution of the first five 3x3 convolution layers of MobileNet-V2 using L2 norm (baseline), heavy L2 norm (10x
heavy L2 norm than baseline) and the proposed Differentiable Soft Min-Max Loss (the red dots correspond outliers).

Table 1. Top-1 accuracies (%) of MobileNet-V1 and V2 on ImageNet-1K using PTQ methods with 4bit weight and 8bit activation
quantization. Heavy L2: applied 10x heavy L2 regularization than baseline. Naı̈ve: quantizing without any advanced PTQ techniques.
DFQ [5], AR [6], SQ [7], PD-Q [8]. DSMMα: fixed α (10.0). DSMM: trainable α.

METHOD
MOBILENET-V1 MOBILENET-V2

FP32 NAÏVE DFQ AR SQ PD-Q FP32 NAÏVE DFQ AR SQ PD-Q

BASELINE 74.12 2.67 54.06 70.42 63.85 71.87 73.08 2.57 56.56 71.29 59.30 71.54
HEAVY L2 72.67 13.41 57.68 69.23 66.51 69.86 71.00 4.17 0.09 68.06 57.30 68.92

DSMMα=10 74.21 8.52 42.48 69.71 67.23 71.92 72.80 13.77 56.19 70.79 62.16 71.27
DSMM(OURS) 73.95 44.24 59.21 71.35 67.86 72.39 72.81 36.69 51.46 71.77 67.16 71.98

Table 2. BLEU score for machine translation task on Transformer
Base model [10] with 8bit weight quantization.

METHOD FP32 NAÏVE

BASELINE 28.2 2.9

DSMM 27.9 27.8

Table 3. Top-1 accuracies (%) of 2bit weight and 8bit activa-
tion PTQ using PD-Quant [8]. MNV1: MobileNet-V1, MNV2:
MobileNet-V2, RN50: ResNet-50, RN101: ResNet-101. FP32
accuracy is in Table 1 and Table 4. DSMM1: applied DSMM from
scratch. DSMM2: applied DSMM during fine-tuning

METHOD MNV1 MNV2 RN50 RN101

BASELINE 47.62 50.66 62.92 66.50

DSMM1 54.20 57.53 69.31 71.24
DSMM2 53.10 56.31 66.85 69.66

Even without advanced PTQ approaches, models trained
with DSMM loss can be reasonably quantized without any
further fine-tuning (See Naı̈ve in Table 1). This proves that
models with DSMM loss have good weight distribution so
they can be quantized with fairly high quantization accura-
cies. This approach scales to other applications like machine
translation as illustrated in Table 2. It is also applicable to
larger models like ResNet{50,101} as shown in Table 4.

In Table 3, we can clearly see the benefit of DSMM lossfor
lower bit PTQ. The accuracy of ResNet101 trained with
DSMM loss only regressed by 8.39% (79.63% → 71.24%),
while the baseline model trained without DSMM loss shows
higher absolute regression, 12.95% (79.45% → 66.50%).

4.2. PTQ for models fine-tuned with DSMM loss

Training models from scratch might not always be feasi-
ble especially given the cost and time taken. Therefore,

Table 4. Top-1 accuracies (%) of ResNet50 and ResNet101 on
ImageNet-1K with 4bit weight and 8bit activation PTQ.

METHOD
RESNET50

FP32 AR SQ PD-Q

BASELINE 78.04 74.73 74.68 76.60

DSMM 78.22 75.61 75.75 77.21

METHOD
RESNET101

FP32 AR SQ PD-Q

BASELINE 79.45 75.18 75.23 78.16

DSMM 79.63 76.71 77.20 78.49

we finetuned pre-trained models with a low learning rate
while applying DSMM as an additional loss to the existing
task loss. Our experimental results are shown in Table 3
where we applied DSMM on pre-trained models, followed
by PD-Quant (PD-Q) [8] for PTQ. It can be observed that on
quantization, finetuning a pre-trained model does not show
the same performance gains as training from scratch but
it is still significantly better than the baseline. This shows
that our method is also applicable to pre-trained models if
finetuned with the additional loss.

4.3. Quantization-Aware Training with DSMM loss

We apply state-of-the-art quantization techniques like PACT
[4] while training the models from scratch using DSMM
loss. For LSQ [2] we initialize the model to pre-trained
ResNet-18 (RN) [11] with DSMM loss.

As shown in Table 5, DSMM loss helps the quantization
techniques in improving their accuracy, especially for ex-
tremely low bit quantization such as at 2 bit while it shows
similar accuracies with 4 bit. For example, DSMM loss im-
proves 2 bit quantization accuracy with LSQ to over than
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Table 5. Top-1 accuracies (%) of ResNet18 with various QAT meth-
ods. Weights and activations are quantized with the same bit
(2W2A: 2bit, 4W4A: 4bit).

METHOD
2W2A QAT

FP32 PACT LSQ

BASELINE 69.76 51.97 58.33

DSMM 69.84 55.64 62.47

METHOD
4W4A QAT

FP32 PACT LSQ

BASELINE 69.76 66.90 69.90

DSMM 69.84 68.36 69.45

62% from 58%, but there is no noticeable difference in 4
bit LSQ accuracies with and without DSMM loss. The rea-
son why DSMM loss would not help much for higher bit
like 4 bit quantization is that QAT can effectively represent
outliers using many bits as we expected in Figure 1 (right).

4.4. Weight Clustering with DSMM loss

We evaluate the effectiveness of DSMM loss with the
state-of-the-art weight clustering technique, DKM [9], for
ResNet-18 and MobileNet-V1. The bit-dim ratio, b

d is an
important factor in the DKM algorithm which effectively
defines the kind of compression a DKM palettized model
would see. We ran these experiments for both scalar and
vector palettization. For scalar palettization(dim = 1) we
ran 1 bit, 2 bit and 4 bit compression. Figure 3 shows that
DSMM loss significantly improves accuracy from DKM 1
bit and 2 bit models. As we discussed, there is no signif-
icant difference for higher bit like 4 bit because many bit
compression can also cover outliers even without DSMM.

We also expand the application of DSMM loss to vec-
tor palettization(2-bit/2-dim and 4-bit/4-dim) DKM [9] as
demonstrated in Figure 3. For these experiments, we kept
the effective bit-dim ratio, b

d equivalent to 1 so as to see vari-
ation across the models almost compressed to 32x. Since
a vector palettized model will require range constraining
for all dimensions, we applied multi-dimensional DSMM
loss for all layers. For vector palettized ResNet-18 there
is an average absolute improvement of > 1% using mod-
els trained with DSMM loss, and for vector palettized
MobileNet-V1, the gain ranges from 2% to 5%.

Finally we also validated that DSMM loss for weight clus-
tering scales to other domains as well by applying it in
compressing MobileBERT [12]. For Question Answer-
ing (QNLI) [13] using MobileBERT, DSMM loss slightly
improved the performance of the model as demonstrated
in Table 6. Note that we applied DSMM loss to a QNLI
fine-tuning task based on a pre-trained MobileBERT [14].
It might be necessary to apply DSMM loss to the entire
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Figure 3. Top-1 accuracy for various compression ratios and mod-
els using weight clustering. nB/mD: n-bit/m-dim weight clustering.

training task of MobileBERT from scratch so that DSMM
loss would have more chances to get effective weight distri-
bution for model compression.

Table 6. Question-answering NLI (QNLI) accuracies of Mobile-
BERT using single dimension DKM

METHOD PRE-TRAIN 1-BIT 2-BIT

DKM BASELINE 90.41 61.34 80.12

DKM + DSMM 90.83 61.49 80.87

5. Discussion
As we discussed earlier, DSMM loss would be effective
for lower bit quantization, because higher bit quantiza-
tion can represent outlier weights and wide weight range.
Also most of state-of-the-art quantization techniques already
achieved reasonable accuracy with higher bit comparing its
full-precision models, so there would not be a room for
improvement further in higher bit quantization.

We are planning to conduct more studies with DSMM, such
as expending to large language model quantization and pro-
viding theoretical grounding from current empirical studies.

6. Conclusion
In this paper, we introduced Differentiable Soft Min-Max
Loss as an effective technique to reduce the weight range
for quantization for multiple tasks across domains. This
serves as a good initialization for PTQ, QAT and weight
clustering methods, and hence can be coupled with any of
them. This helps to augment the accuracy gained from such
techniques and is invariant to the quantization algorithm.
We demonstrated how DSMM loss converts a wide weight
range distribution to a more densely-packed distribution
for model quantization. While full-precision accuracy with
DSMM loss can be slightly regressed as it penalizes outlier
weights, it significantly improves quantization accuracy,
especially for lower bit.
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A. Experiment settings
A.1. Pre-training from scratch with and without DSMM loss

We train ResNet-18 [11], MobileNet-V1 [15] and MobileNet-V2 [16] on ImageNet 1K [17] with proposed Differentiable
Soft Min-Max Loss on a x86 Linux machine with eight GPUs to get pre-trained models before model compression and
quantization-aware training. We set initial learning rates to 1.0, 0.4 and 0.4 for ResNet-18, MobileNet-V1 and MobileNet-V2
respectively. We use SGD with 0.9 of momentum with Nesterov. We apply 1e-4 of weight decay (L2 norm weight
regularization) for ResNet-18 and 4e-5 for MobileNet-V1 and V2. For heavy L2-regularization, in Figure 2, we use 4e-4 of
weight decay (10x heavier than baseline) for MobileNet-V2 to see whether heavy L2-regularization helps quantization or
not as a naive solution for range restriction. Strength of DSMM loss is set to 0.01. The learnable parameter α is initially set
to 0.1. For comparison, we use pre-trained models of Resnet-18 from Torchvision. As we are using modified version of
ResNet-50, and ResNet-101, MobileNet-V1 and V2 for better FP32 performance, we trained those models from scratch
without DSMM loss using the same settings above.

A.2. Quantization and weight clustering

DSMM loss is not a model compression nor quantization method. It penalizes outlier weights during training of the
base model from scratch. To evaluate the effectiveness of DSMM loss with model compression and quantization, we
apply state-of-the-art compression/quantization techniques, DKM [9], LSQ [2], DFQ [5], AdaRound [6], SQuant [7], and
PD-Quant [8] to the pre-trained model with and without DSMM loss. Except SQuant 1, PD-Quant 2, DFQ and AdaRound 3,
since other works do not provide official implementation, we implement those techniques ourselves.

We follow the same hyper-parameters used in the works, but we apply compression and quantization for all layers including
the first and last layers. It is important to compress/quantize all layers including first and last layers considering computation
burden at the first layer with a large convolutional filter size such as 7x7 convolutions in the first layer of ResNet and the
large number of weights in the last linear layer, e.g., 1.2M of weights in the last layer of MobileNet-V1 which has 4.2M of
weights in total.

1https://github.com/clevercool/SQuant
2https://github.com/hustvl/PD-Quant
3https://quic.github.io/aimet-pages/
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