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Abstract

We systematically investigate graph transformations that enable standard message
passing to simulate state-of-the-art graph neural networks (GNNs) without loss of
expressivity. Using these, many state-of-the-art GNNs can be implemented with
message passing operations from standard libraries, eliminating many sources of
implementation issues and allowing for better code optimization. We distinguish
between weak and strong simulation: weak simulation achieves the same expressiv-
ity only after several message passing steps while strong simulation achieves this
after every message passing step. Our contribution leads to a direct way to translate
common operations of non-standard GNNs to graph transformations that allow for
strong or weak simulation. Our empirical evaluation shows competitive predictive
performance of message passing on transformed graphs for various molecular
benchmark datasets, in several cases surpassing the original GNNs.

1 Introduction

We systematically investigate which variants of non-standard message passing graph neural networks
can be implemented with standard message passing graph neural networks (MPNNs) on a transformed
graph without losing expressivity. While MPNNs are a very popular type of graph neural networks
(GNNs), they are not able to represent every function on the space of graphs [Xu et al., 2019, Morris
et al., 2019] due to their limited expressivity: for all MPNNs, there are pairs of non-isomorphic graphs
which always have the same embedding. A common approach to create more expressive GNNs
is to change the message passing function of MPNNs. If a GNN is more expressive than MPNNs
by adapting the message passing function, we call this non-standard message passing. Examples
of this are message passing variants that operate on subgraphs [Frasca et al., 2022, Bevilacqua
et al., 2021] or tuples of nodes [Morris et al., 2019, 2020, 2022]. It is known that some variants of
non-standard message passing can be implemented with MPNNs on a transformed graph without
losing expressivity as demonstrated by Morris et al. [2019, 2020, 2022] and Qian et al. [2022]. We
formalize this as an MPNN simulating a GNN: a GNN can be simulated if there exists a graph
transformation such that combining an MPNN with that graph transformation is at least as expressive
as the GNN. As simulation only requires graph transformations as pre-processing, it allows the use of
off-the-shelf MPNN implementations which simplifies and speeds up the implementation of GNNs.
Another advantage is that simulation is programming framework agnostic: only the graphs needs
to be transformed—independently of how the MPNN is implemented. Finally, simulation allows
to easily exchange GNNs in existing workflows without requiring changes to the model. Despite
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the benefits of simulation, this approach has not been thoroughly investigated: there is currently no
formal definition of simulation and it is not known which GNNs can be simulated. In this paper, we
define simulation and provide sufficient criteria for non-standard message passing to be simulated.

Related Work. Xu et al. [2019] and Morris et al. [2019] proved that MPNNs have limited expressivity.
This lead to the development of new GNNs that have higher expressivity than MPNNs. Such GNNs
often operate on structures that differ from graphs, for example (1) Morris et al. [2019, 2020, 2022]
proposed GNNs operating on k-tuples of nodes, (2) Bodnar et al. [2021a,b] proposed GNNs on
topological structures, and (3) Bevilacqua et al. [2021] proposed GNNs operating on subgraphs.
The idea of implementing non-standard message passing by standard message passing dates back
to at least Otto [1997] who showed that instead of performing the higher-order message passing
of k-WL it is possible to use 1-WL (classical message passing) on a transformed structure [Grohe
et al., 2021]. To the best of our knowledge, the first GNN that has been implemented through a
graph transformation is k-GNN [Morris et al., 2019], which is a generalization from k-WL to GNNs.
Already Morris et al. [2019] refer to this concept as simulation. In follow up work, Morris et al.
[2020] and Morris et al. [2022] implemented similar GNNs with non-standard message passing as
MPNNs together with graph transformations. Similarly, k-OSWL [Qian et al., 2022] was designed to
utilize WL. However, none of these papers have formalized the idea of simulation for GNNs (or WL)
explicitly. To this end, we [Jogl et al., 2022a,b] showed that CW Networks [Bodnar et al., 2021a], DS
[Bevilacqua et al., 2021], DSS [Bevilacqua et al., 2021], and δ-k-GNNs/WL [Morris et al., 2020]
can be implemented as an MPNN on a transformed graph. A similar high-level idea was proposed
in a positional paper by Veličković [2022]. In parallel, Hajij et al. [2023] introduced combinatorial
complexes that generalize structures such as graphs or cell complexes and showed that computations
on these complexes can be realized as message passing on graphs. While simulation has been used
and advocated in the past there is no unified solution to obtaining graph transformations, theoretical
justification, or thorough empirical evaluation. We fill this gap and find many GNNs can be simulated
by MPNNs on transformed graphs. More details can be found in Appendix A and Appendix B.

Our Approach. We introduce simulation of non-standard message passing, which formalizes the
idea of implementing a GNN, which uses non-standard message passing, through an MPNN on a
transformed graph. A message passing algorithm can be strongly simulated if an MPNN together with
a graph transformation can achieve the same expressivity in every iteration of message passing. To
prove that many GNNs can be strongly simulated, we define the class of augmented message passing
(AMP) algorithms which contains many common GNNs. We prove that all AMP algorithms can be
strongly simulated and present a meta algorithm to generate the necessary graph transformations.
This allows us to show that eleven recently proposed GNNs can be strongly simulated. Specifically,
the GNNs by Morris et al. [2019, 2020, 2022] and Qian et al. [2022] perform AMP. This gives an
additional mathematical justification to their approach by proving that their GNNs can be implemented
with MPNNs without losing expressivity over an implementation with non-standard message passing.

Furthermore, we investigate three constructions that demonstrate the limits of strong simulation: time
dependent neighborhoods, nested aggregations, and non-pairwise message passing. We prove that
these constructions either cannot be strongly simulated efficiently or cannot be strongly simulated at
all. However, if we are only interested in the MPNN achieving the same expressivity as the GNN
with non-standard message passing after a sufficient number of layers, it is possible to implement
all three constructions with an MPNN. We call this weak simulation: a message passing algorithm
can be weakly simulated if there exists a non-negative integer ζ such that an MPNN together with
a graph transformation can achieve the same expressivity as the message passing algorithm in one
iteration after every ζ iterations of message passing. We show that Message Passing Simplicial
Networks [Bodnar et al., 2021b], CW Networks [Bodnar et al., 2021a], DSS [Bevilacqua et al., 2021],
and K-hop message passing [Feng et al., 2022] can be weakly simulated. Finally, we evaluate a
representative set of graph transformation empirically. Our graph transformations lead to competitive
performance compared to the simulated algorithms and often lead to more accurate predictions.

Main Contributions. We introduce the concept of strong and weak simulation (Section 3) of message
passing. This generalizes existing ideas behind the implementation of several GNNs [Morris et al.,
2019, 2020, 2022, Qian et al., 2022]. We provide an automated way of proving that a GNN can be
simulated and deriving the necessary graph transformations. We prove that there exist architectures
that cannot be strongly simulated (Section 4) but only weakly simulated (Section 5). Our empirical
evaluation (Section 6) demonstrates that simulation achieves competitive performance.
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2 Background

A graph G is a triple G = (V,E, F ) consisting of a set of vertices V , a set of directed edges
E ⊆ {(x, y) | x, y ∈ V, x ̸= y}, and a function F that assigns a feature to every vertex and edge. For
a set of objects U and integer l > 0, we denote by 2U = {X | X ⊆ U} the powerset of U , i.e., the set
of all subsets of U , and by U l = {(u1, . . . , ul) | u1, . . . , ul ∈ U} the set of all tuples of length l built
from U . In this paper we work on a generalization of graphs we call relational structures that use a
generalized notion of neighborhood. For a set of objects U , we call any function N : U → 2(U

ℓ) a
neighborhood function. A neighborhood function assigns to every object a set of tuples of length
ℓ which we call its neighbors. We use ℓ(N ) to denote the length of these tuples. We call any tuple
(w, u) a directed edge where u ∈ U and w ∈ N (u) (the in-neighbours) with ℓ(N ) = 1. For an
integer k > 0, we use [[k]] to denote the set {1, . . . , k} and {{·}} to denote a multiset.
Definition 2.1. (Relational Structure) Let k ≥ 0 be an integer, U be a set of objects, and let
N1, . . . ,Nk be neighborhood functions over U . Furthermore, let F be a function such that F (u)
assigns a feature to every u ∈ U and F i((x, u)) assigns a feature to every directed edge with i ∈ [[k]]
and x ∈ Ni(u) with ℓ(Ni) = 1. Then, the tuple X = (U,N1, . . .Nk, F ) is a relational structure.

→ →

Figure 1: Left: graph. Center: regular cell complex
built from the graph through a graph-to-structure en-
coding [Bodnar et al., 2021a]. Vertices correspond
to 0-dimensional cells, edges to 1-dimensional cells
( yellow ) and induced cycles to 2-dimensional cells

( blue ). Right: a graph created by structure-to-graph
encoding the regular cell complex to a graph. Vertices
corresponds to cells as indicated by color.

If it is clear from context from which neigh-
borhood Ni an edge (x, u) is, we will sim-
ply write its features as F ((x, u)) instead
of F i((x, u)). If the number of neighbor-
hoods is important we call such a structure
a k-relational structure. Note, that a graph
G = (V,E, F ) is a special case of a 1-
relational structure with only one neighbor-
hood NG(v) = {w | (w, v) ∈ EG}, i.e.,
G = (V,NG, F ). For graphs G,H we
refer to their vertices, edges, and features
by adding the graph as a subscript. We
say that G,H are isomorphic if there ex-
ists an edge and feature preserving bijec-
tive function α : VG → VH between
their vertices: for every vertex v ∈ VG
it holds that FG(v) = FH(α(v)) and for
every x, y ∈ VG, it holds that (x, y) ∈
EG if and only if (α(x), α(y)) ∈ EH
with FG((x, y)) = FH((α(x), α(y))). No
polynomial time algorithm is known which
decides whether two graphs are isomorphic [Babai, 2016]. However, heuristics such as those based
on colorings and color update functions allow us to distinguish many pairs of non-isomorphic graphs.
Furthermore, they allow us to model the ability of GNNs to distinguish graphs [Xu et al., 2019, Morris
et al., 2019]. For a relational structure over a set of objects U , a coloring is a function c : U → χ
where χ is a known set of colors. Suppose we have two disjoint sets U and U ′ with two colorings c
over U and c′ over U ′. Then, we define the joint coloring c ∪ c′ for every x ∈ (U ∪ U ′) as c(x) if
x ∈ U and c′(x) otherwise. For two colorings c and d defined over the same set of objects U , we say
that c refines d if for every pair of objects u, r ∈ U it holds that cu = cr ⇒ du = dr. Let U,U ′ be
sets of objects with U ′ ⊆ U . Let c be a coloring of U and d a coloring of U ′. Then, c refines d if for
every pair of objects u, r ∈ U ′ it holds that cu = cr ⇒ du = dr.
Definition 2.2. (Color Update Function) Let k ≥ 1 be an integer and X a set of k-relational structures.
A color update function takes any X = (U,N1, . . . ,Nk, F ) ∈ X , a coloring c of U , and a u ∈ U
and outputs a new color ϕ(u,X, c) of u. We denote the new coloring of the whole set U as ϕ(X, c).

We assume color update functions ϕ to be computable and denote the time to compute ϕ with respect
to an input U as τϕ(|U |). Color update functions are used to iteratively update an initial coloring c0

such that ct+1 = ϕ(X, ct) for every t ≥ 0. We denote t applications of ϕ to compute ct as ϕt(X, c0).
We also say that ϕ0(X, c0) = c0. The initial coloring is often given by the features c0 = F |U ,
meaning the color c0 is given by the domain restriction of F to the set of objects U . Then, the color
of each object u ∈ U is c0u = Fu. If we are not given features, then we use a constant coloring, i.e., a
coloring that assigns the same (arbitrary) color to each object. Color update functions can sometimes
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be used to determine whether two graphs are isomorphic. For this, a coloring is computed for both
graphs. If at some iteration the colorings of the two graphs are different this implies that the graphs
are not isomorphic. If the colorings are never different, then the result of this method is inconclusive.
A common color update function is the Weisfeiler-Leman algorithm (WL). In this work we define
WL to use edge features.

Definition 2.3. (WL) The Weisfeiler-Leman algorithm (WL) is a color update function operating on
a graph G = (V,E, F ) defined as WL(v,G, c) = HASH (cv, {{(cu, F ((u, v)) | u ∈ NG(v)}}) for
v ∈ V where HASH is an injective mapping to colors.

Message passing graph neural networks (MPNNs) can be seen as a generalization of WL where
the colors correspond to learned node embeddings and each layer of the MPNN corresponds to
a color update function. The color update function in layer t ≥ 1 of an MPNN is defined as
ϕ(v,G, c) = COMBt

(
cv,AGGt ({{(cx, F ((x, v)) | x ∈ NG(v)}})

)
where COMBt and AGGt are

learnable functions, e.g., multi-layer perceptrons (MLPs).1 We refer to WL and MPNNs as standard
message passing. It has been shown that MPNNs are at most as expressive as WL, i.e., it can only
distinguish non-isomorphic graphs that WL can distinguish. As there exist pairs of graphs that WL
cannot distinguish this means that there exists graphs that MPNNs cannot distinguish either [Xu et al.,
2019, Morris et al., 2019]. A common approach to improve the expressivity of standard message
passing is to apply a function T that transforms graphs to other relational structures. We call this
mapping T from a graph to a relational structure a graph-to-structure encoding. An example of
an graph-to-structure encoding can be seen in Figure 1. This mapping T is combined with a color
update function ϕ tailored to this new structure. We use non-standard message passing to refer to
color update functions that operate on relational structures that are not graphs. Some examples of
non-standard message passing are k-WL [Immerman and Lander, 1990] which operates on k-tuples
of nodes and CW Networks [Bodnar et al., 2021a] which operate on regular cell complexes.

3 Strong Simulation

We show that standard message passing together with graph transformations can achieve the same
expressivity as many algorithms with non-standard message passing. As standard message passing
operates on graphs we need to map relational structures to graphs. Note that merely guaranteeing
at least the same expressivity as a color update function ϕ in each iteration can easily be achieved
by, e.g., using the final coloring of ϕ as node features. To avoid such a trivial solution, we enforce
straightforward restrictions on the generated graphs.

Definition 3.1. (Structure-to-graph encoding) Let R be a mapping R : X 7→ G that maps relational
structures X = (U,N1, . . . ,Nk, F ) to graphs G = (V,E, F ′). We call R a structure-to-graph
encoding if it can be written as R(X) = Rfeat(Rgraph(U,N1, . . . ,Nk), F ) such that

1. Rgraph maps a relational structure without features to a graph G = (V,E, Fgraph).

2. Rfeat((V,E, Fgraph), F ) = (V,E, F ′) creates the features F ′ by concatenating each (node
or edge) feature from Fgraph with the corresponding feature from F if it exists.

As a graph-to-structure encoding T maps graphs to structures and a structure-to-graph encoding R
maps structures to graphs, this means that R ◦T maps graphs to graphs. We call such functions R ◦T
graph transformations, an example can be seen in Figure 1. As we define relational structures over
sets of objects, this implies that R is permutation equivariant with respect to a permutation of the
objects. Furthermore, since R is a function it is also deterministic. Next, we define strong simulation
of color update functions.

Definition 3.2. (Strong Simulation) Let ϕ be a color update function. Let R be a structure-to-graph
encoding that runs in O(τϕ(|U |)) for every relational structure with object set U and creates a
graph with vertex set V ⊇ U . We consider two arbitrary relational structures from the domain of
ϕ, say X = (U,N1, . . . ,Nk, F ) and X ′ = (U ′,N ′

1, . . . ,N ′
k, F

′). Let (V1, E1, F1) = R(X) and
(V2, E2, F2) = R(X ′). We say ϕ can be strongly simulated under R if for every t ≥ 0 it holds that
WLt(R(X), F1|V1) ∪ WLt(R(X ′), F2|V2) refines ϕt(X,F |U ) ∪ ϕt(X ′, F ′|U ′).

1Here, we define MPNNs to use edge features which practically is almost always the case.
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Intuitively, a color update function ϕ can be strongly simulated if instead of running t iterations
of ϕ on relational structure X we can instead run WL on the graph R(X) for t iterations and
achieve at least the same expressivity in every iteration. Strong simulation is a stronger property
than expressivity: strong simulation implies being at least as expressive in every iteration whereas
expressivity usually refers only to the final coloring. This guarantees that WL on R(X) is always at
least as expressive as ϕ and not just in some iteration. There exist MPNNs that are as expressive as
WL in every iteration [Xu et al., 2019]. Thus, every layer of an MPNN can be as expressive as the
corresponding iteration of WL. Note that as long as we restrict the size of the graphs (the number of
vertices), strong simulation allows to learn a color update function ϕ, e.g., a GNN, exactly. Indeed, if
we combine each layer of an MPNN with a large enough MLP (with appropriate activation), we can
learn to map the MPNN’s embeddings to the output of ϕ. This problem of fitting a finite number of
points exactly is well studied and known as memorization, see e.g. Yun et al. [2019] for an overview.

To strongly simulate a large number of GNNs we introduce a class of color update functions we call
augmented message passing (AMP). AMP is designed to capture many GNNs and we prove that
AMP can be strongly simulated. AMP makes use of a building block we call atoms. Atoms model
operations of color update functions such as colors, constants, or features that are focused on single
vertices or pairs of vertices. AMP extends atoms with more general operations that are not necessarily
focused on a single vertex such as function applications or aggregations over neighborhoods.

Definition 3.3. (Atom). Let X = (U,N1, . . . ,Nk, F ) be a relational structure. Let v, w ∈ U and
cv, cw be the colors of v and w. Then, an atom ρ(v, cv, w, cw) is a function that has exactly one of
the following four forms:

(A1) ρ(v, cv, w, cw) = k(v, w) for a constant k(v, w) that only depends on v and w but not on
the colors,

(A2) ρ(v, cv, w, cw) ∈ {F (v), F (w), F ((w, v))} where F ((w, v)) is only part of this set if the
edge (w, v) is part of at least one neighborhood of X ,

(A3) ρ(v, cv, w, cw) ∈ {cv, cw}, or

(A4) ρ(v, cv, w, cw) = (ρ1(v, cv, w, cw), . . . , ρm(v, cv, w, cw)) with atom ρi for all i ∈ [[m]].

Definition 3.4. (Augmented Message Passing). LetX = (U,N1, . . . ,Nk, F ) be a relational structure
with ℓ(Ni) = 1 for all i ∈ [[k]]. We call a color update function ϕ augmented message passing (AMP)
if for all u ∈ U and coloring c of X , it can recursively be defined as exactly one of the following four
forms:

(S1) ϕ(u,X, c) = ρ(u, cu, u, cu) where ρ is an atom,

(S2) ϕ(u,X, c) = {{ρ(u, cu, w, cw) | w ∈ Ni(u)}} where ρ is any atom and any i ∈ [[k]],

(S3) ϕ(u,X, c) = (ϕ1(u,X, c), . . . , ϕm(u,X, c)) where all ϕ1, . . . , ϕm are AMP, or

(S4) ϕ(u,X, c) = f (ϕ′(u,X, c)) where f maps colors to colors and ϕ′ is AMP.

Having defined AMP, we next prove that AMP can be strongly simulated by providing a structure-to-
graph encoding for every color update function from AMP. Full proofs are in Appendix C.

Theorem 3.5. Augmented message passing can be strongly simulated.

Proof sketch. We define augmented message encoding (AME) which returns a structure-to-graph
encoding for every given AMP algorithm. Let ϕ be AMP that operates on a relational structure
X = (U,N1, . . . ,Nk, F ). AMEϕ(X) returns a graph G with vertex set VG = U . Any constant value
atom (A1) in ϕ and any feature in F is stored in the vertex or edge features of G. If messages are
passed between two objects then the graph will have an edge between the corresponding vertices with
an edge feature encoding the neighborhood. We prove that every AMP ϕ can be strongly simulated
under the structure-to-graph encoding AMEϕ.

AMP does not only contain variants of WL, but also GNN layers such as the layer of GSN [Bouritsas
et al., 2022]. We say a GNN can be strongly simulated, if all of its layers correspond to color update
functions that can be strongly simulated by the same structure-to-graph encoding R. This means
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Figure 2: Left: nested aggregations. Right: non-
pairwise message passing of 2-tuples. In both
examples the state of two vertices gets com-
bined and sent to the blue vertex. Note that for
non-pairwise aggregations we have an order on
the nodes in a tuple whereas for nested aggrega-
tions the aggregated vertices are unordered.

1 2

2 1

Figure 3: WL on the graph on the left (right)
side weakly simulates the nested aggregations
(non-pairwise message passing) from Figure 2
by adding additional vertices ( yellow ). This
shows how weak simulation of both construc-
tions is done in a similar way with the difference
being that for non-pairwise aggregation we en-
code the order in the tuples on the edges.

that for every relational structure X and every t ≥ 0, WL achieves at least the same expressivity in
iteration t onR(X) as layer t of the GNN onX . We prove that this is always the case for color update
functions that only differ in their use of function applications (S4) (see Appendix C.3). Different
layers of a GNN commonly only differ by function applications (S4) as these correspond to learned
functions. As many GNN layers use AMP, we can state one of the main results of this paper.
Corollary 3.6. The following GNNs and variants of WL can be strongly simulated:

1. V VC-GNN [Sato et al., 2019] 7. k-OSWL / OSAN [Qian et al., 2022]
2. k-WL / GNN [Morris et al., 2019] 8. Mk GNN [Papp and Wattenhofer, 2022]
3. δ-k-(L)WL / (L)GNN [Morris et al., 2020] 9. GMP [Wijesinghe and Wang, 2022]
5. GSN-e and GSN-v [Bouritsas et al., 2022] 10. Shortest Path Networks [Abboud et al., 2022]
4. (k, s)-LWL / SpeqNet [Morris et al., 2022] 11. Generalized Distance WL [Zhang et al., 2023]
6. DS-WL / GNN [Bevilacqua et al., 2021]

Proof sketch. The proof consists of showing that the color update function underlying the non-
standard message passing is AMP. By Theorem 3.5 this implies that the color update function can be
simulated.

Runtime Complexity. AME creates a vertex for every object and edges for every pair of objects
that exchange messages. This implies that, creating the encoding requires the same amount of time
as one iteration of AMP. Furthermore, classical message passing on the transformed graphs passes
the same number of messages as AMP in every iteration. Thus, the overall runtime complexity of
strongly simulating AMP is equivalent to that of running AMP itself.

Example. We illustrate AMP on the example of WL with triangle counts and without edge features.
For every v ∈ VG, we denote by △v the number of triangles in the graph containing v. We define the
color update function of WL with triangle counts: ϕ(v,G, c) = (cv, {{(cu,△u) | u ∈ NG(v)}}) . We
show that WL with triangle counts is AMP. Consider the tuple (cu,△u), this consists of a color cu
atom (A3) with a constant △u atom (A1) combined into a tuple atom (A4). Thus, (cu,△u) is an atom
which means that {{(cu,△u) | u ∈ NG(v)}} is AMP that aggregates this atom over the neighborhood
NG (S2). Finally, this AMP is combined with the color atom cv (A1) and combined into a tuple AMP
(S3). Thus, the color update function of WL with triangle counts performs AMP which implies that it
can be strongly simulated. For this it suffices to attach △v to the features of every vertex v ∈ V .

4 Limits of Strong Simulation

To show the limits of strong simulation we identify three constructions that either cannot be strongly
simulated or cannot be strongly simulated efficiently: time dependent neighborhoods, nested ag-

6



gregations, and non-pairwise message passing. These constructions have previously been used by
Deac et al. [2022], Bevilacqua et al. [2021], Feng et al. [2022], Bodnar et al. [2021b], and Bodnar
et al. [2021a]. We begin with time dependent neighborhoods which are used in the alternating
message passing of Deac et al. [2022]. We illustrate them via the following example. Consider a
color update function that updates the color of a vertex a based on the color of b in iteration t but
not in iteration t′. As it depends on the iteration whether a and b are neighbors, we call this time
dependent neighborhoods. To model this in a graph, we require an edge between a and b in iteration
t or we would lose expressivity whenever the color of b is important for the coloring of a. However,
this means that the color of a will also be updated with the color of b in iteration t′. Thus, we can
strongly simulate time dependent neighborhoods but we cannot do so efficiently (i.e., with the same
number of sent messages), as we might need to send many more messages.

Nested aggregations are a form of color update functions used by Bevilacqua et al. [2021] and Feng
et al. [2022]. Consider the following color update function from DSS-WL [Bevilacqua et al., 2021]
ϕ(v,X, c) = (cv, {{{{cy | y ∈ N (x)}} | x ∈ N ′(v)}}) (see Figure 2 left).2 We call this nesting of
two aggregations ({{c· | · ∈ N (·)}}) a nested aggregation. To strongly simulate this we need an edge
from every vertex of

⋃
x∈N ′(v) N (x) to v. Furthermore, we need a way to group vertices N (x)

together for every x ∈ N ′(v). We prove that this is impossible with a structure-to-graph encoding
and thus that nested-aggregations cannot be strongly simulated.

The third construction that we cannot strongly simulate is non-pairwise message passing which has
been used by Bodnar et al. [2021b,a]. Non-pairwise message passing refers to aggregating colors
as ordered tuples over a neighborhood N with ℓ(N ) > 1. As an example, suppose we want to
update the color of vertex v based on the ordered tuple of colors (ca, cb) of vertices a and b (see
Figure 2 right). This is different from the aggregation by WL or AMP as those aggregations are
unordered, i.e., {{ca, cb}}. An issue arises when multiple such ordered tuples have to be used to update
a color, as there is no way this can be done within the concept of strong simulation. Similar to nested
aggregations, non-pairwise message passing cannot be strongly simulated. Note that non-pairwise
message passing is a special case of nested-aggregations where an additional order on the aggregated
objects is given as is demonstrated in Figure 2.

Theorem 4.1. Nested aggregations and non-pairwise message passing cannot be strongly simulated.

Proof sketch. To prove this (in Appendix D), we construct two relational structures that can be distin-
guished with nested aggregations in one iteration. These two structures have the same adjacencies
but different features. We prove that no structure-to-graph encoding can create two graphs that one
iteration of WL can distinguish. By the definition of graph-to-structure encoding, it is not possible for
the edges of the resulting graph to depend on the original features. Thus, the two relational structure
will lead to two graphs that have the same edges. We prove that WL cannot distinguish these two
graphs in one iteration. The proof for non-pairwise message passing works similarly.

5 Weak Simulation

We have shown in the previous section that not all color update functions can be strongly simulated.
In this section, we introduce the more general concept of weak simulation and show that color update
functions can be weakly simulated that are impossible to strongly simulate. Weak simulation differs
from strong simulation by requiring only the same expressivity after certain number of iterations
instead of every iteration.

Definition 5.1. (Weak Simulation) Let ϕ be a color update function. Let R be a structure-to-graph
encoding that runs in O(τϕ(|U |)) for every relational structure with object set U and creates a
graph with vertex set V ⊇ U . We consider two arbitrary relational structures from the domain of
ϕ, say X = (U,N1, . . . ,Nk, F ) and X ′ = (U ′,N ′

1, . . . ,N ′
k, F

′). Let (V1, E1, F1) = R(X) and
(V2, E2, F2) = R(X ′). We say ϕ can be weakly simulated under R with simulation factor ζ ≥ 1

if for every t ≥ 0 it holds that WLζ·t(R(X), F1|V1
) ∪ WLζ·t(R(X ′), F2|V2

) refines ϕt(X,F |U ) ∪
ϕt(X ′, F ′|U ′).

2We have altered the notation of DSS-WL from the original paper for the sake of simplicity.
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The simulation factor ζ measures the relative slowdown of weak simulation with respect to the
original GNN. It follows that strong simulation is a special case of weak simulation as every strongly
simulatable algorithm is weakly simulatable with a simulation factor of 1. Next, we prove that it
is possible to weakly simulate non-pairwise aggregations and nested aggregations. This shows that
weak simulation contains a larger set of color update functions than strong simulation. The full proof
can be found in Appendix E.
Theorem 5.2. Nested aggregations and non-pairwise message passing can be weakly simulated with
simulation factor 2.

Proof sketch. For weak simulation of nested aggregations consider the following construction. Sup-
pose a nested aggregation

{{{{
cty | y ∈ N (x)

}}
| x ∈ N (v)

}}
. For every x ∈ N (v) we create

incoming edges from N (x) and an outgoing edge (x, v) (see Figure 3 left). This allows for weak
simulation with a simulation factor of 2. Non-pairwise message passing can be weakly simulated
in a similar way. Suppose we intend to update the color of vertex v based on the ordered tuple of
colors (ca, cb) of vertices a and b. Then, we create a vertex x and an edge (x, v) for this message.
Furthermore, we create an edge (a, x) labeled with 1 to indicate that it is the first element in the
tuple and an edge (b, x) labeled with 2 (see Figure 3 right). This construction weakly simulates the
non-pairwise message passing with simulation factor 2.

As a consequence, we can weakly simulate the following algorithms.
Corollary 5.3. The following GNNs and variants of WL can be weakly simulated:

1. Message Passing Simplicial Networks [Bodnar et al., 2021b]
2. CW Networks [Bodnar et al., 2021a]
3. DSS [Bevilacqua et al., 2021]
4. K-hop message passing and KP-GNNs [Feng et al., 2022]

Discussion. It is possible to design graph transformations that result in smaller graphs, enabling
more efficient weak simulation than the transformations automatically following from Theorem 5.2.
We demonstrate that this is possible for all algorithms from Corollary 5.3. For Message Passing
Simplicial Networks and CW Networks it is possible to construct graphs that require no additional
vertices for weak simulation (see Appendix F.1). Similarly, it is possible to weakly simulate DSS
without creating a large number of additional edges by adding a second copy of the original graph if
we accept increasing the simulation factor to 3 as a trade-off (see Appendix F.2). Interestingly, K-hop
message passing and KP-GNNs induce an additional order on the message passing which even allows
for efficient strong simulation (see Appendix F.3). We did not find any architectures where weak
simulation led to large increases in time and space complexity. However, in general, we cannot rule
out the possibility of architectures that exhibit such an increase. This indicates the possibility for
more powerful non-standard message passing, opening a promising direction for future work.

6 Experiments

We have shown many cases in which graph transformation based methods achieve the same expres-
sivity as non-standard message passing. In this section, we empirically investigate whether MPNNs
together with graph transformations can also achieve similar predictive performance as the simulated
GNNs with non-standard message passing. We strongly simulate DS [Bevilacqua et al., 2021], weakly
simulate DSS [Bevilacqua et al., 2021] and weakly simulate CW Networks (CWN) [Bodnar et al.,
2021a], as representative approaches. For a non-standard message passing algorithm, we denote the
corresponding graph transformation with a bar, e.g., DSS. The code for our experiments can be found
at https://github.com/ocatias/GNN-Simulation.

Models. With GIN [Xu et al., 2019] and GCN [Kipf and Welling, 2017] we use two of the most
common MPNNs as baselines. We combine these MPNNs with the graph transformations DS, DSS
and CWN. DS, DS, DSS, and DSS require a policy that maps a graph to subgraphs, for this we
chose the common 3-egonets policy that extracts the induced 3-hop neighborhood for each node
[Bevilacqua et al., 2021]. We chose this policy as it creates only small subgraphs and Bevilacqua
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Table 1: Predictive Performance of different GNNs on 10 different datasets. BEATS MPNN is the
percentage of datasets on which the model beats the corresponding MPNN (either GIN or GCN, as
noted in the model name). BEATS NSMP is the percentage of datasets where the graph transformation
based model beats the corresponding non-standard message passing model. BEST MODEL is the
percentage of datasets where this model achieves the best results among all models.

BEATS
MPNN

BEATS
NSMP

BEST
MODEL

GIN - - 0%
GCN - - 0%
DS (GIN) 60% - 10%
DS + GIN 60% 60% 0%
DS + GCN 70% 30% 0%
DSS (GIN) 70% - 20%
DSS + GIN 70% 60% 30%
DSS + GCN 70% 30% 10%
CWN 60% - 20%
CWN + GIN 60% 50% 0%
CWN + GCN 50% 30% 10%

et al. [2021] reported good results for it. More details on DSS can be found in Appendix F.2. For
CWN and CWN we construct cells as described by Bodnar et al. [2021a]. More details on CWN can
be found in Appendix G and F.1. We apply the same training and evaluation procedure to all GNNs.

Datasets. Due to the large number of combination of models and graph transformations, we focus
on medium size datasets. To experimentally investigate how the graph transformations increase
expressivity, we perform an initial investigation with GIN on the synthetic CSL dataset [Murphy et al.,
2019, Dwivedi et al., 2023]. For real world prediction tasks, we use all real world datasets with less
than 105 graphs that provide a train, validation, and test split used in Bodnar et al. [2021a], Bevilacqua
et al. [2021]: ZINC [Gómez-Bombarelli et al., 2018, Sterling and Irwin, 2015], ogbg-molhiv and
ogbg-moltox21 [Hu et al., 2020]. Additionally, we add seven small molecule datasests from OGB
[Hu et al., 2020]. In total, we evaluate on 10 real-life datasets.3

Table 2: Accuracy on CSL.
Bold results outperform GIN.

MODEL
CSL
ACCURACY

GIN 0.1± 0.0
CWN 1.0± 0.0
CWN + GIN 1.0± 0.0
DSS 1.0± 0.0
DSS + GIN 1.0± 0.0
DS 1.0± 0.0
DS + GIN 1.0± 0.0

Setup. For real-life datasets we combine all baseline models (GCN,
GIN) with all graph transformations (DS, DSS, CWN) and tune
hyperparameters individually (including CWN, DS and DSS; see
Appendix H). We also measure the preprocessing and training speeds
for different models (details and speed results are in Appendix H.3).

Results. Table 2 shows the results on CSL. GIN achieves 10%
accuracy whereas all other methods achieve a perfect accuracy. This
confirms that just like non-standard message passing, MPNNs with
graph transformations have superior expressivity compared to GIN.
Table 1 summarizes the results on all real life datasets. Indeed,
MPNNs with graph transformations achieve the best result on half of
them. Just like non-standard message passing, MPNNs with graph
transformations outperform MPNNs in the majority of experiments.
Notably, graph transformations combined with GIN outperform non-
standard message passing in more than half of the experiments. This shows that simulated networks
not only have provably at least the same expressivity but also perform surprisingly well in practice.

3We use the following datasets: ZINC with 12k nodes, ogbg-molhiv, ogbg-moltox21,
ogbg-molesol, ogbg-molbace, ogbg-molclintox, ogbg-molbbbp, ogbg-molsider, ogbg-moltoxcast,
and ogbg-mollipo.
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7 Discussion and Conclusion

Discussion. The purpose of simulating a GNN is to allow an MPNN to learn similar embeddings
of graphs as the GNN. We expect such embeddings to model the similarity of graphs in a more
fine-grained way than just distinguishing graphs. Thus, we have to avoid trivial solutions: any MPNN
can be made as expressive as any other GNN when the output of the GNN is attached to the input of
the MPNN. In fact, it is even possible to make an MPNN maximally expressive by precomputing the
isomorphism class of the graph, e.g., a number uniquely encoding whether two graphs are isomorphic,
and inputting it into the MPNN. However, such techniques defeat the purpose of learning a graph
representation in the first place and potentially require a super-polynomial runtime [Babai, 2016].
To avoid such scenarios, we introduce two requirements for weak and strong simulation: (1) the
features of the resulting graph depend on the original features solely by concatenation and (2) the
transformation must operate in linear time relative to the simulated color update function. These two
constraints render it impossible to precompute the colors generated by the simulated method for a
non-constant number of iterations and prohibit the computation of graph isomorphism classes.

Implications. Our work has implications on (1) the theory of GNNs, (2) the design of new
GNNs, and (3) the implementation GNNs with graph transformations. For (1): simulation allows to
investigate the expressivity of different GNNs through a unified lens by analyzing the corresponding
graph transformation. It should be possible to obtain VC bounds for any weakly simulatable GNN by
using the results from Morris et al. [2023]. Similarly, we believe that it is possible to use Geerts and
Reutter [2022] to get expressivity upper-bounds in term of the k-WL test for any weakly simulatable
GNN. For (2): our theorems indicate that nested aggregations and non-pairwise message passing
cannot be strongly simulated and are thus fundamentally different from the message passing paradigm.
Thus, to build GNNs that go beyond MPNNs in expressivity it seems promising to investigate such
constructions. For (3): instead of implementing a GNN with non-standard message passing, our
theorems imply it can be implemented as a graph transformation together with an MPNN. This makes
it easier to implement GNNs as of-the-shelf MPNNs can be used and makes the resulting method
agnostic from the deep learning framework as the graph transformation does most of the heavy lifting.

Conclusion. We introduced weak and strong simulation of non-standard message passing. Simu-
lation allows an MPNN together with a graph transformation to obtain the same expressivity every
ζ ≥ 1 layers (weak simulation) or in every layer (strong simulation) as GNNs with non-standard mes-
sage passing. We have proposed a straightforward way of proving that an algorithm can be simulated
and to generate the corresponding graph transformations. This generalizes previous ideas [Otto, 1997,
Morris et al., 2019, 2020, 2022, Qian et al., 2022] and makes simulating GNNs accessible to anyone
who intends to build novel GNNs. In total, we have shown that 15 GNNs can be simulated. We chose
these 15 models to showcase the variety of GNNs that fall under augmented message passing and
expect many more GNNs to be simulatable as well. In future research, we will investigate the use of
simulation to analyze aspects of GNNs such as generalization, oversmoothing, and oversquashing.
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Fund (WWTF) project ICT22-059. The authors would like to thank the reviewers for the feedback.
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P. Veličković. Message passing all the way up. In ICLR Workshop on Geometrical and Topological
Representation Learning, 2022.

A. Wijesinghe and Q. Wang. A new perspective on ”how graph neural networks go beyond Weisfeiler-
Lehman?”. In ICLR, 2022.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In ICLR, 2019.

C. Yun, S. Sra, and A. Jadbabaie. Small ReLU networks are powerful memorizers: a tight analysis of
memorization capacity. NeurIPS, 2019.

B. Zhang, S. Luo, L. Wang, and D. He. Rethinking the expressive power of GNNs via graph
biconnectivity. In ICLR, 2023.

12



A Related Work: Expressivity of GNNs

In this section, we talk about research on the expressivity of GNNs and how it relates to our paper.
Xu et al. [2019] and Morris et al. [2019] proved that MPNNs have limited expressivity. This lead to
the development of new GNNs that have higher expressivity than MPNNs. We distinguish between
GNNs that perform non-standard message passing and GNNs that use an MPNN on a transformed
graph. We begin with approaches that correspond to MPNNs on a transformed graph. A common
approach for this adds additional features to the graph. It has been proven that adding random features
to vertices improves the expressivity of GNNs [Abboud et al., 2021, Dasoulas et al., 2020, Sato
et al., 2021] which allows them to learn every function defined on a graph and thus gives them
maximum expressivity. However, to do this they sacrifice determinism, and permutation invariance
/ equivariance. Some permutation equivariant approaches extend the graph features by counting
patterns such as Barceló et al. [2021] which extend the MPNN with rooted homomorphism counts
of a set of patterns. All approaches that consist of deterministically adding additional features to
vertices and edges in a permutation equivariant way can be trivially strongly simulated and belong to
augmented message passing. Graph Structural Networks (GSN-e and GSN-v; Bouritsas et al. [2022])
introduce a new graph convolution layer which extends messages with subgraph isomorphism counts.
This cannot be directly seen as transforming graphs. However, it is very similar to adding these
subgraph isomorphism counts to the vertex features and thus to an MPNN operating on a transformed
graph.

Next, we consider approaches that use non-standard message passing. Such approaches often
operate on different structures such as (1) k-tuples of nodes, (2) topological objects such as simplical
complexes or regular cell complexes, and (3) subgraphs. Type (1) passes messages between k-
tuples of nodes. Higher dimensional WL (k-WL) is a generalization of WL and forms a sequence
of algorithms that are stronger than WL [Immerman and Lander, 1990]. Increasing k increases
expressivity at the cost of exponentially increasing the runtime. Morris et al. [2019] introduced
k-dimensional GNNs which extend the concept of k-WL to GNNs. For every k there exist k-GNNs
that have equal expressivity as k-WL. However, as k increases, the runtime of k-GNNs grows
exponentially. To combat this, Morris et al. [2020] introduced (local) δ-k dimensional WL and
GNNs; Morris et al. [2022] introduce (k, s)-LWL and (k, s)-SpeqNets. These methods make use
of the sparsity of the graph to reduce computation time. Type (2) operates on topological structures
such as simplical complexes or regular cell complexes. Three prominent examples of this idea
are Simplical Networks [Bodnar et al., 2021b], CW Networks [Bodnar et al., 2021a] and message-
passing combinatorial complex neural networks [Hajij et al., 2023]. Other algorithms that work on
topological structures are Simplical Neural Networks [Ebli et al., 2020], Dist2Cycle [Keros et al.,
2022], and Cell Complex Neural Networks [Hajij et al., 2020]. Type (3) decomposes the graph into
subgraphs and then performs message passing on these subgraphs. Examples of these algorithms are
Automorphism-based Neural Networks [Thiede et al., 2021], Subgraph GNNs [Frasca et al., 2022],
and Equivariant Subgraph Aggregation Networks (ESAN; Bevilacqua et al. [2021]). ESAN uses a
policy to transform a graph into a set of subgraphs and then processes them either separately (DS-WL
/ GNN) or in a way that allows information transfer between the subgraphs (DSS-WL / GNN). The
GNN Mk [Papp and Wattenhofer, 2022] separately processes subgraphs consisting of the entire
original graph with k nodes that are marked. Ordered subgraph aggregation networks (k-OSAN)
[Qian et al., 2022] operate on k-ordered vertex subgraphs, k-OSAN is upper bounded in expressivity
by (k+1)-WL and incomparable to k-WL. Frasca et al. [2022] proves that GNNs based on subgraphs
are upper bounded by 3-WL. Finally, we list other GNNs with non-standard message passing that we
can simulate: V Vc-GNNs [Sato et al., 2019] have been shown to be stronger than standard message
passing GNNs in approximating algorithmic problems such as minimum dominating set. Wijesinghe
and Wang [2022] introduce a generalized message passing framework (GMP) which allows them
to inject local structure into the aggregation scheme. K-hop message passing [Feng et al., 2022]
extend MPNNs from 1-hop neighborhoods to K-hop neighborhoods. KP-GNNs [Feng et al., 2022]
extends K-hop message passing by including additional information about the subgraphs induced
by the K-hop neighborhood. In summary, there exist many GNNs that are more expressive than
MPNNs. Despite the conceptual differences between these GNNs we show that many of them are
some form of augmented message passing and thus can be simulated.
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B Related Work: Simulating Message Passing

We investigate previous approaches to simulating GNNs with MPNNs on transformed graphs by ana-
lyzing papers and source code of different architectures. We begin with algorithms from Corollary 3.6.
GSN-e / GSN-v [Bouritsas et al., 2022] and DS-WL / DS-GN [Bevilacqua et al., 2021] were not
implemented via graph transformations. In practice however, there is little difference between their
implementation of DS-WL / DS-GN and our implementation with graph transformations: Bevilacqua
et al. [2021] implement subgraphs as separate graphs while we implement them as separate subgraphs
of the same graphs. For VVC -GNNs [Sato et al., 2019], we could find no indication that they were im-
plemented with graph transformations. Mk-GNNs [Papp and Wattenhofer, 2022] is a purely theoretic
work and has not been implemented by the corresponding authors. For GMP [Wijesinghe and Wang,
2022], we are not sure if their code can count as being implemented as a graph transformation as
they adapt message passing layers to use their structural information. However, for this they change
the definition of the layers whereas we only change the graphs. Morris et al. [2019] introduced
k-GNNs and implemented them with MPNNs on a transformed graph. Morris et al. [2019] even
call this simulation and give a short proof that WL can simulate k-WL on transformed graphs. This
corresponds to our concept of strong simulation, and this property of k-WL was already noticed by
Otto [1997] [Grohe et al., 2021].

For δ-k-(L)GNN, Morris et al. [2020] write that they implemented δ-k-(L)GNNs

[ . . . ] using PYTORCH GEOMETRIC, using a Python-wrapped C++11 prepro-
cessing routine to compute the computational graphs for the higher-order GNN.
We used the GIN-ϵ layer to express fW1

mrg and fW2
aggr of [ . . . ].

An inspection of their code reveals that they create a similar graph structure as we propose in the
proof of Corollary 3.6. For δ-k-GNN they create a graph where the vertices represent the k-tuples.
They add an edge between two nodes if the tuples are j-neighbors, with j ∈ [[k]]. Just like in our
graph transformation the edge type encodes whether the tuples are local or global j-neighbors and the
neighborhood j. For (k, s)-SpeqNet (or (k, s)-LWL), Morris et al. [2022] write that (k, s)-SpeqNets
were implemented

[ . . . ] using PyTorch Geometric, using a Python-wrapped C++11 preprocessing
routine to compute the computational graphs for the higher-order GNNs. We used
the GIN-ϵ layer to express fW1

mrg and fW2
aggr of [ . . . ].

Similar to our graph transformation from Corollary 3.6, they create a new graph where each node
corresponds to an ordered subgraph v ∈ V kG of size k with at most s connected components in this
subgraph. Just like in our graph transformation, edges are added between nodes if their tuples only
differ at position j ∈ [[k]] and the nodes at position j are neighbors. Additionally, the edge features in
the transformed graph encode the edge features from the original graph in a way that allows them to
encode j. Thus, their graph transformation follows ours. Both Morris et al. [2020] and Morris et al.
[2022] reference Morris et al. [2019] to argue that there exist instantiations powerful enough for fW1

mrg

and fW2
aggr. For k-OSWL / OSAN, Qian et al. [2022] state in their paper

[ . . . ] the computation of k-OSWL’s coloring relies on the simple and easy-to-
implement 1-WL.

It follows that the authors of these four papers were aware of simulation. However, to the best of our
knowledge they have never formalized or fully explained their idea. In contrast, we fully formalize the
idea of simulation and provide proofs that show that these graph transformations provably simulate
the corresponding GNNs. Additionally, we provide recipes for obtaining graph transformations for
augmented message passing algorithms.

To the best of our knowledge, so far Simplical Message Passing Networks [Bodnar et al., 2021b],
CWN [Bodnar et al., 2021a], DSS-GNN / WL [Bevilacqua et al., 2021], K-hop message passing and
KP-GNNs [Feng et al., 2022] have not been implemented using weak simulation. However, another
topological deep learning network the combinatorial complex neural network [Hajij et al., 2023] has
been implemented based on GNNs. For this, the authors use a transformation to an augmented Hasse
graph by transforming cells to vertices and adding edges between vertices corresponding to adjacent
cells. This is similar to CWN, our proposed transformation from regular cell complexes to graph.
Specifically, Hajij et al. [2023] state the following about their implementation TopoEmbedX:
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TopoEmbedX [...] supports higher-order representation learning on cell complexes,
simplicial complexes, and CCs. [...] TopoEmbedX converts a given higher-order
domain into a subgraph of the corresponding augmented Hasse graph, and then
utilizes existing graph representation learning algorithms to compute the embedding
of elements of this subgraph.

Finally, Veličković [2022] proposes that all functions over graphs that are of interest can be computed
with message passing over a transformed graph. They call this augmented message passing which
inspired our use of this term. They discuss how to perform some particular variants of non-standard
message passing through standard message passing. This is helpful and demonstrates the wide
applicability of this approach. However, their work is intended as a positional paper and thus mostly
stays high level and does not provide sufficient formal proofs to back up their claims. Providing the
necessary proofs is non-trivial: once one understands simulation it is straightforward to apply it to a
large number of architectures and it is simple to prove simulatability for any one given architecture.
However, difficulty arises when one tries to prove this for a large number of architectures. Thus,
the difficulty is not proving simulatability but defining a framework that allows us to prove this
for many different architectures. We provide such a framework based on color update functions.
Furthermore, Veličković [2022] does not provide a formal definition of simulation (or in their
case augmented message passing). Indeed, it is trivially possible to build maximally expressive
MPNNs by precomputing the isomorphism class of the input graph. Thus, without a restriction
on the transformation, the general statement that a GNN can be implemented as an MPNN plus a
transformation is only meaningful if the transformation is in some sense close to what the GNN does.
We solve this issue through our careful definition of structure-to-graph encoding which restrict how
the transformation can access features of the structure and through the definition of weak / strong
simulation that pose a runtime restriction on the transformation.

C Proofs for Strong Simulation (Section 3)

C.1 Rewriting AMPs (Lemma C.1)

We use the following Lemma that allows us to rewrite AMPs without losing the strong simulation
property. For a function ϕ we use IM[ϕ] to denote the image of ϕ.

Lemma C.1. Let ϕ be a color update function. We are given a set of objects with neighborhood
functions from the domain of ϕ and colors. Let Γ(ϕ) be a color update functions such that there exists
an injective (bijective) mapping A between IM[ϕ] and IM[Γ[ϕ]]. Then, a coloring obtained from Γ(ϕ)
refines a coloring obtained from ϕ. Furthermore, if the mapping A is bijective the coloring from ϕ
refines the coloring from Γ(ϕ).

This lemma allows us to simplify AMPs by replacing functions (S4) with the identity function
i.e. f(ϕ) is replaced by ϕ. This transformation is bijective if f is injective. Furthermore, we can
use this to flatten tuples (A4) (S3) i.e. (. . . , (ϕ1, . . . , ϕn), . . .) is replaced by (. . . , ϕ1, . . . , ϕn, . . .).
Flattening tuples with the same structure is bijective. Thus, we can apply these transformations
without losing the simulatable property. We prove the correctness of the above lemma.

Proof. Let A be the injective mapping from the color assigned to objects from ϕ to Γ(ϕ). For
an arbitrary iteration, let πw, πp be the colors assigned to w ∈ W,p ∈ P by Γ(ϕ) and cw, cp
the colors assigned to them by ϕ. We start by showing that if there exists the required injective
mapping, then the coloring π from Γ(ϕ) refines the coloring c from ϕ. For this, we assume that ϕ can
distinguish w, p and show that this implies that Γ(ϕ) can also distinguish them. Formally, we show
cw ̸= cp ⇒ πw ̸= πp, this is the contraposition of the definition of refinement. Suppose cw ̸= cp,
then from πw = A(cw) and πp = A(cp) and the fact that A is injective follows that πw ̸= πp.

Next, we show that if A is bijective then the colorings from ϕ and Γ(ϕ) refine each other. We assume
that A is bijective. From the above argument, it then follows that the coloring from Γ(ϕ) refines the
coloring from ϕ. It remains to show that the coloring from ϕ refines that from Γ(ϕ). Similar to above,
we show that if Γ(ϕ) can distinguish w and p, then so can ϕ. Thus, we assume πw ̸= πp and show
cw ̸= cp. Using the bijectiveness of A it follows from our assumption that A−1(πw) ̸= A−1(πp) and
thus that cw ̸= cp. This concludes the proof.
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Algorithm 1 Helper algorithm for atoms
Input: atom ρ of type (A1), (A2),(A3), graph (V,E, Fgraph), object w, object q, indices i, j, l.
Output: updated graph G = (V,E, Fgraph)
if ρ is of type (A2) or (A3) then

return (V,E, Fgraph)
else ρ(w, cw, q, cq) is a constant k(w, q)

if w is q then
Fgraph(w) := ENC(Fgraph(w), i, j, l, k(w,w))

else
Fgraph((q, w)) := ENC(Fgraph((q, w)), i, j, l, k(w, q))

end if
end if
return (V,E, Fgraph)

Algorithm 2 Helper algorithm for (S2)

Input: AMP (S2) of shape
{{
ρ(w, ctw, q, c

t
q) | q ∈ Ns(w)

}}
where ρ is an atom and ℓ(Ns) = 1;

graph (V,E, Fgraph), relational structure (U,Ns) without features, indices i, j.
Output: updated graph G = (V,E, Fgraph)
for u ∈ U do

for q ∈ Ns(u) do
e := (q, u)
if e /∈ E then
E := E ∪ {e}
Fgraph(e) = empty vector

end if
Fgraph(e) := ENC(Fgraph(e), i, j, 0, s)

end for
end for
/∗ ρ has the shape (ρ1(w, cw,Ω1, cq), . . . , ρm(w, cw,Ωm, cq))

∗/
for l ∈ [[m]] do

/∗ ρl is either an (A1), (A2) or an (A3) ∗/
for u ∈ U do

for q ∈ Ns(u) do
(V,E, Fgraph) := Algorithm 1(ρl, (V,E, Fgraph), u, q, i, j, l)

end for
end for

end for
return (V,E, Fgraph)

C.2 Augmented Message Passing can be Simulated (Theorem 3.5)

We are interested in showing the following theorem.

Theorem 3.5. Augmented message passing can be strongly simulated.

To prove the above theorem we define augmented message encoding (AME) in Algorithm 4. For
this we assume a function ENC: (x, i, j, l, c) 7→ x′, that updates a feature x to x′ by attaching
the color c at the indices i, j, l. We assume that applying ENC multiple times never overwrites
information if different indices are used. For example, we can think of the feature x as a 3d-tensor
such that ENC(x, i, j, l, c) updates this vector by writing the entry c at position i, j, l. Observe, that in
Algorithm 4 it never happens that the same indices are used, thus whenever AME encodes information
in the graph, this information does not get overwritten by latter operations. We prove the theorem by
showing that AME+WL can simulate any given AMP.

Proof. (Theorem 3.5) Let ϕ be an arbitrary augmented message passing algorithm. We consider
two arbitrary relational structures from the domain of ϕ, say X = (U,N1, . . . ,Nk, F ) and X ′ =
(U ′,N ′

1, . . . ,N ′
k, F

′). Let (U,E1, F1) = R(X) and (U ′, E2, F2) = R(X ′). We prove (1) that
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Algorithm 3 Helper algorithm for AMP
Input: AMP color update function ϕ = (ϕ1, . . . , ϕn) where each individual AMP is (A1), (A2),
(A3) or (S2), graph (V,E, Fgraph), relational structure (U,N1, . . . ,Nk) without features where
ℓ(Ns) = 1 for all s ∈ [[k]], index i.
Output: updated graph G = (V,E, Fgraph)
for j ∈ [[n]] do

if ϕj is (A1), (A2) or (A3) then
for u ∈ U do
(V,E, Fgraph) := Algorithm 1(ϕj , (V,E, Fgraph), u, u, i, j, 0)

end for
else

/∗ ϕi has the shape {{ρ(w, cw, q, cq) | q ∈ Ns(w)}} where ρ is an atom and s ∈ [[k]] ∗/
(V,E, Fgraph) := Algorithm 2(ϕi, (V,E, Fgraph), (U,Ns), i, j)

end if
end for
return (V,E, Fgraph)

Algorithm 4 Augmented message encoding (AME)
Input: relational structure X = (U,N1, . . . ,Nk, F ) where ℓ(Ni) = 1 for every i ∈ [[k]], AMP
color update function ϕ.
Output: graph G = (U,E, F ′)

/∗ Rgraph
∗/

E := ∅
Fgraph := empty features
Replace function applications (S4) in ϕ by the identity function, i.e., f(ϕ) becomes ϕ.
Flatten all (A4), (S3) constructions in ϕ except the outermost, i.e., (. . . , (ϕ1, . . . , ϕn), . . .) becomes
(. . . , ϕ1, . . . , ϕn, . . .).
/∗ ϕ has the shape (ϕ1, . . . , ϕn) where each ϕi with i ∈ [[n]] is one of (A1), (A2), (A3) or (S2) ∗/
(U,E, Fgraph) := Algorithm 3(ϕ, (U,E, Fgraph), (U,N1, . . . ,Nk), 0)

/∗ Rfeat
∗/

F ′ := empty features
for u ∈ U do
F ′(u) := concat (F (u), Fgraph(u))

end for
for e ∈ E do
F ′(e) := concat (F (e), Fgraph(e))

end for
return (U,E, F ′)

AMEϕ is a structure-to-graph encoding such that R(X) runs in O(τϕ(|U |)); (2) for every t ≥ 0 the
coloring WLt(R(X), F1|U )∪WLt(R(X ′), F2|U ′) on AMEϕ(X) refines the coloring ϕt(X,F |U )∪
ϕt(X ′, F ′|U ′).

We begin by proving (1). Observe that Algorithm 4 can be split into Rgraph and Rfeat as required
by the definition of structure-to-graph encoding. Furthermore, Algorithm 4 first iterates through all
AMPs in ϕ and all possible objects that are relevant to these AMPs. Hence, Algorithm 4 runs in the
same runtime as one iteration of AMP which is in O(τϕ(|U |)).
Next, we prove (2). We use πtu, π

t
r and ctu, c

t
r to denote the colors assigned to vertex / object

u, r ∈ (U ∪ U ′) in iteration t by WL on R(X), R(X ′) or ϕ on X,X ′, respectively. We show by
induction that if WL cannot distinguish u and r in a given iteration t then neither can ϕ. Formally,
we show πtu = πtr ⇒ ctu = ctr which implies that WLt(R(X), F1|U ) ∪ WLt(R(X ′), F2|U ′) refines
ϕt(X,F |U ) ∪ ϕt(X ′, F ′|U ′) as the domain of the coloring computed by ϕ is the same as the domain
of the coloring computed by WL (U ∪ U ′).
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Algorithm 4 starts by replacing all function applications (S4) by the identity function and flattens
all tuples (A4) (S3). Recall that this transformation is either injective or bijective. By applying
Lemma C.1 they do not influence the strong simulation property. From now on we assume that
ϕ = (ϕ1, . . . , ϕn) such that all ϕj with j ∈ [[n]] are either (A1), (A2) (A3), or (S2) and if they are an
atom, then the first and third function argument are identical. We use w to denote the object the AMP
is defined to update. Algorithm 3 iterates through all ϕ1, . . . , ϕn and encodes them in the graph.

Base case: We show that π0
u = π0

r ⇒ c0u = c0r . For this, we assume that π0
u = π0

r . Since the initial
colors of WL correspond to the vertex features which encode the object features of X and X ′ that are
used as the initial coloring of AMP, this implies that c0u = c0r .

Induction hypothesis: We assume that πtu = πtr ⇒ ctu = ctr holds for all t ≤ T .

Induction step: We show that πT+1
u = πT+1

r ⇒ cT+1
u = cT+1

r . We assume πT+1
u = πT+1

r . We
iterate through all AMPs from ϕ1, . . . , ϕn and show that they must all return the same result for u
and r which implies cT+1

u = cT+1
r . We do a case distinction on the type of this AMP. Note that in

AMP the object / edge features are referred to us F (·) whereas in the relational structures X and X ′

they are denoted as F (·) and F ′(·). Below, when we argue that two AMP constructions are equal and
use the F (·) notation and neglect F ′(·) for the sake of simplicity.

(A1)
(
k(u, u)

!
= k(r, r)

)
. This atom was encoded into the graph by Algorithm 1. These constants

are part of the vertex features of the graphs R(X), R(X ′) and thus are part of the initial
coloring π0

u, π0
r . Since WL refines colorings, the assumption that πT+1

u = πT+1
r implies

π0
u = π0

r . Thus, k(u, u) = k(r, r).

(A2)
(
F (u)

!
= F (r)

)
. As the object features are encoded into the vertex features ofR(X), R(X ′)

(see Rfeat in Algorithm 4), they are part of the initial coloring π0
u, π0

r . Since WL refines
colorings, the assumption that πT+1

u = πT+1
r implies π0

u = π0
r . Thus, F (u) = F (r).

(A3)
(
cTu

!
= cTr

)
. This atom was not encoded into the graph. From our assumption we know that

πT+1
u = πT+1

r . Since WL refines colorings this implies that πTu = πTr . By applying the
induction hypothesis we obtain that cTu = cTr .

(S2)
({{

ρ(u, cTu , x, c
T
x ) | x ∈ Ni(u)

}} !
=

{{
ρ(r, cTr , y, c

T
y ) | y ∈ Ni(r)

}})
. This AMP was en-

coded into the graph by Algorithm 2. Note that the neighborhood relation Ni was en-
coded by edges with edge features labeled i, this means that if two nodes have the same
color πT+1

u = πT+1
r then for every neighborhood relation Ni there exists a bijective

α : Ni(u) → Ni(r) such that for all x ∈ Ni(u) it holds that πTx = πTα(x) and that the
edges (x, u), (α(x), r) have the same edge features. From the induction hypothesis it then
follows that cTx = cTα(x). Let ρ(·, cT· ,Ω, cTΩ) =

(
ρ1(·, cT· ,Ω1, c

T
Ω), . . . , ρm(·, cT· ,Ωm, cTΩm

)
)

for some m ≥ 1. We show for an arbitrary j ∈ [[m]] that ρj
(
u, cTu ,Ωj , c

T
Ωj

)
=

ρj

(
r, cTr ,Ω

′
j , c

T
Ω′

j

)
where either Ωj = u,Ω′

j = r, or Ωj = x,Ω′
j = α(x). We do a

case distinction on the type of ρj .

(A1) ρj = k(a, b). We do a case distinction whether a = b:

* Case a = b. By assumption we need to show k(u, u)
!
= k(r, r). Recall that the

vertex features Fµ(u), Fν(r) encode k(u, u) and k(r, r) where µ, ν ∈ {1, 2} (see
Algorithm 1), respectively. Hence, the initial colors π0

u and π0
r also encode k(u, u)

and k(r, r). As WL refines colorings and πTu = πTr it holds that π0
u = π0

r which
implies that k(u, u) = k(r, r).

* Case a ̸= b. Then (b, a) forms an edge meaning we need to show that k(u, x) !
=

k(r, α(x)). Recall that the feature Fµ((x, u)) encodes k(u, x) and that feature
Fν((α(x), r) encodes k(r, α(x)) where, µ, ν ∈ {1, 2} (Algorithm 1). From the
definition of α it follows that the edges (x, u) and (α(x), r) have the same features
and thus that k(u, x) = k(r, α(x)).

(A2) We do a case distinction:
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* Case F (u) !
= F (r). See proof of (A2) above.

* Case F (x) !
= F (α(x)). We know that πTx = πTα(x). Recall that the object features

are encoded in the vertex features and thus in the initial coloring π0
· . Since WL

refines colorings, it follows from πTx = πTα(x) that π0
x = π0

α(x) which implies
F (x) = F (α(x)).

* Case F ((x, u))) !
= F ((α(x), r)). As argued above we know that the edges (x, u)

and (α(x), r) have the same features which implies F ((x, u))) = F ((α(x), r)).

(A3) ρj
!
= cTσ . We do a case distinction on σ:

* Case σ is the vertex to update i.e., u and r. Then, we need to show that cTu
!
= cTr .

We know that πTu = πTr and by the induction hypothesis it follows that cTu = cTr .
* Case σ is the neighboring vertex i.e., x and α(x). Then, we need to show that
cTx

!
= cTα(x). We combine πTx = πTα(x) with the induction hypothesis to obtain

cTx = cTα(x).

Thus we conclude that ρj(u, cTu ,Ωj , c
T
x ) = ρj

(
r, cTr ,Ω

′
j , c

T
α(x)

)
which means that

ρ(u, cTu , x, c
T
x ) = ρ

(
r, cTr , α(x), c

T
α(x)

)
. This concludes the proof of the induction step.

C.3 Strongly Simulating GNNs

We prove a theorem that allows us to simulate a combination of multiple AMPs that differ only by
function applications (S4). This allows us to simulate GNNs whose layers correspond to AMPs.
Theorem C.2. Let ϕ1, . . . , ϕl be l ≥ 1 AMPs that only differ in function application (S4). Let
R = AMEψ be a structure-to-graph encoding where ψ is the AMP obtained by removing function
applications from ϕ1. Then, it holds for every pair of relational structures X,X ′ from the domain
of ϕ1, . . . , ϕl and every l ≥ t ≥ 1 that t iterations of WL on R(X) and R(X ′) refines the coloring
produced by (ϕ1 ◦ . . . ◦ ϕt) on X and X ′.

Note that it does not matter whether we construct ψ by removing function applications from ϕ1 or
any other AMP from ϕ1, . . . , ϕl as these AMP only differ by function application.

Proof. Let X = (U,N1, . . . ,Nk, F ) and X ′ = (U ′,N ′
1, . . . ,N ′

k, F
′) be two arbitrary relational

structure from the domain of ϕ1 ◦ . . . ◦ ϕl and let l ≥ t ≥ 1. By Lemma C.1 any coloring produced
by ψ refines the corresponding coloring from every AMP from ϕ1, . . . , ϕl. Thus, ψl(X,F |U ) refines
(ϕ1 ◦ . . . ◦ ϕl)(X,F |U ) and ψl(X ′, F ′|U ′) refines (ϕ1 ◦ . . . ◦ ϕl)(X ′, F ′|U ′). By Theorem 3.5 we
can strongly simulate ψ under R. Thus, the theorem follows.

C.4 List of Strongly Simulatable Algorithms (Corollary 3.6)

We prove Corollary 3.6.
Corollary C.3. The following GNNs and variants of WL can be strongly simulated:

1. V VC-GNN [Sato et al., 2019] 7. k-OSWL / OSAN [Qian et al., 2022]
2. k-WL / GNN [Morris et al., 2019] 8. Mk GNN [Papp and Wattenhofer, 2022]
3. δ-k-(L)WL / (L)GNN [Morris et al., 2020] 9. GMP [Wijesinghe and Wang, 2022]
5. GSN-e and GSN-v [Bouritsas et al., 2022] 10. Shortest Path Networks [Abboud et al., 2022]
4. (k, s)-LWL / SpeqNet [Morris et al., 2022] 11. Generalized Distance WL [Zhang et al., 2023]
6. DS-WL / GNN [Bevilacqua et al., 2021]

Proof. The proofs consist of showing that the update rule underlying the corresponding algorithms
are AMP. By invoking Theorem 3.5 this proves that the algorithm is strongly simulatable. For
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algorithms that have both a GNN and a WL variant we only prove this for the WL variant as for GNN
the proof can be done analogously. Note that most variants of WL and GNNs contain the color of the
vertex they want to update in the updated color. An example of this the color ct−1

s in the definition
of k-WL: cts = HASH

(
ct−1
s , (Ct1(s), . . . , C

t
k(s))

)
where Ctj(s) = HASH

({{
ct−1
s′ | s′ ∈ Nj(s)

}})
.

This color can be modeled by a color atom (A3). We will argue this again for the first two algorithms
and will assume that this is obvious for the latter algorithms.

1. V VC-GNNs [Sato et al., 2019]: Let ∆ be the maximum degree of the vertices. Suppose
we are given a port numbering with functions ptail(v, i) : V × [[∆]] → V ∪ {−} and
pn : V × [[∆]] → [[∆]] ∪ {−}.4

The color update function for V VC-GNNs is

zl+1
v = f lθ

(
zlv, z

l
ptail(v,1)

, pn(v, 1), z
l
ptail(v,2)

, pn(v, 2), . . . z
l
ptail(v,∆), pn(v,∆),

)
.

Let i ∈ [[∆]]. The color update function applies a function f lθ (S4) to a tuple. We
need to show that this tuple corresponds to tuple AMP construction (S3) by show-
ing that each element of the tuple is AMP. The first element of the tuple is zlv
which corresponds to an AMP (S1) atom. Each pn(v, i) can be seen as a constant
atom (A1). Each zlptail(v,i)

can be seen as
{
zlw | w ∈ {ptail(v, i)}

}
when ptail(v, i) ̸=

− and the empty set ∅ otherwise which defines a neighborhood function. Thus,(
zlv, z

l
ptail(v,1)

, pn(v, 1), z
l
ptail(v,2)

, pn(v, 2), . . . z
l
ptail(v,∆), pn(v,∆),

)
is an AMP tuple (S3)

of a color atom (A3) zlv , constant atoms (A1) and aggregation AMPs (S2). Hence, the color
update function is strongly simulatable.

2. k-WL [Morris et al., 2019]: Let W = V (G)k be the set of k-tuples of vertices for a given
graph G. Then, k-WL can be written as cts = HASH

(
ct−1
s , (Ct1(s), . . . , C

t
k(s))

)
where

Ctj(s) = HASH
({{

ct−1
s′ | s′ ∈ Nj(s)

}})
. Both hash functions are function application

AMPs (S4) and and ct−1
s is a color atom AMP (S1). Here, Nj(s) encodes the j-neighborhood

of the k-tuple s. This means that each Ct1(s) corresponds to an aggregation AMP (S2).
Then, the combination into (Ct1(s), . . . , C

t
k(s)) is a tuple of AMPs (S3). Hence, the color

update functions is a AMP implying that k-WL is strongly simulatable.

3. δ-k-(L)WL [Morris et al., 2020]: We only show this for δ-k-WL as δ-k-LWL is a special
case obtained by removing elements from the color update function of δ-k-WL. Let W =
V (G)k be the set of k-tuples of vertices for a given graph G. We use bold v to denote a
k-tuple and v to denote a vertex. For j ∈ [[k]], the function ϕj(v, w) returns the k-tuple
obtained by replacing the j-th vertex of v by w. The function adj(v,w) returns 1 if the two
vertices that distinguish the j-neighbors v and w are neighbors in G and 0 otherwise. Then,
δ-k-WL can be written as ct+1

v =
(
civ,M

δ,δ̄
i (v)

)
with

M δ,δ̄
i (v) =

({{(
ciϕ1(v,w), adj(v, ϕ1(v, w))

)
| w ∈ V (G)

}}
, . . . ,{{(

ciϕk(v,w), adj(v, ϕk(v, w))
)
| w ∈ V (G)

}})
.

Let j ∈ [[k]] be arbitrary. Note, that adj(v, ϕj(v, w)) is an edge constant atom
k(v, ϕj(v, w)) (A1) and that ciϕj(v,w) is a color atom (A3) for object ϕj(v, w). Thus,(
ciϕj(v,w), adj(v, ϕj(v, w))

)
is a tuple atom (A4). Furthermore, we can rewrite the aggre-

gation by replacing ϕj(v, w) with w as
{{(

ciw, k(v,w)
)
| w ∈ Nj(v

}}
where Nj(v) =

{ϕj(v, w) | w ∈ V (G)}. Thus, each
{{(

ciϕj(v,w), adj(v, ϕj(v, w))
)
| w ∈ V (G)

}}
is an

aggregation AMP (S2) and Mδ,δ̄
i (v) is a tuple AMP (S3). Thus, the update rule of δ-k-WL

is strongly simulatable.
4We think that there is a small typographical error in these functions signatures as defined by Sato et al.

[2019]. There, they define them as ptail(v, i) : V ×∆ → V ∪ {−} and pn : V ×∆ → ∆ ∪ {−}.
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4. (k, s)-LWL and (k, s)-SpeqNets [Morris et al., 2022]: This algorithm is very similar to
δ-k-LWL and we use the same definition of ϕ as above. We prove this only for (k, s)-LWL
as (k, s)-SpeqNets can be argued analogously. In what follows we use #com(G[v]) to
denote the number of connected components in the graph induced by the k-tuple of nodes
v of G i.e., the subgraph of G that contains only vertices from v and all edges from E(G)
incident to these vertices. For k ≥ 1 and 1 ≤ s ≤ k, let

V (G)ks =
{
v ∈ V k | #com(G[v]) ≤ s

}
.

Similarly to δ-k-LWL, (k, s)-LWL assigns a color to k-tuples. However, (k, s)-LWL works
on elements from V (G)ks . Hence, W = V (G)ks . The update function can the be defined as:

ci+1
v =

(
civ,M

δ,k,s
i (v)

)
with

Mδ,k,s
i (v) =

({{
ciϕ1(v,w) | w ∈ N (v1) and ϕ1(v, w) ∈ V (G)ks

}}
, . . . ,{{

ciϕk(v,w) | w ∈ N (vk) and ϕk(v, w) ∈ V (G)ks

}})
where vi is the i-th element of k-tuple v. Similar to above, we can rewrite
the aggregation in all multisets. Let i ∈ [[k]], then we define Ni(v) ={
ϕi(v, w)) | w ∈ N (vi) and ϕi(v, w)) ∈ V (G)ks

}
, which allows us to rewrite the multisets

as
{{
cix | x ∈ Ni(v

}}
. This implies that each of the multisets is an aggregation AMP (S2)

and that Mδ,k,s
i (v) is a tuple AMP (S3). With this it follows that the color update function

is simulatable.

5. GSN-e and GSN-v [Bouritsas et al., 2022]: We only prove this for GSN-v as GSN-e can
be argued similarly. Let W = V (G). The update function behind GNS-v is defined as

ht+1
v = UPt+1

(
htv,m

t+1
v

)
with

mt+1
v =M t+1

({{(
htv, h

t
u, x

V
v , x

V
u , eu,v

)
| u ∈ N (v)

}})
.

In this definition UPt+1 is an arbitrary function approximator such as an MLP and M t+1 is
a neighborhood aggregation function meaning meaning an arbitrary function that operates
on multisets. We can see M t+1,UPt+1 as function applications (S4). Additionally, xVv , x

V
u

and eu,v are vectors encoding subgraph isomorphism counts with respect to some set of
patterns. These isomorphism counts correspond to atom constants (A1): k(v, v), k(u, u) and
k(u, v). As htv and htu are color atoms (A3) and eu,v is a constant atom (A1) it follows that(
htv, h

t
u, x

V
v , x

V
u , eu,v

)
is a tuple atom (A4) and

{{(
htv, h

t
u, x

V
v , x

V
u , eu,v

)
| u ∈ N (v)

}}
is

an aggregation AMP (S2). Applying the function M t+1 (S4) to this AMP yields mt+1
v .

Thus, the update rule is strongly simulatable.

6. DS-WL [Bevilacqua et al., 2021]: For a given graph G and a policy π that compute
subgraphs we define the set of objects W as the disjoint union of the vertices in each
subgraph W =

⋃̇
S∈π(G)V (S). We identify each object from W by its original vertex

v ∈ V and subgraph S ∈ π(G) that created it. This means that cv,S is the color of vertex v
from subgraph S. Then, the update rule of DS-WL can be written as

ct+1
v,S = HASH

(
ctv,S ,

{{
ctx,S | (x, S) ∈ N (v, S)

}})
where N (v, S) = {(x, S) | x ∈ NS(v)} is the set of all neighbors of vertex v in subgraph
S. Hence,

{{
ctx,S | (x, S) ∈ N (v, S)

}}
is an aggregation AMP (S2) which implies that the

update rule is strongly simulatable.

7. k-OSWL and k-OSANs [Qian et al., 2022]: We only argue the case of k-OSWL as the
proof works similarly for k-OSANs. In what follows we use g ∈ Gk to denote a k tuple of
vertices from V (G) corresponding to k-vertex induced subgraph of G. We use Gk to denote
the set of all k-vertex induced subgraphs of G. The algorithm computes colors for each
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combination of a vertex with k-vertex induced subgraph combination i.e. W = V (G)×Gk.
It uses the color update function:

Ci+1
v,g = RELABEL

(
Civ,g,

{{
Ciu,g | u ∈ □

}})
.

Here, □ is either NG(v) the neighborhood relation in the graph G, or V (G) the set of all
vertices. Since both neighborhood allows us to define corresponding neighborhood functions
it follows that

{{
Ciu,g | u ∈ □

}}
is an aggregation AMP (S2) and thus that the color update

function is strongly simulatable.

8. Mk-GNNs [Papp and Wattenhofer, 2022]: As Papp and Wattenhofer [2022] note, their
approach is related to ESAN [Bevilacqua et al., 2021]. For a graph G with some set of
marked nodes the following update rule that computes the colorings:

ht+1
u = UPDATE

(
htu, a

t+1
u

)
with

at+1
u =AGGRmarked

({{
htv | v ∈ NM (u)

}})
+ AGGRmarked

({{
htv | v ∈ NU (u)

}})
.

Where NM and NU are the neighborhood relations referring to marked (unmarked) neigh-
bors in the subgraphs, respectively. Thus, {{htv | v ∈ NM (u)}} and {{htv | v ∈ NU (u)}} are
aggregation AMPs (S2). We can model atu as a function ϕ((x, y)) = AGGRmarked(x) +
AGGRmarked(y) with x = {{htv | v ∈ NM (u)}} and y = {{htv | v ∈ NU (u)}}. Hence, atu
is a function AMP (S4) applied to a tuple AMP (S3). Thus, the color update function is
strongly simulatable.

9. GMP [Wijesinghe and Wang, 2022]: The color update function underlying GMP has the
shape

mt
a = AGGREGATEN

({{(
Āvu, h

t
u

)
| u ∈ N (v)

}})
,

mt
v = AGGREGATEN

({{
Āvu | u ∈ N (v)

}})
htv

ct+1
v = COMBINE

(
mt
v,m

t
a

)
.

Here, Āvu ∈ R are structural coefficients encoding local structures in the graph around
v, u. Note that we can model AGGREGATEN

({{
Āvu | u ∈ N (v)

}})
as a constant atom

(A1) k(v, v). Thus, we can then write mt
v = k(v, v) · htv = fmul(k(v, v), h

t
v) where

fmul(x, y) = x · y. Hence, mt
v is a function application (S4) to a tuple (S3) of a constant

node specific value (A1) together and a color (A3). Furthermore, mt
a is an aggregation (S2)

of tuples (A4) of a constant value (A1) combined with a color (A3). Thus, the color update
function is strongly simulatable.

10. Shortest Path Networks [Abboud et al., 2022]: Let G = (V,E, F ) be a graph, v ∈ V a
vertex and i ≥ 1 an integer. We denote by Ni(v) the i-hop shortest path neighborhood i.e.,
the set of all vertices that can be reached from v in a shortest path of length i. Then, the
color update function of shortest path message passing graph neural networks (SP-MPNNs)
are defined as

ct+1
v = COM

(
ctv,

(
ctv,AGG1

({{
ctu | u ∈ N1(v)

}}))
, . . . ,

(
AGGk

({{
ctu | u ∈ Nk(v)

}})))
where k ≥ 1 is an integer, COM is a combination function and AGG... are functions that
map a multisets of colors to a single color. Let W = V . Obviously, COM and all AGG
functions are function applications (S4). It is clear that ctv corresponds to a color atom
(A3). Next we investigate the term (ctv,AGGj ({{ctu | u ∈ Nj(v)}})) where j ∈ [[k]]. In
this term, {{ctu | u ∈ Nj(v)}} is the aggregation AMP (S2) of color atoms (A3). Thus,
(ctv,AGGj ({{ctu | u ∈ Nj(v)}})) is a tuple AMP (S3). It follows that the color update
functions of SP-MPNNs corresponds to AMP which implies that SP-MPNN can be strongly
simulated.

11. Generalized Distance WL [Zhang et al., 2023]: Note that this generalizes shortest path
networks. Let G = (V,E, F ) be a graph. Let dG(·, ·) be an arbitrary distance metric i.e., a
function dG : V × V → R. The color update function of generalized distance Weisfeiler-
Leman (GD-WL) is defined as ct+1

v = HASH ({{(dG(u, v), ctu) | u ∈ V }}). Let W = V . It
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follows that {{(dG(u, v), ctu) | u ∈ V }} is an aggregation AMP (S2) that aggregates a tuple
atom (A4) (dG(u, v), ctu) built from a constant atom (A1) dG(u, v) and a color atom (A3)
ctu. As HASH corresponds to a function application (S4) we conclude that GD-WL is AMP
and can be strongly simulated.

D Proofs for Limits of Strong Simulation (Section 4)

D.1 Cannot Simulate Nested Aggregation (Theorem 4.1 Part 1)

We prove the correctness of Theorem 4.1 for the nested aggregations.
Theorem 4.1. Nested aggregations and non-pairwise message passing cannot be strongly simulated.

Proof. We define two relational structures X1, X2 that can be distinguished in the first round of
message passing with nested aggregations, but cannot be distinguished in the first round of WL when
representing the relational structures as graphs. Consider the set of objects U = {x, a, b, c, d, h, h′}
with neighborhood functions:

• N1(a) = N1(b) = N1(c) = N1(d) = {x},

• N2(x) = {h, h′},

• N3(h) = {a, b},

• N3(h
′) = {c, d}.

In the above definition, the neighborhood function returns the empty set for all other objects. Both
relational structures will have the same objects and neighborhood functions but different initial
features:

• F1(a) = F1(b) = □,
F1(c) = F1(d) = ⃝,
F1(x) = F1(h) = F1(h

′) = △,

• F2(a) = F2(d) = □,
F2(b) = F2(c) = ⃝, and
F2(x) = F2(h) = F2(h

′) = △ .

We define the two relational structures as X1 = (U,N1,N2,N3, F1) and X2 = (U,N1,N2,N3, F2).
We define a color update function with nested-aggregations over these relations structures:

ct+1
v = HASH

(
ctv,

{{
ctw | w ∈ N1(v)

}}
,
{{{{

cty | y ∈ N3(x)
}}

| x ∈ N2(v)
}})

,

where ctv is the color of object v in iteration t. We use π1, π2 to denote the color c1x for X1 and X2,
respectively. By definition we know that

π1 = HASH (△, ∅, {{{{⃝,⃝}} , {{□,□}}}}) ,

π2 = HASH (△, ∅, {{{{□,⃝}} , {{⃝,□}}}}) .
Obviously π1 ̸= π2. Suppose there exists a structure-to-graph encoding R such that WL can
distinguish the color of the vertex x corresponding to object x for the two graphs R(X1), R(X2). We
use τ1, τ2 to denote the color of vertex x after one iteration of WL on R(X1), R(X2), respectively.
Since the color of x depends on a, b, c, d, we can assume that there are edges from these vertices
to x in both graphs. Since R is a structure-to-graph encoding it makes use of the mappings Rgraph
and Rfeat. By definition of Rgraph it has no access to the features thus the graph created for X1, X2

by Rgraph are identical. Hence, the graphs R(X1) and R(X2) only differ by the features assigned to
a, b, c, d. By definition of WL, the colors τ1, τ2 only depend on the features of the neighbors of x and
are independent from any other vertices (or adjacencies between other vertices). Let Y = y1, . . . , ym
be all neighbors of x that are not a, b, c, d. Note that the features of the vertices of Y is the same for
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both graphs as all vertices from Y are either not from U or they are assigned the same color by F1

and F2. We add the relational structure Xi (for i ∈ {1, 2}) as a subscript to the color notation to
indicate where the color is originally coming from, e.g., c0x,X1

is the initial color of vertex x in graph
R(X1). By definition of WL it holds that:

τ1 = HASH
(
c0x,X1

,
{{
c0a,X1

, c0b,X1
, c0c,X1

, c0d,X1

}}
∪
{{
c0y,X1

| y ∈ Y
}})

,

τ2 = HASH
(
c0x,X2

,
{{
c0a,X2

, c0b,X2
, c0c,X2

, c0d,X2

}}
∪
{{
c0y,X2

| y ∈ Y
}})

.

As Rgraph assigns the same features to x and all vertices of Y for the two graphs and Rfeat concate-
nates the vertex features with the features from the structures, it follows that c0x,X1

= c0x,X2
and{{

c0y,X1
| y ∈ Y

}}
=

{{
c0y,X2

| y ∈ Y
}}

. As we intend to argue that there exists no R such that
τ1 ̸= τ2 we intend to argue that{{

c0a,X1
, c0b,X1

, c0c,X1
, c0d,X1

}} !
=

{{
c0a,X2

, c0b,X2
, c0c,X2

, c0d,X2

}}
.

By definition the color of a vertex v ∈ {a, b, c, d} in graph R(Xi) (with i ∈ {1, 2}) is the color
assigned to v by Rgraph(Xi):

c0v,Xi
= concat(Fgraph,i(v), Fi(v)).

We argue that all v ∈ {a, b, c, d} have the same feature Fgraph,i(v) for all i ∈ {1, 2}. First, any two
v, w ∈ {a, b, c, d} that are part of the same set in N3 ({a, b}, {c, d}) are necessarily assigned the
same feature as they are indistinguishable for Rgraph based on the input (U,N1,N2,N3). Second,
for two v, w ∈ {a, b, c, d} that are not part of the same set in N3 (e.g. v = a,w = c), Rgraph
can detect that they are part of different sets but cannot encode this into the vertex features. Any
such encoding would treat the sets {a, b} and {c, d} differently which is not possible since the
function operates on (multi)sets and is thus permutation equivariant. Together with the fact that
{{F1(a), F1(b), F1(c), F1(d)}} = {{F2(a), F2(b), F2(c), F2(d)}} it follows that τ1 = τ2. This con-
tradicts the initial assumption and proves that no structure-to-graph encoding R exists that allows for
strong simulation on X1 and X2. This proves the theorem.

D.2 Non-pairwise message passing cannot be simulated (Theorem 4.1 Part 2)

We prove the correctness of Theorem 4.1 for non-pairwise message passing.

Theorem 4.1. Nested aggregations and non-pairwise message passing cannot be strongly simulated.

Proof. The proof is similar to the case of nested aggregation (Appendix D.1). We define two relational
structures X1, X2 that can be distinguished in the first round of message passing with non-pairwise
aggregations, but cannot be distinguished in the first round of WL when representing the relational
structures as graphs. Consider the set of objects U = {x, a, b, c, d} with neighborhood functions:

• N1(a) = N1(b) = N1(c) = N1(d) = {x},

• N2(x) = {(a, b), (c, d)}.

In the above definition, the neighborhood function returns the empty set for all other objects. Both
relational structures will have the same objects and neighborhood functions but different initial
features:

• F1(a) = F1(b) = □,
F1(c) = F1(d) = ⃝,
F1(x) = △,

• F2(a) = F2(d) = □,
F2(b) = F2(c) = ⃝, and
F2(x) = △ .
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We define the two relational structures as X1 = (U,N1,N2, F1) and X2 = (U,N1,N2, F2). We
define a color update function with non-pairwise aggregations over these relational structures:

ct+1
v = HASH

(
ctv,

{{
ctw | w ∈ N1(v)

}}
,
{{
(ctx, c

t
y) | (x, y) ∈ N2(v)

}})
,

where ctv is the color of object v in iteration t. We use π1, π2 to denote the color c1x for X1 and X2,
respectively. By definition we know that

π1 = HASH (△, ∅, {{(□,□) (⃝,⃝)}}) ,

π2 = HASH (△, ∅, {{(□,⃝) , (⃝,□)}}) .
Obviously π1 ̸= π2. Suppose there exists a structure-to-graph encoding R such that WL can
distinguish the color of the vertex x corresponding to object x for the two graphs R(X1), R(X2). We
use τ1, τ2 to denote the color of vertex x after one iteration of WL on R(X1), R(X2), respectively.
Since the color of x depends on a, b, c, d, we can assume that there are edges from these vertices
to x in both graphs. Since R is a structure-to-graph encoding it makes use of the mappings Rgraph
and Rfeat. By definition of Rgraph it has no access to the features thus the graph created for X1, X2

by Rgraph are identical. Hence, the graphs R(X1) and R(X2) only differ by the features assigned to
a, b, c, d. By definition of WL, the colors τ1, τ2 only depend on the features of the neighbors of x and
are independent from any other vertices (or adjacencies between other vertices). Let Y = y1, . . . , ym
be all neighbors of x that are not a, b, c, d. Note that the features of the vertices of Y is the same for
both graphs as all vertices from Y are either not from U or they are assigned the same color by F1

and F2. We add the relational structure Xi (for i ∈ {1, 2}) as a subscript to the color notation to
indicate where the color is originally coming from, e.g., c0x,X1

is the initial color of vertex x in graph
R(X1). By definition of WL it holds that:

τ1 = HASH
(
c0x,X1

,
{{
c0a,X1

, c0b,X1
, c0c,X1

, c0d,X1

}}
∪
{{
c0y,X1

| y ∈ Y
}})

,

τ2 = HASH
(
c0x,X2

,
{{
c0a,X2

, c0b,X2
, c0c,X2

, c0d,X2

}}
∪
{{
c0y,X2

| y ∈ Y
}})

.

As Rgraph assigns the same features to x and all vertices of Y for the two graphs and Rfeat concate-
nate the vertex features with the features from the structures, it follows that c0x,X1

= c0x,X2
and{{

c0y,X1
| y ∈ Y

}}
=

{{
c0y,X2

| y ∈ Y
}}

. As we intend to argue that there exists no R such that
τ1 ̸= τ2 we intend to argue that{{

c0a,X1
, c0b,X1

, c0c,X1
, c0d,X1

}} !
=

{{
c0a,X2

, c0b,X2
, c0c,X2

, c0d,X2

}}
.

By definition the color of a vertex v from a, b, c, d in graph Xi from X1, X2 where Fgraph,i(v) is the
color assigned to v by Rgraph(Xi):

c0v,Xi
= concat(Fgraph,i(v), Fi(v)).

We prove the the two multisets of color are equal by showing c0a,X1
= c0a,X2

, c0b,X1
= c0d,X2

,
c0c,X1

= c0c,X2
and c0d,X1

= c0b,X2
. This follows from the observation that two vertices x ∈ VR(X1)

and y ∈ RR(X2) are indistinguishable by Rgraph if they are in the same position of a tuple in N2. For
example, both b and d are in position 2 of their respective tuple. This means that Rgraph has to assign
the same features to both b and d implying Fgraph,1(b) = Fgraph,2(d). As F1(b) = F2(d) it follows
that c0b,X1

= c0d,X2
. An analogous argument allows us to show the rest of the equalities which implies

τ1 = τ2. This contradicts the initial assumption and shows that no structure-to-graph encoding R
exists that allows for strong simulation of non-pairwise message passing on X1 and X2. This proves
the theorem.

E Proofs for Weak Simulation (Section 5)

E.1 Weak simulation of nested aggregations and non-pairwise message passing (Theorem 5.2)

We prove the correctness of Theorem 5.2.

Theorem 5.2. Nested aggregations and non-pairwise message passing can be weakly simulated with
simulation factor 2.
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For this we define the class of generalized augmented message passing (gAMP) color update functions.
This class contains augmented message passing (AMP) but also non-pairwise message passing and
nested aggregations.

Definition E.1. (Generalized Augmented Message Passing. Let X = (U,N1, . . . ,Nk, F ) be a
relational structure. We call a color update function ϕ generalized augmented message passing
(gAMP) if for all u ∈ U and coloring c of X , it can recursively be defined as exactly one of the
following five forms:

(W1) ϕ(u,X, c) = ψ(u, (U,M1, . . . ,Mr, F ), c) where ψ is AMP and {M1, . . . ,Mr} is a
subset of {N1, . . . ,Nk} only containing neighborhood functions N where ℓ(N ) = 1.

(W2) ϕ(u,X, c) = {{(cu1 , . . . , cum) | (u1, . . . , um) ∈ Ni(u)}} where i ∈ [[k]]. This is called
non-pairwise message passing.

(W3) ϕ(u,X, c) = {{ψ(x, (U,M1, . . .Mr, F ), c) | x ∈ Ni(u)}} where ψ is AMP that contains
a neighborhood aggregation (S2), i ∈ [[k]] and {M1, . . . ,Mr} is a subset of {N1, . . . ,Nk}
only containing neighborhood functions N where ℓ(N ) = 1. This construction is called a
nested aggregation.

(W4) ϕ(u,X, c) = (ϕ1(u,X, c), . . . , ϕn(u,X, c) where ϕ1, . . . , ϕn are gAMP.

(W5) ϕ(u,X, c) = f(ψ(u,X, c)) where f maps colors to colors and ψ is gAMP.

We want to prove that we can weakly simulate all coloring algorithms in this class. For this we define
a structure-to-graph encoding in Algorithm 6 for every color update function in this class. We use the
same encoding function ENC as defined in Appendix C. We assume that if a feature function is called
with an vertex, object or edge that is assigned no features, it returns a fixed default color. We prove
that combining Algorithm 6 with WL is at least as expressive as the corresponding non-standard
message passing algorithm.

Proof. (Theorem 5.2) This proof works similarly to the proof of Theorem 3.5. We prove weak
simulatability for ζ = 2. Let ϕ be an arbitrary generalized augmented message passing algorithm.
We consider two arbitrary relational structures from the domain of ϕ, say X = (U,N1, . . . ,Nk, F )
and X ′ = (U ′,N ′

1, . . . ,N ′
k, F

′). Let (V1, E1, F1) = R(X) and (V2, E2, F2) = R(X ′). We
prove (1) that gAMEϕ is a structure-to-graph encoding that runs in O(τϕ(|U |)); (2) for every
t ≥ 0 the coloring WL2t(R(X), F1|V1) ∪ WL2t(R(X ′), F2|V2) on gAMEϕ(X) refines the coloring
ϕt(X,F |U ) ∪ ϕt(X ′, F ′|U ′).

We begin by proving (1). Observe that Algorithm 6 can be split into Rgraph and Rfeat as required
by the definition of structure-to-graph encoding. Furthermore, Algorithm 6 first iterates through all
gAMPs in ϕ and all possible objects that are relevant to these gAMPS. Hence, Algorithm 6 runs in
the same runtime as one iteration of gAMP which is in O(τϕ(|U |)).
Next, we prove (2). We use πtu, π

t
r and ctu, c

t
r to denote the colors assigned to vertex / object

u, r ∈ (U∪U ′) in iteration t by WL onR(X), R(X ′) or ϕ onX,X ′, respectively. Let u, r ∈ (U∪U ′)
be arbitrary objects / vertices. We show by induction that if WL cannot distinguish u and r in iteration
2t then ϕ cannot distinguish them in iteration t. Formally, we show that π2t

u = π2t
r ⇒ ctu = ctr

which implies that WL2t(R(X), F1|V1
)∪ WL2t(R(X ′), F2|V2

) refines ϕt(X,F |U )∪ ϕt(X ′, F ′|U ′)
as (U ∪ U ′) ⊆ (V1 ∪ V2) (by Algorithm 5).

Algorithm 6 starts by replacing all function applications (S4), (W5) by the identity function and
flattens all tuples (A4), (S3), (W4). Recall that this transformation is either injective or bijective.
By applying Lemma C.1 they do not influence the strong simulation property and thus also do not
influence the weak simulation property. From now on we assume that ϕ = (ϕ1, . . . , ϕn) such that all
ϕj with j ∈ [[n]] are either (W1) (which means they are one of (A1), (A2) (A3), (S2)), (W2), or (W3)
and if they are an atom, then the first and third function argument are identical. We use w to denote
the object the gAMP is defined to update. Algorithm 3 iterates through all ϕ1, . . . , ϕn and encodes
them in the graph.

Base case: We show that π0
u = π0

r ⇒ c0u = c0r . For this, we assume that π0
u = π0

r . As the initial
colors correspond to vertex or object features and Algorithm 6 encodes the object features in the
vertex features it follows that c0u = c0r .
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Algorithm 5 Rgraph for generalized augmented message encoding
Input: relational structure X = (U,N1, . . . ,Nk) without features, gAMP color update function ϕ
that has the shape (ϕ1, . . . , ϕn) where each ϕi with i ∈ [[n]] is one of (A1), (A2), (A3), (S2), (W2)
or (W3).
Output: graph G = (V,E, Fgraph)

V :=W
E := ∅
Fgraph := empty features
for i ∈ [[n]] do

if ϕi is (A1), (A2) or (A3) then
for u ∈ U do

(V,E, Fgraph) := Algorithm 1(ϕi, (V,E, Fgraph), u, u, i, 0, 0)
end for

else if ϕi is (S2) which aggregates on neighborhood N then
(V,E, Fgraph) := Algorithm 2(ϕi, (V,E, Fgraph, (U,N ), i, 0)

else if ϕi is (W2) then
/∗ ϕi has the shape

{{
(ctu1

, . . . , ctum
) | (u1, . . . , um) ∈ Nj(u)

}}
where j ∈ [[k]] ∗/

for u ∈ U do
for (u1, . . . , um) ∈ Nj(u) do
V := V ∪

{
u(u1,...,um)

}
E := E ∪ {(uu1,...,um

, u)}
F (u(u1,...,um)) := ENC(empty features, i, 0, 0, 1)
F (uu1,...,um

, u) := ENC(empty features, i, 0, 0, 1)
for r ∈ [[m]] do
E := E ∪ {(ur, uu1,...,um

)}
F (ur, uu1,...,um

) := ENC(empty features, i, r, 0, 1)
end for

end for
end for

else if ϕi is (W3) then
/∗ ϕi has shape {{ψ(x, (U,M1, . . .Mr, F ), c) | x ∈ Nj(u)}} where ψ is AMP ∗/
Replace function applications (S4) in ψ by the identity function, i.e., f(φ) becomes φ.
Flatten tuples (A4), (S3) in ψ except outermost, i.e., (. . . , (φ1, . . . , φr), . . .) becomes

(. . . , φ1, . . . , φr, . . .).
/∗ ψ has shape (ψ1, . . . , ψn) where each ψi with i ∈ [[n]] is one of (A1), (A2), (A3) or (S2) ∗/
(V,E, Fgraph) := Algorithm 3(ψ, (V,E, Fgraph), (U,M1, . . .Mr), i)
for u ∈ U do

for x ∈ Nj(u) do
E := E ∪ {(x, u)}
F (x, u) := ENC(empty features, i, 0, 0, 1)

end for
end for

end if
end for
return (V,E, Fgraph)

Induction hypothesis: We assume that π2t
u = π2t

r ⇒ ctu = ctr holds for all t ≤ T .

Induction step: We show that π2(T+1)
u = π

2(T+1)
r ⇒ cT+1

u = cT+1
r . We assume π2(T+1)

u =

π
2(T+1)
r which is equivalent to π2T+2

u = π2T+2
r . We prove for an arbitrary gAMP from ϕ1, . . . , ϕn

that it returns the same result for u and r which implies cT+1
u = cT+1

r . We do a case distinction on
the type of this gAMP. Note that in gAMP and AMP the object / edge features are referred to us F (·)
whereas in the relational structures X and X ′ they are denoted as F (·) and F ′(·). Below, when we
argue that two AMP constructions are equal and use the F (·) notation and neglect F ′(·) for the sake
of simplicity.
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Algorithm 6 Generalized augmented message encoding (gAME)
Input: relational structure X = (U,N1, . . . ,Nk, F ), gAMP color update function ϕ.
Output: graph G = (V,E, F ′)

Replace function applications (W5), (S4) in ϕ by the identity function, i.e., f(ϕ) becomes ϕ.
Flatten all (W4), (A4), (S3) constructions in ϕ except the outermost, i.e., (. . . , (ϕ1, . . . , ϕn), . . .)
becomes (. . . , ϕ1, . . . , ϕn, . . .).
/∗ ϕ has the shape (ϕ1, . . . , ϕn) where each ϕi with i ∈ [[n]] is one of (A1), (A2), (A3), (S2), (W2)
or (W3) ∗/

/∗ Rgraph
∗/

(V,E, Fgraph) := Algorithm 5((U,N1, . . . ,Nk), ϕ)

/∗ Rfeat
∗/

F ′ := empty features
for v ∈ V do
F ′(v) := concat (F (v), Fgraph(v))

end for
for e ∈ E do
F ′(e) := concat (F (e), Fgraph(e))

end for
return (V,E, F ′)

(W1)
(
ϕs(u,X, c)

!
= ϕs(r,X, c)

)
. Then, ϕs is one of (A1), (A2), (A3), (S2). Observe that, then

Algorithm 6 performs the same operations as Algorithm 4: for atoms (A1), (A2), (A3) it
instantiates Algorithm 1 and for (S2) it instantiates Algorithm 2. We apply the induction step
of the proof of Theorem 3.5 in a slightly altered form: instead of proving πT+1

u = πT+1
r ⇒

cT+1
u = cT+1

r we instead prove π2T+1
u = π2T+1

r ⇒ cTu = cTr . Note, that by the induction
hypothesis we already know the stronger fact π2T+2

u = π2T+2
r . However, we only use the

fact π2T+1
u = π2T+1

r so that we can later apply this argument in a context where only the
weaker π2T+1

u = π2T+1
r holds. We obtain a proof for π2T+1

u = π2T+1
r ⇒ cTu = cTr from

the induction step in the proof of Theorem 3.5 by replacing πT· and πT+1
· by π2T

· and π2T+1
· ,

respectively. Thus, we know that for AMP ϕs it holds that ϕs(u,X, c) = ϕs(r,X, c).

(W2) (
{{
(cTu1

, . . . , cTum
) | (u1, . . . , um) ∈ Nj(u)

}} !
=

{{
(cTr1 , . . . , c

T
rm) | (r1, . . . , rm) ∈ Nj(r)

}}
).

From π2T+2
u = π2T+2

r it follows that there exists a bijective function α : NG(u) → NG(r)
that maps vertices assigned the same color by π2T+1 to another. Note, that NG(u)
is the set of all neighboring vertices of vertex u in the graph generated from X or
X ′. By the construction of the edge features, it follows that α maps vertices from
{uu1,...,um | (u1, . . . , um) ∈ Nj(u)} to {rr1,...,rm | (r1, . . . , rm) ∈ Nj(r)}. Let β be the
restriction of the function α to these two sets as its domain and image, respectively. This
implies that{{

π2T+1
uu1,...,um

| (u1, . . . , um) ∈ Nj(u)
}}

=
{{
π2T+1
rr1,...,rm

| (r1, . . . , rm) ∈ Nj(r)
}}
.

Let x ∈ {uu1,...,um
| (u1, . . . , um) ∈ Nj(u)} be arbitrary with x = uu1,...,um

. Then, we
call β(x) = rr1,...,rm . Note that all neighbors that send messages to x are u1, . . . , um.
Similarly, all neighbors of β(x) that send messages to β(x) are r1, . . . , rm. Since π2T+1

x =

π2T+1
β(x) it holds that there exists a bijective function γ(x) : {u1, . . . , um} → {r1, . . . , rm}

mapping vertices assigned the same color by π2T to each other. Note for every i ∈ [[m]] the
edge connecting ui to x is labeled with i and the same holds for ri and β(x). Thus, γ(ui) =
ri which implies

(
u2T1 , . . . , u2Tm

)
=

(
r2T1 , . . . , r2Tm

)
. From the induction hypothesis it holds

that
(
cTu1

, . . . cTum

)
=

(
cTr1 , . . . c

T
rm

)
. From the fact that β is a bijection and by iterating over

all possible vertices for x be we obtain{{
(cTu1

, . . . , cTum
) | (u1, . . . , um) ∈ Nj(u)

}}
=

{{
(cTr1 , . . . , c

T
rm) | (r1, . . . , rm) ∈ Nj(r)

}}
.
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(W3) (
{{
θ(x,X ′, cT ) | x ∈ Nj(u)

}} !
=

{{
θ(x,X ′cT ) | x ∈ Nj(r)

}}
) where θ is AMP, X ′ =

(U,M1, . . . ,Mr, F ) and all neighborhoods of X ′ have ℓ(·) = 1. We use the function α
defined above. By definition all vertices from Nj(u) and Nj(r) are connected to u and
r by an edge with a special edge label encoding j. Thus, there exists a restriction from
a bijective α to a bijective β : Nj(u) → Nj(r) such that for every x ∈ Nj(u) it holds
that π2T+1

x = π2T+1
β(x) . Next, we can apply the above induction step proof for a gAMP that

correspond to AMP (W1). From this proof it follows that for every x ∈ Nj(u) it holds that
θ(x,X ′, cT ) = θ(β(x), X ′, cT ). Together with the fact that β is bijective we obtain that

(
{{
θ(x,X ′, cT ) | x ∈ Nj(u)

}}
=

{{
θ(x,X ′, cT ) | x ∈ Nj(r)

}}
)

which contradicts the initial assumption.

This concludes the proof.

E.2 List of Weakly Simulatable Algorithms (Corollary 5.3)

Next, we leverage Theorem 5.2 to prove Corollary 5.3.

Corollary E.2. The following GNNs and variants of WL can be weakly simulated:

1. Message Passing Simplicial Networks [Bodnar et al., 2021b]
2. CW Networks [Bodnar et al., 2021a]
3. DSS [Bevilacqua et al., 2021]
4. K-hop message passing and KP-GNNs [Feng et al., 2022]

Proof. Note that this has already been proven for Message Passing Simplicial Networks and CW
Networks in Theorem F.1. We start by proving the corollary for DSS [Bevilacqua et al., 2021]
by showing that its color update rule performs gAMP. We reuse the notation from the proof of
Corollary 3.6. The update rule for DSS-WL can be written as

ct+1
v,S = HASH

(
ctv,S ,

{{
ctx,S | x ∈ NS(v)

}}
, Ctv,

{{
Ctx | x ∈ NG(v)

}})
where NS(v) is the set of all neighbors of vertex v in subgraph S, NG(v) is the set of all neighbors
of v in the original graph, and Ctv contains the colors of v across different subgraphs

Ctv =
{{
ctv,S′ | S′ ∈ π(G) and v ∈ V (S′)

}}
.

We define the set of objects W as the disjoint union of all vertices in subgraphs W =
⋃̇
S∈π(G)V (S)

and identify each object from W by its original vertex and the subgraph it created. The update-
rule applies a HASH function (W5) to a tuple (W4) of other gAMPs. The first element of
the tuple is ctv,S which is a color atom (A3). The second element is an aggregation over
neighbors (S2).5 The third element can also be thought as an aggregation over neighbors (S2)
Ctv =

{{
ctv,S′ | S′ ∈ π(G) and v ∈ V (S′)

}}
=

{{
ctv,S′ | S′ ∈ N ′

S(v, S)
}}

where N ′
S(v, S) =

{S′ | S′ ∈ π(G) and v ∈ V (S′)}. Finally, the fourth element of the tuple is a nested aggregation
(W3) that aggregates over the AMP defined in the previous sentence (with x instead of v) for all
x ∈ NG(v). Thus, the color update function performs gAMP and DSS can be weakly simulated.

5There is some more subtlety to this. The notation NS implies a separate neighborhood function NS for
each subgraph S which would give an unbounded number of different neighborhood functions which does
not directly work with our definitions. Instead, we need to create a new neighborhood function N1((v, s)) =
{x | x ∈ NS(v)}. The same holds for the following definition of N ′

S .
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Next, we prove the corollary for KP-GNNs [Feng et al., 2022], K-hop message passing [Feng et al.,
2022] will follow as a special case of this. The color update function of KP-GNNs is defined as

ml+1,k
v = MESl,normal

k

({{
(hlu, euv) | u ∈ Qk,tv,G

}})
+ f(Gk,tv,G),

f(Gk,tv,G) = EMB((E(Qk,tv,G), C
k′

k )),

hl+1,k
v = UPDlk

(
ml+1,k
v , hlv

)
,

hl+1
v = COMBINEl

({{
hl+1,k
v | k = 1, 2, . . . ,K

}})
.

Here, t ∈ {gd, spd} with gd = graph diffusion and spd = shortest path distance. The setQk,gd
v,G contains

all nodes from V (G) that can be reached within k-steps of random walk diffusion steps from v. The
set Qk,spd

v,G contains all nodes from V (G) whose shortest-path to node v is exactly k.

Let W = V (G) ∪ {vk | v ∈ V (G), k ∈ [[K]]} be a set of objects with associated features F . We
define three neighborhood functions N1,N2,N3:

1. N1(v) = {vk | k ∈ [[K]]},

2. N2(vk) = {v},

3. N3(vk) = Qk,tv,G.

For all other vertices the neighborhood functions return the empty set. We prove that
hl+1
v performs gAMP it inside out, starting with ml+1,k

v . We represent ml+1,k
v as AMP

ϕ(vk, (W,N1,N2,N3, F ), h
l).6 Let ρ(vk, hlvk , u, h

l
u) = (hlu, euvk) where euvk is an edge con-

stant depending on u, vk. By definition ρ is an atom that is constructed by combining a color atom

(A3) with a constant atom (A1) into a tuple atom (A4). Note that MESl,normal
k

(
{{(hlu, euv) |

u ∈ Qk,tv,G}}
)

is AMP that applies the function MESl,normal
k (S4) to an AMP that aggregates

(S2) the atom ρ(v, hlv, u, h
l
u) over all u ∈ N3(vk). Next, f(Gk,tv,G) can be seen as a constant

atom (A1) k(vk, vk) = f(Gk,tv,G). Let φ, ϕ be two AMPs, then we define the addition AMP as
f+((φ, ϕ)) = φ+ ϕ. Hence, we can represent ml+1,k

v as an AMP

ϕ(vk, (W,N1,N2,N3, F ), h
l) = f+

(
MESl,normal

k

({{
(hlu, euv) | u ∈ Qk,tv,G

}})
, f(Gk,tv,G)

)
.

Next, we argue that hl+1,k
v is AMP represented as φ(vk, (W,N1,N2,N3, F ), h

l). Observe, that we
can write φ as a function application of UPDlk to a tuple(

ϕ(vk, (W,N1,N2,N3, F ),
{
hlx | x ∈ N2(vk)

})
where

{
hlx | x ∈ N2(vk)

}
is AMP (S2) that aggregates over the only N2 neighbor. As N2(vk) = {v}

it holds that φ(vk, (W,N1,N2,N3, F ) corresponds to hl+1,k
v . Finally, we argue that hl+1

v is gAMP
ψ(v, (W,N1,N2,N3, F ). We write ψ as a function application (W5) of COMBINEl to the nested
aggregation (W3) {{

φ(vk, h
l,W,N1,N2,N3) | vk ∈ N1(v)

}}
.

Thus, ψ(v, (W,N1,N2,N3, F ) corresponds to hl+1
v . As hl+1

v is a gAMP it follows by Theorem 5.2
that KP-GNN can be weakly simulated.

We obtain a proof that K-hop message passing [Feng et al., 2022] can be weakly simulated as special
case of the above proof by removing the term f(Gk,tv,G) from the definition of ml+1,k

v .
6Note that atoms, AMP and gAMP are generally defined over all objects. However, by construction this

AMP will only be used to aggregate colors of objects vk with v ∈ V (G), k ∈ [[K]]. Thus, we denote it only for
these objects despite it being defined over all objects. We use the similar simplifications throughout this proof.
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F Handcrafted Efficient Graph Transformations

F.1 CWN: Efficient Weak Simulation of CW Networks

We define a transformation CWN that allows for more efficient weak simulation of CW Networks.
We prove the following theorem:
Theorem F.1. Message Passing Simplicial Networks [Bodnar et al., 2021b] and CW Networks
[Bodnar et al., 2021a] can be weakly simulated by CWN with a simulation factor of 2 such that the
number of vertices is equal to the number of cells.

Proof. We prove this theorem for CW Networks as they a generalization of Message Passing
Simplicial Networks. We begin with definitions required for the proof. A regular cell complexes
consists of different cells each with a fixed dimension. We have a boundary relation ≺ given
on the cells. For a cell σ we call B(σ) = {τ | τ ≺ σ} its boundary adjacent cells and C(σ) =
{τ | σ ≺ τ} its co-boundary adjacent cells. We define C(σ, µ) = Cσ ∩ Cµ. For a cell σ we call
N↑(σ) = {τ | ∃δ such that σ ≺ δ and τ ≺ δ} its upper adjacent cells. For a color ct at iteration
t we use the notation ctF (σ) to denote the color of all objects in F(σ) at iteration t meaning
ctF (σ) = {{ctx | x ∈ F(σ}}. For a given cell σ in a regular cell complex X a CW Network computes
its color in iteration t+ 1 with the color update function

ct+1
σ = UPD1

(
σ,X, ct

)
= HASH

(
ctσ, c

t
B(σ), c

t
↑(σ)

)
.

where ct↑(σ) performs the non pairwise message passing

ct↑(σ) =
{{(

ctµ, c
t
δ

)
| µ ∈ N↑(σ) and δ ∈ C(σ, µ)

}}
.

It is straightforward to show that the color update function UPD1 performs generalized augmented
message passing and that CWN can thus be weakly simulated with a simulation factor of 2. However,
for this Algorithm 6 would generate more vertices than cells. Instead, we present a hand-crafted
graph transformation that requires no additional vertices. We define a color update function that
replaces the non pairwise message passing into separate pairwise message aggregations:

ct+1
σ = UPD2

(
σ,X, ct

)
= HASH

(
πtσ, π

t
B(σ), π

t
N↑

(σ), πtN⇑
(σ)

)
,

where
N⇑(σ) = {δ | µ ∈ N↑(σ) and δ ∈ C(σ, µ)}.

We require the dimension of cells to be encoded in the initial coloring. Note that UPD2 performs
augmented message passing: πtσ is a color atom (A3) and πtB(σ), π

t
N↑

(σ), πtN⇑
(σ) correspond to a

AMPs (S2) that aggregates a color over a neighborhood from B(σ),N↑(σ),N⇑(σ). Hence, we can
strongly simulate UPD2 by Theorem 3.5. Next, we show that for every t ≥ 0 the coloring produced in
iteration 2t of UPD2 refines the coloring produced by t iterations of UPD1 (CWN). Combining this
with the fact that we can strongly simulated UPD2 means that the coloring produced by 2t iterations
of strongly simulating UPD2 refines the coloring from t iterations of CWN. This proves that we can
weakly simulated CWN with a simulation factor of 2. We use CWN to denote the transformation
AMEUPD2

.

Let t ≥ 0 be an integer. Let X,X ′ be two arbitrary regular cell complexes. Let σ, ν be two arbitrary
cells from these cell complexes. We show by induction on t that if UPD2 is unable to distinguish σ
from ν in iteration 2t, then UPD1 is unable to distinguish cell σ from cell ν in iteration t. We use
ctσ to denote the color assigned to cell σ by the coloring from iteration t of UPD1. We use πtσ to
denote the color assigned to vertex σ in from iteration t of UPD2. To prove the theorem, we show
that π2t

σ = π2t
ν ⇒ ctσ = ctν . The base case (t = 0) holds trivially, as the features of the cells are

encoded in the vertex features. Next, we assume the statement holds for t = T and prove that it holds
for t = T + 1. This means we assume π2(T+1)

σ = π
2(T+1)
ν and have to show:

cT+1
σ =

(
cTσ , c

T
B(σ), c

T
↑ (σ)

)
!
=

(
cTν , c

T
B(ν), c

T
↑ (ν)

)
= cT+1

ν .

From π
2(T+1)
σ = π

2(T+1)
ν it follows that π2T+2

σ = π2T+2
ν and π2T

σ = π2T
ν . By the induction

hypothesis it then follows that cTσ = cTν . From π2T+2
σ = π2T+2

ν it follows that πB(σ)2T+1 =
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Figure 4: A graph (left) transformed into bags of subgraphs (center) by a policy and the result of
applying DSS to the graph and bags of subgraphs (right). Yellow vertices represent the original
graph and red vertices the subgraphs.

πB(ν)
2T+1. Hence, there exists a bijective function α : B(σ) → B(ν) that maps vertices with the

same color assigned by π2T+1 to another, meaning for all x ∈ B(σ) it holds that π2T+1
x = π2T+1

α(x) and
π2T
x = π2T

α(x). The existence of α and the induction hypothesis imply that cTB(σ) = cTB(ν). Similarly,
there exist a function β : N⇑(σ) → N⇑(ν) that bijectively map vertices assigned the same color
by π2T+1 to another. Thus, for every x ∈ N⇑(σ) it holds that π2T+1

x = π2T+1
β(x) and π2T

x = π2T
β(x).

Furthermore, it holds that for every x ∈ N⇑(σ) there exists a bijective function γx : B(x) → B(α(x))
that maps cells to another that get assigned the same color by π2T . Combining this yields{{{{

π2T
x , π2T

y

}}
| y ∈ B(x), x ∈ N⇑(σ)

}}
=

{{{{
π2T
x , π2T

y

}}
| y ∈ B(x), x ∈ N⇑(ν)

}}
.

By construction each y has a higher dimension than x. This is encoded in the features, thus it follows
that {{(

π2T
x , π2T

y

)
| y ∈ B(x), x ∈ N⇑(σ)

}}
=

{{(
π2T
x , π2T

y

)
| y ∈ B(x), x ∈ N⇑(ν)

}}
.

From the induction hypothesis it follows that{{(
cTx , c

T
y

)
| y ∈ B(x), x ∈ N⇑(σ)

}}
=

{{(
cTx , c

T
y

)
| y ∈ B(x), x ∈ N⇑(ν)

}}
. (1)

We prove that this is equivalent to showing that cT↑ (σ) = cT↑ (ν). For this, we show that for every cell
ρ it holds that

{(µ, δ) | µ ∈ B(δ), δ ∈ N⇑(ρ)}
!
= {(µ, δ) | µ ∈ N↑(ρ) and δ ∈ C(ρ, µ)}.

First, we show that the set on the left is a subset of the set on the right. Suppose an arbitrary
element (µ, δ) with µ ∈ B(δ) and δ ∈ N⇑(ρ) from the left set. Note that µ ∈ B(δ) implies µ ≺ δ.
Furthermore, δ ∈ N⇑(ρ) means ρ ≺ δ. Thus, δ ∈ C(ρ, µ). Finally, this also implies that µ ∈ N↑(ρ).
Hence, (µ, δ) is an element of the right set. Next, we show that the set on the right is a subset of
the left set. Let (µ, δ) with µ ∈ N↑(ρ) and δ ∈ C(ρ, µ) be an arbitrary element from the set on
the right. From δ ∈ C(ρ, µ) it follows that ρ ≺ δ and µ ≺ δ. By the definition of B, it follows
that ρ ∈ B(δ) and µ ∈ B(δ). It remains to show that δ ∈ N⇑(ρ) meaning we need to show that
δ ∈ {y | x ∈ N↑(δ) and y ∈ C(δ, x)}. By definition we know that µ ∈ N↑(δ) and that δ ∈ C(δ, µ).
Hence, δ ∈ N⇑(ρ). This implies that (µ, δ) is an element of the set on the left, meaning that the set
on the right is a subset of the set on the left. Thus, the two sets are equal. We use this to rewrite
Equation 1 into{{(

cTx , c
T
y

)
| x ∈ N↑(σ) and y ∈ C(σ, x)

}}
=

{{(
cTx , c

T
y

)
| x ∈ N↑(ν) and y ∈ C(ν, x)

}}
. (2)

Hence, cT↑ (σ) = cT↑ (ν). This concludes the proof.

F.2 DSS: Weakly Simulating DSS Efficiently

Recall that the color update function of DSS WL is defined as

ct+1
v,S = HASH

(
ctv,S ,

{{
ctx,S | x ∈ NS(v)

}}
, Ctv,

{{
Ctx | x ∈ NG(v)

}})
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where NS(v) is the set of all neighbors of vertex v in subgraph S, and Ctv contains the colors of v
across different subgraphs

Ctv =
{{
ctv,S′ | S′ ∈ π(G) and v ∈ V (S′)

}}
.

Let v ∈ V (G). According to the graph transformation from Algorithm 6 with simulation factor 2
we would create a separate helper vertex for each vertex from X = {x | x ∈ NG(v)} where each
x ∈ X is connected to all instances of x across the different subgraphs. A straightforward way to
do this, is to add an additional copy of the original graph. A drawback of the graph transformation
from Algorithm 6 is that because of Ctv =

{{
ctv,S′ | S′ ∈ π(G) and v ∈ V (S′)

}}
we need to create

edges between every copy of v among all subgraphs, that means we create up to |V | · |π(G)|2
extra edges. We can remedy this by adding edges between v in the original graph and all instances
of v in the other subgraphs. Thus, it suffices to create at most |E(G)| + |V (G)| · |π(G)| edges.
Similarly, for every v ∈ V (G) and all subgraphs S ∈ π(G) containing v we need to add edges to the
corresponding helper node for all neighbors NG(v). Interestingly, it is not necessary to add these
edges and instead it is possible to rely on the edges generated by adding an additional copy of the
original graph. However, this means that for a vertex v it takes three steps to obtain the information
{{Ctx | x ∈ NG(v)}}. Thus, this comes at the cost of increasing the simulation factor to 3. We call
the resulting graph transformation DSS. Figure 4 shows an example of DSS.

Definition F.2 (DSS). Given a graph G and policy π we define Gπ = (Vπ, Eπ, Xπ, Yπ) to be the
graph obtained by DSS. Where

Vπ =
⋃̇

S∈π(G)∪G

V (S),

Eπ =
⋃

S∈π(G)∪G

E(S) ∪ {{vG, vS} | S ∈ π(G) and v ∈ V (S)}.

For unlabeled graphs we introduce a vertex feature that encodes whether it was created from a
subgraph S ∈ π(G) or was created fromG. For labeled graphs we extend the features correspondingly.
We add edge features that allow us to distinguish whether an edge was created due from E(S) or
from {{vG, vS} | S ∈ π(G) and v ∈ V (S)}.

We show that for arbitrary policies and graphs WL on the transformed graphs is at least as expressive
as DSS-WL on the original graphs.

Theorem F.3. DSS weakly simulates DSS-WL with a simulation factor of 3.

Proof. Let G and H be two graphs and π a policy. We use τ tv,S to denote the coloring of vertex vS
obtained by iteration t of WL on Gπ or Hπ, and τ tv,G to denote the color in iteration t of WL of
vertex v that was created from the original graph G (respectively τ tv,H ). We use ctv,S to denote the
color of vertex v in subgraph S obtained in the t-th iteration of DSS-WL. We prove that for every
t ≥ 0 it holds that

∀v, w ∈ V (G), S, T ∈ π(G) : τ3tv,S = τ3tw,T ⇒ ctv,S = ctw,T

by induction on the iteration t of DSS-WL.

Base case: All vertices vS ∈ V (Gπ), wT ∈ V (Hπ) are assigned the same initial color (except the
indicator that they were created from a subgraph) as their counterpart from DSS-WL. Thus from
τv,S = τw,T it follows that c0v,S = c0w,T .

Induction hypothesis: We assume the statement holds for all t < n where n is an arbitrary non-
negative integer.

Induction step: Let v ∈ V (G), w ∈ V (H), S ∈ π(G), T ∈ π(H). We assume that τ3(n+1)
v,S =

τ
3(n+1)
w,T holds and want to show cn+1

v,S = cn+1
w,T . It is equivalent to the assumption that τ3n+3

v,S = τ3n+3
w,T

which also implies τ3nv,S = τ3nw,T . We need to show that

1. cnv,S = cnw,T ,
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2.
{{
cnx,S | x ∈ NS(v)

}}
=

{{
cny,T | y ∈ NT (w)

}}
, and

3. Cnv = Cnw, and {{Cnx | x ∈ NG(v)}} =
{{
Cny | y ∈ NH(w)

}}
.

From the induction hypothesis and τ3nv,S = τ3nw,T it immediately follows that cnv,S = cnw,T .

We want to show that
{{
cnx,S | x ∈ NS(v)

}}
=

{{
cny,T | y ∈ NT (w)

}}
. From τ3n+3

v,S = τ3n+3
w,T it

follows that there exists a bijection β : NGπ (vS) → NHπ (wT ) where for every x ∈ NGπ (vS) it
holds that τ3n+2

x = τ3n+2
β(x) which implies τ3nx = τ3nβ(x). Additionally, all neighbors of vS are from

the subgraph S or the original graph G and the vertex features allow us to distinguish between those
two types. Thus, β maps vertices from V (S) to vertices from V (T ). Note that these are exactly the
vertices whose colors are in

{{
cnx,S | x ∈ NS(v)

}}
,
{{
cny,T | y ∈ NT (w)

}}
. Thus, by combining this

with the induction hypothesis we obtain that
{{
cnx,S | x ∈ NS(v)

}}
=

{{
cny,T | y ∈ NT (w)

}}
.

We want to show that Cnv = Cnw. We use the function β defined in the previous paragraph. Due to
the vertex features we know that β must map vG to wH as there exists only one neighbor with the
“created from the original graph” feature among vS’ and wT ’s neighbors. Hence, τ3n+2

v,G = τ3n+2
w,H

which implies τ3n+1
v,G = τ3n+1

w,H . This implies that there exists a bijective function γ mapping
neighbors of vG to neighbors of wG such that they are assigned the same color by τ3n. The
vertex vG and wG in the copy of H have two types of neighbors: neighbors NG(v),NH(w) from
the original graph and copies of v, w over different subgraphs. By the vertex features we can
distinguish these two types of neighbors. Thus, γ maps copies of v from the different subgraphs
to copies of w over different subgraphs. As these vertices correspond to v, S′ and w, T ′ for all
S′ ∈ π(G), T ′ ∈ π(G), we can combine this with the induction hypothesis to obtain that Cnv ={{
cnv,S′ | S′ ∈ π(G) and v ∈ V (S′)

}}
=

{{
cnw,T ′ | T ′ ∈ π(H) and w ∈ V (T ′)

}}
= Cnw.

Finally, we want to show {{Cnx |∈ NG(v)}} =
{{
Cny | y ∈ NH(w)

}}
. Since the copy of v and w

created from the original graph can be uniquely identified by its vertex feature from NGπ
(v),NHπ

(w)
we know that β maps these two vertices together and thus that τ3n+2

v,G = τ3n+2
w,H . Hence, there exists

a bijective function σ : NG(v) → NH(w) such that for every neighbor x ∈ NG(v) it holds that
τ3n+1
x,G = τ3n+1

σ(x),H . We want to show that for every such neighbor x ∈ NG(v) it holds thatCnx = Cnσ(x).
Let x be one such vertex. As τ3n+1

x,G = τ3n+1
σ(x),H we can use the same argument as in the previous

paragraph to obtain that Cnx = Cnσ(x). This concludes the proof of the induction hypothesis and
shows that the theorem holds.

F.3 Strong Simulation of K-hop GNNs and KP-GNNs

We prove the following Theorem:
Theorem F.4. K-hop message passing and KP-GNNs [Feng et al., 2022] can be strongly simulated.

We prove the theorem only for KP-GNNs as K-hop message passing is a special case of KP-GNNs.
In the proof we define a new message passing algorithm we call simple KP-GNN (sKP-GNN). We
prove that (1) sKP-GNNs are as expressives as KP-GNNs in every iteration; and (2) that sKP-GNN is
strongly simulatable. The theorem then follows from the combination of (1) and (2). We begin with
the definition of sKP-GNN.
Definition F.5. (sKP-GNN) The color update function of sKP-GNNs is defined as

ml+1,k
v = MESl,normal

k

({{
(hlu, euv) | u ∈ Qk,tv,G

}})
+ f(Gk,tv,G),

f(Gk,tv,G) = EMB((E(Qk,tv,G), C
k′

k )),

hl+1,k
v = UPDlk

(
ml+1,k
v , hlv

)
,

hl+1
v = COMBINEl

(
hl+1,1
v , . . . , hl+1,K

v

)
.

Note that sKP-GNN only differs from KP-GNN by the definition of hl+1
v :
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• sKP-GNN: hl+1
v = COMBINEl

(
hl+1,1
v , . . . , hl+1,K

v

)
and

• KP-GNN: hl+1
v = COMBINEl

({{
hl+1,k
v | k = 1, 2, . . . ,K

}})
.

It is important to note that this transformation from a nested-aggregation to a tuple is only possible
because there is a natural order on the multisets aggregated (the hop size k). We prove that sKP-GNN
is as expressive as KP-GNN in every iteration.
Lemma F.6. Suppose both sKP-GNN and KP-GNN use an injective COMBINE· function. Then, for
every graph G = (V,E, F ) and integer l ≥ 0 it holds that the coloring sKP-GNNl(G,F |V ) refines
the coloring KP-GNNl(G,F |V ).

Proof. Let G = (V,E, F ) and G′ = (V ′, E′, F ′) be two graphs, v, w ∈ (V ∪V ′), and l ≥ 0,K ≥ 1
be integers. We furthermore assume that the COMBINE· function is injective. We prove that if

COMBINEl
(
hl+1,1
v , . . . , hl+1,K

v

)
= COMBINEl

(
hl+1,1
w , . . . , hl+1,K

w

)
(3)

then

COMBINEl
({{

hl+1,k
v | k = 1, 2, . . . ,K

}})
= COMBINEl

({{
hl+1,k
w | k = 1, 2, . . . ,K

}})
. (4)

From Equation 3 and the assumption that the COMBINE· function is injective it follows that(
hl+1,1
v , . . . , hl+1,K

v

)
=

(
hl+1,1
w , . . . , hl+1,K

w

)
.

Thus, for every j ∈ [[K]] it holds that hl+1,j
v = hl+1,j

w . This implies Equation 4.

Lemma F.7. sKP-GNN can be strongly simulated.

Proof. The proof reuses large parts the proof that KP-GNNs can be weakly simulated (Theorem 5.3).
As sKP-GNN only differs from KP-GNN in the definition of ht+1

v it follows from the proof that
hl+1,k
v is AMP for every k ∈ [[K]]. Then, ht+1

v is AMP that applies the function COMBINEt (S4) to
a tuple (S3) built from the AMPs hl+1,1

v , . . . , hl+1,K
v . From Theorem 3.5 it follows that sKP-GNN

can be strongly simulated.

Proof. (Theorem F.4) The theorem follows from Lemma F.6 and Lemma F.7.

G Intuition for CWN and CWN

→ →

Figure 5: Left: graph. Center: regular cell complex built from the graph through a graph-to-structure
encoding [Bodnar et al., 2021a]. Vertices correspond to 0-dimensional cells, edges to 1-dimensional
cells ( yellow ) and induced cycles to 2-dimensional cells ( blue ). Right: a graph created by structure-
to-graph encoding the regular cell complex to a graph. Vertices corresponds to cells as indicated by
color.

CW Networks [Bodnar et al., 2021a, CWN] perform message passing on topological structures called
regular cell complexes. A regular cell complex is built out of individual cells of some dimension.
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Similar to message passing on graphs, CWN computes a representation (or color) for each cell by
aggregating from the neighboring cells. To apply CWNs to graphs, a regular cell complex has to be
constructed from a graph (see Figure 5), we call this process graph-to-structure encoding. For this
vertices are transformed into 0-dimensional cells and edges into 1-dimensional cells. In this process
additional structures such as (induced) cycles or cliques can also be lifted to cells to improve the
expressiveness and connectivity in the structure. In the experiments we use a lifting map that lifts
induced cycles of length at most 6 to cells. Figure 5 shows how a regular cell complex is transformed
to a graph and shows how our structure-to-graph encoding CWN transforms the complex back to a
graph. Note that in our implementation of CWN we use undirected instead of directed for the sake
of simplicity. When transforming a cell to a vertex, we set the vertex features to the most common
feature of the vertices making up the cell for each feature. For example, a cell that corresponds to a
cycle v, w, p is transformed to a vertex whose features are the most common of the features of v, w, p.
Similarly, the features of edges connecting cells are the most common of the edge features between
the vertices making up the cells.

H More Details about the Experiments

We provide further details about our experiments. In Section H.1 we elaborate on our setup and in
Section H.2 we present more details on the results from the main paper. In Section H.3 we present
an additional evaluation of transformation and training speed. The code for our experiments can be
found at https://github.com/ocatias/GNN-Simulation.

H.1 Setup

All models are implemented in Pytorch Geometric [Fey and Lenssen, 2019]. We use WandB [Biewald,
2020] to track our experiments. Unfortunately, CWN requires an old version of PyTorch [Paszke
et al., 2019] meaning that we have to train it on older GPUs. CWN training and all speed evaluations
are performed on an an NVIDIA GeForce GTX 1080 GPU. All other experiments are performed on
NVIDIA GeForce RTX 3080 GPUs.

Type Pooling. In our transformations DSS and CWN vertices get assigned additional features that
encode the type of a vertex. In CWN, these features encode whether the cell was built from a vertex,
edge or cycle. In DSS, these features encode whether a vertex is part of the original graph or in a
subgraph. Inspired by a pooling operation by Bodnar et al. [2021a] we propose type pooling. The
idea is that vertices with different types contain different information and have varying importance.
Thus, instead of pooling all vertices in a graph, we instead pool all vertices of a type. To get a single
output for the entire graph, we then apply a multilayer perceptron with a ReLU activation function to
each pooled vector and then sum the results. Let POOL be a pooling operation such as

∑
. Let T be

the set of types and let Ht with t ∈ T be the multiset of all representations of vertices of type t, and
MLPt be a multilayer perceptron with activation function. Then, type pooling computes

Type-Pool =
∑
t∈T

MLPt (POOL(Ht)) .

We use type pooling for all combinations of an MPNN plus DS, DSS and CWN. Note that for DS all
nodes have just one type.

Hyperparameter Tuning. Table 3 contains all hyperparameter grids for the real life tasks. During
preliminary experiments we found that it is crucial to tune the pooling operation and number of layers
to achieve strong results. For DS(S) we do not tune the pooling function as the code provided by
Bevilacqua et al. [2021] does not directly support this. Since CWN is very slow, we use a smaller
hyperparameter grid, containing a superset of the hyperparameters used by Bodnar et al. [2021a].

Setup Real-Life Datasets. For all real-life datasets we tune the hyperparameters on the validation
set and evaluate the best hyperparameters on the test set 10 times. We report the average and standard
deviation of the metric that is typically used on the given dataset. For all OGB datasets, we train with
a batch size of 32 for 100 epochs with a fixed learning rate to allow for fast training of many models.
For ZINC we train as described by Bevilacqua et al. [2021], Bodnar et al. [2021a] and Dwivedi et al.
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Table 3: Hyperparameter grid used for the real life datasets. The learning rate is only tuned on OGB
tasks. On ZINC all models used the same initial learning rate that decays over time.

MODEL →
↓ PARAMETERS

GIN, GCN DSS, DS CIN ON OGB CIN ON ZINC

EMBEDDING DIMENSION 64, 256 64, 256 64, 256 64, 256
NUMBER OF LAYERS 1, . . . , 5 1, . . . , 5 1,2,3 3,4,5
LEARNING RATE 10−3, 10−4 10−3, 10−4 10−3, 10−4 10−3

POOLING OPERATION SUM, MEAN MEAN SUM, MEAN SUM, MEAN
DROPOUT RATE 0.5 0.5 0.5 0.5

[2023] i.e., for up to 500 epochs with a batch size of 128 with an initial learning rate of 10−3 that
reduces by a factor of 0.5 every time the validation result has not improved for 20 epochs. If the
learning rate dips below 10−5 the training stops.

Setup CSL. For the synthetic CSL dataset, we only evaluate GIN plus the graph transformations
and compare to the results reported by Bevilacqua et al. [2021] and Bodnar et al. [2021a]. We perform
10-fold cross validation on this dataset. For all models with graph transformations we replicate the
hyperparameters used by the corresponding non-standard message passing algorithms described in
the original papers. For GIN, we tune hyperparameters as described for real-life datasets.

H.2 Results on Real-Life Datasets

Tables 4 and 5 show the prediction quality of our models on all real-life datasets.

Table 4: Bold results are better than the corresponding message passing baseline, red results are
graph transformation based methods that are better than the corresponding non-standard message
passing variation. ↓ means lower is better. ↑ means higher is better.

DATA SET →
↓ MODEL

MOLHIV
ROC-AUC ↑

MOLTOX21
ROC-AUC ↑

MOLESOL
RSMSE ↓

ZINC
MAE ↓

GIN 77.7± 1.0 76.1± 0.5 0.946± 0.086 0.306± 0.035
GCN 76.6± 1.0 74.9± 0.6 0.928± 0.049 0.456± 0.021
MLP 72.2± 0.9 71.2± 0.7 1.128± 0.021 1.44± 0.001
DS 75.4± 1.4 75.4± 0.6 0.986± 0.051 0.161± 0.008
DS + GIN 77.2± 1.2 77.0± 0.6 0.924± 0.03 0.143± 0.008
DS + GCN 75.4± 0.8 76.6± 0.6 0.872± 0.037 0.285± 0.044
DS + MLP 69.8± 6.1 70.8± 0.8 1.292± 0.115 1.281± 0.002
DSS 76.8± 1.3 77.0± 1.0 0.864± 0.024 0.105± 0.005
DSS + GIN 74.4± 1.3 78.1± 0.7 0.853± 0.015 0.149± 0.008
DSS + GCN 74.8± 2.1 76.3± 0.7 0.868± 0.022 0.221± 0.028
DSS + MLP 71.9± 0.8 69.7± 0.5 1.272± 0.025 1.283± 0.006
CWN 78.6± 1.5 75.2± 0.9 1.117± 0.051 0.13± 0.003
CWN + GIN 78.4± 1.5 74.4± 0.7 0.958± 0.021 0.137± 0.007
CWN + GCN 78.1± 1.0 74.2± 0.9 0.933± 0.036 0.155± 0.013
CWN + MLP 71.8± 0.8 71.0± 0.5 1.217± 0.032 1.045± 0.006

H.3 Speed Evaluation

Setup. We evaluate the preprocessing and training speed on ZINC for GIN and our graph transfor-
mations against DS(S) and CWN. We select the hyperparameters for all GNNs such that they all
have roughly 8 · 105 trainable parameters. To measure the transformation speed, we begin the time
measurement after the graphs have been loaded into memory and stop before we store the final objects.
For our graph transformations, this measures how long it takes to run the graph transformations. For
CWN, this measures how long it takes to create the cell complexes from the graphs. Additionally, we
measure how long it takes to train the model for 100 epochs on ZINC evaluating it after every epoch.
We average all time measurements over 10 trials.
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Table 5: Bold results are better than the corresponding message passing baseline, red results are
graph transformation based methods that are better than the corresponding non-standard message
passing variation. ↓ means lower is better. ↑ means higher is better.

DATA SET →
↓ MODEL

MOL-
BACE
ROC-AUC ↑

MOL-
CLINTOX
ROC-AUC ↑

MOL-
BBBP
ROC-AUC↑

MOL-
SIDER
ROC-AUC ↑

MOL-
TOXCAST
ROC-AUC ↑

MOL-
LIPO
RMSE ↓

GIN 75.3± 4.9 87.1± 1.5 66.8± 2.3 56.8± 1.0 64.2± 0.7 0.787± 0.026
GCN 76.9± 3.8 88.2± 1.2 66.6± 2.1 57.5± 0.9 63.2± 0.5 0.793± 0.028
MLP 41.6± 11.2 57.1± 3.9 63.7± 1.8 58.9± 1.4 62.8± 0.3 1.048± 0.009
DS 79.2± 1.9 85.7± 2.9 67.4± 1.3 60.6± 1.1 66.3± 0.5 0.736± 0.022
DS + GIN 75.3± 3.5 81.4± 4.2 66.2± 1.8 59.3± 0.9 66.7± 0.5 0.716± 0.014
DS + GCN 77.7± 2.8 83.8± 2.4 66.0± 1.1 61.0± 0.9 66.1± 0.4 0.754± 0.018
DS + MLP 71.8± 5.6 55.4± 5.0 63.6± 2.1 52.9± 1.6 58.5± 5.5 1.048± 0.011
DSS 74.5± 7.4 84.6± 2.6 67.5± 1.5 57.5± 1.5 66.4± 0.8 0.652± 0.009
DSS + GIN 77.2± 3.0 86.4± 1.2 64.3± 2.5 59.0± 1.1 66.8± 0.4 0.76± 0.018
DSS + GCN 74.8± 3.9 87.3± 1.6 67.3± 2.0 62.0± 1.0 66.1± 0.6 0.767± 0.027
DSS + MLP 72.8± 4.3 51.9± 7.7 63.5± 2.0 51.6± 2.0 62.0± 0.8 1.054± 0.01
CWN 75.0± 2.7 84.7± 2.4 69.5± 1.6 57.6± 1.6 64.7± 0.9 0.755± 0.018
CWN + GIN 75.2± 3.3 85.4± 2.4 68.1± 2.4 59.1± 1.0 64.5± 1.1 0.749± 0.013
CWN + GCN 72.2± 3.8 88.0± 1.6 61.5± 3.0 62.4± 1.1 64.4± 0.6 0.787± 0.016
CWN + MLP 38.1± 0.6 55.7± 4.8 62.7± 1.6 59.9± 1.1 63.1± 0.5 1.055± 0.01

Table 6: Speed comparison of different GNNs. TRANSFORM is the time to transform the graphs to
the required structure to perform message passing over. TRAIN is the time to train a model to train for
100 epochs. COMBINED is the combined time of training and transformation. Bold indicates the best
result for a given non-standard message passing algorithm and corresponding graph transformation.

MODEL
TRANSFORM
SEC. ↓

TRAIN.
SEC. ↓

COMBINED
SEC. ↓

GIN NA 170± 1 170± 1
CWN 37± 1 3259± 16 3296± 17
CWN + GIN 67± 1 286± 6 353± 7
DSS 95± 4 955± 5 1050± 9
DSS + GIN 183± 8 1466± 7 1649± 15
DS 95± 4 1235± 5 1330± 9
DS + GIN 171± 8 1060± 5 1231± 13

Results. Table 6 shows the results of the speed evaluation. We can see that the graph transformation
are roughly twice as slow as the alternative transformation for the non-standard message passing.
However, this runtime is still significantly smaller than the time it takes to train the model a single
time. Thus, the runtime of graph transformations is insignificant as the transformation only needs
to be performed a single time whereas the model might need to be trained dozens of times to find
good hyperparameters. With respect to the training time, DSS+GIN is roughly 54% slower than DSS
and DS+GIN is roughly 17% faster than DS. Interestingly, CWN+GIN is 11 times faster than CWN.
While it might seem surprising that our graph transformation based variant of CWN is 11x faster
than the original implementation, the reasons for that might be: (1) a bug, for example in how the
original code of CWN interacts with our environment; (2) CWN requires a large amount of code
built on top of PyTorch Geometric, whereas CWN+GIN just performs standard message passing;
(3) the implementation of CWN by Bodnar et al. [2021a] is not compatible with newer variants of
PyTorch (Geometric) meaning that CWN+GIN can make use of speed increases due to improvements
in PyToch (Geometric). Reasons (2) and (3) highlight the strength of graph transformations in that
they are mostly platform and implementation independent as the transformed graphs can be stored in
file formats that are independent from the used deep learning framework.
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