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Abstract

This survey presents a comprehensive review of coreset methods in deep learning, an impor-
tant tool for improving data efficiency in large-scale neural networks. In general, “coreset”
is an algorithmic technique for selecting a small yet representative subset of data to replace
the full dataset, which can yield more efficient training process and meanwhile preserve
model performance. In the past 20 years, coreset techniques have been widely applied to
many classical machine learning problems, such as clustering, regression and classification.
In recent years, the coreset techniques also begin to attract a lot of attention in modern deep
learning area. However, designing effective coresets usually is a challenging task since we
need to take account of the trade-off among multiple different factors, such as complexity,
robustness and accuracy. In this survey, we focus on two common scenarios for using coreset
methods in deep learning: (1) reducing the extremely high computational cost for training
a deep learning model, and (2) improving the data utilization under resource constraints
such as limited label budget or storage capacity. We begin by outlining the fundamental
principles, advantages, and design challenges of coresets for these two scenarios. We also
discuss the emerging applications of coresets in large language models. Finally, we identify
several open problems and promising directions for future research.

1 Introduction

In general, a coreset is a compact data summary designed to approximate a large dataset, enabling one to
use such a data summary to complete challenging computational tasks with much lower complexities. The
first formal definition of coresets dates back to Agarwal et al. (2005), where they introduce this concept in
computational geometry for solving geometric covering and clustering problems. Over the past 20 years, the
research on coresets has expanded tremendously, ranging from classical machine learning to modern deep
learning. Figure 1 illustrates the technological evolution of coresets. In classical machine learning, coresets
have been applied to optimization problems like clustering (Chen, 2009; Feldman & Langberg, 2011; Huang
et al., 2018; Cohen-Addad et al., 2021), logistic regression (Huggins et al., 2016; Tolochinsky et al., 2022), and
linear regression (Tukan et al., 2020; Huang et al., 2022a). More recently, in modern deep learning (especially
in the recent 5 years), coresets have found applications in robust optimization (Ding & Wang, 2020; Huang
et al., 2022b), active learning (Coleman et al., 2020; Sener & Savarese, 2018), robust training (Mirzasoleiman
et al., 2020b; Dolatabadi et al., 2023), continual learning (Borsos et al., 2020; Wang et al., 2022c), and large
language models (Zhang et al., 2024; Joaquin et al., 2024; Nguyen et al., 2025b).

Coresets have gained increasing importance in the deep learning era. As shown by the scaling laws (Kaplan
et al., 2020), a power-law relationship exists between the improvements in model performance, intelligence
and the increases in dataset size, model parameters, and computational resources (Du et al., 2022; Cherti
et al., 2022). Therefore, training deep learning models often suffers from significant computational cost.
For instance, it usually takes several months to train a large language model from scratch. In this context,
algorithms that enable effective data compression and efficient data utilization, such as coreset-based meth-
ods, are expected to substantially reduce the computational cost (Sorscher et al., 2022; Covert et al., 2024).
Specifically, we consider two major application scenarios for coresets:
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2000s 2010s                          2020s                     2023

Classical Machine Learning
Regression, Classification, Subspace Approx.

Large Language Models
Pretraining, Fine-Tuning

Computational Geometry
Clustering, Geometric Covering, 

Shape Fitting

Deep Learning
Image Classification, Generative Models, 

Active Learning, Continual Learning, 

Semi/Self-Supervised Learning

Figure 1: The technological evolution of coreset methods, progressing through four stages: coresets for
computational geometry, for classical machine learning, for deep learning, and for large language models.

1. Reducing the computational cost, where coresets are used for compressing the original large input
data. In particular, we expect that the model trained on the coreset maintains a comparable accuracy
to the model trained on the original data.

2. Improving the data utilization under resource constraints, such as active learning (Settles, 2009)
(where labeling effort and domain knowledge are limited) and continual learning (Wang et al., 2024a)
(where memory and storage constraints prevent retaining all previously seen data).

To provide some intuition, we present one of the most commonly used formulations for the first scenario, i.e.,
using a small coreset to compress the input dataset. Let X = {xi}n

i=1 denote the original input dataset of size
n, Y = {yi}n

i=1 denote the corresponding label vector, and w = {wi}n
i=1 denote the corresponding positive

weight vector. Also, let Θ denote the parameter space of the model. Suppose L(θ; X, w) =
∑n

i=1 wiℓ(xi, yi; θ)
is the weighted empirical risk over X for the model with the parameter vector θ ∈ Θ (ℓ is the per-sample
loss). Typically, we assume that wi = 1 for all is, then we have the standard empirical risk, which can be
simply written as L(θ; X) =

∑n
i=1 ℓ(xi, yi; θ). The objective of coreset construction is to identify a small,

weighted subset S = {x̂i}k
i=1 ⊆ X, where the size k ≪ n, and the corresponding positive weight vector

ŵ = {ŵi}k
i=1, serving as a compact proxy for the full dataset. Informally, we hope that the weighted loss on

S can approximate the loss on X for all parameters in Θ:

L(θ; S, ŵ) ≈ L(θ; X), ∀θ ∈ Θ. (1)

This approximation property ensures that solving the target problem on the coreset yields a solution of
quality comparable to that obtained on the full dataset. Figure 2 provides a t-SNE visualization of the
coreset selection process, demonstrating how a relatively small yet representative subset can preserve the
structure of the full dataset.

We should emphasize that as the rapid developments of coresets in multiple areas, their formulations become
more and more diverse and it is not realistic to give a unified definition for them. The purpose of introducing
(1) is simply to provide an illustrative example. The various task-specific definitions of coresets will be
discussed in later sections.

Here, we should also clarify that coreset methods are related to, but distinct from, several other data reduction
and selection strategies. First, coresets can be regarded as a specific approach falling under the umbrella of
a broader topic called data compression (Lelewer & Hirschberg, 1987). In this area, another widely studied
tool is sketching, which aims to reduce the number of features or dimensionality (Woodruff et al., 2014); the
most common sketching methods include “PCA” (Maćkiewicz & Ratajczak, 1993) which uses top principal
components to build low dimensional representation, and “Johnson-Lindenstrauss transforms” (Johnson
et al., 1984) which projects data onto a random lower-dimensional subspace.
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Figure 2: t-SNE (Van der Maaten & Hinton, 2008) visualization of coreset selection, which aims to construct
a relatively small subset (coreset) of a large dataset. The goal is to ensure that a deep learning model trained
on this coreset achieves performance comparable to training on the full dataset (as formalized in (1)). The
left panel presents a t-SNE visualization of the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) (all points
within the same class share the same color), while the right panel shows the constructed coreset (circled
points) by the method introduced in Huang et al. (2021a).

Besides sketching, coreset methods also share certain similarity with two recently proposed data reduction
techniques. The technique of dataset distillation (Wang et al., 2018; Lei & Tao, 2023) also serves as a proxy
or summarization for the original dataset in many deep learning problems. The major difference between
coresets and dataset distillation is that, the former one often relies on selecting a representative subset of
actual samples from the original data, but the later technique typically synthesizes a small dataset from the
original training dataset which can be potentially large. The second similar technique is data curation (Evans
et al., 2024), which aims at selecting high-quality samples from the input dataset. This process typically
involves evaluating each data item using a reference model trained on a reference dataset, which specifies the
target distribution to be curated. However, we need to remind the reader that there is no strict boundary
between coresets and these two similar techniques in reality. In some cases, a data distillation or
curation technique can also be regarded as a generalized coreset method in the stage of data processing.

In this article, we provide a comprehensive review of recent developments in coreset techniques and their ap-
plications in deep learning. We are aware of several excellent surveys on coreset methods, but they primarily
focus on classical optimization problems (Feldman, 2020; Schwiegelshohn, 2023; Phillips, 2017; Munteanu
& Schwiegelshohn, 2018), including clustering, geometric optimization (such as the smallest enclosing ball),
linear and logistic regression, and subspace approximation. To the best of our knowledge, the only survey
dedicated to coresets in deep learning is by Guo et al. (2022), which mainly focuses on the applications of
coresets for image classification tasks.

This survey is organized as follows. Section 2 introduces four categories of commonly used coreset construc-
tion techniques for efficient model training. Section 3 explores the applications of coresets in deep learning
for enhanced data utilization, with Section 4 specifically addressing their use in pretraining and fine-tuning
large language models. Finally, Section 5 discusses several key challenges and promising research directions
to advance the study and application of coresets in deep learning.

2 Coresets for Efficient Training

As we know, the Stochastic Gradient Descent (SGD) algorithm and a number of its variants (Qian, 1999;
Duchi et al., 2011; Tieleman & Hinton, 2012; Kingma & Ba, 2015) are widely employed for training deep
learning models. Despite their effectiveness, training large-scale models still entails substantial computational
cost. In this section, we overview existing coreset methods for improving the efficiency of training deep
learning models. Based on their underlying construction principles, we group these methods into four
categories: greedy selection, importance sampling, filtering, and distribution matching. Each
category employs a distinct strategy to identify the most informative training examples as the coreset. It

3



Under review as submission to TMLR

is worth noting that these methods are not mutually exclusive. In practice, they are often combined as a
hybrid coreset approach to handle complicated tasks.

2.1 Greedy Selection Methods

A greedy selection method iteratively builds the coreset by adding data points that maximize a predefined
utility function at each step. The core of this principle lies in designing an effective utility function that
quantifies the marginal benefit of adding a new data item, which is often based on criteria like information
gain, diversity, or model improvement (Hao et al., 2022; Mirzasoleiman et al., 2020a; Killamsetty et al.,
2021a; Pooladzandi et al., 2022; Killamsetty et al., 2021c;b; Borsos et al., 2020; Hao et al., 2023; Zhou et al.,
2022). Below, we introduce the details for this type of coreset construction methods.

Recall that X = {xi}n
i=1 represents the original dataset. For any subset of X, let f : 2X → R be a utility

function that quantifies some measure of interest (e.g., coverage, or informativeness). A greedy selection
based coreset of cardinality k ∈ Z+ is constructed via a generic iterative procedure, which is described in
Algorithm 1. The algorithm is initialized with a set S0, and at each iteration, it appends to the current set
the element that yields the largest marginal gain with respect to the utility f . The marginal gain of adding
x ∈ X \ S to the current subset S is defined as:

∆f (x | S) = f(S ∪ x)− f(S). (2)

The procedure terminates until |S| = k. The resulting set S is then taken as the final coreset. In deep
learning, the utility function f used for coreset selection is often deliberately designed to be submodu-
lar (Mirzasoleiman et al., 2020a), or to closely approximate a submodular function (Xu et al., 2023), so that
the greedy selection rule in (2) can be applied efficiently with theoretical support.

A set function f , defined over a finite ground set X, is said to be submodular if it satisfies the following
property for all subsets A ⊆ B ⊆ X and any element x /∈ B:

f(A ∪ x)− f(A) ≥ f(B ∪ x)− f(B). (3)

Inequality (3) expresses the well-known diminishing returns property (Fujishige, 2005), which indicates that
when an element x is added to a larger set B, the resulting gain is smaller than when it is added to a smaller
set A. Moreover, when f is monotone (i.e., f(A) ≤ f(B) for all A ⊆ B) and normalized (i.e., f(∅) = 0),
the seminal result of Nemhauser et al. (1978) (as shown in Theorem 2.1) ensures that the greedy algorithm
achieves a provable approximation guarantee.
Theorem 2.1 (Nemhauser et al., 1978). Let f : 2X → R+ be a non-negative monotone submodular function,
k be the target set size, and {Si}i≥0 denote the sequence of subsets constructed by the greedy algorithm
(Algorithm 1). Then, for all non-negative integers l ∈ Z+, the following guarantee holds:

f(Sl) ≥
(

1− exp
(
− l

k

))
max

S:|S|≤k
f(S), (4)

and in particular, when l = k, we have

f(Sk) ≥
(

1− 1
e

)
max

S:|S|≤k
f(S). (5)

Remark 1. Following Theorem 2.1, submodular maximization has been extensively studied from both
complexity-theoretic and algorithmic perspectives. Exact maximization of a submodular function is NP-
hard, and the (1 − 1/e) approximation ratio achieved by the greedy algorithm (Algorithm 1) is provably
optimal unless P = NP (Feige, 1998). Subsequent research has focused on improving computational efficiency
through approximation algorithms such as lazy greedy (Minoux, 2005) and stochastic greedy (Mirzasoleiman
et al., 2015). These methods often yield substantial speedups, typically one to two orders of magnitude for
lazy greedy and up to three orders of magnitude for stochastic greedy, while retaining the same or nearly
the same approximation guarantees.
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Algorithm 1 Generic greedy coreset construction
Input: Dataset X, utility function f , target size k

1: S0 ← ∅
2: for i = 0, . . . , k − 1 do
3: x∗ = argmaxx∈X\Si

∆f (x | Si)
4: Si+1 ← Si ∪ x∗

5: end for
6: return Sk

A representative submodularity-based coreset construction method is gradient matching, which aims to
align the gradient computed on the coreset with that of the full dataset (Mirzasoleiman et al., 2020a; Yang
et al., 2023b; Nguyen et al., 2025a). The rationale behind this idea is that, if the gradient of the loss function
over the selected subset can approximate that of the full dataset, then updating the model using the coreset
should yield similar optimization dynamics. For example, Mirzasoleiman et al. (2020a) propose CRAIG
(Coresets for Accelerating Incremental Gradient Descent), an algorithm designed to select a weighted subset
of training data for accelerating the training of large-scale deep learning models. Specifically, the goal in
CRAIG is to find the smallest subset S ⊆ X and corresponding per-element stepsizes γj > 0 that approximate
the full gradient with an error at most ϵ > 0 for all possible values of the optimization parameters:

min
S⊆X, γj≥0 ∀j

|S| s.t. max
θ∈Θ

∥∥∥∥ ∑
xi∈X

gi(θ)−
∑

xj∈S

γjgj(θ)
∥∥∥∥ ≤ ϵ, (6)

where gi(θ) denotes the gradient contribution of sample xi at parameter θ, and Θ is the parameter space.
They define the utility function f(S) as

f(S) ≜ min
θ∈Θ

∥∥∥∥ ∑
i∈X

gi(θ)−
∑
j∈S

γjgj(θ)
∥∥∥∥, (7)

which measures the approximation error of the subset S with respect to the full gradient over the entire
parameter space. Then, they apply the greedy Algorithm 1 to approximately solve problem (6) by iteratively
selecting the element that provides the largest marginal decrease in f(S), until the approximation error is
below ϵ.

Besides the aforementioned submodularity-based methods, there also exist several other greedy selection
approaches for coreset construction. Killamsetty et al. (2021a) propose “Grad-Match”, a method that
employs the orthogonal matching pursuit method (Elenberg et al., 2018) to efficiently identify coresets.
Pooladzandi et al. (2022) introduce “AdaCore”, a method that leverages the geometry of data distribution
to extract coreset from given training examples.

Another representative greedy selection method is loss reduction, where the selection criterion relies on the
decrease in training loss incurred when a data point is added to the coreset (Killamsetty et al., 2021c;b; Xu
et al., 2023). For instance, Killamsetty et al. (2021c) introduce the method “RETRIEVE”, which is a coreset
selection framework designed for efficient and robust semi-supervised learning. The approach formulates the
coreset selection as a mixed discrete continuous bilevel optimization problem, where the objective is to select
a labeled subset that minimizes the supervised loss. Xu et al. (2023) propose a robustness-aware coreset
selection (RCS) method to accelerate adversarial contrastive learning. Without relying on label information,
RCS selects an informative subset by minimizing the representational divergence between natural data and
their virtual adversarial variants. As exhaustively searching all possible subsets is computationally infeasible,
the authors reformulate RCS as a surrogate submodular maximization problem. This transformation enables
the use of a greedy algorithm, which offers an efficient solution with theoretical optimality guarantee.

2.2 Importance Sampling Methods

Importance sampling (Robert & Casella, 2004) is a popular and long-history algorithmic technique in com-
puter science. For example, it is often used for the low-rank approximation problem (Mahoney & Drineas,
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2009; Drineas et al., 2008; Mahoney et al., 2011), where the goal is to approximate a given matrix by a matrix
with a lower rank. Such an approximation can be explicitly represented by a small subset of the columns
and/or rows of the original matrix. These columns or rows can be found using an importance sampling based
approach by first calculating an “influence score” for each one, and then sampling them with probabilities
proportional to the scores. The importance sampling idea has also been introduced as an effective approach
for coreset construction (Feldman & Langberg, 2011). First, it assigns an importance score to each data
point; then, one can sample the data items according to the probability distribution derived from these
scores. In contrast to uniform sampling, which treats all examples equally, this approach prioritizes data
points deemed more valuable for the learning task.

Similar to the greedy selection methods introduced in Section 2.1 which rely on a predefined utility function,
the key idea of importance sampling is to design a proper scoring function f that assigns an importance
score to each data point in the full dataset X = {xi}n

i=1. This score defines a proposal distribution p from
which samples are drawn, with the sampling probability for each xi ∈ X given by

p(xi) = f(xi)∑n
j=1 f(xj)

. (8)

A coreset S = {x̂i}k
i=1 of size k is then obtained by sampling from X according to p. To correct for the bias

introduced by this non-uniform sampling, each sampled point x̂i ∈ S is assigned a weight by

ŵi = q(x̂i)
p(x̂i)

, (9)

where q is the probability density in the original dataset X. When X is uniformly distributed, q(x) = 1
n and

the weight is simply set to ŵi = 1
n p(x̂i) . Actually, uniform sampling can be regarded as a special case where

f(xi) is constant for all i. That is, p(xi) = 1
n .

The theoretical foundation of this importance sampling based coreset framework was established by Feld-
man & Langberg (2011). This framework has since been extended to numerous classical machine learning
problems, including k-means clustering (Braverman et al., 2021), logistic regression (Munteanu et al., 2018;
Tukan et al., 2020), and SVM (Tukan et al., 2020). Let ϵ ∈ (0, 1) be a prespecified parameter, and we use
“dim” to denote the measure to evaluate the complexity of the optimization objective. For example, for a
clustering problem, the dim can be defined as its combinatorial complexity (Feldman & Langberg, 2011).
For a deep neural network, the dim can be defined as its pseudo-dimension (Yang et al., 2023a; Anthony
& Bartlett, 2002; Bartlett et al., 2019). The value of dim is often deeply related with the VC dimension
in learning theory (Haussler & Welzl, 1986; Vapnik & Chervonenkis, 1971; Blumer et al., 1989; Feldman
& Langberg, 2011; Yang et al., 2023a; Anthony & Bartlett, 2002; Bartlett et al., 2019). According to the
theory introduced in Feldman & Langberg (2011), when we construct a weighted coreset S with the size
|S| = Poly( 1

ϵ , dim) via the importance sampling, we can guarantee that

L(θ; S, ŵ) ∈ (1± ϵ)L(θ; X), ∀θ ∈ Θ (10)

with high probability. For more details, we refer the reader to the surveys (Feldman, 2020; Schwiegelshohn,
2023; Phillips, 2017; Munteanu & Schwiegelshohn, 2018).

In this article, we mainly focus on the applications of coresets for deep learning models. However, the theory
for the aforementioned classical machine learning problems cannot be strictly guaranteed in the context of
deep learning, due to its highly complicated optimization objective and non-convex loss landscapes. To shed
some light, we can consider a deep neural network with piecewise linear activation functions, such as the
ReLU (Nair & Hinton, 2010). It has been proven that its VC dimension has an upper bound of O(rl log r)
and a lower bound of Ω(rl log r

l ) (Bartlett et al., 2019), where r and l denote the numbers of parameters and
layers, respectively. Therefore, the value of dim of a deep neural network is typically very large. Nevertheless,
the idea of importance sampling has still been shown to be effective for improving the training efficiency of
deep learning models in practice (Alain et al., 2015; Yi et al., 2019; Chang et al., 2017; Qin et al., 2024;
Zheng et al., 2023b). Below, we introduce several examples.
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Several methods compute the importance of each data item based on gradients. The method “Importance
Sampling Stochastic Gradient Descent (ISSGD)” (Alain et al., 2015) speeds up the training procedure by
reducing gradient variance in SGD. Specifically, ISSGD employs a distributed implementation that utilizes
multiple worker machines to compute the gradient norms for disjoint data subsets in parallel, and then takes
a master machine to collect these norms; finally, it performs importance sampling based on these gradient
norms. Compared with regular SGD, which samples each batch uniformly, ISSGD can minimize training
loss more quickly. For example, in the experiments on the SVHN dataset (Netzer et al., 2011), ISSGD
achieves convergence in less than 1 hour, compared to about 6 hours by regular SGD (Alain et al., 2015).
Instead of resorting to distributed implementations, Katharopoulos & Fleuret (2018) propose a more efficient
importance sampling method through estimating upper bounds for the gradient norms. The experiments
show that this approach achieves not only faster convergence but also superior model performance compared
to uniform sampling.

The importance sampling idea has also been successfully adapted to accelerate the training of deep generative
models, such as the Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). The method “GAN
with Flow-based Importance Sampling (FIS-GAN)” (Yi et al., 2019) performs importance sampling by
prioritizing important regions in the latent noise distribution of GANs. The latent noise distribution is
dynamically updated based on the Jacobian norms of the noise samples fed into the generator. The regions
of noise samples with higher Jacobian norms are identified as “harder” regions, and then are assigned higher
densities in the updated distribution. When training on the Fashion-MNIST dataset (Xiao et al., 2017),
FIS-GAN achieves a Fréchet Inception Distance (FID) score (Heusel et al., 2017) below 3.00 in just 2000
training steps, while training without importance sampling needs 5000 training steps to reach comparable
performance.

In addition to the gradient-based metrics, some methods adopt alternative criterion for measuring impor-
tance, such as prediction uncertainty (Chang et al., 2017) or training loss values (Qin et al., 2024). Chang
et al. (2017) propose to prioritize training examples exhibiting high classification uncertainty, which is quan-
tified as the variance of the predicted probability for the correct class across different training iterations.
Intuitively, if the prediction for an example fluctuates significantly across iterations (high variance), it likely
lies near the model’s decision boundary, thereby exhibiting greater uncertainty; such uncertain examples
are more important to refine the decision boundaries. InfoBatch (Qin et al., 2024) proposes measuring
importance using training loss values, which can be obtained without incurring additional computational
cost. Training examples with high loss values are typically not well-learned, making them informative for
further training. In each training epoch, high-loss examples are retained, whereas low-loss ones are discarded
according to a predefined pruning probability. In practice, InfoBatch delivers substantial training accelera-
tion while maintaining competitive model performance. For instance, when training ResNet-50 (He et al.,
2016) on the ImageNet (Deng et al., 2009) using 8 NVIDIA A100 GPUs, InfoBatch achieves 76.5% average
accuracy in just 84.0 GPU hours, which is nearly 40% faster than full-data training that achieves 76.4%
average accuracy in 140.0 GPU hours.

Another line of research is applying importance sampling to neural network pruning (Tukan et al., 2022;
Mussay et al., 2020; 2021; Baykal et al., 2019), with the aim of compressing models rather than reducing
datasets. In this setting, network parameters are treated as a large set of points, and the objective is to
find a small subset that approximates the output of the original model. Unlike the methods reviewed in
this section, which focus on efficient training, the coreset-based pruning methods target faster inference and
broader deployment. Nevertheless, they also contribute to making deep learning more scalable and accessible
for real-world applications.

2.3 Filtering Methods

Filtering methods construct coresets by discarding data points with lower importance. Unlike importance
sampling introduced in Section 2.2, which introduces stochasticity through probability sampling by (8), the
filtering methods are deterministic with hard selection rules. Typically, they set thresholds or compute
rankings, to retain only those examples that meet specified standards of informativeness or relevance (Toneva
et al., 2019; Paul et al., 2021; Tan et al., 2023; Sinha et al., 2020b; Xia et al., 2022; DeVries et al., 2020; Xie
et al., 2025).
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Formally, the coreset S is defined as

S = {x ∈ X | f(x) ≥ τ}, (11)

where f is a scoring function (which could measure the uncertainty, loss, or influence) similar to the one
employed by importance sampling methods, and τ is a predefined threshold. Alternatively, in the top-k
selection variant, the coreset consists of the k highest-scoring examples.

Similar to the importance sampling methods, the choice of filtering criterion is also highly task-dependent.
Toneva et al. (2019) introduce a concept called “forgetting event”, which occurs when a training example,
correctly classified in the previous training step, is misclassified in the current step. In their experiments on
CIFAR-10, up to 35% of the dataset who have fewer forgetting events can be removed and there is only a less
than 0.2% decrease in the final test accuracy. Paul et al. (2021) introduce the “Gradient Normed (GraNd)”
score to quantify the importance of each individual data point. Theoretically, they show that at any given
training step, the contribution of a training example to reducing the loss on any other example is bounded
by its loss gradient norm (up to a multiplicative constant). This insight motivates the authors to use the
GraNd score as the filtering metric, which is defined as the expected norm of the loss gradient. “Moving-one-
Sample-out (MoSo)” (Tan et al., 2023) measures the importance of a training example by estimating how
its removal affects the empirical risk over the remaining dataset. Intuitively, removing a critical example
from the training set would significantly increase the empirical risk, while an unimportant one would have
negligible impact. Directly calculating this effect is computationally prohibitive, as it requires repeatedly
retraining the model with each example removed. To address this, the authors try to approximate the change
in empirical risk by computing the expected inner product between the loss gradient of a candidate example
and the loss gradient of the remaining dataset. An example receives a high MoSo score if its gradient strongly
aligns with the gradient of the remaining dataset, indicating that training on it produces a similar effect to
training on the remaining dataset.

“Top-k GAN” (Sinha et al., 2020b) employs a filtering strategy for GAN training by leveraging outputs from
the discriminator as importance scores. In the experiments, when training on generated images deemed least
realistic by the discriminator, the resulting gradient updates tend to push them away from their nearest
mode, ultimately degrading model performance and reducing training efficiency. Based on this observation,
when updating the generator, Top-k GAN discards such unrealistic samples by zeroing out the gradients
from them. Compared to regular GAN training, Top-k GAN mitigates mode dropping and enhances model
performance without introducing additional computational overhead, thereby successfully improving the
training efficiency.

Beyond those gradient-based and error-based importance metrics, some methods adopt different criterion,
such as distance-based (Xia et al., 2022) or density-based (DeVries et al., 2020) measures. Xia et al. (2022)
address the challenge of designing a scenario-agnostic scoring criteria that is robust across different task sce-
narios. They propose “Moderate-DS”, which selects samples with scores closest to the median score, since the
median is a proxy for the score distribution in statistics and could be more robust across different scenarios.
Specifically, Moderate-DS first computes class centers by averaging the representations of all samples within
each class, and then calculates the distance between each point and its corresponding class center. After
sorting these distances, Moderate-DS constructs its coreset by selecting the points with distances closest to
the median distance.

DeVries et al. (2020) accelerate GAN training by selecting data from high-density regions in the data manifold.
To identify these regions, all images are first projected into an embedding space of semantical representation.
A scoring function (such as the log likelihood under a standard Gaussian, or the distance to the k-th nearest
neighbor) is then applied to calculate the density in the neighborhood of each embedded data point. Finally,
only the samples with high density scores are retained for training. This sampling strategy yields remarkable
training acceleration as demonstrated in their experiments. For instance, when training BigGAN (Brock
et al., 2019) on the ImageNet dataset using 8 NVIDIA V100 GPUs with 16GB of RAM, the method can
achieve about 4× acceleration while maintaining comparable generation performance.

Filtering methods offer a direct and easily interpretable mechanism for coreset selection. However, their
deterministic nature could be a limitation since a fixed threshold has the risk of excluding underrepresented
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regions in the data space. A possible solution to remedy this issue could be developing adaptive filtering
strategies to balance selectivity with diversity (Wang et al., 2023b).

2.4 Distribution Matching Methods

The idea of distribution matching methods is to construct a coreset whose statistical properties are close
to those of the full dataset. By minimizing the discrepancy between these two distributions, this method
ensures that the selected subset retains the essential characteristics of the original data (Chakraborty et al.,
2023; Zheng et al., 2023a; Ai et al., 2021; Sinha et al., 2020a; Xu et al., 2022), thereby supporting both
model training and generalization.

A central challenge of distribution matching lies in selecting an appropriate distributional distance metric
d(pX , pS), where pX and pS denote the empirical distributions of the full dataset X and the coreset S,
respectively. The coreset is then obtained by solving:

S = argmin
S⊆X, |S|=k

d(pX , pS). (12)

A common distance metric is the Kullback-Leibler (KL) divergence:

dKL(pS∥pX) =
∫

pS(x) log pS(x)
pX(x) dx. (13)

“Bayesian Pseudo-coresets Exemplar VAE (ByPE-VAE)" (Ai et al., 2021) employs a distribution matching
method based on the KL-divergence (13) to speed up the training of Exemplar VAE (Norouzi et al., 2020).
Exemplar VAE is a variant of Variational Autoencoders (VAEs) (Kingma & Welling, 2014) with a mixture
of exemplar-based priors on the latent space. Specifically, a set of exemplars is chosen from the training set,
and an exemplar-based prior is learned for each exemplar. The size of the exemplar set could be potentially
as large as the training set, which makes Exemplar VAE computationally expensive to train. To address this
limitation, ByPE-VAE employs Bayesian pseudo-coresets (Manousakas et al., 2020) to create a small-scale
pseudo-coreset of pseudo-data points, which is constructed by minimizing the KL-divergence (13) between
the posterior distributions induced by the pseudo-coresets and the true data points. By using these pseudo-
data points as exemplars, ByPE-VAE achieves significant training accelerations without sacrificing model
performance. For instance, on Fashion-MNIST and CIFAR-10 using a single NVIDIA 1080Ti GPU, ByPE-
VAE delivers approximately 3× faster training compared to standard Exemplar VAE while maintaining
comparable performance.

Besides the approaches that try to directly minimize a distributional distance metric, there also exist several
“indirect” distribution matching methods. They usually employ other techniques to implicitly minimize the
discrepancy between the coreset and the input distribution. One common indirect approach is clustering-
based methods. These methods use clustering techniques, such as k-center clustering (Gonzalez, 1985), to
try to minimize the discrepancy by selecting the most representative data items (Sinha et al., 2020a; Xu
et al., 2022).

In each iteration of GAN training, “Small-GAN” (Sinha et al., 2020a) tries to increase the effective batch
size by formulating it as a k-center problem, with the Euclidean distance as the distance metric. Coresets are
constructed by first randomly sampling a larger batch, and then using the Gonzalez’s algorithm (Gonzalez,
1985) to select a smaller batch from the larger one. “Fréchet Descriptor Distance based Coreset (FDD-
Coreset)” (Xu et al., 2022) also formulates coreset selection as a k-center problem, but employs the Fréchet
distance (Dowson & Landau, 1982) as the distance metric.

2.5 Summary

We have introduced four categories of coreset construction methods for efficient model training.
Submodularity-based greedy selection methods enjoy strong theoretical guarantees. They can produce
quality guaranteed coresets that provide a (1 − 1/e)-approximation to the optimal solution, as shown in
Theorem 2.1. Filtering methods strictly discard low-score examples and focus exclusively on challenging or
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informative ones. As a result, coresets constructed by them tend to lack diversity. In contrast, importance
sampling methods naturally introduce diversity since they select probabilistically rather than deterministi-
cally. However, they may select less informative examples from unimportant regions in the data distribution.
Another advantage of importance sampling is that it can provide an unbiased estimator of the loss on the
full dataset through reweighting by (9). Distribution matching methods can select representative examples
since they aim to preserve the overall data distribution. However, similar to importance sampling methods,
they may select examples that are easy or already well learned.

In addition to the coresets for efficient training introduced in this section, these four categories of methods
are also applied to other scenarios, including coresets for enhancing data utilization introduced in Section 3
and for large language models in Section 4. For example, the “SAS” (Joshi & Mirzasoleiman, 2023) and the
“SimCore” (Kim et al., 2023a) methods for semi/self-supervised learning introduced in Section 3.3.3, and
the “CoLM” method (Nguyen et al., 2025b) for large language models in Section 4.2, all formulate coreset
selection as a submodular optimization problem. Xie et al. (2023) use the idea of importance sampling to
select data for pretraining large language models, as introduced in Section 4.1. While many active learning
algorithms introduced in Section 3.1 act as filtering methods since they assign scores to examples and select
those with the highest scores (Yoo & Kweon, 2019; Mayer & Timofte, 2020; Ducoffe & Precioso, 2018; Geng
et al., 2023; Wang et al., 2022b; Kim et al., 2023b), some algorithms adopt alternative strategies such as
importance sampling or distribution matching. For instance, the “DACS” method (Kim & Shin, 2022)
introduced in Section 3.1.3 selects more samples from the sparse regions in the data distribution and less
from the dense regions, which is similar to the idea of importance sampling. And the “WAAL” method (Shui
et al., 2020) in Section 3.1.3 explicitly formulates active learning as a distribution matching problem. Please
see the corresponding sections for more details. Overall, these cases demonstrate that the four categories of
methods introduced in this section have broad applicability across different coreset selection scenarios.

3 Coresets for Enhancing Data Utilization with Limited Resource

In this section, we survey the coreset selection techniques developed for enhancing data efficiency. In particu-
lar, we review the methods for three scenarios with limited resource: active learning, continual learning
and semi/self-supervised learning. In active learning, coreset selection is used to identify the most infor-
mative unlabeled data points for annotation, so as to avoid spending too much human labeling effort (Settles,
2009). In continual learning, a central challenge is the “catastrophic forgetting”, where the model could lose
knowledge from previously learned tasks when trained on new ones (McClelland et al., 1995; McCloskey &
Cohen, 1989). A common approach for addressing this problem is to store a small subset (i.e., the coreset)
of past data in a replay buffer (Buzzega et al., 2020; Aljundi et al., 2019). Self-supervised learning (Gui
et al., 2024) and semi-supervised learning (Yang et al., 2022) consider the scenario that we are given a large
pool of unlabeled data, and there is no labeled data or the amount of labeled data is quite limited. For
semi/self-supervised learning, a key difference with the aforementioned active learning is that we are not
allowed to draw support from human effort to add labels.

3.1 Active Learning

In this section, we focus on pool-based active learning, which is the most widely adopted type of active
learning in deep learning. Pool-based active learning assumes that there is an initial small labeled dataset
and a large pool of unlabeled data available for sampling. It iteratively performs the following four steps: (1)
training the target model on the labeled dataset, (2) selecting important unlabeled examples based on the
trained model, (3) having the selected examples labeled by annotators, and (4) adding the newly labeled data
into the labeled dataset, as shown in Figure 3. Typically, a labeling budget is imposed, which is much smaller
than the size of the unlabeled dataset. In this procedure, only a small number of important examples are
labeled within the budget, and it is natural to consider it from the perspective of coreset construction. For
instance, Sener & Savarese (2018) have demonstrated that the problem of active learning for convolutional
neural networks can be formulated as a coreset selection problem.

Next, we treat the data selection strategies of active learning algorithms as coreset selection methods and
provide a detailed review of them. Based on the criteria for evaluating the importance of unlabeled exam-
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Figure 3: Pool-based active learning repeatedly executes four key steps: (1) training the target model using
the labeled data, (2) scoring the importance of unlabeled examples and selecting the most important ones,
(3) obtaining annotations for the selected examples from annotators, and (4) incorporating the newly labeled
data into the existing labeled dataset.

ples, we categorize active learning approaches into three types: loss-based, coverage-based, and hybrid
methods. A summary of several representative methods from each category is presented in Table 1.

Note that our goal is not to provide an exhaustive survey of active learning, but to shed light on the key strate-
gies for assessing and identifying important unlabeled examples from the perspective of coresets construction.
For more comprehensive introductions on active learning, we refer the reader to the surveys (Settles, 2009;
Ren et al., 2021; Liu et al., 2022; Li et al., 2024a).

3.1.1 Loss-Based Methods

Loss-based methods prioritize unlabeled examples that are expected to yield high training loss if added to
the training set. Such examples typically include those with high predicted training loss (Yoo & Kweon,
2019; Huang et al., 2021b) or high prediction uncertainty (Wang et al., 2016; Ranganathan et al., 2017;
Ducoffe & Precioso, 2018; He et al., 2019; Mayer & Timofte, 2020; Kim et al., 2021b; Jung et al., 2023; Kye
et al., 2023; An et al., 2024; Gao et al., 2020; Parvaneh et al., 2022; Geng et al., 2023). By concentrating on
the examples where the model performs poorly or exhibits high uncertainty, these methods try to improve
the model by training it on the most challenging or informative examples. Instead of focusing on training
loss, some other loss-based approaches consider generalization performance, prioritizing unlabeled examples
that are predicted to maximally reduce the test-time error (Ash et al., 2021; Wang et al., 2022b;a; Kim et al.,
2023b). Next, we introduce these methods in more detail.

To identify unlabeled examples that are likely to produce high training loss, Yoo & Kweon (2019) design
a loss prediction model to estimate the loss for unlabeled examples and select those with the highest pre-
dicted losses for annotation. Instead of relying on an auxiliary loss prediction model, Huang et al. (2021b)
demonstrate that the training loss for an unlabeled example can be estimated via the difference between two
consecutive active learning iterations.

Rather than directly estimating training loss, many methods select unlabeled examples for which the model
exhibits the highest uncertainty. These uncertain examples usually result in high training loss because the
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Table 1: Representative coreset selection methods in active learning. The “Availability” column
indicates the public accessibility of the corresponding code or implementation: “official” refers to code
released by the original authors, “third-party” refers to unofficial implementations by independent developers,
and “N.A.” means no publicly available code has been found (to the best of our knowledge).

Type Methods Highlights Availability

Loss-Based CEAL (Wang et al.,
2016)

Selecting examples using least confidence (14), margin (15), or
entropy (16), querying true labels for some and assigning
pseudo-labels to others.

third-party (1, 2,
3)

DFAL (Ducoffe &
Precioso, 2018)

Selecting examples closest to decision boundaries. official

Yoo & Kweon (2019) Training a model to predict loss for unlabeled examples. third-party (1, 2,
3)

Gao et al. (2020) Prioritizing examples with inconsistent predictions under data
augmentations.

third-party (1)

SAAL (Kim et al.,
2023b)

Selecting examples exhibiting the highest training loss
sharpness.

official

Coverage-Based Sener & Savarese (2018) Formulating active learning as a k-center problem. official
DAL (Gissin &
Shalev-Shwartz, 2019)

Employing a binary classifier to discriminate between labeled
and unlabeled examples.

official

VAAL (Sinha et al.,
2019)

Adversarially training a discriminator to discriminate between
labeled and unlabeled examples.

official

ProbCover (Yehuda
et al., 2022)

Formulating active learning as a Max Probability Cover
problem.

official

MaxHerding (Bae et al.,
2024)

Selecting examples that maximizes their similarity to the
entire unlabeled dataset.

N.A.

Hybrid BADGE (Ash et al.,
2020)

Selecting examples by applying k-means++ on their gradient
embeddings.

official

WAAL (Shui et al.,
2020)

Formulating active learning as a distribution matching
problem.

official

NoiseStability (Li et al.,
2024c)

Selecting examples based on the deviations in their feature
embeddings under small perturbations.

official

Cluster-
Margin (Citovsky et al.,
2021)

Performing hierarchical agglomerative clustering and selecting
examples with low margin scores (15) from the clusters.

third-party (1, 2)

LDM-S (Cho et al.,
2024)

Selecting high-diversity examples closest to decision
boundaries.

official

model lacks sufficient knowledge to predict their labels confidently. In image classification tasks, common
uncertainty measures include least confidence, margin, and entropy. Given an unlabeled dataset X, least
confidence based methods select the example with the lowest confidence in its top predicted class:

x∗ = argmax
x∈X

1− Pθ(ŷ|x), (14)

where Pθ(y|x) is the conditional probability of class y given input x, under the model parameterized by
θ, and ŷ = argmaxy Pθ(y|x). One limitation of least confidence is that it only considers the class with the
highest probability, ignoring the probability distribution over other classes. To alleviate this problem, margin
based methods take into account the probabilities of the top two most probable classes:

x∗ = argmin
x∈X

Pθ(ŷ1|x)− Pθ(ŷ2|x), (15)

where ŷ1 = argmaxy Pθ(y|x) and ŷ2 = argmaxy ̸=ŷ1 Pθ(y|x). Entropy is a more general measure that leverages
the information from all classes:

x∗ = argmax
x∈X

−
∑

i

Pθ(yi|x) log Pθ(yi|x). (16)

The method “Cost-Effective Active Learning (CEAL)” (Wang et al., 2016) uses those three uncertainy
measures (defined in (14), (15), and (16), respectively) to select unlabeled examples for annotation, and
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incorporates low-entropy unlabeled examples into the training set by assigning pseudo-labels to them.
Ranganathan et al. (2017) not only employ the entropy (16) to select unlabeled examples but also inte-
grate it into the training loss of the target model. The method “Adversarial Sampling for Active Learning
(ASAL)” (Mayer & Timofte, 2020) employs the entropy (16) in a different way by optimizing a generator
to produce a synthetic example that maximizes classification entropy. Then, the unlabeled example closest
to the synthetic example is selected and annotated. “Look-Ahead Data Acquisition (LADA)” (Kim et al.,
2021b) integrates data augmentation into active learning by learning an augmentation policy through maxi-
mizing the classification entropy (16). “Training Dynamics for Active Learning (TiDAL)” (Kye et al., 2023)
computes the margin (15) and entropy (16) based on the training dynamics of unlabeled examples, which is
defined as their averaged classification results across training iterations. An et al. (2024) propose to consider
the reduction of classification entropy (16) for the remaining unlabeled examples when a specific unlabeled
example is labeled. The entropy and its reduction are combined through a convex combination, which is
then used to select the most informative unlabeled examples for annotation.

An alternative measure of uncertainty for an unlabeled example is its distance to the decision boundary
of the model. Examples closer to the decision boundary exhibit higher uncertainty, since they lie in regions
where even small perturbations could lead to a change in their predicted class. Since calculating the
exact distance is intractable, the approach “DeepFool Active Learning (DFAL)” (Ducoffe & Precioso, 2018)
tries to approximate the distance by determining the smallest perturbation applied to an unlabeled example
that is needed to reclassify it into a different category. Gao et al. (2020) prioritize unlabeled examples
with inconsistent predictions under data augmentations. “Active Learning by FeAture Mixing (ALFA-
Mix)” (Parvaneh et al., 2022) selects unlabeled examples exhibiting prediction inconsistency when their
feature embeddings are interpolated with classwise average features of labeled examples. The method “Multi-
classifier Adversarial Optimization for Active Learning (MAOAL)” (Geng et al., 2023) employs adversarial
training to simultaneously train a feature generator and multiple classifiers, and selects unlabeled examples
with the highest classification discrepancy across the classifiers for annotation.

While most approaches rely on training loss for identifying important unlabeled examples, there are also some
methods that select examples based on their predicted contribution to reducing the generalization error
of the target model. “Batch Active learning via Information maTrices (BAIT)” (Ash et al., 2021) selects
unlabeled examples by minimizing the expected log-likelihood error on the whole unlabeled dataset through
optimizing an objective involving the Fisher information matrix (which is the Hessian of the negative log-
likelihood function) (Chaudhuri et al., 2015). Wang et al. (2022b) illustrate that selecting unlabeled data
with the highest gradient norm can maximally boost the testing performance of the target model. The
method “dynamicAL” (Wang et al., 2022a) leverages the training dynamics of unlabeled examples, which
is defined as the derivative of the training loss with respect to the training iteration, to select valuable
examples. “Sharpness-Aware Minimization (SAM)” (Foret et al., 2021) demonstrates that the generalization
error is upper bounded by the maximal training loss sharpness in addition to a parameter regularization term.
Therefore, SAM trains models by simultaneously minimizing the loss value and loss sharpness. Inspired by
this, another method “Sharpness-Aware Active Learning (SAAL)” (Kim et al., 2023b) estimates the loss
sharpness for unlabeled examples by assigning pseudo-labels and selects those with the highest estimated
sharpness for annotation.

3.1.2 Coverage-Based Methods

Coverage-based methods aim to select unlabeled examples that best represent the underlying data distribu-
tion. This is often achieved by prioritizing examples that either maximize coverage of the data space (Yehuda
et al., 2022; Bae et al., 2024; 2025; Hua et al., 2025) or enhance diversity of the selected set (Geifman &
El-Yaniv, 2017; Sener & Savarese, 2018; Gissin & Shalev-Shwartz, 2019; Sinha et al., 2019; Agarwal et al.,
2020; Kim et al., 2021a; Kothawade et al., 2021; Hacohen et al., 2022).

Coverage maximization methods. These methods select unlabeled examples for covering different regions
of the data space, where the goal is to capture a broad range of the overall data distribution. “Probability
Coverage (ProbCover)” (Yehuda et al., 2022) formulates it as a Max Probability Cover problem. Based
on this formulation, ProbCover selects unlabeled examples maximizing the probability of the union of balls
centered at each selected point with a predefined radius. “MaxHerding” (Bae et al., 2024) generalizes
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ProbCover by introducing a notion of generalized coverage, which is defined as the expected maximum
similarity between the labeled set and the overall data distribution. Conceptually, it encourages to select
the unlabeled examples that maximize their similarity to the entire unlabeled dataset. One limitation of
MaxHerding is that it exclusively focuses on coverage but neglects uncertainty. To remedy this issue, the
recent method “Uncertainty Herding (UHerding)” (Bae et al., 2025) extends the generalized coverage concept
by integrating it with an uncertainty measure. More hybrid methods that simultaneously consider coverage
and uncertainty are introduced in Section 3.1.3.

Diversity maximization methods. Rather than directly optimizing for coverage, many methods seek to
select unlabeled examples that are distinct from each other. Intuitively, a diverse set of examples can reduce
information redundancy, ensuring that the target model encounters a broader range of features or patterns
during training. “Farthest First Active learning (FF-Active)” (Geifman & El-Yaniv, 2017) selects the next
point as the one farthest from the already selected points in the feature space. Sener & Savarese (2018)
formulate active learning for convolutional neural networks as a k-center clustering problem in feature space,
and use the Gonzalez’s algorithm (Gonzalez, 1985) to greedily select an initial subset of data points. Then,
a mixed integer program is employed to further refine the subset. The method “Contextual Diversity based
Active Learning using Core-Sets (CDAL-CS)” (Agarwal et al., 2020) also uses the Gonzalez’s algorithm, but
employs a notion of “pairwise contextual diversity” as the distance metric (rather than the distance induced
in feature space).

Instead of relying on explicit distance metrics to select diverse examples, several active learning methods
employ auxiliary classifiers (Gissin & Shalev-Shwartz, 2019) or adversarial training (Sinha et al., 2019; Kim
et al., 2021a) to implicitly quantify their dissimilarities. “Discriminative Active Learning (DAL)” (Gissin
& Shalev-Shwartz, 2019) trains a binary classifier to differentiate between unlabeled and labeled examples.
The unlabeled examples classified as unlabeled with the highest confidence are then selected. Another ap-
proach “Variational Adversarial Active Learning (VAAL)” (Sinha et al., 2019) identifies important unlabeled
examples through an adversarial game between a VAE and a discriminator. The VAE is trained to deceive
the discriminator into classifying both labeled and unlabeled examples as labeled, while the discriminator
is trained to differentiate between them. After this training procedure, unlabeled examples classified as
unlabeled with the highest confidence by the discriminator are selected. One limitation of VAAL is its
task-agnostic nature, which overlooks task-specific information. To address this limitation, an improved
approach “Task-Aware Variational Adversarial Active Learning (TA-VAAL)” (Kim et al., 2021a) integrates
VAAL with a task-aware method which trains a ranking model to prioritize examples by their loss rankings.

Recall that in Section 2.1, we introduced the definition of a utility function f : 2X → R defined over a given
dataset X, with the property of submodularity. A submodular utility function f can be used for measuring
similarity due to the diminishing returns property (3). This property can be interpreted from the perspective
of information gain by viewing f(S) as the amount of information contained in S. From this perspective,
the property (3) states that the information gained by adding a new element to a set decreases as the set
grows. This is because a larger set is more likely to already contain information that is similar to that
of the new element. Therefore, maximizing a proper submodular utility function naturally encourages the
selection of diverse and representative examples and discourages redundant ones. “Submodular Information
Measures based actIve LeARning (SIMILAR)” (Kothawade et al., 2021) employs submodular information
measures (Iyer et al., 2021; Kothawade et al., 2022) to deal with the bias issue in real scenarios, including
datasets with imbalanced classes, out-of-distribution data points, or high redundancy. For example, the
submodular mutual information (SMI) is used to select unlabeled examples when datasets contain rare
classes (Kothawade et al., 2021). Given an unlabeled dataset X, a set R consisting of a small number of
examples from the rare classes, and a submodular function f that measures the diversity of an input set, a
set S ⊆ X can be constructed by maximizing the SMI, which is defined as:

If (S; R) = f(S) + f(R)− f(S ∪R). (17)

Since R is a fixed set, f(R) is also fixed. Therefore, maximizing (17) is equivalent to selecting a set S that
is not only diverse itself (high f(S)) but also similar to R (low f(S ∪ R)). In other words, it encourages to
select a diverse set that contains examples similar to the known rare ones.

14



Under review as submission to TMLR

3.1.3 Hybrid Methods

There also exist numerous “hybrid” methods that jointly optimize uncertainty and diversity, aiming at
identifying examples that are both informative and representative (Bae et al., 2025; Yin et al., 2017; Shui
et al., 2020; Ash et al., 2020; Wang et al., 2020; Citovsky et al., 2021; Kim & Shin, 2022; Li et al., 2024c;
Cho et al., 2024). That is, the joint optimization enables an effective trade-off between exploitation (refining
the model in uncertain regions) and exploration (probing regions with unseen patterns).

Yin et al. (2017) take a two-step approach: first a set of points is selected based on the classification en-
tropy (16) and dissimilarity, then a set of additional points are selected based solely on dissimilarity. Similar
with the coreset idea introduced in Section 2.4, “Wasserstein Adversarial Active Learning (WAAL)” (Shui
et al., 2020) formulates the active learning problem as a distribution matching problem between the under-
lying data distribution and the distribution of queried data.

Clustering algorithms play an important role in active learning as they are often used to simultaneously opti-
mize both uncertainty and diversity. The approach “Batch Active learning by Diverse Gradient Embeddings
(BADGE)” (Ash et al., 2020) runs k-means++ (Arthur & Vassilvitskii, 2007) to select unlabeled examples,
where the distance metric is based on their gradient embeddings computed from pseudo-labels and last-layer
network parameters. “Cluster-Margin” (Citovsky et al., 2021) performs hierarchical agglomerative cluster-
ing on unlabeled examples and focuses on the clusters containing examples with low margin scores (15).
These clusters are sorted in ascending order according to their size. Then, Cluster-Margin samples from the
sorted clusters in a round-robin scheme until the labeling budget is exhausted. “Density-Aware Core-Set
(DACS)” (Kim & Shin, 2022) shows that examples from lower-density regions exhibit higher prediction en-
tropy (16) and loss, suggesting that unlabeled examples from sparse regions are more informative. Therefore,
DACS clusters unlabeled examples by their estimated densities and samples from each cluster inversely pro-
portional to its size (which is similar to the idea of importance sampling introduced in Section 2.2). “Least
Disagree Metric based Sampling (LDM-S)” (Cho et al., 2024) introduces Least Disagree Metric (LDM) to
quantify the distance of an example to the decision boundary. Then, it incorporates a modified version of
k-means++ to promote diversity, ensuring that the selected examples are both sufficiently informative and
representative.

3.2 Continual Learning

Continual learning (Kirkpatrick et al., 2017; Wang et al., 2024a) is a learning paradigm in which artificial
neural networks are trained on a sequence of tasks, aiming to acquire new knowledge while preserving per-
formance on previously learned tasks. This paradigm faces a fundamental challenge known as catastrophic
forgetting (McClelland et al., 1995; McCloskey & Cohen, 1989), where adapting to new tasks leads to
significant degradation in performance on earlier ones. Replay-based methods (Buzzega et al., 2020; Aljundi
et al., 2019; Lin et al., 2024a) have been widely studied for mitigating catastrophic forgetting. These meth-
ods typically maintain a small buffer that contains a subset of past training samples (see Figure 4 for an
illustration). Given the limited storage capacity, the key challenge lies in how to construct the memory
buffer. It is natural to consider this problem from the perspective of coreset selection, which is to identify
the most representative samples (similar with active learning in Section 3.1). Formally, replay-based methods
operate under the constraint of a fixed-size memory buffer M . For each t ≥ 1, let Xt be the data of the t-th
task, and the goal is to select a coreset St ⊆ Xt that is able to approximate Xt. The selected coreset St is
stored in the memory buffer M . When training on a new task, the parameters θ of the model are updated
by optimizing a composite objective function (Tiwari et al., 2022), which incorporates both the current task
data and the stored coresets:

L(θ) = L(θ; Xt+1) + λL(θ; M), (18)

where λ > 0 controls the rehearsal strength. In this section, we categorize the coreset selection methods in
continual learning into two major types: coverage-based methods and gradient-based methods (see Table 2
for an illustration).
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Figure 4: Overview of the replay-based methods for continual learning. This approach aims to retain the
learned knowledge from previous tasks by storing a small subset of past training samples in a limited memory
buffer.

Table 2: Coreset selection methods in continual learning. The “Availability” column indicates the
public accessibility of the corresponding code or implementation: “official” refers to code released by the
original authors, and “N.A.” means no publicly available code has been found (to the best of our knowledge).

Type Methods Highlights Availability

Coverage-Based

Reservoir Sampling
(Riemer et al., 2019)
(Buzzega et al., 2020)
(Boschini et al., 2022)

A fundamental streaming algorithm for maintaining
fixed-size uniform samples from unbounded data streams of
unknown cardinality.

official

Ring Buffer
(Lopez-Paz & Ranzato, 2017)
(Chaudhry et al., 2019a)
(Chaudhry et al., 2021)

A class-partitioned memory architecture designed to ensure
balanced exemplar retention.

N.A.

k-Means (Chaudhry et al.,
2019b)

Using online k-means to estimate the k class centroids in the
penultimate feature space and storing the input samples
closest to each centroid in memory.

official

Gradient-Based GSS (Aljundi et al., 2019) Formulating coreset selection as a constraint optimization
problem of continual learning.

official

OCS (Yoon et al., 2022) A coreset selection method that selects the most
representative and informative coreset at each iteration and
trains them in an online manner.

official

Greedy Coreset (Borsos
et al., 2020)

Proposing a coreset construction via cardinality-constrained
bilevel optimization.

official

BCSR (Hao et al., 2023) A new bilevel formulation where the inner problem minimizes
expected training error from a sampled distribution, and the
outer problem learns a sparse distribution with K nonzero
entries to minimize overall training error.

official

GCR (Tiwari et al., 2022) A method for selecting a coreset that approximates the
model parameter gradients over all previously seen data.

N.A.

RM (Bang et al., 2021) A method that emphasizes the importance of maintaining
sample diversity in coreset.

official

3.2.1 Coverage-Based Methods

The methods in the first category usually maintain predefined selection mechanisms and do not adapt dy-
namically during training procedure (in contrast to the gradient-based methods discussed in Section 3.2.2).
Representative methods include reservoir sampling (Riemer et al., 2019; Buzzega et al., 2020; Boschini
et al., 2022), ring buffer (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a; 2021), and k-means cluster-
ing (Chaudhry et al., 2019b).
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Reservoir sampling (Vitter, 1985) is a foundational streaming algorithm for maintaining fixed-size uniform
samples from a data stream with unknown cardinality. The canonical implementation initializes a reservoir
M with the first k observed samples. For the i-th incoming sample (i > k), the algorithm retains it with
probability Pi = k/i, replacing a uniformly random element in M if selected. This probabilistic replacement
rule ensures that every observed sample has an equal probability of k/n to be selected, where n denotes the
total number of elements in the stream. The reservoir sampling algorithm achieves O(n) time complexity and
O(k) space complexity, making it asymptotically optimal for single-pass scenarios. Due to these properties,
it is particularly suitable for the applications involving large-scale data streams.

The integration of reservoir sampling into continual learning originated with Riemer et al. (2019), who
pioneered its use for task-agnostic memory buffering. Their method investigates the continual learning prob-
lem from the balance between learning plasticity and memory stability, which is achieved through gradient
alignment, i.e., by encouraging gradients of different tasks to point in similar directions so that learning
on one task facilitates rather than interferes with others. They introduce the method “Meta Experience
Replay (MER)”, which integrates experience replay with meta-learning to enhance knowledge transfer while
mitigating interference.

In some continual learning scenarios, we often encounter multi-label datasets that exhibit long-tailed distribu-
tions, where a few dominant classes are overrepresented while many minority classes have limited samples.
To address this challenge, Kim et al. (2020) propose a sampling strategy termed “Partitioning Reservoir
Sampling (PRS)”, which is designed to allocate a proportional share of the memory buffer to moderate and
minority classes, thereby preserving a more balanced representation for both current and past experiences.
Moreover, Chrysakis & Moens (2020) introduce a strategy called “Class-Balancing Reservoir Sampling
(CBRS)” to mitigate the imbalance issue.

In addition to employing reservoir sampling for storing exemplars, recent works (Buzzega et al., 2020; Boschini
et al., 2022) propose to retain some intermediate products of training, e.g., the logits. Specifically, Buzzega
et al. (2020) introduce “Dark Experience Replay (DER)”, which leverages reservoir sampling to match the
current logits with those stored from past experiences so that the model remains consistent with previously
learned knowledge. However, Boschini et al. (2022) demonstrate that DER may suffer from several limita-
tions. For instance, it can introduce classification bias and overlook important semantic relationships between
previously learned and newly introduced classes. To overcome these drawbacks, they propose eXtended-DER
(X-DER), a novel continual learning method that embraces memory update and future preparation. In par-
ticular, they first introduce a future preparation strategy, which exploits past and present data to prepare
future classification heads so that they can better encode meaningful information. Then, they propose a
memory update procedure that keeps the memory buffer up to date by inserting secondary information from
the present into memories of the past.

The ring buffer strategy was first introduced by Lopez-Paz & Ranzato (2017) and subsequently adopted in
later studies on continual learning (Chaudhry et al., 2019a; 2021). Broadly speaking, the ring buffer maintains
a fixed-size memory that stores a subset of past samples and updates this set in a first-in-first-out (FIFO)
manner as new data arrive. In this context, the strategy is applied to efficiently manage and refresh stored
examples during training, which allows the model to rehearse previous knowledge while keeping memory
usage constant. Specifically, given C total classes and a memory buffer M , each class c ∈ {1, 2, . . . , C} is
assigned a buffer M c with a quota of

|M c| =
⌊
|M |
C

⌋
under a FIFO replacement policy. Formally, for each incoming batch B of data points, let Bc = {x ∈ B |
y = c} denote the set of points in B belonging to class c, where y is the label of x. Also, let mc denote the
number of currently stored points in the buffer M c. Then, each M c is updated as follows:

M c =
{

FIFO
(
M c ∪Bc

)
if |M c| −mc < |Bc|,

M c ∪Bc otherwise.

This deterministic allocation guarantees equal buffer capacity across classes, ensuring a balanced represen-
tation of all classes in memory.
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The k-means algorithm, which is adopted by Chaudhry et al. (2019b), provides a geometric framework for
coreset construction in continual learning. For each class c ∈ {1, . . . , C}, the method performs an online
variant of the Lloyd’s algorithm (a popular implementation for k-means (Ostrovsky et al., 2012)) to iteratively
estimate kc = ⌊|M |/C⌋ centroids {µc

i}kc

i=1 in the latent feature space (preceding the classification layer of the
model). This strategy shares similar advantages and limitations with the ring buffer approach, but yields
improved coverage of the constructed coreset in feature space.

3.2.2 Gradient-Based Methods

The second category of approaches for continual learning is gradient-based, which leverages the information
from gradients to guide coreset selection. A pioneering work in this direction is “Gradient-based Sample
Selection (GSS)” by Aljundi et al. (2019), who formulate the sample selection problem as the following
optimization problem:

θt = argmin
θ

L(θ; Xt) s.t. L(θ; Xi) ≤ L(θt−1; Xi); ∀i ∈ [0 . . . t− 1], (19)

where θt−1 is the model trained on task t− 1, t denotes the index of the current task, and i ranges over the
previously seen tasks. The objective is to minimize the loss on the current examples without increasing the
losses on the previously learned examples, which effectively constrains parameter updates to preserve per-
formance on past tasks and thereby mitigates catastrophic forgetting. Meanwhile, the authors demonstrate
that this selection process is equivalent to maximizing sample diversity in the replay buffer and propose a
lightweight greedy algorithm to solve it. However, this method does not consider the imbalance and noisy
issues which are common in real-world data streams.

To address these issues, Yoon et al. (2022) propose “Online Coreset Selection (OCS)”, a simple yet effective
method which selects the most representative and informative samples at each iteration, and trains the
model on them in an online fashion. Specifically, they introduce three gradient-based selection criterion
for coresets: (1) minibatch similarity, which selects the samples that are most representative of the current
task distribution; (2) sample diversity, which encourages selecting the samples with minimal redundancy
to improve coverage of the input space; (3) coreset affinity, which minimizes interference between selected
samples and previously acquired knowledge, thereby promoting the stability across different tasks.

The gradient-based idea is also adopted by several bilevel formulations for coreset selection. For in-
stance, Borsos et al. (2020) introduce a nested cardinality-constrained optimization model via the bilevel
framework. Recall that we use w to denote the weight vector of the given dataset X = {xi}n

i=1,
L(θ; X, w) =

∑n
i=1 wiℓ(xi, yi; θ) the weighted empirical risk over X for a model with the parameter vec-

tor θ ∈ Θ, and L(θ; X) the case where wi = 1 for all i. Then, the bilevel formulation is

ŵ ∈ argmin
w∈Rn

+,∥w∥0≤m

L(θ∗(w); X) s.t. θ∗(w) ∈ argmin
θ∈Θ

L(θ; X, w). (20)

The solution of (20) can be obtained through the greedy forward selection method “Matching Pursuit
(MP)” (Locatello et al., 2017). Hao et al. (2023) introduce another bilevel formulation which seeks to
learn a probability distribution over a low-dimensional manifold by incorporating a smoothed top-K loss
as the regularizer. Another method closely related to bilevel optimization is “Gradient Coreset Replay
(GCR)” (Tiwari et al., 2022). In this approach, a coreset is constructed and maintained to approximate the
aggregate gradient over all previously observed data items.

There also exist several other gradient-based approaches that focus on diversity and uncertainty. For example,
Bang et al. (2021) highlight the importance of maintaining diversity within the episodic memory, since a
memory buffer dominated by redundant or highly similar samples fails to provide sufficient coverage of the
data distribution, which in turn limits the model’s ability to retain previously learned knowledge. Then they
propose “Rainbow Memory (RM)”, a strategy to enhance diversity in continual learning.

3.3 Semi/Self-Supervised Learning

In this section, we introduce the coreset methods for two important scenarios of deep learning, self-supervised
learning and semi-supervised learning. In general, self-supervised learning (Gui et al., 2024) utilizes only un-
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labeled data, while semi-supervised learning (Yang et al., 2022) combines a small amount of labeled data with
a much larger pool of unlabeled data. In particular, self-supervised learning has been a rapidly developing
area in recent years, especially in its applications to large language models and multimodal models (Vaswani
et al., 2017; Akbari et al., 2021). A representative self-supervised learning technique is contrastive learn-
ing (Chen et al., 2020; Tian et al., 2020). A prominent example is CLIP (Contrastive Language-Image
Pretraining) (Radford et al., 2021), which extends contrastive learning to align images and texts in a shared
embedding space, and has become a cornerstone framework for modern vision-language applications. The
primary advantage of semi/self-supervised learning methods is their ability to learn without extensive la-
beled data. Nevertheless, a significant drawback is their demand for large-scale datasets and substantial
computational resources. For alleviating this issue, coreset techniques have attracted a great amount of
attention in recent years. These techniques contribute to improved computational efficiency (Killamsetty
et al., 2021c; Dong et al., 2024), minimizing data redundancy (Wang et al., 2024b), and boosting robustness
to distributional shifts (Xu et al., 2023).

Similar to the other scenarios discussed earlier, coreset selection in this setting is typically formalized as
an optimization problem that aims at minimizing the performance gap between the models trained on
the full dataset and a selected subset. Roughly speaking, the coreset should be as informative as the full
unlabeled data in terms of the learned representations (Joshi et al., 2024; Wang et al., 2024b) or training
dynamics (Killamsetty et al., 2021c; Dong et al., 2024; Kim et al., 2023a). Since finding the exact optimal
subset is NP-hard in general cases, most practical approaches rely on approximate or heuristic algorithms. We
categorize existing approaches by the primary proxy used to assess “data quality”: loss-based (Wang et al.,
2024b; Zhang et al., 2022), gradient-based (Killamsetty et al., 2021c; Dong et al., 2024) and coverage-
based (Li et al., 2022; Fang et al., 2024; Zheng et al., 2025; Mayilvahanan et al., 2024; Nguyen et al., 2022;
Li et al., 2024d) methods. A summary of several representative methods from each category is presented in
Table 3.

3.3.1 Loss-Based Methods

Loss-based methods exploit the training loss or related signals to identify informative samples. The key
intuition is that samples which incur higher loss values or provide stronger signals are more valuable for
representation learning.

A typical example is the “s-CLIP-Loss” metric, proposed by Wang et al. (2024b). It generalizes the original
CLIP training loss by incorporating a batchwise normalization term. This modification penalizes redun-
dant samples whose image-text embeddings exhibit high similarity with incorrect text embeddings, thereby
prioritizing specific and informative data samples. From a geometric perspective, s-CLIP-Loss refines the
selection criterion by adjusting cosine similarity with a log-sum-exp aggregation of negative-pair similarities,
acting as a soft redundancy-aware regularizer in the embedding space.

Another related concept is the dynamic leveraging of challenging samples, as implemented in the method
called “hard negative mining” (Kalantidis et al., 2020; Zhang et al., 2022), which has been a widely used
strategy in contrastive learning. Hard negatives are samples (or pairs) that the current model finds highly
similar to the query sample despite being non-matching; in other words, these samples usually can provide a
strong training signal to our coreset construction. Mining these hard negatives constitutes a form of dynamic
data selection: at each training stage, the model selects the most informative pairs or samples to guide the
learning process.

3.3.2 Gradient-Based Methods

Gradient-based methods aim to construct subsets that preserve the gradient statistics of the full dataset, so
that optimization on the subset closely approximates the learning trajectory of the original training process.
In this sense, the selected coreset captures the training dynamics of the model.

A well-studied approach is gradient matching. In Section 2.1, we have already introduced the idea of
gradient matching for coreset construction. Roughly speaking, the gradient matching method tries to select
a subset whose induced gradient could approximately represent those computed from the full dataset, thereby
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Table 3: Representative coreset selection methods in semi/self-supervised learning. The “Avail-
ability” column indicates the public accessibility of the corresponding code or implementation: “official”
refers to code released by the original authors, and “N.A.” means no publicly available code has been found
(to the best of our knowledge).

Type Methods Highlights Availability

Loss-Based s-CLIP-Loss (Wang et al., 2024b) Generalizing CLIP training loss with batchwise
normalization to penalize redundant samples.

official

Hard negative mining (Kalantidis
et al., 2020; Zhang et al., 2022)

Dynamically selecting non-matching but highly similar
samples (hard negatives) to provide strong contrastive
signals.

official

Gradient-Based RETRIEVE (Killamsetty et al.,
2021c)

Selecting unlabeled samples with gradients aligning
with labeled data for faster convergence.

official

SkMM (Dong et al., 2024) Integrating gradient-based dimensionality reduction
with moment alignment for post-SSL fine-tuning.

official

Coverage-Based

Distribution Matching
ClipCov (Joshi et al., 2024) Selecting image-caption pairs that preserve the

cross-modal covariance matrix, enabling data-efficient
multimodal contrastive pretraining.

official

NormSim (Wang et al., 2024b) Evaluating p-norm similarity between candidate
samples and the target task distributions.

official

Diversity and Coverage
SAS (Joshi & Mirzasoleiman,
2023)

Identifying examples preserving alignment and class
center divergence by minimizing augmentation distance.

official

ELFS (Zheng et al., 2025) Using deep clustering for pseudo-labels and removing
both simple and challenging samples.

official

Mayilvahanan et al. (2024) Pruning training data in CLIP embedding space using
perceptual similarity as criterion.

official

DeCLIP (Li et al., 2022) Utilizing multi-view consistency and nearest-neighbor
supervision to extract richer training signals.

official

Nguyen et al. (2022) Filtering datasets using pretrained models to enhance
model robustness.

official

Li et al. (2024d) Focusing on high-quality subsets for contrastive
pretraining under computational constraints.

N.A.

Santurkar et al. (2023) Showing high-quality textual captions provide superior
transferability compared to larger image-only datasets.

N.A.

Fang et al. (2024),
Maini et al. (2024)

Identifying low-quality samples by quantifying drops in
CLIP similarity scores on validation sets.

N.A.
official

SimCore (Kim et al., 2023a) Coreset for fine-grained visual recognition under limited
labels and abundant unlabeled open-set data.

official

maintaining similar training dynamics. As mentioned before, RETRIEVE (Killamsetty et al., 2021c) applies
this idea to improve both efficiency and robustness for semi-supervised learning.

Another important challenge in semi/self-supervised learning pipelines is how to select informative data for
efficient fine-tuning after semi/self-supervised pretraining. Such fine-tuning is commonly required in down-
stream tasks, including linear probing or head tuning for classification, text-image retrieval, and lightweight
adaptation for detection or segmentation, particularly under limited computational resources. The recent
method “Sketchy Moment Matching (SkMM)” (Dong et al., 2024) addresses this problem by controlling
the variance-bias trade-off that arises in high-dimensional fine-tuning. It first applies gradient sketching to
project the full dataset’s gradients onto a low-dimensional subspace that retains essential information of the
model. Within this subspace, it then performs moment matching to select a coreset whose sketched gradient
moments closely approximate those of the full dataset. This procedure is label-agnostic and thus it is well
suited for resource-constrained fine-tuning after unsupervised pretraining.
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3.3.3 Coverage-Based Methods

In contrast to the methods that focus on training dynamics, coverage-based methods construct coresets that
preserve the geometry or distribution of the dataset in the representation space. Their core principle is that
a good coreset should preserve the geometric or statistical properties of the full dataset’s representation,
such as its distribution, diversity, and coverage.

Distribution matching. A large part of coverage-based approaches follow the idea of distribution matching,
which is previously introduced in Section 2.4. In the context of semi/self-supervised learning, a notable
example is “ClipCov” (Joshi et al., 2024), a theoretically grounded coreset selection method tailored for
CLIP (Radford et al., 2021). Unlike prior methods developed for supervised or unimodal contrastive learning,
ClipCov specifically addresses the multimodal nature of CLIP by selecting image-caption pairs that can well
preserve the cross-modal covariance structure. This distributional alignment is crucial for maintaining CLIP’s
generalization performance.

When the information of downstream tasks is available, the focus of distribution matching can align with
the target distribution. A prime example of this approach is the “NormSim” method proposed by Wang
et al. (2024b). This method guides the selection of semantically aligned subsets by evaluating the p-norm
similarity between candidate samples and the target task distribution in the visual embedding space. This
forward-looking selection strategy can yield a tighter coupling between the pretraining and fine-tuning stages.
Specifically, it ensures that the coreset is constructed not only to preserve information from the original
dataset, but also to achieve promising performance on specific downstream applications.

Diversity and coverage. Similar to the coreset construction methods introduced in Section 3.1.2 for active
learning, there also exists a large body of work on semi/self-supervised learning that focuses on selecting
a subset that maximally covers the data’s semantic space. An example is from Joshi & Mirzasoleiman
(2023), who introduce “Subsets that maximize Augmentation Similarity (SAS)”, a method that identifies
examples with preserving both augmentation alignment and class-center divergence among the input data.
Similar to the coreset idea introduced in Section 2.1, this method formulates the subset selection as a
submodular optimization problem. Furthermore, it provides a theoretical guarantee that the alignment
and divergence measures computed on the selected subset uniformly approximate those computed on the
full dataset, thereby ensuring that representations learned from the subset achieve comparable downstream
generalization performance. The principle of maximizing coverage is also used in “SimCore” (Kim et al.,
2023a), a coreset-based framework for fine-grained visual recognition under limited labels and abundant
unlabeled open-set data. SimCore selects a subset from the open-set by maximizing its semantic similarity to
a small target set, which is also formulated as a submodular optimization problem. The selection is performed
in a learned representation space and is compatible with a variety of self-supervised methods, including the
well-known approaches such as SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020), DINO (Caron et al.,
2021), and MAE (He et al., 2022). By sampling from the embedding space, SimCore ensures that the selected
examples are both semantically relevant and diverse, which is particularly effective for adapting large-scale
unlabeled data to specialized downstream tasks.

Other heuristics for achieving sufficient coverage in the representation space include clustering-based selec-
tion (e.g., k-center or k-means on pretrained embeddings) to pick cluster prototypes that span high-density
regions (Zheng et al., 2025), and redundancy-aware pruning, which removes overly similar samples to reduce
representation overlap (Mayilvahanan et al., 2024). Zheng et al. (2025) introduce “Effective Label-Free Core-
set Selection (ELFS)”, a method for coreset selection without relying on ground-truth labels. ELFS utilizes
deep clustering technique (Adaloglou et al., 2023) to infer pseudo-labels and approximates difficulty scores
based on training dynamics such as the model’s behavior across epochs measured by indicators including the
Area Under the Margin (AUM) (Pleiss et al., 2020), forgetting events (Toneva et al., 2019), and early-epoch
loss (EL2N) (Paul et al., 2021). To mitigate noise and distributional shifts introduced by pseudo-labels, it
adopts a double-ended pruning strategy that prunes both trivially easy and overly hard samples, thereby
improving the representativeness and overall utility of the selected coreset.

Mayilvahanan et al. (2024) conduct a systematic study of pruning in CLIP’s embedding space to examine
whether its strong out-of-distribution (OOD) generalization mainly stems from high train and test simi-
larity. They define a perceptual similarity metric, computed as the cosine similarity between CLIP image
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embeddings, to quantify visual closeness in both content and style, and progressively remove training sam-
ples that are overly similar to specific test distributions. Even after removing these high-similarity samples,
CLIP’s zero-shot accuracy on OOD benchmarks such as ImageNet-Sketch (Wang et al., 2019) and ImageNet-
R (Hendrycks et al., 2021) decreases only moderately and remains far higher than that of models trained
solely on ImageNet (Deng et al., 2009). They further show that a 100M subset obtained through far-pruning
achieves nearly the same accuracy as the full 400M dataset, suggesting that large-scale diversity and cross-
modal supervision, rather than sample-level overlap, are the main factors driving CLIP’s generalization.
These findings offer useful insights for designing data-efficient pretraining and diversity-preserving coreset
strategies.

The aforementioned approaches, also broadly categorized as “data filtering” or “data curation”, highlight
a growing consensus: data quality is often more critical than sheer quantity. Li et al. (2022) introduce
“DeCLIP”, a framework designed to address redundancy in large-scale image-text datasets. By integrat-
ing additional self-supervised objectives, multi-view consistency, and nearest neighbor supervision, DeCLIP
extracts richer training signals from smaller, curated subsets. Such implicit coreset selection mechanisms
leverage model-based filtering strategies to curate high-quality subsets. This strategy embodies the coreset
principle of achieving high learning efficacy using minimal yet informative data. Similarly, a number of
recent works also underscore the importance of subset quality over sheer dataset size (Nguyen et al., 2022;
Santurkar et al., 2023; Li et al., 2024d; Fang et al., 2024; Maini et al., 2024; Joshi et al., 2024).

3.4 Summary

We have introduced the coreset selection methods for enhancing data efficiency in three scenarios with
limited resource. Generally speaking, the coreset methods developed for these scenarios can be divided into
four categories, that is, loss-based (see Section 3.1.1 and 3.3.1), gradient-based (see Section 3.2.2 and 3.3.2),
coverage-based (see Section 3.1.2, 3.2.1 and 3.3.3), and hybrid methods (see Section 3.1.3). Loss-based
methods aim to select examples that are likely to incur higher loss values and prioritize those about which
the model is most uncertain (Mayer & Timofte, 2020; Kim et al., 2021b; Gao et al., 2020; Parvaneh et al.,
2022). However, relying on uncertainty alone risks selecting redundant or similar examples that contain
highly overlapping information (Citovsky et al., 2021; Kim & Shin, 2022; Ash et al., 2020; Cho et al., 2024).
Gradient-based methods primarily select examples that could preserve the gradient statistics of the full
dataset (Killamsetty et al., 2021c). Coverage-based methods, on the other hand, emphasize diversity by
selecting representative and varied examples that enable broad coverage of the input space (Yehuda et al.,
2022; Bae et al., 2024; Joshi & Mirzasoleiman, 2023; Kim et al., 2023a). Therefore, these categories prioritize
examples that are diverse and dissimilar (Aljundi et al., 2019; Yoon et al., 2022). But focusing exclusively on
diversity leads to annotating examples that are trivial or already well learned (Citovsky et al., 2021; Kim &
Shin, 2022; Ash et al., 2020). Hybrid methods are proposed to mitigate these shortcomings by simultaneously
considering both uncertainty and diversity (Citovsky et al., 2021; Kim & Shin, 2022; Ash et al., 2020; Cho
et al., 2024). The goal is to select examples that not only provide novel information but also adequately
represent the underlying data distribution. As a result, hybrid methods could offer a more effective trade-off
between uncertainty and diversity.

4 Coresets for Large Language Models

Large language models (LLMs), such as DeepSeek-v3 (Liu et al., 2024), GPT-4 (Achiam et al., 2023), and
LLaMa (Touvron et al., 2023), exhibit remarkable proficiency across a broad spectrum of language under-
standing and generation tasks. In their training procedures, LLMs typically follow two key stages (Ouyang
et al., 2022): pretraining on large scale corpora and fine-tuning on instruction following datasets. Pre-
training constitutes a fundamental stage in the development of LLMs, a stage that equips the models with
core knowledge and capabilities. LLMs acquire a deep understanding of language syntax, world knowledge,
and reasoning abilities through self-supervised learning on extensive textual corpora. This stage lays the
groundwork for fine-tuning, a process in which models are further trained on a carefully annotated set of
(instruction, response) pairs so that their capabilities are enhanced and their controllability is improved.
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Similar with the studies on semi/self-supervised learning in Section 3.3, recent studies suggest that the
quality of training data also plays a more critical role than its quantity for LLMs (Zhou et al., 2023).
Consequently, a growing body of works focus on selecting high-quality subsets from large-scale pretraining
or fine-tuning datasets. In this section, we provide a comprehensive overview of recent coreset-based data
selection techniques for the pretraining and fine-tuning stages of LLMs.

4.1 Coresets for Pretraining

The pretraining of a large language model is significantly influenced by the characteristics of the training
corpus (Longpre et al., 2024; Chowdhery et al., 2023). Existing research shows that model performance can
be substantially improved through the careful curation of high-quality data (Sachdeva et al., 2024; Wettig
et al., 2024). In particular, data quality, diversity, and coverage are widely recognized as the key factors in
enhancing the training efficiency and generalization ability of LLMs (Cheng et al., 2024; Chowdhery et al.,
2023; Touvron et al., 2023).

To improve data quality, rule-based filtering techniques have been widely adopted (Weber et al., 2024;
Touvron et al., 2023; Laurençon et al., 2022; Penedo et al., 2023). These methods rely on manually designed
heuristics, such as removing terminal symbols, detecting repetitive sentences, or enforcing length constraints,
to filter out low-quality samples from the training corpus. While being effective in eliminating superficial
noise, such approaches lack the capacity to capture semantic-level information, which is critical for fine-
grained and content-aware data selection.

Several studies have been proposed to address the above limitation. For example, Wang et al. (2023a) intro-
duce a method called “Influential Subset Selection (ISS)”, which explicitly leverages knowledge of the end
task to guide pretraining data selection. Specifically, ISS selects the samples that have the greatest positive
influence on the performance of the end task. Furthermore, the authors design a gradient-matching-based
influence estimation method, which drastically reduces the time required to estimate influence. Using only
0.45% of the data and achieving a computational cost that is three orders of magnitude lower, ISS out-
performed pretrained models (e.g., RoBERTa) on eight datasets covering four domains. Complementary to
this line of work, recent research (Thrush et al., 2025) demonstrate that high-quality pretraining data can
be selected by exploiting the correlation between language model perplexity and downstream task perfor-
mance. Specifically, the “perplexity” is computed as the normalized sequence negative log-likelihood. The
authors propose to select the domains of pretrained corpus with largest correlations between perplexity and
target benchmark scores. Such correlation can be estimated by the output logits computed from a sample
of 90 LLMs taken from the “Hugging Face Open LLM Leaderboard”1, without the need for additional LLM
training. Marion et al. (2023) perform a rigorous comparison between the simple data quality estimator
of perplexity and more computationally intensive estimates of the Error L2-Norm (Paul et al., 2021) and
Memorization (Biderman et al., 2023), and find that the simple perplexity-based method outperforms the
more computationally expensive approaches. Lin et al. (2024b) introduce a novel language model named
“RHO-1”, which is different from the conventional LLMs who predict every next token in the corpus. Instead,
RHO-1 focuses on learning from tokens aligned with the target distribution. This is achieved by assigning
scores to tokens using a reference model and applying a loss function that prioritizes higher-scoring (i.e., more
informative or relevant) tokens during training. Similar to the coreset idea introduced in Section 2.2, Xie
et al. (2023) propose “Data Selection with Importance Resampling (DSIR)”, an efficient and scalable frame-
work that estimates importance weights in a reduced feature space. The data items are then selected via
importance resampling based on these weights. To ensure efficiency, the authors instantiate DSIR using
hashed n-gram features, enabling the selection of 100 million documents from the full Pile dataset within
4.5 hours on 4 Titan RTX GPUs.

Another line of research adopts a discriminator-based approach for data selection (Li et al., 2024b; Soldaini
et al., 2024; Brown et al., 2020; Du et al., 2022). Rather than estimating sample importance or influence,
these methods compare candidate data to predefined high-quality corpora, such as Wikipedia or instruction-
tuning datasets, using trained discriminators to identify the samples that resemble the reference distribution.
But such approaches heavily depend on the qualities of the reference datasets. So, a number of recent

1https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/
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studies (Penedo et al., 2023; Wettig et al., 2024; Sachdeva et al., 2024) turn to find different solutions,
e.g., leveraging existing large language models as the data evaluators. By employing carefully designed
prompts to assess data quality from various dimensions (e.g., factuality, coherence, and task relevance),
these methods enable more nuanced and flexible filtering criterion for data selection. This LLM-assisted
evaluation approach offers a promising alternative to discriminator-based approach, facilitating more robust
and scalable pretraining data selection.

Beyond the filtering and discriminator-based methods, several recent works focus on optimizing the distri-
butional characteristics of the training corpus through clustering (Abbas et al., 2023; Shao et al., 2024).
These approaches aim to reduce redundancy while preserving semantic diversity. For example, Abbas et al.
(2023) propose the method “SemDeDup”, which leverages embeddings from pretrained models to detect
and eliminate semantic duplicates, which are pairs of examples that are highly similar in meaning but not
necessarily identical. Shao et al. (2024) develop the technique “ClusterClip” to balance the text distribution
of training data for better model training. Specifically, ClusterClip utilizes clustering to capture the data
distribution of the training set and balances the common and rare samples during the training procedure.

4.2 Coresets for Fine-Tuning

Fine-tuning plays a critical role in aligning LLMs with human instructions. By training on (instruction,
output) pairs, fine-tuning helps bridge the gap between pretrained models and diverse human intents. Specif-
ically, it enables LLMs to generate outputs that better reflect human preferences, thereby improving their
controllability and safety. Moreover, fine-tuning can facilitate the adaptation to specific domains or ac-
quisition of task-specific knowledge, without requiring substantial computational resources or architectural
modifications.

Recent study (Zhou et al., 2023) demonstrates that fine-tuning with only 1,000 carefully curated examples can
yield strong performance comparable to the models trained on datasets that are several orders of magnitude
larger. Very recently, several model-dependent data selection methods for efficient fine-tuning have been
proposed. Joaquin et al. (2024) provide the method “In2Core”, which leverages internal model gradients to
quantify the influence of each training instance. Nguyen et al. (2025b) introduce “CoLM”, a memory-efficient
training method for LLMs, where it identifies compact mini-batches to approximate the gradients. Similar to
the coreset idea introduced in Section 2.1, they model the problem as a submodular maximization problem
with leveraging pairwise gradient similarities. Zhang et al. (2025) introduce “STAFF”, an efficient coreset
selection strategy designed for task-specific fine-tuning of LLMs. The method first employs a smaller model
from the same architecture family to estimate data importance scores, which are then verified and refined
in the target LLM. This two-stage process enables accurate identification of high-impact data regions while
preserving overall diversity. Yang et al. (2024) propose “SmallToLarge (S2L)”, a data selection method that
first trains a small reference model, clusters examples based on their loss trajectories, and then samples data
from these clusters to guide the training of larger models.

4.3 Summary

This section provides an overview of recent advances in coreset-based data selection methods for both the
pretraining (in Section 4.1) and fine-tuning (in Section 4.2) stages of large language models. During pre-
training, high-quality data selection plays a crucial role in improving model efficiency and generalization.
Existing approaches include rule-based filtering (Weber et al., 2024; Touvron et al., 2023; Laurençon et al.,
2022; Penedo et al., 2023), discriminator-based selection (Li et al., 2024b; Soldaini et al., 2024; Brown et al.,
2020; Du et al., 2022) using pretrained models as evaluators, and distributional optimization techniques that
better align training corpora with target distributions (Abbas et al., 2023; Shao et al., 2024). Representa-
tive methods such as DSIR (Xie et al., 2023) enable efficient large-scale selection, while ISS (Wang et al.,
2023a) identifies influential subsets through gradient-based influence estimation. Additional techniques such
as clustering (e.g., SemDedup (Abbas et al., 2023), ClusterClip (Shao et al., 2024)) further enhance data
quality by reducing redundancy and maintaining diversity.

For fine-tuning, the focus shifts toward selecting informative instruction-response pairs that can max-
imize downstream performance while reducing annotation and computational cost. Methods such as
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In2Core (Joaquin et al., 2024), CoLM (Nguyen et al., 2025b), STAFF (Zhang et al., 2025), and S2L (Yang
et al., 2024) leverage model-internal signals or smaller proxy models to estimate data importance, cluster
examples, and identify high-impact regions of the data space. These techniques enable models to achieve
competitive performance with only a small fraction of the original data.

5 Challenges and Future Works

This survey reviewed the coreset methods in deep learning, which enhance data efficiency and preserve
performance by selecting small, representative data subsets. We outlined their foundational principles and
roles: reducing computational cost for large-scale training (as introduced in Section 2) and improving data
utilization in resource-constrained scenarios (as introduced in Section 3) such as active learning, continual
learning, and semi/self-supervised learning. We also explored the growing relevance of coreset techniques in
large language models in Section 4. Despite the significant advances in coreset techniques, several critical
challenges and promising future directions still remain in this field. At the end of this article, we highlight
three key open issues that are pivotal to advancing both the theory and practical applications of coresets.

5.1 Dynamic and Adaptive Coreset Selection

Traditional coreset techniques often assume the given datasets are static. However, real-world scenarios
frequently involve dynamic data streams or continual learning settings, where data distributions evolve over
time. Although coresets have been successfully designed for fully dynamic data settings in models like SVMs
and linear regression (Wang et al., 2021), extending these capabilities to deep neural networks remains a
significant challenge. In particular, designing algorithms that can adaptively update coresets in response to
streaming data or distributional shifts is still an open problem (Aljundi et al., 2019; Buzzega et al., 2020).

Recent findings reveal that in large-scale pretraining scenarios, especially with contrastive learning models
such as CLIP (Radford et al., 2021), the utility of high-quality data can decay rapidly with repetition (Goyal
et al., 2024). This highlights a critical limitation of static or heuristic-based coreset strategies, which often
ignore the interplay between data utility, training repetitions, and compute budgets (such as available GPU
hours or memory size).

Future coreset algorithms should not only track data distributional shifts but also estimate and model
repetition-induced utility decay across heterogeneous data pools. Recent advances in scaling-law analysis
have begun to formalize this idea by explicitly modeling how the marginal utility of data decays with repeated
exposures, and how the optimal data-filtering strength depends on available compute resources. In particular,
Goyal et al. (2024) demonstrate that data curation cannot be compute-agnostic: they derive a scaling law
that predicts performance across heterogeneous datasets by jointly modeling data quality, repetition, and
compute budget. This framework provides a principled foundation for predicting the performance of different
coreset configurations under varying compute budgets.

Moreover, adapting coreset strategies to the model architecture and training dynamics (e.g., ViT vs. CNN,
contrastive vs. generative objectives) is becoming increasingly important (Li et al., 2024d). For instance,
large vision transformers exhibit greater performance gains from data diversity than smaller models (Li
et al., 2024d). This effect arises because larger models possess higher representational capacity and are often
trained with fine-tuning techniques that enable them to leverage more informative samples. In contrast,
smaller models tend to saturate earlier and gain less from additional diversity. Consequently, the coreset
construction should be considered jointly with model scaling to ensure that the selected subset matches the
model’s capacity and fine-tuning methods.

Furthermore, the development of automated coreset construction represents a promising direction. A prac-
tical challenge in deploying coreset methods lies in determining the appropriate coreset size and selec-
tion criteria, which currently depend on manual tuning or domain-specific heuristics. This tuning often
requires balancing trade-offs among accuracy, robustness, fairness, and computational efficiency. Auto-
mated coreset construction, potentially leveraging AutoML or meta-learning paradigms, could more effi-
ciently discover minimal coresets tailored to specific objectives. Early efforts in this direction, such as
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RETRIEVE (Killamsetty et al., 2021c), demonstrate that meta-learned selection strategies can adaptively
construct coresets aligned with downstream task requirements.

5.2 Balancing Fidelity and Diversity

Existing coreset methods frequently depend on single, isolated selection criteria, such as maximizing diversity
or prioritizing regions of high data density, potentially leading to suboptimal trade-offs between fidelity and
diversity. For instance, the methods emphasizing dense, high-quality regions risk neglecting rare but critical
modes, thus reducing generalization capabilities and diversity in generative tasks. On the other hand, the
methods that solely optimize for diversity may include noisy or irrelevant data points, diminishing the overall
performance.

Recent findings further highlight that diversity and fidelity cannot be treated as independent or uniformly
beneficial dimensions. In large-scale multimodal pretraining, data from heterogeneous sources often exhibits
complementary but non-additive robustness properties (Nguyen et al., 2022). Moreover, simply increasing
dataset diversity without assessing semantic quality or target-task relevance can worsen performance under
distribution shifts. This underscores the importance of not only balancing but also contextualizing fidelity-
diversity trade-offs based on source characteristics and alignment with downstream tasks.

To address these challenges, recent studies propose more metric-informed data selection strategies for multi-
modal pretraining. For instance, the classical CLIPScore (Hessel et al., 2021) measures the cosine similarity
between visual and textual embeddings from CLIP, serving as a simple proxy for sample quality. However,
it often overestimates generic or weakly aligned pairs. To mitigate this, s-CLIP-Loss (Wang et al., 2024b)
refines quality estimation by incorporating a contrastive-pair normalization term inspired by the original
CLIP training loss, yielding a more faithful assessment of multimodal consistency. In parallel, NormSim
(Wang et al., 2024b) defines a vision-only p-norm similarity between pretraining data and target domains,
allowing models to prioritize samples that are semantically relevant to downstream tasks. Together, these
complementary metrics suggest that data fidelity and task relevance should be optimized jointly but with dif-
ferent priorities, that is, rare yet informative examples are retained, while redundant or mismatched samples
are pruned more aggressively.

Future research should therefore pursue hybrid coreset frameworks that incorporate both structural diversity
and semantically-informed fidelity signals. Such systems could dynamically tune sampling strategies using
proxy metrics like task-targeted NormSim, or decay-based models of utility (Goyal et al., 2024), allowing
coresets to remain compact yet highly expressive across different tasks and training phases. This direction
holds promise for building coreset selection methods that are robust, efficient, and capable of generalizing
across diverse tasks (Cho et al., 2024; Citovsky et al., 2021).

5.3 Ethics and Privacy

As coreset selection becomes increasingly prevalent, it raises significant concerns regarding algorithmic fair-
ness and data privacy. The selection process itself, while designed for efficiency, can inadvertently amplify
systemic biases encoded in the original data. For example, selection criteria may disproportionately favor
majority groups or samples that align with spurious correlations, thereby degrading the group robustness
of downstream models (Dharmasiri et al., 2025). Moreover, the resulting coreset, being a concentrated and
highly representative summary, could inadvertently leak sensitive information or make individuals more iden-
tifiable, posing a privacy risk. While early explorations into private coresets have been studied for tasks like
clustering (Feldman et al., 2009; 2017), ensuring these properties in broader applications remains a challenge.
Thus, developing coreset selection frameworks that integrate formal guarantees, such as differential privacy
principles and explicit fairness criteria, represents a vital and promising research direction for trustworthy
machine learning (Fioretto et al., 2022).

References
Amro Kamal Mohamed Abbas, Kushal Tirumala, Daniel Simig, Surya Ganguli, and Ari S Morcos. Semd-

edup: Data-efficient learning at web-scale through semantic deduplication. In ICLR 2023 Workshop on

26



Under review as submission to TMLR

Mathematical and Empirical Understanding of Foundation Models, 2023.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Nikolas Adaloglou, Felix Michels, Hamza Kalisch, and Markus Kollmann. Exploring the limits of deep image
clustering using pretrained models. In BMVC, 2023.

Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric approximation via coresets.
Combinatorial and computational geometry, 52(1):1–30, 2005.

Sharat Agarwal, Himanshu Arora, Saket Anand, and Chetan Arora. Contextual diversity for active learn-
ing. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XVI 16, pp. 137–153. Springer, 2020.

Qingzhong Ai, Lirong He, Shiyu Liu, and Zenglin Xu. Bype-vae: Bayesian pseudocoresets exemplar vae.
Advances in Neural Information Processing Systems, 34:5910–5920, 2021.

Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing Gong.
Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text. Advances in
neural information processing systems, 34:24206–24221, 2021.

Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, and Yoshua Bengio. Variance reduction
in sgd by distributed importance sampling. arXiv preprint arXiv:1511.06481, 2015.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online
continual learning. Advances in neural information processing systems, 32, 2019.

Yunpyo An, Suyeong Park, and Kwang In Kim. Active learning guided by efficient surrogate learners. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 10874–10881, 2024.

Martin Anthony and Peter L. Bartlett. Neural Network Learning - Theoretical Foundations. Cambridge
University Press, 2002. ISBN 978-0-521-57353-5. URL http://www.cambridge.org/gb/knowledge/isbn/
item1154061/?site_locale=en_GB.

David Arthur and Sergei Vassilvitskii. k-means++ the advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, 2007.

Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Gone fishing: Neural active learning
with fisher embeddings. Advances in Neural Information Processing Systems, 34:8927–8939, 2021.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch
active learning by diverse, uncertain gradient lower bounds. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Wonho Bae, Junhyug Noh, and Danica J Sutherland. Generalized coverage for more robust low-budget
active learning. In European Conference on Computer Vision, pp. 318–334. Springer, 2024.

Wonho Bae, Danica J. Sutherland, and Gabriel L. Oliveira. Uncertainty herding: One active learning method
for all label budgets. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=UgPoHhYQ2U.

Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow memory: Continual
learning with a memory of diverse samples. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 8218–8227, 2021.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension and
pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning Research, 20
(63):1–17, 2019.

27

http://www.cambridge.org/gb/knowledge/isbn/item1154061/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item1154061/?site_locale=en_GB
https://openreview.net/forum?id=UgPoHhYQ2U


Under review as submission to TMLR

C Baykal, L Liebenwein, I Gilitschenski, D Rus, and D Feldman. Data-dependent coresets for compressing
neural networks with applications to generalization bounds. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

Stella Biderman, Usvsn Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony, Shivanshu Puro-
hit, and Edward Raff. Emergent and predictable memorization in large language models. Advances in
Neural Information Processing Systems, 36:28072–28090, 2023.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Learnability and the
vapnik-chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–965, 1989.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual learning
and streaming. Advances in neural information processing systems, 33:14879–14890, 2020.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE transactions on pattern analysis and
machine intelligence, 45(5):5497–5512, 2022.

Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. Efficient coreset con-
structions via sensitivity sampling. In Asian Conference on Machine Learning, pp. 948–963. PMLR, 2021.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural image
synthesis. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=B1xsqj09Fm.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for
general continual learning: a strong, simple baseline. Advances in neural information processing systems,
33:15920–15930, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 9650–9660, 2021.

Souradip Chakraborty, Amrit Singh Bedi, Pratap Tokekar, Alec Koppel, Brian M. Sadler, Furong Huang,
and Dinesh Manocha. Posterior coreset construction with kernelized stein discrepancy for model-based
reinforcement learning. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), Thirty-Seventh AAAI
Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pp. 6980–6988. AAAI Press, 2023. doi:
10.1609/AAAI.V37I6.25853. URL https://doi.org/10.1609/aaai.v37i6.25853.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more accurate neural
networks by emphasizing high variance samples. Advances in Neural Information Processing Systems, 30,
2017.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with A-GEM. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019a. URL https://openreview.net/forum?id=
Hkf2_sC5FX.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual learning. arXiv
preprint arXiv:1902.10486, 2019b.

28

https://openreview.net/forum?id=B1xsqj09Fm
https://doi.org/10.1609/aaai.v37i6.25853
https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=Hkf2_sC5FX


Under review as submission to TMLR

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz. Using hindsight
to anchor past knowledge in continual learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 6993–7001, 2021.

Kamalika Chaudhuri, Sham M Kakade, Praneeth Netrapalli, and Sujay Sanghavi. Convergence rates of
active learning for maximum likelihood estimation. Advances in Neural Information Processing Systems,
28, 2015.

Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and their appli-
cations. SIAM Journal on Computing, 39(3):923–947, 2009.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International Conference on Machine Learning, pp. 1597–1607.
PMLR, 2020.

Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi, Minlie Huang, and Furu Wei. Instruction pre-
training: Language models are supervised multitask learners. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 2529–2550, 2024.

Mehdi Cherti, R. Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph
Schuhmann, Ludwig Schmidt, and J. Jitsev. Reproducible scaling laws for contrastive language-image
learning. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–
2829, 2022. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10205297.

Seong Jin Cho, Gwangsu Kim, Jinwoo Shin, Chang-Dong Yoo, et al. Querying easily flip-flopped samples for
deep active learning. In 12th International Conference on Learning Representations. 12th International
Conference on Learning Representations, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced data. In Inter-
national Conference on Machine Learning, pp. 1952–1961. PMLR, 2020.

Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Afshin Rostamizadeh,
and Sanjiv Kumar. Batch active learning at scale. Advances in Neural Information Processing Systems,
34:11933–11944, 2021.

Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for clustering.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 169–182, 2021.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

Ian Connick Covert, Wenlong Ji, Tatsunori Hashimoto, and James Zou. Scaling laws for the value of
individual data points in machine learning. In International Conference on Machine Learning, pp. 9380–
9406. PMLR, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Terrance DeVries, Michal Drozdzal, and Graham W Taylor. Instance selection for gans. Advances in Neural
Information Processing Systems, 33:13285–13296, 2020.

29

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10205297


Under review as submission to TMLR

Amaya Dharmasiri, William Yang, Polina Kirichenko, Lydia Liu, and Olga Russakovsky. The impact of
coreset selection on spurious correlations and group robustness. In The Thirty-Ninth Annual Conference
on Neural Information Processing Systems, 2025.

Hu Ding and Zixiu Wang. Layered sampling for robust optimization problems. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 2556–2566. PMLR, 2020.

Hadi M Dolatabadi, Sarah M Erfani, and Christopher Leckie. Adversarial coreset selection for efficient robust
training. International Journal of Computer Vision, 131(12):3307–3331, 2023.

Yijun Dong, Viet Hoang Phan, Xiang Pan, and Qi Lei. Sketchy moment matching: Toward fast and provable
data selection for finetuning. Advances in Neural Information Processing Systems, 37:43367–43402, 2024.

DC Dowson and BV666017 Landau. The fréchet distance between multivariate normal distributions. Journal
of multivariate analysis, 12(3):450–455, 1982.

Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Relative-error cur matrix decompositions.
SIAM Journal on Matrix Analysis and Applications, 30(2):844–881, 2008.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language models with mixture-
of-experts. In International conference on machine learning, pp. 5547–5569. PMLR, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin based
approach. arXiv preprint arXiv:1802.09841, 2018.

Ethan R Elenberg, Rajiv Khanna, Alexandros G Dimakis, and Sahand Negahban. Restricted strong convexity
implies weak submodularity. The Annals of Statistics, 46(6B):3539–3568, 2018.

Talfan Evans, Nikhil Parthasarathy, Hamza Merzic, and Olivier Henaff. Data curation via joint example
selection further accelerates multimodal learning. Advances in Neural Information Processing Systems,
37:141240–141260, 2024.

Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander T Toshev, and Vaishaal Shankar.
Data filtering networks. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KAk6ngZ09F.

Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):634–652,
1998.

Dan Feldman. Core-sets: Updated survey. Sampling techniques for supervised or unsupervised tasks, pp.
23–44, 2020.

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In Lance
Fortnow and Salil P. Vadhan (eds.), Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pp. 569–578. ACM, 2011.

Dan Feldman, Amos Fiat, Haim Kaplan, and Kobbi Nissim. Private coresets. In Michael Mitzenmacher
(ed.), Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pp. 361–370. ACM, 2009.

Dan Feldman, Chongyuan Xiang, Ruihao Zhu, and Daniela Rus. Coresets for differentially private k-means
clustering and applications to privacy in mobile sensor networks. In Proceedings of the 16th ACM/IEEE
International Conference on Information Processing in Sensor Networks, pp. 3–15, 2017.

30

https://openreview.net/forum?id=KAk6ngZ09F


Under review as submission to TMLR

Ferdinando Fioretto, Cuong Tran, Pascal Van Hentenryck, and Keyu Zhu. Differential privacy and fairness
in decisions and learning tasks: A survey. In International Joint Conference on Artificial Intelligence
(IJCAI), 2022.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. In 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=6Tm1mposlrM.

Satoru Fujishige. Submodular functions and optimization, volume 58. Elsevier, 2005.

Mingfei Gao, Zizhao Zhang, Guo Yu, Sercan Ö Arık, Larry S Davis, and Tomas Pfister. Consistency-based
semi-supervised active learning: Towards minimizing labeling cost. In European Conference on Computer
Vision, pp. 510–526. Springer, 2020.

Yonatan Geifman and Ran El-Yaniv. Deep active learning over the long tail. arXiv preprint
arXiv:1711.00941, 2017.

Lin Geng, Ningzhong Liu, and Jie Qin. Multi-classifier adversarial optimization for active learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 7687–7695, 2023.

Daniel Gissin and Shai Shalev-Shwartz. Discriminative active learning. arXiv preprint arXiv:1907.06347,
2019.

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer science,
38:293–306, 1985.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

Sachin Goyal, Pratyush Maini, Zachary C Lipton, Aditi Raghunathan, and J Zico Kolter. Scaling laws for
data filtering–data curation cannot be compute agnostic. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 22702–22711, 2024.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your
own latent-a new approach to self-supervised learning. Advances in neural information processing systems,
33:21271–21284, 2020.

Jie Gui, Tuo Chen, Jing Zhang, Qiong Cao, Zhenan Sun, Hao Luo, and Dacheng Tao. A survey on self-
supervised learning: Algorithms, applications, and future trends. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selection in
deep learning. In International Conference on Database and Expert Systems Applications, pp. 181–195.
Springer, 2022.

Guy Hacohen, Avihu Dekel, and Daphna Weinshall. Active learning on a budget: Opposite strategies suit
high and low budgets. In International Conference on Machine Learning, pp. 8175–8195. PMLR, 2022.

Botao Hao, Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, and Csaba Szepesvári. Confident least square
value iteration with local access to a simulator. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel
Valera (eds.), International Conference on Artificial Intelligence and Statistics, AISTATS 2022, 28-30
March 2022, Virtual Event, volume 151 of Proceedings of Machine Learning Research, pp. 2420–2435.
PMLR, 2022. URL https://proceedings.mlr.press/v151/hao22a.html.

Jie Hao, Kaiyi Ji, and Mingrui Liu. Bilevel coreset selection in continual learning: A new formulation and
algorithm. Advances in Neural Information Processing Systems, 36:51026–51049, 2023.

31

https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
https://proceedings.mlr.press/v151/hao22a.html


Under review as submission to TMLR

David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. In Proceedings of the second annual
symposium on Computational geometry, pp. 61–71, 1986.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 16000–16009, 2022.

Tao He, Xiaoming Jin, Guiguang Ding, Lan Yi, and Chenggang Yan. Towards better uncertainty sampling:
Active learning with multiple views for deep convolutional neural network. In 2019 IEEE international
conference on multimedia and expo (ICME), pp. 1360–1365. IEEE, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-
distribution generalization. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 8340–8349, 2021.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free
evaluation metric for image captioning. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 7514–7528, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural infor-
mation processing systems, 30, 2017.

Peng-Xiang Hua, Zhen Huang, Zhe-Yuan Xu, Qiang Zhao, Chen-Yang Ye, Yi-Feng Wang, Yun-He Xu, Yao
Fu, and Hu Ding. An active representation learning method for reaction yield prediction with small-scale
data. Communications Chemistry, 8(1):42, 2025.

Jiawei Huang, Ruomin Huang, Wenjie Liu, Nikolaos M. Freris, and Hu Ding. A novel sequential coreset
method for gradient descent algorithms. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, pp. 4412–4422. PMLR, 2021a.

Lingxiao Huang, Shaofeng H.-C. Jiang, Jian Li, and Xuan Wu. Epsilon-coresets for clustering (with outliers)
in doubling metrics. In Mikkel Thorup (ed.), 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pp. 814–825. IEEE Computer Society, 2018.

Lingxiao Huang, Zhize Li, Jialin Sun, and Haoyu Zhao. Coresets for vertical federated learning: Regularized
linear regression and k-means clustering. Advances in Neural Information Processing Systems, 35:29566–
29581, 2022a.

Ruomin Huang, Jiawei Huang, Wenjie Liu, and Hu Ding. Coresets for wasserstein distributionally robust
optimization problems. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022b.

Siyu Huang, Tianyang Wang, Haoyi Xiong, Jun Huan, and Dejing Dou. Semi-supervised active learning with
temporal output discrepancy. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3447–3456, 2021b.

Jonathan H. Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable bayesian logistic
regression. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 4080–4088, 2016.

32



Under review as submission to TMLR

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial infor-
mation measures with applications in machine learning. In Algorithmic Learning Theory, pp. 722–754.
PMLR, 2021.

Ayrton San Joaquin, Bin Wang, Zhengyuan Liu, Nicholas Asher, Brian Lim, Philippe Muller, and Nancy F.
Chen. In2core: Leveraging influence functions for coreset selection in instruction finetuning of large
language models. In Conference on Empirical Methods in Natural Language Processing, 2024. URL
https://api.semanticscholar.org/CorpusId:271744782.

William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Siddharth Joshi and Baharan Mirzasoleiman. Data-efficient contrastive self-supervised learning: Most benefi-
cial examples for supervised learning contribute the least. In International conference on machine learning,
pp. 15356–15370. PMLR, 2023.

Siddharth Joshi, Arnav Jain, Ali Payani, and Baharan Mirzasoleiman. Data-efficient contrastive language-
image pretraining: Prioritizing data quality over quantity. In International Conference on Artificial Intel-
ligence and Statistics, pp. 1000–1008. PMLR, 2024.

Seohyon Jung, Sanghyun Kim, and Juho Lee. A simple yet powerful deep active learning with snapshot en-
sembles. In The Eleventh International Conference on Learning Representations. International Conference
on Learning Representations, 2023.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard negative
mixing for contrastive learning. Advances in neural information processing systems, 33:21798–21809, 2020.

Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language models. ArXiv,
abs/2001.08361, 2020. URL https://api.semanticscholar.org/CorpusID:210861095.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with impor-
tance sampling. In International conference on machine learning, pp. 2525–2534. PMLR, 2018.

Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-
match: Gradient matching based data subset selection for efficient deep model training. In International
Conference on Machine Learning, pp. 5464–5474. PMLR, 2021a.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister: Gen-
eralization based data subset selection for efficient and robust learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 8110–8118, 2021b.

Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and Rishabh Iyer. Retrieve: Coreset selection for efficient
and robust semi-supervised learning. Advances in neural information processing systems, 34:14488–14501,
2021c.

Chris Dongjoo Kim, Jinseo Jeong, and Gunhee Kim. Imbalanced continual learning with partitioning reser-
voir sampling. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XIII 16, pp. 411–428. Springer, 2020.

Kwanyoung Kim, Dongwon Park, Kwang In Kim, and Se Young Chun. Task-aware variational adversarial
active learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 8166–8175, 2021a.

Sungnyun Kim, Sangmin Bae, and Se-Young Yun. Coreset sampling from open-set for fine-grained self-
supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7537–7547, 2023a.

33

https://api.semanticscholar.org/CorpusId:271744782
https://api.semanticscholar.org/CorpusID:210861095


Under review as submission to TMLR

Yeachan Kim and Bonggun Shin. In defense of core-set: A density-aware core-set selection for active learning.
In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pp. 804–812,
2022.

Yoon-Yeong Kim, Kyungwoo Song, JoonHo Jang, and Il-Chul Moon. Lada: Look-ahead data acquisition
via augmentation for deep active learning. Advances in Neural Information Processing Systems, 34:22919–
22930, 2021b.

Yoon-Yeong Kim, Youngjae Cho, JoonHo Jang, Byeonghu Na, Yeongmin Kim, Kyungwoo Song, Wanmo
Kang, and Il-Chul Moon. Saal: sharpness-aware active learning. In International Conference on Machine
Learning, pp. 16424–16440. PMLR, 2023b.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann LeCun
(eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6114.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Suraj Kothawade, Nathan Beck, Krishnateja Killamsetty, and Rishabh Iyer. Similar: Submodular infor-
mation measures based active learning in realistic scenarios. Advances in Neural Information Processing
Systems, 34:18685–18697, 2021.

Suraj Kothawade, Vishal Kaushal, Ganesh Ramakrishnan, Jeff Bilmes, and Rishabh Iyer. Prism: A rich
class of parameterized submodular information measures for guided data subset selection. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36, pp. 10238–10246, 2022.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Techni-
cal report, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

Seong Min Kye, Kwanghee Choi, Hyeongmin Byun, and Buru Chang. Tidal: Learning training dynamics
for active learning. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
22335–22345, 2023.

Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral, Teven
Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen, et al. The big-
science roots corpus: A 1.6 tb composite multilingual dataset. Advances in Neural Information Processing
Systems, 35:31809–31826, 2022.

Shiye Lei and Dacheng Tao. A comprehensive survey of dataset distillation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(1):17–32, 2023.

Debra A Lelewer and Daniel S Hirschberg. Data compression. ACM Computing Surveys (CSUR), 19(3):
261–296, 1987.

Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu Okumura. A survey on
deep active learning: Recent advances and new frontiers. IEEE Transactions on Neural Networks and
Learning Systems, 2024a.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik Bansal,
Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the next generation of
training sets for language models. Advances in Neural Information Processing Systems, 37:14200–14282,
2024b.

34

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


Under review as submission to TMLR

Xingjian Li, Pengkun Yang, Yangcheng Gu, Xueying Zhan, Tianyang Wang, Min Xu, and Chengzhong Xu.
Deep active learning with noise stability. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 13655–13663, 2024c.

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, and Junjie
Yan. Supervision exists everywhere: A data efficient contrastive language-image pre-training paradigm.
In International Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=zq1iJkNk3uN.

Zichao Li, Cihang Xie, and Ekin Dogus Cubuk. Scaling (down) clip: A comprehensive analysis of data,
architecture, and training strategies. Transactions on Machine Learning Research, 2024d.

Weichen Lin, Jiaxiang Chen, Ruomin Huang, and Hu Ding. An effective dynamic gradient calibration method
for continual learning. In International Conference on Machine Learning, pp. 29872–29889. PMLR, 2024a.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu Yang, Jian
Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. arXiv preprint arXiv:2404.07965, 2024b.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

Peng Liu, Lizhe Wang, Rajiv Ranjan, Guojin He, and Lei Zhao. A survey on active deep learning: From
model driven to data driven. ACM Computing Surveys (CSUR), 54(10s):1–34, 2022.

Francesco Locatello, Michael Tschannen, Gunnar Rätsch, and Martin Jaggi. Greedy algorithms for cone con-
strained optimization with convergence guarantees. Advances in Neural Information Processing Systems,
30, 2017.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny Zhou,
Jason Wei, Kevin Robinson, David Mimno, et al. A pretrainer’s guide to training data: Measuring
the effects of data age, domain coverage, quality, & toxicity. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 3245–3276, 2024.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. Advances in
neural information processing systems, 30, 2017.

Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). Computers & Geo-
sciences, 19(3):303–342, 1993.

Michael W Mahoney and Petros Drineas. Cur matrix decompositions for improved data analysis. Proceedings
of the National Academy of Sciences, 106(3):697–702, 2009.

Michael W Mahoney et al. Randomized algorithms for matrices and data. Foundations and Trends® in
Machine Learning, 3(2):123–224, 2011.

Pratyush Maini, Sachin Goyal, Zachary Chase Lipton, J Zico Kolter, and Aditi Raghunathan. T-MARS:
Improving visual representations by circumventing text feature learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=ViPtjIVzUw.

Dionysis Manousakas, Zuheng Xu, Cecilia Mascolo, and Trevor Campbell. Bayesian pseudocoresets. Advances
in Neural Information Processing Systems, 33:14950–14960, 2020.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker. When less is
more: Investigating data pruning for pretraining llms at scale. arXiv preprint arXiv:2309.04564, 2023.

Christoph Mayer and Radu Timofte. Adversarial sampling for active learning. In Proceedings of the
IEEE/CVF winter conference on applications of computer vision, pp. 3071–3079, 2020.

35

https://openreview.net/forum?id=zq1iJkNk3uN
https://openreview.net/forum?id=zq1iJkNk3uN
https://openreview.net/forum?id=ViPtjIVzUw


Under review as submission to TMLR

Prasanna Mayilvahanan, Thaddäus Wiedemer, Evgenia Rusak, Matthias Bethge, and Wieland Brendel. Does
clip’s generalization performance mainly stem from high train-test similarity? In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=tnBaiidobu.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary learning
systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models
of learning and memory. Psychological review, 102(3):419, 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165. Elsevier, 1989.

Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In Optimization
Techniques: Proceedings of the 8th IFIP Conference on Optimization Techniques Würzburg, September
5–9, 1977, pp. 234–243. Springer, 2005.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas Krause.
Lazier than lazy greedy. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29,
2015.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of machine
learning models. In International Conference on Machine Learning, pp. 6950–6960. PMLR, 2020a.

Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. Coresets for robust training of deep neural networks
against noisy labels. Advances in Neural Information Processing Systems, 33:11465–11477, 2020b.

Alexander Munteanu and Chris Schwiegelshohn. Coresets-methods and history: A theoreticians design
pattern for approximation and streaming algorithms. KI-Künstliche Intelligenz, 32:37–53, 2018.

Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David P. Woodruff. On coresets for
logistic regression. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 6562–6571, 2018.

Ben Mussay, Margarita Osadchy, Vladimir Braverman, Samson Zhou, and Dan Feldman. Data-independent
neural pruning via coresets. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?
id=H1gmHaEKwB.

Ben Mussay, Dan Feldman, Samson Zhou, Vladimir Braverman, and Margarita Osadchy. Data-independent
structured pruning of neural networks via coresets. IEEE Transactions on Neural Networks and Learning
Systems, 33(12):7829–7841, 2021.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814, 2010.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maxi-
mizing submodular set functions—i. Mathematical programming, 14:265–294, 1978.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, volume 2011, pp. 7. Granada, 2011.

Dang Nguyen, Zeman Li, Mohammadhossein Bateni, Vahab Mirrokni, Meisam Razaviyayn, and Baharan
Mirzasoleiman. Synthetic text generation for training large language models via gradient matching. In
Forty-second International Conference on Machine Learning, 2025a.

36

https://openreview.net/forum?id=tnBaiidobu
https://openreview.net/forum?id=H1gmHaEKwB
https://openreview.net/forum?id=H1gmHaEKwB


Under review as submission to TMLR

Dang Nguyen, Wenhan Yang, Rathul Anand, Yu Yang, and Baharan Mirzasoleiman. Mini-batch coresets for
memory-efficient language model training on data mixtures. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025b. URL
https://openreview.net/forum?id=bAFVlpFQvT.

Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Sewoong Oh, and Ludwig Schmidt. Quality not quan-
tity: On the interaction between dataset design and robustness of clip. Advances in Neural Information
Processing Systems, 35:21455–21469, 2022.

Sajad Norouzi, David J Fleet, and Mohammad Norouzi. Exemplar vae: Linking generative models, nearest
neighbor retrieval, and data augmentation. Advances in Neural Information Processing Systems, 33:8753–
8764, 2020.

Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness of Lloyd-type
methods for the k-means problem. Journal of the ACM (JACM), 59(6):28, 2012.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

Amin Parvaneh, Ehsan Abbasnejad, Damien Teney, Gholamreza Reza Haffari, Anton Van Den Hengel, and
Javen Qinfeng Shi. Active learning by feature mixing. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 12237–12246, 2022.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in neural information processing systems, 34:20596–20607,
2021.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli, Alessandro
Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset for falcon
llm: Outperforming curated corpora with web data only. Advances in Neural Information Processing
Systems, 36:79155–79172, 2023.

Jeff M Phillips. Coresets and sketches. In Handbook of discrete and computational geometry, pp. 1269–1288.
Chapman and Hall/CRC, 2017.

Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled data using
the area under the margin ranking. Advances in Neural Information Processing Systems, 33:17044–17056,
2020.

Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. Adaptive second order coresets for data-
efficient machine learning. In International Conference on Machine Learning, pp. 17848–17869. PMLR,
2022.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–151,
1999.

Ziheng Qin, Kai Wang, Zangwei Zheng, Jianyang Gu, Xiangyu Peng, Zhaopan Xu, Daquan Zhou, Lei Shang,
Baigui Sun, Xuansong Xie, and Yang You. Infobatch: Lossless training speed up by unbiased dynamic
data pruning. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=C61sk5LsK6.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748–8763. PmLR,
2021.

Hiranmayi Ranganathan, Hemanth Venkateswara, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep active learning for image classification. In 2017 IEEE International Conference on Image Processing
(ICIP), pp. 3934–3938. IEEE, 2017.

37

https://openreview.net/forum?id=bAFVlpFQvT
https://openreview.net/forum?id=C61sk5LsK6


Under review as submission to TMLR

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen, and
Xin Wang. A survey of deep active learning. ACM computing surveys (CSUR), 54(9):1–40, 2021.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. In 7th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=B1gTShAct7.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics.
Springer, 2004. ISBN 978-1-4419-1939-7. doi: 10.1007/978-1-4757-4145-2. URL https://doi.org/10.
1007/978-1-4757-4145-2.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H Chi, James
Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms. arXiv preprint
arXiv:2402.09668, 2024.

Shibani Santurkar, Yann Dubois, Rohan Taori, Percy Liang, and Tatsunori Hashimoto. Is a caption worth
a thousand images? a study on representation learning. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=cYijsVZhb5.

Chris Schwiegelshohn. Fitting data on a grain of rice. In International Symposium on Algorithmic Aspects
of Cloud Computing, pp. 1–8. Springer, 2023.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In
6th International Conference on Learning Representations, ICLR. OpenReview.net, 2018.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of
Wisconsin–Madison, 2009. URL http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.
activelearning.pdf.

Yunfan Shao, Linyang Li, Zhaoye Fei, Hang Yan, Dahua Lin, and Xipeng Qiu. Balanced data sampling for
language model training with clustering. In ACL (Findings), 2024.

Changjian Shui, Fan Zhou, Christian Gagné, and Boyu Wang. Deep active learning: Unified and principled
method for query and training. In International conference on artificial intelligence and statistics, pp.
1308–1318. PMLR, 2020.

Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. Variational adversarial active learning. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 5972–5981, 2019.

Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, and Augustus Odena. Small-
gan: Speeding up gan training using core-sets. In International Conference on Machine Learning, pp.
9005–9015. PMLR, 2020a.

Samarth Sinha, Zhengli Zhao, Anirudh Goyal ALIAS PARTH GOYAL, Colin A Raffel, and Augustus Odena.
Top-k training of gans: Improving gan performance by throwing away bad samples. Advances in Neural
Information Processing Systems, 33:14638–14649, 2020b.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben
Bogin, Khyathi Raghavi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: an open corpus of three
trillion tokens for language model pretraining research. In ACL (1), 2024.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural scaling
laws: beating power law scaling via data pruning. Advances in Neural Information Processing Systems,
35:19523–19536, 2022.

Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data pruning via
moving-one-sample-out. Advances in neural information processing systems, 36:18251–18262, 2023.

38

https://openreview.net/forum?id=B1gTShAct7
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1007/978-1-4757-4145-2
https://openreview.net/forum?id=cYijsVZhb5
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf


Under review as submission to TMLR

Tristan Thrush, Christopher Potts, and Tatsunori Hashimoto. Improving pretraining data using perplexity
correlations. In The Thirteenth International Conference on Learning Representations, 2025.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What makes for
good views for contrastive learning? In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 6827–6839. Curran Associates,
Inc., 2020.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning.
University of Toronto, Technical Report, 6, 2012.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Gcr: Gradient coreset based
replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 99–108, 2022.

Elad Tolochinsky, Ibrahim Jubran, and Dan Feldman. Generic coreset for scalable learning of monotonic
kernels: Logistic regression, sigmoid and more. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Re-
search, pp. 21520–21547. PMLR, 2022.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J. Gordon. An empirical study of example forgetting during deep neural network learning. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=BJlxm30cKm.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Murad Tukan, Alaa Maalouf, and Dan Feldman. Coresets for near-convex functions. Advances in Neural
Information Processing Systems, 33:997–1009, 2020.

Murad Tukan, Loay Mualem, and Alaa Maalouf. Pruning neural networks via coresets and convex geometry:
Towards no assumptions. Advances in Neural Information Processing Systems, 35:38003–38019, 2022.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine learning
research, 9(11), 2008.

VN Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of events to their
probabilities. Theory of Probability & Its Applications, 16(2):264–280, 1971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS),
11(1):37–57, 1985.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by
penalizing local predictive power. Advances in neural information processing systems, 32, 2019.

Haonan Wang, Wei Huang, Ziwei Wu, Hanghang Tong, Andrew J Margenot, and Jingrui He. Deep active
learning by leveraging training dynamics. Advances in Neural Information Processing Systems, 35:25171–
25184, 2022a.

Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. Cost-effective active learning for deep
image classification. IEEE Transactions on Circuits and Systems for Video Technology, 27(12):2591–2600,
2016.

39

https://openreview.net/forum?id=BJlxm30cKm


Under review as submission to TMLR

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024a.

Shuo Wang, Yuexiang Li, Kai Ma, Ruhui Ma, Haibing Guan, and Yefeng Zheng. Dual adversarial network
for deep active learning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXIV 16, pp. 680–696. Springer, 2020.

Tianyang Wang, Xingjian Li, Pengkun Yang, Guosheng Hu, Xiangrui Zeng, Siyu Huang, Cheng-Zhong Xu,
and Min Xu. Boosting active learning via improving test performance. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8566–8574, 2022b.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

Xiao Wang, Weikang Zhou, Qi Zhang, Jie Zhou, Songyang Gao, Junzhe Wang, Menghan Zhang, Xiang Gao,
Yun Wen Chen, and Tao Gui. Farewell to aimless large-scale pretraining: Influential subset selection for
language model. In Findings of the Association for Computational Linguistics: ACL 2023, pp. 555–568,
2023a.

Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios Savvides,
Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, and Xing Xie. Freematch: Self-adaptive thresholding for
semi-supervised learning. In The Eleventh International Conference on Learning Representations, 2023b.
URL https://openreview.net/forum?id=PDrUPTXJI_A.

Yiping Wang, Yifang Chen, Wendan Yan, Alex Fang, Wenjing Zhou, Kevin G Jamieson, and Simon S Du.
Cliploss and norm-based data selection methods for multimodal contrastive learning. Advances in Neural
Information Processing Systems, 37:15028–15069, 2024b.

Zhuoyi Wang, Dingcheng Li, and Ping Li. Latent coreset sampling based data-free continual learning. In
Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp.
2077–2087, 2022c.

Zixiu Wang, Yiwen Guo, and Hu Ding. Robust and fully-dynamic coreset for continuous-and-bounded
learning (with outliers) problems. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy
Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
Virtual, pp. 14319–14331, 2021.

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xiaozhong
Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset for training large
language models. Advances in neural information processing systems, 37:116462–116492, 2024.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality data
for training language models. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
GLGYYqPwjy.

David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and Trends® in
Theoretical Computer Science, 10(1–2):1–157, 2014.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coreset: A universal method
of data selection for real-world data-efficient deep learning. In The Eleventh International Conference on
Learning Representations, 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

40

https://openreview.net/forum?id=PDrUPTXJI_A
https://openreview.net/forum?id=GLGYYqPwjy
https://openreview.net/forum?id=GLGYYqPwjy


Under review as submission to TMLR

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language models
via importance resampling. Advances in Neural Information Processing Systems, 36:34201–34227, 2023.

Tianchi Xie, Jiangning Zhu, Guozu Ma, Minzhi Lin, Wei Chen, Weikai Yang, and Shixia Liu. Structural-
entropy-based sample selection for efficient and effective learning. In The Thirteenth International Con-
ference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.
URL https://openreview.net/forum?id=xUMI52rrW7.

Xilie Xu, Jingfeng Zhang, Feng Liu, Masashi Sugiyama, and Mohan S Kankanhalli. Efficient adversarial
contrastive learning via robustness-aware coreset selection. Advances in Neural Information Processing
Systems, 36:75798–75825, 2023.

Yanzhe Xu, Teresa Wu, Jennifer R Charlton, and Kevin M Bennett. Gan training acceleration using fréchet
descriptor-based coreset. Applied Sciences, 12(15):7599, 2022.

Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised learning. IEEE
transactions on knowledge and data engineering, 35(9):8934–8954, 2022.

Yahong Yang, Haizhao Yang, and Yang Xiang. Nearly optimal vc-dimension and pseudo-dimension bounds
for deep neural network derivatives. Advances in Neural Information Processing Systems, 36:21721–21756,
2023a.

Yu Yang, Hao Kang, and Baharan Mirzasoleiman. Towards sustainable learning: Coresets for data-efficient
deep learning. In International Conference on Machine Learning, pp. 39314–39330. PMLR, 2023b.

Yu Yang, Siddhartha Mishra, Jeffrey Chiang, and Baharan Mirzasoleiman. Smalltolarge (s2l): Scalable
data selection for fine-tuning large language models by summarizing training trajectories of small models.
Advances in Neural Information Processing Systems, 37:83465–83496, 2024.

Ofer Yehuda, Avihu Dekel, Guy Hacohen, and Daphna Weinshall. Active learning through a covering lens.
Advances in Neural Information Processing Systems, 35:22354–22367, 2022.

Shiyu Yi, Donglin Zhan, Wenqing Zhang, Denglin Jiang, Kang An, and Hao Wang. Fis-gan: Gan with
flow-based importance sampling. arXiv preprint arXiv:1910.02519, 2019.

Changchang Yin, Buyue Qian, Shilei Cao, Xiaoyu Li, Jishang Wei, Qinghua Zheng, and Ian Davidson. Deep
similarity-based batch mode active learning with exploration-exploitation. In 2017 IEEE international
conference on data mining (ICDM), pp. 575–584. IEEE, 2017.

Donggeun Yoo and In So Kweon. Learning loss for active learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 93–102, 2019.

Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coreset selection for rehearsal-
based continual learning. In The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?
id=f9D-5WNG4Nv.

Shaofeng Zhang, Meng Liu, Junchi Yan, Hengrui Zhang, Lingxiao Huang, Xiaokang Yang, and Pinyan Lu.
M-mix: Generating hard negatives via multi-sample mixing for contrastive learning. In Proceedings of the
28th ACM SIGKDD conference on knowledge discovery and data mining, pp. 2461–2470, 2022.

Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-Hao Chen, Jiale Liu, Qingyun Wu, and Tongliang Liu.
IDEAL: influence-driven selective annotations empower in-context learners in large language models. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=Spp2i1hKwV.

Xiaoyu Zhang, Juan Zhai, Shiqing Ma, Chao Shen, Tianlin Li, Weipeng Jiang, and Yang Liu. STAFF:
speculative coreset selection for task-specific fine-tuning. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=FAfxvdv1Dy.

41

https://openreview.net/forum?id=xUMI52rrW7
https://openreview.net/forum?id=f9D-5WNG4Nv
https://openreview.net/forum?id=f9D-5WNG4Nv
https://openreview.net/forum?id=Spp2i1hKwV
https://openreview.net/forum?id=FAfxvdv1Dy


Under review as submission to TMLR

Guangyao Zheng, Samson Zhou, Vladimir Braverman, Michael A. Jacobs, and Vishwa Sanjay Parekh. Se-
lective experience replay compression using coresets for lifelong deep reinforcement learning in medical
imaging. In Ipek Oguz, Jack H. Noble, Xiaoxiao Li, Martin Styner, Christian Baumgartner, Mirabela
Rusu, Tobias Heimann, Despina Kontos, Bennett A. Landman, and Benoit M. Dawant (eds.), Medical
Imaging with Deep Learning, MIDL 2023, 10-12 July 2023, Nashville, TN, USA, volume 227 of Proceed-
ings of Machine Learning Research, pp. 1751–1764. PMLR, 2023a. URL https://proceedings.mlr.
press/v227/zheng24a.html.

Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coreset selection for high pruning
rates. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023b. URL https://openreview.net/forum?id=QwKvL6wC8Yi.

Haizhong Zheng, Elisa Tsai, Yifu Lu, Jiachen Sun, Brian R. Bartoldson, Bhavya Kailkhura, and Atul
Prakash. ELFS: Label-free coreset selection with proxy training dynamics. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=yklJpvB7Dq.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information Processing
Systems, 36:55006–55021, 2023.

Xiao Zhou, Renjie Pi, Weizhong Zhang, Yong Lin, Zonghao Chen, and Tong Zhang. Probabilistic bilevel
coreset selection. In International conference on machine learning, pp. 27287–27302. PMLR, 2022.

42

https://proceedings.mlr.press/v227/zheng24a.html
https://proceedings.mlr.press/v227/zheng24a.html
https://openreview.net/forum?id=QwKvL6wC8Yi
https://openreview.net/forum?id=yklJpvB7Dq

	Introduction
	Coresets for Efficient Training
	Greedy Selection Methods
	Importance Sampling Methods
	Filtering Methods
	Distribution Matching Methods
	Summary

	Coresets for Enhancing Data Utilization with Limited Resource
	Active Learning
	Loss-Based Methods
	Coverage-Based Methods
	Hybrid Methods

	Continual Learning
	Coverage-Based Methods
	Gradient-Based Methods

	Semi/Self-Supervised Learning
	Loss-Based Methods
	Gradient-Based Methods
	Coverage-Based Methods

	Summary

	Coresets for Large Language Models
	Coresets for Pretraining
	Coresets for Fine-Tuning
	Summary

	Challenges and Future Works
	Dynamic and Adaptive Coreset Selection
	Balancing Fidelity and Diversity
	Ethics and Privacy


