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Abstract

Language models often exhibit behaviors that im-
prove performance on a pre-training objective but
harm performance on downstream tasks. We pro-
pose a novel approach to removing undesirable
behaviors by ablating a small number of causal
pathways between model components, with the
intention of disabling the computational circuit
responsible for the bad behavior. Given a small
dataset of inputs where the model behaves poorly,
we learn to ablate a small number of important
causal pathways. In the setting of reducing GPT-2
toxic language generation, we find ablating just
12 of the 11.6K causal edges mitigates toxic gen-
eration with minimal degradation of performance
on other inputs.

*Equal contribution 1Harvard University. Correspon-
dence to: Maximilian Li <maxli@college.harvard.edu>, Xan-
der Davies <xanderlaserdavies@gmail.com>, Max Nadeau
<nadeau.max@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Language models (LMs) often exhibit undesirable behaviors
useful during pre-training that prove hard to remove during
fine-tuning. This has resulted in capable LMs which compe-
tently hallucinate, lie, manipulate, and exhibit undesirable
biases (OpenAI, 2023; Brown et al., 2020).

In this work, we propose a new method for removing unde-
sirable behaviors: targeted edge ablation. In targeted edge
ablation, we target a bad behavior by removing a small num-
ber of causal pathways through the model at inference time
(Figure 1). Targeted edge ablation follows recent work in
using causal mediation to discover computational circuits re-
sponsible for particular model behaviors (Wang et al., 2022;
Goldowsky-Dill et al., 2023; Geiger et al., 2023a). Rather
than discovering circuits, targeted edge ablation discovers
causal cuts through circuits, disabling circuits responsible
for bad behaviors.

Main Contributions. We formulate the problem of behav-
ior removal and propose targeted edge ablation as a possible
solution (Section 3). We then present preliminary results in
performing targeted edge ablation to harm performance in
toxic language generation (Section 4).
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Figure 1: In targeted ablation, we (1) rewrite our model as a computation graph of a desired granularity, (2)
learn a binary mask over edges while regularizing to penalize ablations, and (3) ablate edges at inference time
to avoid the target bad behavior.

1



Removing Model Behaviors with Targeted Ablation

2. Background
Circuit analysis. We can write any model as a connected
directed acyclic graph (DAG) with source nodes represent-
ing the model’s (typically vector-valued) input, sink nodes
representing the model’s output, and intermediate nodes
representing units of computation (e.g. Figure 1, left; see
Appendix B). Circuit analysis attempts to mechanistically
understand model computation by identifying a subgraph
of this DAG that is responsible for a given behavior, and as-
signing semantic meaning to (groups of) nodes (Wang et al.,
2022; Räukur et al., 2022; Chan et al., 2022b). Circuits
have also been discussed in the context of treating nodes as
“features,” usually defined as directions in the latent space
(Olah, 2022; Cammarata et al., 2020).

Ablating edges in a computational graph. Since edges
in the model’s computational graph represent dependencies
between nodes, we can simulate what the model would have
computed without a certain node-to-node dependency by
performing ablation on an edge in the graph. While previous
work has largely focused on ablation of nodes (Ghorbani
& Zou, 2020), an advantage of our strategy of ablating
edges rather than nodes is the mitigation of polysemantic
behavior of model components (Olah et al., 2020), since we
investigate the causal importance of each causal path into
and out of the component. In our experiments, we use zero
ablation, in which we compute the destination node as if the
source node’s value were zero, and mean ablation (Wang
et al., 2022), in which we compute the destination node as
if the source node’s value were set to its mean value over
the training set. See Appendix C for more.

3. Targeted Ablation for Behavior Removal
Let L(M,D) indicate the loss of model M on a distribu-
tion D over input-label pairs. We specify a behavior as
some distribution D on which the model achieves low loss
L(M,D) < K for some appropriate hyperparameter K.
We can define the disjointness δ(D,D′) for behaviors D
and D′ to be the total variation distance between D and
D′. In particular, the total variation distance is 1 if D as-
signs probability 0 to all regions that D′ assigns positive
probability and vice versa.

Definition 3.1 (Behavior Removal). Given a model M
and unlimited access to training samples, produce a model
M∗ which achieves high loss L(M∗,D) > K, without
harming distinct behaviors. In particular, for all behaviors
D′ completely disjoint from D, i.e. δ(D,D′) = 1, we wish
to preserve L(M∗,D′) ≤ L(M,D′).

Thus, behavior removal has two goals: efficacy – the edited
model should achieve high loss on D; and specificity – the
edited model should achieve low loss on all disjoint behav-

iors D′ for which the original model achieves low loss.

Let Dtrain be our train set, and Dbehavior be samples from D.
One reason the model might exhibit a behavior is if D over-
laps with the training distribution, which would incentivize
the model to produce low loss on D. Thus, it is reasonable
to assume Dtrain and D may not be completely disjoint.

3.1. Baseline: Finetuning

We form an approximate objective function by encouraging
preserving performance on the training set, while increasing
loss on the bad behavior set:

L(M, Dtrain)− α · L(M, Dbehavior) (1)

where α is a hyperparameter. We can now finetune using
Equation 1. Since Dbehavior is often small, we use early
stopping to avoid overfitting.

3.2. Baseline: Task Arithmetic

In task arithmetic (Ilharco et al., 2023), we finetune M on
L(M, Dbehavior) towards the bad behaviors, and find the
“task vector”, or difference in weights between the finetuned
model and M. We then form M∗ by adding the negated
task vector to M.

3.3. Targeted Edge Ablation

Following Figure 1, we describe targeted edge ablation as
three steps.

1. Rewrite the model. We first choose at what level of
granularity to represent the model’s computation. Since we
learn a mask over edges in the resulting graph, increasing
the granularity results in a more expressive ablation process.
We call the specified graph G, and call its set of edges EG.

2. Learn an ablation mask. Let G−E be our graph G with
the edges in E ablated. Then we wish to select E ⊂ EG

that minimizes

L(G−E , Dtrain)− α · L(G−E , Dbehavior) + λ ·R(E) (2)

for hyperparameters α, λ and some regularization function
R.1 To compute an optimal edge subset E, we optimize an
edge mask Wmask on a continuous relaxation of Equation 2.
Every edge e = (A,B) is given a learnable weight we ∈
[0, 1], where we = 0 corresponds to ablating e, we = 1
corresponds to preserving e, and 0 < we < 1 corresponds
to node B observing the following convex combination of
the preserved value (vA) and the ablated value (µA) for node
A:

we · vA + (1− we) · µA (3)

1The regularization term penalizes large sizes of E to apply
pressure to find a minimal subset of edges that disables the behav-
ior.
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When we = 0, node B’s observation of node A is replaced
by its ablated value, and when we = 1, node B fully ob-
serves the value of node A. We initialize the mask parame-
ters Wmask to a vector of 1s (indicating fully faithful model
computation) and train Wmask on the loss function

L(Wmask;α, λ,R) = L(Wmask, Dtrain)

− α · L(Wmask, Dbad behavior)

+ λ(t) ·R(Wmask) (4)

We train with a regularization weight λ(t) that increases
over time, since we find that this training dynamic encour-
ages the edge mask to find a set of ablations that removes
the bad behavior and then revise it to minimize the number
of ablations. When training is finished, we then round all
the mask weights to either 0 or 1 by selecting the set of
ablated edges to be Ê∗ = {e | we ≤ τ} for some threshold
τ ∈ (0, 1).

3. Ablate during inference. We form M∗ by ablating the
edges learned in step (2) at inference time.

3.4. Conceptual Advantages over Fine-Tuning

Limited Expressivity. LMs and other large models may
have millions or billions of parameters and thus may be
vastly overparameterized for the task of performing poorly
on the bad-behavior examples, especially if generating bad-
behavior examples is expensive and the set of examples is
small.2

A particular advantage of limiting the expressivity of our
solution class is avoiding the negative effects of training on
a mis-specified objective function like Equation 1, which
encourages low loss on samples in Dtrain which exhibit the
behavior but are not included in Dbehavior. Allowing the
model to overfit to this loss function may result in memo-
rization of the points in Dbehavior to maintain low loss on all
of Dtrain, including those points which have high likelihood
in D. On the other hand, edge ablation limits the expressiv-
ity of the solution space and relies on the model’s previously
learned specialization of causal pathways.

Preserving Structure. Since edge ablation edits the
model at a high level, it preserves most of the model’s mech-
anistic calculus. Even subtle fine-tuning has the potential to
entirely reorganize the model’s reasoning process, disrupt-
ing any mechanistic interpretability work that has already
been performed. Targeted edge ablation is unlikely to in-
duce the model to change its reasoning structure or increase
its knowledge because it strictly decreases the amount of
information available to the model’s computation.

2For example, collecting jailbreaks to remove jailbreaking be-
havior is challenging and expensive.

4. Removing Toxicity in GPT-2
We apply our model editing methodology to preventing the
generation of toxic (e.g. offensive, swear-filled) sequences
in a pre-trained GPT-2 Small (Radford et al., 2019). Our
goal is to edit GPT-2 so that it achieves high loss on toxic
sequences, so our D is a distribution over toxic sequences
for which the model achieves low loss.3

As an approximation of our train set Dtrain, we use 10,000
samples from OpenWebText (OWT) (Gokaslan & Cohen).
See Appendix E for results in removing a sub-class in an
image classification model.

Constructing a bad behavior dataset. We sample ex-
cerpts from highly toxic comments posted to the Politically
Incorrect board of 4chan imageboard forum (Papasavva
et al., 2020). We sample from posts assigned a toxicity
score of greater than 0.9, as calculated by Google’s Perspec-
tive API Toxicity V6 (Google).

4.1. Learning Edge Mask Details

Similar to (Goldowsky-Dill et al., 2023; Wang et al., 2022),
we write GPT-2 as a graph consisting of the input, the output,
attention heads, and MLPs (158 nodes total) by considering
a “residual rewrite” of the model’s computational structure.
The canonical description of a transformer model expresses
the attention head Ai,j (the jth attention head in layer i)
as taking an argument Ri−1, the residual from the previ-
ous layer. However, since R0 = I (where I represents
the input embeddings) and Ri = Ri−1 +

∑
j Ai,j + Mi

(where Mi is the output of the MLP node in layer i), we
can instead consider attention head Ai,j as operating on

the sum SA
i = I +

∑
i′<i

(
Mi′ +

∑
j′ Ai′,j′

)
, and taking

all nodes in previous layers as separate input arguments.
Similarly, we can consider MLP node Mi as operating on
the sum SM

i = I +
∑

i′<i Mi′ +
∑

i′≤i

∑
j′ Ai′,j′ , and the

output node as operating on the sum of the input embed-
dings and all attention head and MLP outputs. In total, this
residual rewrite gives us a nearly-dense graph containing
11,611 edges: one between every pair of (attention head,
MLP, input, and output) nodes, except for attention heads in
the same layer, which do not communicate with each other.
Concretely, ablating an edge from Ai′,j′ to Ai,j entails re-
placing the Ai′,j′ term in SA

i for the input to attention head
Ai,j with zero (for zero ablation) or the mean value of head
Ai′,j′ (for mean ablation).

We train two ablated models using a continuous edge
mask. First, we train a zero-ablation mask against
L(Wmask;α, λ,R) described in equation 4, with α = 0.2,
λ(t) = (t−20)/10000, and R(Wmask) =

∑
e∈EG

we. This

3All code is available at https://anonymous.4open.
science/r/circuit-breaking-5DE5/.
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Removing Bad Behavior via Targeted Ablation
Xander Davies*, Max Nadeau*, Max Li*

Overview

Image Classification

Toxicity in Language Models

● Language models often have 
undesirable behaviors that are hard to 
remove during fine-tuning. 

● We propose a new method for 
removing bad behaviors: mean ablating 
edges at inference time.

● Given the training set of both good and 
bad behaviors, and a small dataset of 
bad behaviors, we want our model to 
never exhibit the bad behavior.

GPT2-small: Bad behavior is low loss on toxic 
posts from 4chan Politically Incorrect board 
-- only 100 train sequences. 

Toxicity Incoherence Toxic Pre-Pended 
Incoherence

Original 25.71% 4.242 4.52

Fine-tuned 0.35% 4.247 5.73

Ablated 0.19% 4.497 5.23

We use Detoxify classifier to measure 
toxicity of model-generated outputs when 
prompted with toxic data, and use loss on 
withheld OWT to measure coherence.

Learning an Edge Mask

● We rewrite the model to create edges and 
nodes to work with (e.g. connections 
between attention heads / MLPs).

● We first consider iteratively ablating the 
best performing edges → very expensive.

● We then learn a binary mask on edges. 
0 -> replace the edge output with its mean.
○ Orders of magnitudes faster to compute 

than other importance metrics.

GPT2 model has 124M parameters, we split 
into 158 nodes with 11.6K edges. Ablating just 
29 edges removes toxicity behavior.

Grouped MNIST: Each output class is two 
digits. Bad behavior is correct classification 
of threes. Given the train set and a set of 30 
bad examples, we want to differentially harm 
performance on 3 classification.

Output

Input

La
ye

r 
#

 →

Head #  → MLPs
🧑

Human
They are a disgrace to our country, 
instead of hating they need to start 

Source Model
hating us. I'm not saying that the 
Turks are bad, but I'm saying that 
they are a disgrace to our country.

Ablated Model (Ours)
a new life in the Netherlands. I'm not 
sure if I'm the only one who's been 
to the Netherlands.

🧑
Human
Ill tell a dispatcher to f*** off if they 
want me to do s*** like that but its 
never happened. I just say something

Source Model
like "I'm not going to do this s***"

Ablated Model (Ours)
like "I'm not sure what you’re talking about”

Figure 2: Ablating GPT-2 Small to remove toxicity. Left: Grey nodes are attention heads, and purple
nodes are MLPs. Computation proceeds upwards, with horizontal alignment corresponding to layers. The
computational graph has 11,611 edges; red edges are the 12 ablations learned to remove toxicity. Right:
Examples of improved non-toxic generation.

search process finds a mask that ablates 12 edges (Figure 2)
and mitigates toxicity while preserving coherence. Second,
we train a mean-ablation mask with α = 0.15 and using the
same hyperparameters otherwise, which finds a mask that
ablates 84 edges and produces a similar effect.

As a baseline, we fine-tune on the loss given by Equation
1 directly, with α = 0.2. We use early stopping with a
validation set to prevent overfitting.4 We also compare to
task arithmetic (Ilharco et al., 2023) (Section 3.2).

4.2. Evaluation Metrics

Following Definition 3.1, we evaluate both the model’s
avoidance of toxic generation (efficacy) and the detriment
to other behaviors (specificity). Since our goal is for the
ablated model to achieve high loss on all toxic sequences
(i.e. minimizing its probability of predicting subsequent
tokens that would cause the sequence to be toxic), we eval-
uate efficacy in a few ways. First, we consider the ablated
model’s loss on with-held toxic text and in particular its
loss on sequences for which the original model achieves low
(< 5) loss. Second, we consider the toxicity of the model’s
completions when prompted with toxic text, as measured by
the score in [0, 1], 0 being the least toxic, given by the toxic-
comment classifier Detoxify. We emphasize the toxicity
of model completions on the specific prompts for which the
original model produces highly toxic (> 0.9) output.

4We note this is a stronger baseline than naively training for
high loss on our bad behavior set as done in (Ilharco et al., 2023),
which we call “gradient ascent” in Table 1.

We evaluate specificity by using the perplexity on withheld
sequences from OWT, along with the perplexity on withheld
OWT sequences prepended with toxic content. The original
model produces low loss (4.617) on these sequences, and
we choose to highlight the behavior of retaining coherence
when prompted with toxic text as one that is particularly
likely to be inadvertently removed when editing the model
to produce high loss on toxic text.

4.3. Results

Results are shown in Table 1. We train a model with 12
edges zero-ablated that substantially mitigates toxic gen-
eration, decreasing the average toxicity score on model
generations for toxic prompts from 0.458 to 0.328 and in
particular for the most toxic-inducing prompts from 0.944
to 0.567. This minimal edge ablation outperforms task arith-
metic on every efficacy and specificity metric, and causes a
lower increase in incoherence following toxic prompts than
joint fine-tuning, though it does not eradicate the model’s
toxicity. Our mean-ablation mask with 84 edges achieves a
similar result, greatly mitigating toxic generations without
detracting from the model’s other behaviors.

5. Related Work
Causal mediation for circuit analysis. Causal mediation
(Pearl, 2009; Iwasaki & Simon, 1994) has been proposed
as a framework for evaluating mechanistic causal explana-
tions for model outputs (Goldowsky-Dill et al., 2023; Geiger
et al., 2023a; Vig et al., 2020). Experimental evaluation for
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Toxic-loss Toxic-loss
(filtered) Toxic generation Toxic generation

(filtered) Incoherence TPP Incoherence

Original 4.954 4.435 0.453 0.944 4.264 4.617
Gradient Ascent 21.339 20.980 0.015 0.013 15.287 18.415
Task Arithmetic 5.357 4.827 0.351 0.631 4.427 4.731
Joint Fine-Tuned 11.817 13.020 0.009 0.008 4.240 7.402
Ablated (12 edges) 5.027 4.486 0.328 0.567 4.280 4.623
Ablated (84 edges) 4.895 4.470 0.280 0.441 4.180 4.515

Table 1: Toxic-loss measures the model’s loss on toxic prompts. Toxic generation measures the average
toxicity score of model generations on toxic prompts, according to the Detoxify classifier. The filtered columns
denote the loss or generation toxicity on test samples filtered by the original model achieving low loss (< 5)
or highly toxic generation (> .9). Incoherence measures the model’s loss on OWT. Toxic Pre-Pended (TPP)
incoherence measures the model’s loss after on OWT sequences that have been preceded by toxic text.

causal explanations involves performing a set of ablation ex-
periments to check whether they match hypothesized effects.
For example, ablating allegedly unimportant paths should
have little impact on the target behavior. Previous work has
used the causal mediation framework to discover circuits,
including in transformers (Chan et al., 2022b; Wang et al.,
2022; Nanda et al., 2023).

Existing causal mediation tests and circuit discovery meth-
ods built upon these tests evaluate whether a given set of
edges are sufficient for a given model behavior (i.e. if they
contain a vertical path along the circuit), while our circuit
breaking technique finds a set of edges that are necessary
for the behavior (i.e. a horizontal “cut” through the circuit).

Automated circuit discovery. Recent work has explored
automated approaches to discovering circuits, including
greedy algorithms which crawl the computational graph
and remove edges which preserve behavior above a fixed
threshold (Conmy et al., 2023), and gradient descent-based
methods which use interchange intervention training (Geiger
et al., 2022) to learn alignments between a source model and
a proposed high-level causal model (Geiger et al., 2023b).
Our work differs in attempting to find neither single features
(Vig et al., 2020; Gurnee et al., 2023) nor full computa-
tional circuits (Geiger et al., 2023b; Goldowsky-Dill et al.,
2023; Wang et al., 2022); instead we discover edges where
removing their causal effect breaks a given behavior.

Weight-masking and model pruning. Much prior work
has sought to compress models by masking parameters (Le-
Cun et al., 1989; Hassibi & Stork, 1992). Most relevant to
our work are approaches which learn masks from data by
encouraging sparsity and preserving performance (Louizos
et al., 2017; Wang et al., 2019; Cao et al., 2021). In our work,
we disincentivize sparsity (since we want fewer ablations),
and use an objective function tailored to removing a specific
behavior instead of preserving general performance. Addi-

tionally, our edge-masking technique is more general than
weight-masking, since we can ablate internal connections
between high-level model components that do not corre-
spond directly to particular weights, such as communication
channels between pairs of attention heads. Finally, we prune
using mean ablation instead of zero ablation.

Model editing to change or remove behaviors. Recent
work has made changes to model behavior by making tar-
geted edits to model weights (Meng et al., 2022) or activa-
tions (Hernandez et al., 2023), which differ from our goal
of removing behaviors. (Gandikota et al., 2023) propose
a fine-tuning approach to erasing concepts from diffusion
models. (Elazar et al., 2021) remove information from a lan-
guage model’s representation by iteratively learning linear
probes to extract the information and projecting onto the
null space. Compared to such work, we consider coarser
ablations, allow editing around multiple components, and
seek to break behaviors as opposed to erasing information.
Like us, (Ilharco et al., 2023) attempt to remove the toxic
generation behavior in GPT-2, but do so by fine-tuning on
bad behavior and subtracting the weight-difference from the
original model.

6. Conclusion
Using a small dataset of examples of inputs on which a
neural network exhibits a “bad behavior,” we find that our
method can make high-level modifications to the network
that mitigate the bad behavior on the provided examples,
generalize to removing the bad behavior across other inputs
that trigger it, and cause only small amounts of damage
to the model’s performance on all other inputs (see D for
limitations). We conjecture that model editing may be an
alternate tool for targeted behavioral modification to fine-
tuning, and encourage future work further investigating our
approach.
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A. Additional Related Work
Unlearning. Machine unlearning aims to modify a model to match the behavior of a model which had not seen certain
data points (Sekhari et al., 2021; Bourtoule et al., 2021; Golatkar et al., 2020). However, a key difference in our setting is
that we are not able to enumerate the full set of undesirable data points in our training set.

Backdoor removal. (Wu & Wang, 2021) learn a binary mask to zero ablate neurons sensitive to adversarial perturbations,
and finds that doing so removes injected backdoors. (Guan et al., 2022) target backdoors by estimating Shapley importance
values (Shapley, 1997) for every edge and then zero ablating neurons which have a high attack success rate attribution score,
finding they are able to remove backdoors with very limited (and sometimes no) data. We believe our technique could be
effective for disabling the activation of backdoor mechanisms and find this application a promising direction for future work.

B. Writing models as computational graphs.
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Figure 3: We can subdivide an attention head into its own computational graph.

We can write any model as a connected directed acyclic graph (DAG) with source nodes representing the model’s (typically
vector-valued) input, sink nodes representing the model’s output, and intermediate nodes representing units of computation.
Each intermediate node represents a function of the values of its parent nodes. On a forward pass, given values for its input
nodes, the model computes the value of each node in any topologically sorted order until it has computed the value of the
output nodes.

For any model, there are many equivalent graphs that faithfully represent its computation. In particular, a computational
graph can represent a model at varying levels of detail. At one extreme, intermediate nodes can designate individual additions,
multiplications, and nonlinearities – such a graph would have at least as many nodes as model parameters. On the other hand,
many model architectures have self-contained computational modules, which allows them to be represented by graphs that
convey a high level of abstraction. For example, in convolutional networks, intermediate nodes can represent convolutional
filters and pooling layers, while in transformer models (Devlin et al., 2019), the natural high-level computational units are
attention heads and multi-layer perceptron (MLP) modules. To be more granular, we can subdivide each attention head node
into nodes that compute queries, keys, and values and combine them into attention patterns (Figure 3).

C. Ablation Types
One mode of ablating an edge is zero ablation, in which we compute the value of its destination node as if the value of its
source node were zero. However, a value of zero on an intermediate node can sometimes be highly unusual, and can thus in
some cases convey a strong idiosyncratic signal to the destination node.

One other technique is mean ablation, in which we compute the destination node as if the source node’s value were set to its
mean value over the training set. Mean ablation arguably better captures a lack of information flow: if the specific value of
the source node were withheld from the destination node, the source node’s mean value would be the most general estimate
of its true value.
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D. Limitations
We ablate edges by setting their input values to zero and the train-set mean. However, recent work has argued that ablating
model components with random samples from their marginal distributions may be preferable and that mean ablation may
lead to out of distribution resampling (Goldowsky-Dill et al., 2023). Additionally, circuit-breaking interventions on the
model could be made even more surgical by using more granular model nodes and edges (for example, splitting attention
heads into query, key, and value nodes). Finally, our results could be strengthened by considering stronger baselines and
additional approaches to learning binary masks.

E. Additional Experiments: Breaking Digit Classification in an MLP

Figure 4: The learned mask for MNIST classification over the course of training. Note that versions of this mask in the
middle of training are allowed to partially ablate each edge, so “Edges Ablated” is calculated by summing the coefficients
assigned to the ablation value. The “train” points are those that the MLP was trained on, and the “test” points are those it
was not. The “bad behaviors” line indicates its accuracy on the 30 exemplar digits.

We train a one-hidden-layer MLP with a 50 hidden neurons to classify the handwritten digits of MNIST, then use a small (30
example) dataset of a particular digit (say, 3) to remove the model’s ability to correctly classify that digit. We consider the
most granular computational graph for the MLP with one node for each pixel of the input, one for each hidden neuron, and
one for each output neuron. The graph contains an edge corresponding to each weight in the network. To prevent our learned
mask from simply ablating the edges feeding into the output neuron corresponding to 3, we arbitrarily pair digits and merge
their labels so that the MLP has only 5 output neurons rather than 10. This pairing forces the network to retain edges to the
output neuron that aid in correctly classifying the digit that is paired with 3, while not using the neuron for the 3 inputs.

We search for a binary mask over edges by training a continuous edge mask against L(Wmask;α, λ,R) described in Equation
4. Specifically, we use α = 0.3, λ(t) = t, and R(Wmask) =

∑
e∈EG

√
1− we. The sublinear cost imposed by R incentivizes

masks that are binary and ablate few edges; conceptually, if the mask were half-ablating two edges, it would receive a lower
penalty for instead ablating one edge completely. We set the rounding threshold τ = 0.5.

Using this technique, we find a binary mask that ablates 400 of the model’s 38K edges, bringing its accuracy on held-out
“3”s from near-perfect to 21% (20% is random classification on this task), while accuracy on other (held-out) inputs stays
high (dropping from 99% to 97%). We consider this a modest success for both the efficacy of the edit (i.e. its ability to
transfer to other inputs on which the model exhibits the bad-behavior of classifying a “3” correctly) and also its specificity
(i.e. the model’s continued ability to classify non-“3”s correctly) – see Figure 4.
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