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ABSTRACT

Gradient clipping is an important technique for deep neural networks with explod-
ing gradients, such as recurrent neural networks. Recent studies have shown that
the loss functions of these networks do not satisfy the conventional smoothness
condition, but instead satisfy a relaxed smoothness condition, i.e., the Lipschitz
constant of the gradient scales linearly in terms of the gradient norm. Due to this
observation, several gradient clipping algorithms have been developed for noncon-
vex and relaxed-smooth functions. However, the existing algorithms only apply
to the single-machine or multiple-machine setting with homogeneous data across
machines. It remains unclear how to design provably efficient gradient clipping
algorithms in the general Federated Learning (FL) setting with heterogeneous data
and limited communication rounds. In this paper, we design EPISODE, the very
first algorithm to solve FL problems with heterogeneous data in the nonconvex and
relaxed smoothness setting. The key ingredients of the algorithm are two new tech-
niques called episodic gradient clipping and periodic resampled corrections. At the
beginning of each round, EPISODE resamples stochastic gradients from each client
and obtains the global averaged gradient, which is used to (1) determine whether
to apply gradient clipping for the entire round and (2) construct local gradient
corrections for each client. Notably, our algorithm and analysis provide a unified
framework for both homogeneous and heterogeneous data under any noise level of
the stochastic gradient, and it achieves state-of-the-art complexity results. In partic-
ular, we prove that EPISODE can achieve linear speedup in the number of machines,
and it requires significantly fewer communication rounds. Experiments on several
heterogeneous datasets, including text classification and image classification, show
the superior performance of EPISODE over several strong baselines in FL. The code
is available at https://github.com/MingruiLiu-ML-Lab/episode.

1 INTRODUCTION

Gradient clipping (Pascanu et al., 2012; 2013) is a well-known strategy to improve the training of deep
neural networks with the exploding gradient issue such as Recurrent Neural Networks (RNN) (Rumel-
hart et al., 1986; Elman, 1990; Werbos, 1988) and Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997). Although it is a widely-used strategy, formally analyzing gradient clipping in
deep neural networks under the framework of nonconvex optimization only happened recently (Zhang
et al., 2019a; 2020a; Cutkosky & Mehta, 2021; Liu et al., 2022). In particular, Zhang et al. (2019a)
showed empirically that the gradient Lipschitz constant scales linearly in terms of the gradient norm
when training certain neural networks such as AWD-LSTM (Merity et al., 2018), introduced the
relaxed smoothness condition (i.e., (L0, L1)-smoothness1), and proved that clipped gradient descent
converges faster than any fixed step size gradient descent. Later on, Zhang et al. (2020a) provided
tighter complexity bounds of the gradient clipping algorithm.

Federated Learning (FL) (McMahan et al., 2017a) is an important distributed learning paradigm in
which a single model is trained collaboratively under the coordination of a central server without
revealing client data 2. FL has two critical features: heterogeneous data and limited communication.

∗Corresponding Author: Mingrui Liu (mingruil@gmu.edu).
1The formal definition of (L0, L1)-smoothness is illustrated in Definition 2.
2In this paper, we use the terms “client" and “machine" interchangeably.
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Table 1: Communication complexity (R) and largest number of skipped communication (Imax) to
guarantee linear speedup for different methods to find an ε-stationary point (defined in Definition
1). “Single" means single machine, N is the number of clients, I is the number of skipped commu-
nications, κ is the quantity representing the heterogeneity, ∆ = f(x0)−minx f(x), and σ2 is the
variance of stochastic gradients. Iteration complexity (T ) is the product of communication complexity
and the number of skipped communications (i.e., T = RI ). Best iteration complexity Tmin denotes
the minimum value of T the algorithm can achieve through adjusting I . Linear speedup means the
iteration complexity is divided by N compared with the single machine baseline: in our case it means
T = O(∆L0σ

2

Nε4 ) iteration complexity.

Method Setting Communication Complexity (R) Best Iteration Complexity (Tmin) Largest I to guarantee
linear speedup (Imax)

Local SGD
(Yu et al., 2019c)

Heterogeneous,
L-smooth O

(
∆Lσ2

NIε4 + ∆Lκ2NI
σ2ε2 + ∆LN

ε2

)
O(∆L0σ

2

Nε4 ) O
(
σ2

κNε

)
SCAFFOLD

(Karimireddy et al., 2020)
Heterogeneous,
L-smooth O

(
∆Lσ2

NIε4 + ∆L
ε2

)
O(∆L0σ

2

Nε4 ) O
(
σ2

Nε2

)
Clipped SGD

(Zhang et al., 2019b)
Single,

(L0, L1)-smooth O
(

(∆+(L0+L1σ)σ2+σL2
0/L1)

2

ε4

)
O
(

(∆+(L0+L1σ)σ2+σL2
0/L1)

2

ε4

)
N/A

Clipping Framework
(Zhang et al., 2020a)

Single,
(L0, L1)-smooth O

(
∆L0σ

2

ε4

)
O
(

∆L0σ
2

ε4

)
N/A

CELGC
(Liu et al., 2022)

Homogeneous,
(L0, L1)-smooth O

(
∆L0σ

2

NIε4

)
O(∆L0σ

2

Nε4 ) O
(
σ
Nε

)
EPISODE
(this work)

Heterogeneous,
(L0, L1)-smooth O

(
∆L0σ

2

NIε4 + ∆(L0+L1(κ+σ))
ε2

(
1 + σ

ε

))
O(∆L0σ

2

Nε4 ) O
(

L0σ
2

(L0+L1(κ+σ))(1+σ
ε )Nε2

)

Although there is a vast literature on FL (see (Kairouz et al., 2019) and references therein), the
theoretical and algorithmic understanding of gradient clipping algorithms for training deep neural
networks in the FL setting remains nascent. To the best of our knowledge, Liu et al. (2022) is the
only work that has considered a communication-efficient distributed gradient clipping algorithm
under the nonconvex and relaxed smoothness conditions in the FL setting. In particular, Liu et al.
(2022) proved that their algorithm achieves linear speedup in terms of the number of clients and
reduced communication rounds. Nevertheless, their algorithm and analysis are only applicable to the
case of homogeneous data. In addition, the analyses of the stochastic gradient clipping algorithms
in both single machine (Zhang et al., 2020a) and multiple-machine setting (Liu et al., 2022) require
strong distributional assumptions on the stochastic gradient noise 3, which may not hold in practice.

In this work, we introduce a provably computation and communication efficient gradient clipping
algorithm for nonconvex and relaxed-smooth functions in the general FL setting (i.e., heterogeneous
data, limited communication) and without any distributional assumptions on the stochastic
gradient noise. Compared with previous work on gradient clipping (Zhang et al., 2019a; 2020a;
Cutkosky & Mehta, 2020; Liu et al., 2022) and FL with heterogeneous data (Li et al., 2020a;
Karimireddy et al., 2020), our algorithm design relies on two novel techniques: episodic gradient
clipping and periodic resampled corrections. In a nutshell, at the beginning of each communication
round, the algorithm resamples each client’s stochastic gradient; this information is used to decide
whether to apply clipping in the current round (i.e., episodic gradient clipping), and to perform
local corrections to each client’s update (i.e., periodic resampled corrections). These techniques
are very different compared with previous work on gradient clipping. Specifically, (1) In traditional
gradient clipping (Pascanu et al., 2012; Zhang et al., 2019a; 2020a; Liu et al., 2022), whether or
not to apply the clipping operation is determined only by the norm of the client’s current stochastic
gradient. Instead, we use the norm of the global objective’s stochastic gradient (resampled at the
beginning of the round) to determine whether or not clipping will be applied throughout the entire
communication round. (2) Different from Karimireddy et al. (2020) which uses historical gradient
information from the previous round to perform corrections, our algorithm utilizes the resampled
gradient to correct each client’s local update towards the global gradient, which mitigates the effect
of data heterogeneity. Notice that, under the relaxed smoothness setting, the gradient may change
quickly around a point at which the gradient norm is large. Therefore, our algorithm treats a small
gradient as more “reliable" and confidently applies the unclipped corrected local updates; on the
contrary, the algorithm regards a large gradient as less “reliable" and in this case clips the corrected
local updates. Our major contributions are summarized as follows.

3 Zhang et al. (2020a) requires an explicit lower bound for the stochastic gradient noise, and Liu et al. (2022)
requires the distribution of the stochastic gradient noise is unimodal and symmetric around its mean.
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• We introduce EPISODE, the very first algorithm for optimizing nonconvex and (L0, L1)-
smooth functions in the general FL setting with heterogeneous data and limited communica-
tion. The algorithm design introduces novel techniques, including episodic gradient clipping
and periodic resampled corrections. To the best of our knowledge, these techniques are first
introduced by us and crucial for algorithm design.

• Under the nonconvex and relaxed smoothness condition, we prove that the EPISODE
algorithm can achieve linear speedup in the number of clients and reduced communication
rounds in the heterogeneous data setting, without any distributional assumptions on the
stochastic gradient noise. In addition, we show that the degenerate case of EPISODE matches
state-of-the-art complexity results under weaker assumptions 4. Detailed complexity results
and a comparison with other relevant algorithms are shown in Table 1.

• We conduct experiments on several heterogeneous medium and large scale datasets with
different deep neural network architectures, including a synthetic objective, text classifica-
tion, and image classification. We show that the performance of the EPISODE algorithm is
consistent with our theory, and it consistently outperforms several strong baselines in FL.

2 RELATED WORK

Gradient Clipping Gradient clipping is a standard technique in the optimization literature for
solving convex/quasiconvex problems (Ermoliev, 1988; Nesterov, 1984; Shor, 2012; Hazan et al.,
2015; Mai & Johansson, 2021; Gorbunov et al., 2020), nonconvex smooth problems (Levy, 2016;
Cutkosky & Mehta, 2021), and nonconvex distributionally robust optimization (Jin et al., 2021).
Menon et al. (2019) showed that gradient clipping can help mitigate label noise. Gradient clipping is
a well-known strategy to achieve differential privacy (Abadi et al., 2016; McMahan et al., 2017b;
Andrew et al., 2021; Zhang et al., 2021). In the deep learning literature, gradient clipping is employed
to avoid exploding gradient issue when training certain deep neural networks such as recurrent
neural networks or long-short term memory networks (Pascanu et al., 2012; 2013) and language
models (Gehring et al., 2017; Peters et al., 2018; Merity et al., 2018). Zhang et al. (2019a) initiated
the study of gradient clipping for nonconvex and relaxed smooth functions. Zhang et al. (2020a)
provided an improved analysis over Zhang et al. (2019a). However, none of these works apply to the
general FL setting with nonconvex and relaxed smooth functions.

Federated Learning FL was proposed by McMahan et al. (2017a), to enable large-scale distributed
learning while keep client data decentralized to protect user privacy. McMahan et al. (2017a) designed
the FedAvg algorithm, which allows multiple steps of gradient updates before communication. This
algorithm is also known as local SGD (Stich, 2018; Lin et al., 2018; Wang & Joshi, 2018; Yu et al.,
2019c). The local SGD algorithm and their variants have been analyzed in the convex setting (Stich,
2018; Stich et al., 2018; Dieuleveut & Patel, 2019; Khaled et al., 2020; Li et al., 2020a; Karimireddy
et al., 2020; Woodworth et al., 2020a;b; Koloskova et al., 2020; Yuan et al., 2021) and nonconvex
smooth setting (Jiang & Agrawal, 2018; Wang & Joshi, 2018; Lin et al., 2018; Basu et al., 2019;
Haddadpour et al., 2019; Yu et al., 2019c;b; Li et al., 2020a; Karimireddy et al., 2020; Reddi et al.,
2021; Zhang et al., 2020b; Koloskova et al., 2020). Recently, in the stochastic convex optimization
setting, several works compared local SGD and minibatch SGD in the homogeneous (Woodworth
et al., 2020b) and heterogeneous data setting (Woodworth et al., 2020a), as well as the fundamental
limit (Woodworth et al., 2021). For a comprehensive survey, we refer the readers to Kairouz et al.
(2019); Li et al. (2020a) and references therein. The most relevant work to ours is Liu et al. (2022),
which introduced a communication-efficient distributed gradient clipping algorithm for nonconvex
and relaxed smooth functions. However, their algorithm and analysis does not apply in the case of
heterogeneous data as considered in this paper.

3 PROBLEM SETUP AND PRELIMINARIES

Notations In this paper, we use 〈·, ·〉 and ‖ · ‖ to denote the inner product and Euclidean norm in
space Rd. We use 1(·) to denote the indicator function. We let Ir be the set of iterations at the r-th

4We prove that the degenerate case of our analysis (e.g., homogeneous data) achieves the same iteration and
communication complexity, but without the requirement of unimodal and symmetric stochastic gradient noise
as in Liu et al. (2022). Also, our analysis is unified over any noise level of stochastic gradient, which does not
require an explicit lower bound for the stochastic gradient noise as in the analysis of Zhang et al. (2020a).
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round, that is Ir = {tr, ..., tr+1 − 1}. The filtration generated by the random variables before step tr
is denoted by Fr. We also use Er[·] to denote the conditional expectation E[·|Fr]. The number of
clients is denoted by N and the length of the communication interval is denoted by I , i.e., |Ir| = I
for r = 0, 1, ..., R. Let fi(x) := Eξi∼Di [Fi(x; ξi)] be the loss function in i-th client for i ∈ [N ],
where the local distribution Di is unknown and may be different across i ∈ [N ]. In the FL setting,
we aim to minimize the following overall averaged loss function:

f(x) :=
1

N

N∑
i=1

fi(x). (1)

We focus on the case that each fi is non-convex, in which it is NP-hard to find the global minimum
of f . Instead we consider finding an ε-stationary point (Ghadimi & Lan, 2013; Zhang et al., 2020a).
Definition 1. For a function h : Rd → R, a point x ∈ Rd is called ε-stationary if ‖∇h(x)‖ ≤ ε.

Most existing works in the non-convex FL literature (Yu et al., 2019a; Karimireddy et al., 2020)
assume each fi is L-smooth, i.e., ‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖ for any x,y ∈ Rd. However it
is shown in Zhang et al. (2019a) that L-smoothness may not hold for certain neural networks such as
RNNs and LSTMs. (L0, L1)-smoothness in Definition 2 was proposed by Zhang et al. (2019b) and
is strictly weaker than L-smoothness. Under this condition, the local smoothness of the objective
can grow with the gradient scale. For AWD-LSTM (Merity et al., 2018), empirical evidence of
(L0, L1)-smoothness was observed in Zhang et al. (2019b).
Definition 2. A second order differentiable function h : Rd → R is (L0, L1)-smooth if ‖∇2h(x)‖ ≤
L0 + L1‖∇h(x)‖ holds for any x ∈ Rd.

Suppose we only have access to the stochastic gradient∇Fi(x; ξ) for ξ ∼ Di in each client. Next we
make the following assumptions on objectives and stochastic gradients.
Assumption 1. Assume fi for i ∈ [N ] and f defined in (1) satisfy:

(i) fi is second order differentiable and (L0, L1)-smooth.

(ii) Let x∗ be the global minimum of f and x0 be the initial point. There exists some ∆ > 0
such that f(x0)− f(x∗) ≤ ∆.

(iii) For all x ∈ Rd, there exists some σ ≥ 0 such that Eξi∼Di [∇Fi(x; ξi)] = ∇fi(x) and
‖∇Fi(x; ξi)−∇fi(x)‖ ≤ σ almost surely.

(iv) There exists some κ ≥ 0 and ρ ≥ 1 such that ‖∇fi(x)‖ ≤ κ+ ρ‖∇f(x)‖ for any x ∈ Rd.

Remark: (i) and (ii) are standard in the non-convex optimization literature (Ghadimi & Lan, 2013),
and (iii) is a standard assumption in the (L0, L1)-smoothness setting (Zhang et al., 2019b; 2020a; Liu
et al., 2022). (iv) is used to bound the difference between the gradient of each client’s local loss and
the gradient of the overall loss, which is commonly assumed in the FL literature with heterogeneous
data (Karimireddy et al., 2020). When κ = 0 and ρ = 1, (iv) corresponds to the homogeneous setting.

4 ALGORITHM AND ANALYSIS

4.1 MAIN CHALLENGES AND ALGORITHM DESIGN

Main Challenges We first illustrate why the prior local gradient clipping algorithm (Liu et al., 2022)
would not work in the heterogeneous data setting. Liu et al. (2022) proposed the first communication-
efficient local gradient clipping algorithm (CELGC) in a homogeneous setting for relaxed smooth
functions, which can be interpreted as the clipping version of FedAvg. Let us consider a simple
heterogeneous example with two clients in which CELGC fails. Denote f1(x) = 1

2x
2 + a1x and

f2(x) = 1
2x

2 + a2x with a1 = −γ − 1, a2 = γ + 2, and γ > 1. We know that the optimal solution
for f = f1+f2

2 is x∗ = −a1+a2
2 = − 1

2 , and both f1 and f2 are (L0, L1)-smooth with L0 = 1 and
L1 = 0. Consider CELGC with communication interval I = 1 (i.e., communication happens at every
iteration), starting point x0 = 0, η = 1/L0 = 1, clipping threshold γ, and σ = 0. In this setting, after
the first iteration, the model parameters on the two clients become γ and −γ respectively, so that the
averaged model parameter after communication returns to 0. This means that the model parameter of
CELGC remains stuck at 0 indefinitely, demonstrating that CELGC cannot handle data heterogeneity.
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Algorithm 1: Episodic Gradient Clipping with Periodic Resampled Corrections (EPISODE)

1: Initialize xi0 ← x0, x̄0 ← x0.
2: for r = 0, 1, ..., R do
3: for i ∈ [N ] do
4: Sample∇Fi(x̄r; ξ̃ir) where ξ̃ir ∼ Di, and update Gi

r ← ∇Fi(x̄r; ξ̃ir).
5: end for
6: Update Gr = 1

N

∑N
i=1 G

i
r.

7: for i ∈ [N ] do
8: for t = tr, . . . , tr+1 − 1 do
9: Sample ∇Fi(xit; ξit), where ξit ∼ Di, and compute git ← ∇Fi(xit; ξit)−Gi

r + Gr.
10: xit+1 ← xit − ηgit1(‖Gr‖ ≤ γ/η)− γ git

‖git‖
1(‖Gr‖ ≥ γ/η).

11: end for
12: end for
13: Update x̄r ← 1

N

∑N
i=1 x

i
tr+1

.
14: end for

We then explain why the stochastic controlled averaging method (SCAFFOLD) (Karimireddy et al.,
2020) for heterogeneous data does not work in the relaxed smoothness setting. SCAFFOLD utilizes
the client gradients from the previous round to constructing correction terms which are added to each
client’s local update. Crucially, SCAFFOLD requires that the gradient is Lipschitz so that gradients
from the previous round are good approximations of gradients in the current round with controllable
errors. This technique is not applicable in the relaxed smoothness setting: the gradient may change
dramatically, so historical gradients from the previous round are not good approximations of the
current gradients anymore due to potential unbounded errors.

Algorithm Design To address the challenges brought by heterogeneity and relaxed smoothness, our
idea is to clip the local updates similarly as we would clip the global gradient (if we could access it).
The detailed description of EPISODE is stated in Algorithm 1. Specifically, we introduce two novel
techniques: (1) Episodic gradient clipping. At the r-th round, EPISODE constructs a global indicator
1(‖Gr‖ ≤ γ/η) to determine whether to perform clipping in every local update during the round
for all clients (line 6). (2) Periodic resampled corrections. EPISODE resamples fresh gradients with
constant batch size at the beginning of each round (line 3-5). In particular, at the beginning of the
r-th round, EPISODE samples stochastic gradients evaluated at the current averaged global weight
x̄r in all clients to construct the control variate Gr, which has two roles. The first is to construct the
global clipping indicator according to ‖Gr‖ (line 10). The second one is to correct the bias between
local gradient and global gradient through the variate git in local updates (line 10).
4.2 MAIN RESULTS

Theorem 1. Suppose Assumption 1 holds. For any tolerance ε ≤ 3AL0

5BL1ρ
, we choose the hyper

parameters as η ≤ min
{

1
216ΓI ,

ε
180ΓIσ ,

Nε2

16AL0σ2

}
and γ =

(
11σ + AL0

BL1ρ

)
η, where Γ = AL0 +

BL1κ + BL1ρ
(
σ + γ

η

)
. Then EPISODE satisfies 1

R+1

∑R
r=0 E [‖∇f(x̄r)‖] ≤ 3ε as long as the

number of communication rounds satisfies R ≥ 4∆
ε2ηI .

Remark 1: The result in Theorem 1 holds for arbitrary noise level, while the complexity bounds in
the stochastic case of Zhang et al. (2020a); Liu et al. (2022) both require σ ≥ 1. In addition, this
theorem can automatically recover the complexity results in Liu et al. (2022), but does not require
their symmetric and unimodal noise assumption. The improvement upon previous work comes
from a better algorithm design, as well as a more careful analysis in the smoothness and individual
discrepancy in the non-clipped case (see Lemma 2 and 3).

Remark 2: In Theorem 1, when we choose η = min
{

1
216ΓI ,

ε
180ΓIσ ,

Nε2

16AL0σ2

}
, the total

communication complexity to find an ε-stationary point is no more than R = O
(

∆
ε2ηI

)
=

O
(

∆(L0+L1(κ+σ))
ε2

(
1 + σ

ε

)
+ ∆L0σ

2

NIε4

)
. Next we present some implications of the communication

complexity.
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1. When I . L0σ
(L0+L1(κ+σ))Nε and σ & ε, EPISODE has communication complexity

O(∆L0σ
2

NIε4 ). In this case, EPISODE enjoys a better communication complexity than the
naive parallel version of the algorithm in Zhang et al. (2020a), that is O(∆L0σ

2

Nε4 ). Moreover,
the iteration complexity of EPISODE is T = RI = O(∆L0σ

2

Nε4 ), which achieves the linear
speedup w.r.t. the number of clients N . This matches the result of Liu et al. (2022) in the
homogeneous data setting.

2. When I & L0σ
(L0+L1(κ+σ))Nε and σ & ε, the communication complexity of EPISODE is

O(∆(L0+L1(κ+σ))σ
ε3 ). This term does not appear in Theorem III of Karimireddy et al. (2020),

but it appears here due to the difference in the construction of the control variates. In fact,
the communication complexity of EPISODE is still lower than the naive parallel version of
Zhang et al. (2020a) if the number of clients satisfies N . L0σ

(L0+L1(κ+σ))ε .

3. When 0 < σ . ε , EPISODE has communication complexity O(∆(L0+L1(κ+σ))
ε2 ). Under

this particular noise level, the algorithms in Zhang et al. (2020a); Liu et al. (2022) do not
guarantee convergence because their analyses crucially rely on the fact that σ & ε.

4. When σ = 0, EPISODE has communication complexity O(∆(L0+L1κ)
ε2 ). This bound

includes an additional constant L1κ compared with the complexity results in the deter-
ministic case (Zhang et al., 2020a), which comes from data heterogeneity and infrequent
communication.

4.3 PROOF SKETCH OF THEOREM 1

Despite recent work on gradient clipping in the homogeneous setting (Liu et al., 2022), the analysis
of Theorem 1 is highly nontrivial since we need to cope with (L0, L1)-smoothness and heterogeneity
simultaneously. In addition, we do not require a lower bound of σ and allow for arbitrary σ ≥ 0.

The first step is to establish the descent inequality of the global loss function. According to the
(L0, L1)-smoothness condition, if ‖x̄r+1 − x̄r‖ ≤ C/L1, then

Er [f(x̄r+1)− f(x̄r)] ≤ Er
[
(1(Ar) + 1(Ār))〈∇f(x̄r), x̄r+1 − x̄r〉

]
+ Er

[
(1(Ar) + 1(Ār))

AL0 +BL1‖∇f(x̄r)‖
2

‖x̄r+1 − x̄r‖2
]
, (2)

where Ar := {‖Gr‖ ≤ γ/η}, Ār is the complement of Ar, and A,B,C are constants defined in
Lemma 5. To utilize the inequality (2), we need to verify that the distance between x̄r+1 and x̄r
is small almost surely. In the algorithm of Liu et al. (2022), clipping is performed in each iteration
based on the magnitude of the current stochastic gradient, and hence the increment of each local
weight is bounded by the clipping threshold γ. For each client in EPISODE, whether to perform
clipping is decided by the magnitude of Gr at the beginning of each round. Therefore, the techniques
in Liu et al. (2022) to bound the individual discrepancy cannot be applied to EPISODE. To address
this issue, we introduce Lemma 1, which guarantees that we can apply the properties of relaxed
smoothness (Lemma 5 and 6) to all iterations in one round, in either case of clipping or non-clipping.
Lemma 1. Suppose 2ηI(AL0 +BL1κ+BL1ρ(σ+ γ/η)) ≤ 1 and max {2ηI(2σ + γ/η), γI} ≤
C
L1

. Then for any i ∈ [N ] and t− 1 ∈ Ir, it almost surely holds that

1(Ar)‖xit − x̄r‖ ≤ 2ηI (2σ + γ/η) and 1(Ār)‖xit − x̄r‖ ≤ γI. (3)

Equipped with Lemma 1, the condition ‖x̄r+1 − x̄r‖ ≤ 1
N

∑N
i=1 ‖xitr+1

− x̄r‖ ≤ C/L1 can hold
almost surely with a proper choice of η. Then it suffices to bound the terms from (2) in expectation
under the events Ar and Ār respectively. To deal with the discrepancy term E[‖xit − x̄r‖2] for
t − 1 ∈ Ir, Liu et al. (2022) directly uses the almost sure bound for both cases of clipping and
non-clipping. Here we aim to obtain a more delicate bound in expectation for the non-clipping case.
The following lemma, which is critical to obtain the unified bound from Theorem 1 under any noise
level, gives an upper bound for the local smoothness of fi at x.
Lemma 2. Under the conditions of Lemma 1, for all x ∈ Rd such that ‖x− x̄r‖ ≤ 2ηI (2σ + γ/η),
the following inequality almost surely holds:

1(Ar)‖∇2fi(x)‖ ≤ L0 + L1 (κ+ (ρ+ 1) (γ/η + 2σ)) .
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From (3), we can see that all iterations in the r-th round satisfy the condition of Lemma 2 almost
surely. Hence we are guaranteed that each local loss fi is L-smooth over the iterations in this round
under the event Ar, where L = L0 + L1(κ + (ρ + 1)(γ/η + 2σ)). In light of this, the following
lemma gives a bound in expectation of the individual discrepancy. We denote pr = Er[1(Ar)].
Lemma 3. Under the conditions of Lemma 1, for any i ∈ [N ] and t− 1 ∈ Ir, we have

Er
[
1(Ar)‖xit − x̄r‖2

]
≤ 36prI

2η2‖∇f(x̄r)‖2 + 126prI
2η2σ2, (4)

Er
[
1(Ar)‖xit − x̄r‖2

]
≤ 18prI

2ηγ‖∇f(x̄r)‖+ 18prI
2η2

(
γσ/η + 5σ2

)
. (5)

It is worthwhile noting that the bound in (4) involves a quadratic term of ‖∇f(x̄r)‖, whereas it is
linear in (5). The role of the linear bound is to deal with 1(Ar)‖∇f(x̄r)‖‖x̄r+1 − x̄r‖2 from the
descent inequality (2), since directly substituting (4) would result in a cubic term which is hard to
analyze. With Lemma 1, 2 and 3, we obtain the following descent inequality.
Lemma 4. Under the conditions of Lemma 1, let Γ = AL0 +BL1(κ+ ρ(γ/η + σ)). Then it holds
that for each 0 ≤ r ≤ R− 1,

Er [f(x̄r+1)− f(x̄r)] ≤ Er [1(Ar)V (x̄r)] + Er
[
1(Ār)U(x̄r)

]
, (6)

where the definitions of V (x̄r) and U(x̄r) are given in Appendix C.1.

The detailed proof of Lemma 4 is deferred in Appendix C.1. With this Lemma, the descent inequality
is divided into V (x̄r) (objective value decrease during the non-clipping rounds) and U(x̄r) (objective
value decrease during the clipping rounds). Plugging in the choices of η and γ yields

max {U(x̄r), V (x̄r)} ≤ −
1

4
εηI‖∇f(x̄r)‖+

1

2
ε2ηI. (7)

The conclusion of Theorem 1 can then be obtained by substituting (7) into (6) and summing over r.

5 EXPERIMENTS

In this section, we present an empirical evaluation of EPISODE to validate our theory. We present
results in the heterogeneous FL setting on three diverse tasks: a synthetic optimization problem
satisfying (L0, L1)-smoothness, natural language inference on the SNLI dataset (Bowman et al.,
2015), and ImageNet classification (Deng et al., 2009). We compare EPISODE against FedAvg
(McMahan et al., 2017a), SCAFFOLD (Karimireddy et al., 2020), CELGC (Liu et al., 2022), and
a naive distributed algorithm which we refer to as Naive Parallel Clip 5 We include additional
experiments on the CIFAR-10 dataset (Krizhevsky et al., 2009) in Appendix E.4, running time results
in Appendix F, ablation study in Appendix G, and new experiments on federated learning benchmark
datasets in Appendix H.

5.1 SETUP

All non-synthetic experiments were implemented with PyTorch (Paszke et al., 2019) and run on a
cluster with eight NVIDIA Tesla V100 GPUs. Since SNLI , CIFAR-10, and ImageNet are centralized
datasets, we follow the non-i.i.d. partitioning protocol in (Karimireddy et al., 2020) to split each
dataset into heterogeneous client datasets with varying label distributions. Specifically, for a similarity
parameter s ∈ [0, 100], each client’s local dataset is composed of two parts. The first s% is comprised
of i.i.d. samples from the complete dataset, and the remaining (100− s)% of data is sorted by label.

Synthetic To demonstrate the behavior of EPISODE and baselines under (L0, L1)-smoothness, we
consider a simple minimization problem in a single variable. Here we have N = 2 clients with:

f1(x) = x4 − 3x3 +Hx2 + x, f2(x) = x4 − 3x3 − 2Hx2 + x,

where the parameter H controls the heterogeneity between the two clients. Notice that f1 and f2

satisfy (L0, L1)-smoothness but not traditional L-smoothness.
Proposition 1. For any x ∈ R and i = 1, 2, it holds that ‖∇fi(x)‖ ≤ 2‖∇f(x)‖ + κ(H), where
κ(H) <∞ and is a positive increasing function of H for H ≥ 1.

According to Proposition 1, Assumption 1(iv) will be satisfied with ρ = 2 and κ = κ(H), where
κ(H) is an increasing function of H . The proof of this proposition is deferred to Appendix E.1.

5Naive Parallel Clip uses the globally averaged stochastic gradient obtained from synchronization at every
iteration to run SGD with gradient clipping on the global objective.
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Figure 1: Training loss and testing accuracy on SNLI. The style of each curve (solid, dashed, dotted)
corresponds to the algorithm, while the color corresponds to either the communication interval I (for
(a) and (b)) or the client data similarity s (for (c)). (a), (b) Effect of varying I with s = 30%, plotted
against (a) epochs and (b) communication rounds. (c) Effect of varying s with I = 4.

SNLI Following Conneau et al. (2017), we train a BiRNN network for 25 epochs using the multi-
class hinge loss and a batch size of 64 on each worker. The network is composed of a one layer
BiRNN encoder with hidden size 2048 and max pooling, and a three-layer fully connected classifier
with hidden size 512. The BiRNN encodes a sentence (represented as a sequence of GloVe vectors
(Pennington et al., 2014)), and the classifier predicts the relationship of two encoded sentences as
either entailment, neutral, or contradiction. For more hyperparameter information, see Appendix E.3.

To determine the effects of infrequent communication and data heterogeneity on the performance
of each algorithm, we vary I ∈ {2, 4, 8, 16} and s ∈ {10%, 30%, 50%}. We compare EPISODE,
CELGC, and the Naive Parallel Clip. Note that the training process diverged when using SCAFFOLD,
likely due to a gradient explosion issue, since SCAFFOLD does not use gradient clipping.

ImageNet Following Goyal et al. (2017), we train a ResNet-50 (He et al., 2016) for 90 epochs using
the cross-entropy loss, a batch size of 32 for each worker, clipping parameter γ = 1.0, momentum
with coefficient 0.9, and weight decay with coefficient 5 × 10−5. We initially set the learning
rate η = 0.1 and decay by a factor of 0.1 at epochs 30, 60, and 80. To analyze the effect of data
heterogeneity in this setting, we fix I = 64 and vary s ∈ {50%, 60%, 70%}. Similarly, to analyze
the effect of infrequent communication, we fix s = 60% and vary I ∈ {64, 128}. We compare the
performance of FedAvg, CELGC, EPISODE, and SCAFFOLD.

5.2 RESULTS

Synthetic Figure 3 in Appendix E.2 shows the objective value throughout training, where the
heterogeneity parameter H varies over {1, 2, 4, 8}. CELGC exhibits very slow optimization due
to the heterogeneity across clients: as H increases, the optimization progress becomes slower and
slower. In contrast, EPISODE maintains fast convergence asH varies. We can also see that EPISODE
converges to the minimum of global loss, while CELGC fails to do so when H is larger.

SNLI Results for the SNLI dataset are shown in Figure 1. To demonstrate the effect of infrequent
communication, Figures 1(a) and 1(b) show results for EPISODE, CELGC, and Naive Parallel Clip
as the communication interval I varies (with fixed s = 30%). After 25 epochs, the test accuracy

8
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Interval Similarity Algorithm Train loss Test acc.

64 70% FedAvg 1.010 74.89%
CELGC 1.016 74.89%
SCAFFOLD 1.024 74.92%
EPISODE 0.964 75.20%

64 60% FedAvg 0.990 74.73%
CELGC 0.979 74.51%
SCAFFOLD 0.983 74.68%
EPISODE 0.945 74.95%

64 50% FedAvg 0.955 74.53%
CELGC 0.951 74.12%
SCAFFOLD 0.959 74.19%
EPISODE 0.916 74.81%

128 60% FedAvg 1.071 74.15%
CELGC 1.034 74.24%
SCAFFOLD 1.071 74.03%
EPISODE 1.016 74.36%
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Figure 2: ImageNet results. Left: Training loss and testing accuracy at the end of training for various
settings of I and s. EPISODE consistently reaches better final metrics in all settings. Right: Training
loss and testing accuracy during training for I = 64 and s = 50%.

of EPISODE nearly matches that of Naive Parallel Clip for all I ≤ 8, while CELGC lags 2-3%
behind Naive Parallel Clip for all values of I . Also, EPISODE nearly matches the test accuracy of
Naive Parallel Clip with as little as 8 times fewer communication rounds. Lastly, EPISODE requires
significantly less communication rounds to reach the same training loss as CELGC. For example,
EPISODE with I = 4, s = 30% takes less than 5000 rounds to reach a training loss of 0.4, while
CELGC does not reach 0.4 during the entirety of training with any I .

To demonstrate the effect of client data heterogeneity, Figure 1(c) shows results for varying values of
s (with fixed I = 4). Here we can see that EPISODE is resilient against data heterogeneity: even
with client similarity as low as s = 10%, the performance of EPISODE is the same as s = 50%.
Also, the testing accuracy of EPISODE with s = 10% is nearly identical to that of the Naive Parallel
Clip. On the other hand, the performance of CELGC drastically worsens with more heterogeneity:
even with s = 50%, the training loss of CELGC is significantly worse than EPISODE with s = 10%.

ImageNet Figure 2 shows the performance of each algorithm at the end of training for all settings
(left) and during training for the setting I = 64 and s = 50% (right). Training curves for the rest of
the settings are given in Appendix E.5. EPISODE outperforms all baselines in every experimental
setting, especially in the case of high data heterogeneity. EPISODE is particularly dominant over
other methods in terms of the training loss during the whole training process, which is consistent
with our theory. Also, EPISODE exhibits more resilience to data heterogeneity than CELGC and
SCAFFOLD: as the client data similarity deceases from 70% to 50%, the test accuracies of CELGC
and SCAFFOLD decrease by 0.8% and 0.7%, respectively, while the test accuracy of EPISODE
decreases by 0.4%. Lastly, as communication becomes more infrequent (i.e., the communication
interval I increases from 64 to 128), the performance of EPISODE remains superior to the baselines.

6 CONCLUSION

We have presented EPISODE, a new communication-efficient distributed gradient clipping algorithm
for federated learning with heterogeneous data in the nonconvex and relaxed smoothness setting.
We have proved convergence results under any noise level of the stochastic gradient. In particular,
we have established linear speedup results as well as reduced communication complexity. Further,
our experiments on both synthetic and real-world data show demonstrate the superior performance
of EPISODE compared to competitive baselines in FL. Our algorithm is suitable for the cross-silo
federated learning setting such as in healthcare and financial domains (Kairouz et al., 2019), and we
plan to consider cross-device setting in the future.
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A PRELIMINARIES

We use Fr to denote the filtration generated by

{ξit : t ∈ Il, i = 1, ...N}r−1
l=1 ∪ {ξ̃

i
l : i = 1, ...N}r−1

l=1 .

It means that given Fr, the global solution x̄r is fixed, but the randomness of Ar, Gi
r and Gr still

exists. In addition, for t ∈ Ir, we useHt to denote the filtration generated by

Fr ∪ {ξis : tr ≤ s ≤ t}Ni=1 ∪ {ξ̃ir}Ni=1.

Recall the definitions of Gi
r and Gr,

Gi
r = ∇Fi(x̄r; ξ̃ir) and Gr =

1

N

N∑
i=1

Gi
r.

Hence we have

‖Gi
r −∇fi(x̄r)‖ ≤ σ and ‖Gr −∇f(x̄r)‖ ≤ σ,

hold almost surely due to Assumption 1(iii). Also, the local update rule of EPISODE is

xit+1 = xit − ηgit1(Ar)− γ
git
‖git‖

1(Ār) for t ∈ Ir,

where git = ∇Fi(xit; ξit)−Gi
r + Gr, Ar = {‖Gr‖ ≤ γ/η} and Ār = {‖Gr‖ > γ/η}.

A.1 AUXILIARY LEMMAS

Lemma 5 (Lemma A.2 in Zhang et al. (2020a)). Let f be (L0, L1)-smooth, and C > 0 be a constant.
For any x,x′ ∈ Rd such that ‖x− x′‖ ≤ C/L1, we have

f(x′)− f(x) ≤ 〈∇f(x),x′ − x〉+
AL0 +BL1‖∇f(x)‖

2
‖x′ − x‖2,

where A = 1 + eC − eC−1
C and B = eC−1

C .
Lemma 6 (Lemma A.3 in Zhang et al. (2020a)). Let f be (L0, L1)-smooth, and C > 0 be a constant.
For any x,x′ ∈ Rd such that ‖x− x′‖ ≤ C/L1, we have

‖∇f(x′)−∇f(x)‖ ≤ (AL0 +BL1‖∇f(x)‖)‖x′ − x‖,

where A = 1 + eC − eC−1
C and B = eC−1

C .

Here we choose C ≥ 1 such that A ≥ 1 and B ≥ 1.
Lemma 7 (Lemma B.1 in Zhang et al. (2020a)). Let µ > 0 and u,v ∈ Rd. Then

−〈u,v〉
‖v‖

≤ −µ‖u‖ − (1− µ)‖v‖+ (1 + µ)‖v − u‖.

B PROOF OF LEMMAS IN SECTION 4.3

B.1 PROOF OF LEMMA 1

Lemma 1 restated. Suppose 2ηI(AL0 + BL1κ + BL1ρ(σ + γ
η )) ≤ 1 and

max
{

2ηI(2σ + γ
η ), γI

}
≤ C

L1
, where the relation between A, B and C is stated in Lemma 5

and 6. Then for any i ∈ [N ] and t− 1 ∈ Ir, it almost surely holds that

1(Ar)‖xit − x̄r‖ ≤ 2ηI

(
2σ +

γ

η

)
, (8)

and
1(Ār)‖xit − x̄r‖ ≤ γI. (9)

14
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Proof of Lemma 1. To show (8) holds, it suffices to show that under the event Ar,

‖xit − x̄r‖ ≤ 2η(t− tr)
(

2σ +
γ

η

)
holds for any tr + 1 ≤ t ≤ tr+1 and i ∈ [N ]. We will show it by induction. In particular, to show
that this fact holds for t = tr + 1, notice

‖xitr+1 − x̄r‖ = η‖gitr+1‖ ≤ η‖∇Fi(x̄r; ξitr )−Gi
r‖+ η‖Gr‖ ≤ 2ησ + γ ≤ 2η

(
σ +

γ

η

)
,

where we used the fact that ‖Gr‖ ≤ γ
η under Ar, and ‖∇Fi(x̄r; ξitr ) − ∇Fi(x̄r)‖ ≤ σ, ‖Gi

r −

∇Fi(x̄r)‖ ≤ σ hold almost surely. Now, denote Λ = 2
(

2σ + γ
η

)
and suppose that

‖xit − x̄r‖ ≤ Λη(t− tr). (10)

Then we have

‖xit+1 − x̄r‖ = ‖xit − x̄r − ηgit‖
≤ Λη(t− tr) + η‖∇Fi(xit, ξit)−Gi

r‖+ η‖Gr‖
≤ Λη(t− tr) + η‖∇fi(xit)−∇fi(x̄r)‖+ 2ησ + γ. (11)

Using our assumption ηΛI ≤ C/L1 together with the inductive assumption (10), we can apply
Lemma 6 to obtain

‖∇fi(xit)−∇fi(x̄r)‖ ≤ (AL0 +BL1‖∇fi(x̄r)‖)‖xit − x̄r‖
≤ Λη(t− tr)(AL0 +BL1‖∇fi(x̄r)‖)
(i)

≤ Λη(t− tr)(AL0 +BL1(κ+ ρ‖∇f(x̄r)‖))
≤ Λη(t− tr)(AL0 +BL1κ) + ηΛBL1ρ(t− tr)(‖∇f(x̄r)−Gr‖+ ‖Gr‖)

≤ Λη(t− tr)
(
AL0 +BL1κ+BL1ρ

(
σ +

γ

η

))
(ii)

≤ Λ(t− tr)
2I

≤ Λ

2
, (12)

where (i) comes from the heterogeneity assumption ‖∇fi(x)‖ ≤ κ+ ρ‖∇f(x)‖ for all x and (ii)
from the assumption 2ηI(AL0 +BL1κ+BL1ρ(σ + γ

η )) ≤ 1. Substituting this into Equation (11)
yields

‖xit+1 − x̄r‖ ≤ Λη(t− tr) + η
Λ

2
+ 2ησ + γ

≤ η
(

Λ(t− tr) +
Λ

2
+ 2σ +

γ

η

)
≤ Λη(t− tr + 1).

which completes the induction and the proof of Equation (8).

Next, to show Equation (9), notice that under the event Ār we have

‖x̄r − xit‖ =

∥∥∥∥∥γ
t−1∑

s=tr+1

gis
‖gis‖

∥∥∥∥∥ ≤ γ
t−1∑

s=tr+1

∥∥∥∥ gis
‖gis‖

∥∥∥∥ = γ(t− (tr + 1)) ≤ γI.

B.2 PROOF OF LEMMA 2

Lemma 2 restated. Suppose 2ηI(AL0 + BL1κ + BL1ρ(σ + γ
η )) ≤ 1 and

max
{

2ηI
(

2σ + γ
η

)
, γI

}
≤ C

L1
. Then for all x ∈ Rd such that ‖x − x̄r‖ ≤ 2ηI

(
2σ + γ

η

)
,

we have the following inequality almost surely holds:

1(Ar)‖∇2fi(x)‖ ≤ L0 + L1

(
κ+ (ρ+ 1)

(
γ

η
+ 2σ

))
.
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Proof of Lemma 2. Under the event Ar = {‖Gr‖ ≤ γ/η}. From the definition of (L0, L1)-
smoothness we have

‖∇2fi(x)‖ ≤ L0 + L1‖∇fi(x)‖
≤ L0 + L1 (‖∇fi(x)−∇fi(x̄r)‖+ ‖∇fi(x̄r)‖)
(i)

≤ L0 + L1 (‖∇fi(x)−∇fi(x̄r)‖+ κ+ ρ‖∇f(x̄r)‖)
(ii)

≤ L0 + L1

(
‖∇fi(x)−∇fi(x̄r)‖+ κ+ ρ

(
σ +

γ

η

))
, (13)

where we used the heterogeneity assumption ‖∇fi(x)‖ ≤ κ + ρ‖∇f(x̄r)‖ for all x to obtain
(i) and the fact ‖∇f(x̄r)‖ ≤ ‖∇f(x̄r) − Gr‖ + ‖Gr‖ to obtain (ii). Now, for all x such that
‖x− x̄r‖ ≤ 2ηI(2σ + γ

η ), according to our assumptions, we have ‖x− x̄r‖ ≤ 2ηI(2σ + γ
η ) ≤ C

L1
.

Hence we can apply Lemma 6 to x and x̄r, which yields
‖∇fi(x)−∇fi(x̄r)‖ ≤ (AL0 +BL1‖∇fi(x̄r)‖)‖x− x̄r‖

≤ 2ηI

(
2σ +

γ

η

)
(AL0 +BL1‖∇fi(x̄r)‖)

≤ 2ηI

(
2σ +

γ

η

)
(AL0 +BL1(κ+ ρ‖∇f(x̄r)‖))

≤ 2ηI

(
2σ +

γ

η

)(
AL0 +BL1κ+BL1ρ

(
γ

η
+ σ

))
(i)

≤ 2σ +
γ

η
,

where (i) comes from the assumption 2ηI(AL0 + BL1κ+ BL1ρ(σ + γ
η )) ≤ 1. Substituting this

result into Equation (13) yields

‖∇2fi(x)‖ ≤ L0 + L1

(
2σ +

γ

η
+ κ+ ρ

(
σ +

γ

η

))
≤ L0 + L1

(
κ+ (ρ+ 1)

(
2σ +

γ

η

))
.

B.3 PROOF OF LEMMA 3

Lemma 3 restated. Suppose 2ηI(AL0 + BL1κ + BL1ρ(σ + γ
η )) ≤ 1 and

max
{

2ηI(2σ + γ
η ), γI

}
≤ C

L1
, we have both

Er
[
1(Ar)‖xit − x̄r‖2

]
≤ 36prI

2η2‖∇f(x̄r)‖2 + 126prI
2η2σ2, (14)

Er
[
1(Ar)‖xit − x̄r‖2

]
≤ 18prI

2ηγ‖∇f(x̄r)‖+ 18prI
2η2

(
γ

η
σ + 5σ2

)
, (15)

hold for any t− 1 ∈ Ir.

Proof of Lemma 3. Under the event Ar, the local update rule is given by
xit+1 = xit − ηgit, where git = ∇Fi(xit; ξit)−Gi

r + Gr.

Using the basic inequality (a+ b)2 ≤ (1 + 1/λ)a2 + (λ+ 1)b2 for any λ > 0, we have

Er
[
1(Ar)‖xit+1 − x̄r‖2

]
= Er

[
1(Ar)‖xit − x̄r − ηgit‖2

]
(i)

≤ Er
[
1(Ar)‖xit − x̄r − η(∇fi(xit)−Gi

r + Gr)‖2
]

+ η2Er
[
1(Ar)‖∇Fi(xit; ξit)−∇fi(xit)‖2

]
(ii)

≤
(

1

I
+ 1

)
Er
[
1(Ar)‖xit − x̄r‖2

]
+ (I + 1)η2Er

[
1(Ar)‖∇fi(xit)−Gi

r + Gr‖2
]

+ prη
2σ2.

(16)
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The equality (i) and (ii) hold since Fr ⊆ Ht for t ≥ tr such that

Er
[
1(Ar)

〈
xit − x̄r − η(∇fi(xit)−Gi

r + Gr),∇Fi(xit; ξit)−∇fi(xit)
〉]

=Er
[
E
[
1(Ar)

〈
xit − x̄r − η(∇fi(xit)−Gi

r + Gr),∇Fi(xit; ξit)−∇fi(xit)
〉 ∣∣Ht]]

=Er
[
1(Ar)

〈
xit − x̄r − η(∇fi(xit)−Gi

r + Gr),E
[
∇Fi(xit; ξit)−∇fi(xit)

∣∣Ht]〉] = 0,

and

Er
[
1(Ar)‖∇Fi(xit; ξit)−∇fi(xit)‖2

]
= Er

[
E
[
‖∇Fi(xit; ξit)−∇fi(xit)‖2

∣∣Ht]]
≤ Er

[
1(Ar)σ2

]
= prσ

2.

Let L = L0 + L1(κ+ (ρ+ 1)(γη + 2σ)). Applying the upper bound for Hessian matrix in Lemma 2
and the premise in Lemma 1, we have

Er
[
1(Ar)‖∇fi(xit)−Gi

r + Gr‖2
]

= Er
[
1(Ar)

∥∥(∇fi(xit)−∇fi(x̄r)) + (∇fi(x̄r)−Gi
r) + Gr

∥∥2
]

≤ 2Er
[
1(Ar)

∥∥(∇fi(xit)−∇fi(x̄r)) + (∇fi(x̄r)−Gi
r)
∥∥2
]

+ 2Er
[
1(Ar)‖Gr‖2

]
≤ 4Er

[
1(Ar)‖∇fi(xit)−∇fi(x̄r)‖2

]
+ 4prσ

2 + 2Er
[
1(Ar)‖Gr‖2

]
≤ 4Er

[
1(Ar)

∥∥∥∥∫ 1

0

∇2fi(αx
i
t + (1− α)x̄r)(x

i
t − x̄r)dα

∥∥∥∥2
]

+ 4prσ
2 + 2Er

[
1(Ar)‖Gr‖2

]
≤ 4L2Er

[
1(Ar)‖xit − x̄r‖2

]
+ 4prσ

2 + 2Er
[
1(Ar)‖Gr‖2

]
, (17)

where the second inequality follows from ‖Gi
r −∇fi(x̄r)‖ ≤ σ almost surely. Plugging the final

bound of (17) into (16) yields

Er
[
1(Ar)‖xit+1 − x̄r‖2

]
≤
(

1

I
+ 1 + 4LIη2

)
Er
[
1(Ar)‖xit − x̄r‖2

]
+ 2(I + 1)η2Er

[
1(Ar)‖Gr‖2

]
+ 10pr(I + 1)η2σ2. (18)

By recursively invoking (18), we are guaranteed that

Er
[
1(Ar)‖xit+1 − x̄r‖2

]
≤

I−1∑
s=0

(
1

I
+ 1 + 4LIη2

)s
(I + 1)

(
2η2Er

[
1(Ar)‖Gr‖2

]
+ 10prη

2σ2
)

=

(
1
I + 1 + 4LIη2

)I
1
I + 4LIη2

(I + 1)
(
2η2Er

[
1(Ar)‖Gr‖2

]
+ 10prη

2σ2
)

(i)

≤
(

2
I + 1

)I
1
I

(I + 1)
(
2η2Er

[
1(Ar)‖Gr‖2

]
+ 10prη

2σ2
)

(ii)

≤ 9
(
2I2η2Er

[
1(Ar)‖Gr‖2

]
+ 10prI

2η2σ2
)

≤ 36I2η2
(
Er
[
1(Ar)‖Gr −∇f(x̄r)‖2

]
+ pr‖∇f(x̄r)‖2

)
+ 90prI

2η2σ2

(iii)

≤ 36prI
2η2‖∇f(x̄r)‖2 + 126prI

2η2σ2.

The inequality (i) comes from

4Iη2L2 =
1

I
(2IηL)2 ≤ 1

I

(
2Iη

(
L0 + L1κ+ L1(ρ+ 1)(2σ +

γ

η
)

))2

≤ 1

I
,

which is true because 2ηI(AL0 +BL1κ+BL1ρ(σ + γ
η )) ≤ 1 and A,B ≥ 1. The inequality (ii)

comes from ( 2
I +1)I(I+1) ≤ e2I for any I ≥ 1. The inequality (iii) holds since ‖Gr−∇f(x̄r)‖ ≤

17
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σ almost surely. Therefore, we have proved (14). In addition, for (15), we notice that

Er
[
1(Ar)‖xit+1 − x̄r‖2

]
≤ 18I2η2Er

[
1(Ar)‖Gr‖2

]
+ 90prI

2η2σ2

≤ 18I2η2Er [1(Ar)‖Gr‖ (‖Gr −∇f(x̄r)‖+ ‖∇f(x̄r)‖)] + 90prI
2η2σ2

(iv)

≤ 18prI
2η2 γ

η
(σ + ‖∇f(x̄r)‖) + 90prI

2η2σ2

= 18prI
2ηγ‖∇f(x̄r)‖+ 18prI

2η2

(
γ

η
σ + 5σ2

)
.

The inequality (iv) holds since ‖Gr‖ ≤ γ/η holds under the event Ar and ‖Gr −∇f(x̄r)‖ ≤ σ
almost surely.

C PROOF OF MAIN RESULTS

C.1 PROOF OF LEMMA 4

Lemma 4 restated. Under the conditions of Lemma 1, let pr = P(Ar|Fr), Γ = AL0 +BL1(κ+
ρ(γη + σ)). Then it holds that for each 1 ≤ r ≤ R− 1,

Er [f(x̄r+1)− f(x̄r)] ≤ Er [1(Ar)V (x̄r)] + Er
[
1(Ār)U(x̄r)

]
,

where

V (x̄r) =

(
−ηI

2
+ 36Γ2I3η3 + 9

γ

η
BL1I

2η2

)
‖∇f(x̄r)‖2 + 9BL1I

2η2

(
5σ2 +

γ

η
σ

)
‖∇f(x̄r)‖

+ 90Γ2I3η3σ2 +
2AL0Iη

2σ2

N
,

and

U(x̄r) =

(
−2

5
γI +

BL1(4ρ+ 1)γ2I2

2

)
‖∇f(x̄r)‖ −

3γ2I

5η
+ γ2I2(3AL0 + 2BL1κ) + 6γIσ.

Proof. We begin by applying Lemma 5 to obtain a bound on f(x̄r+1) − f(x̄r), but first we must
show that the conditions of Lemma 5 hold here. Note that

‖x̄r+1 − x̄r‖ =

∥∥∥∥∥ 1

N

N∑
i=1

xitr+1
− x̄r

∥∥∥∥∥
≤ 1

N

N∑
i=1

1(Ar)‖xitr+1
− x̄r‖+

1

N

N∑
i=1

1(Ār)‖xitr+1
− x̄r‖

≤ max

{
2ηI

(
2σ +

γ

η

)
, γI

}
≤ C

L1
,

where the last step is due to the conditions of Lemma 1. This shows that we can apply Lemma 5 to
obtain

Er [f(x̄r+1)− f(x̄r)] ≤ Er [〈∇f(x̄r), x̄r+1 − x̄r〉] + Er
[
AL0 +BL1‖∇f(x̄r)‖

2
‖x̄r+1 − x̄r‖2

]
≤ −ηEr

[
1

N

N∑
i=1

∑
t∈Ir

1(Ar)〈∇f(x̄r), g
i
t〉

]

− γEr

[
1

N

N∑
i=1

∑
t∈Ir

1(Ār)〈∇f(x̄r),
git
‖git‖

〉

]

+
AL0

2
Er
[
‖x̄r+1 − x̄r‖2

]
+
BL1

2
‖∇f(x̄r)‖Er

[
‖x̄r+1 − x̄r‖2

]
.

(19)
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Let pr = P(Ar|Fr), then 1− pr = P(Ār|Fr). Notice that pr is a function of x̄r. The last term in
Equation (19) can be bounded as follows:

‖∇f(x̄r)‖Er
[
‖x̄r+1 − x̄r‖2

]
= ‖∇f(x̄r)‖E

[
1(Ar)‖x̄r+1 − x̄r‖2

∣∣Fr]+ ‖∇f(x̄r)‖E
[
1(Ār)‖x̄r+1 − x̄r‖2

∣∣Fr]
(i)

≤ ‖∇f(x̄r)‖E
[
1(Ar)‖x̄r+1 − x̄r‖2

∣∣Fr]+ (1− pr)γ2I2‖∇f(x̄r)‖
(ii)

≤ 18prI
2η2‖∇f(x̄r)‖

(
γ

η
‖∇f(x̄r)‖+ 5σ2 +

γ

η
σ

)
+ (1− pr)γ2I2‖∇f(x̄r)‖

≤ 18prI
2ηγ‖∇f(x̄r)‖2 + 18prI

2η2

(
5σ2 +

γ

η
σ

)
‖∇f(x̄r)‖+ (1− pr)γ2I2‖∇f(x̄r)‖, (20)

where (i) comes from an application of Lemma 1 with t = tr+1, and (ii) comes from an application
of (15) in Lemma 3. Substituting (20) into (19) gives

Er [f(x̄r+1)− f(x̄r)]

≤ −ηEr

[
1

N

N∑
i=1

∑
t∈Ir

1(Ar)〈∇f(x̄r), g
i
t〉

]
− γEr

[
1

N

N∑
i=1

∑
t∈Ir

1(Ār)〈∇f(x̄r),
git
‖git‖

〉

]

+
AL0

2
Er
[
‖x̄r+1 − x̄r‖2

]
+ 9prBL1I

2η2

(
γ

η
‖∇f(x̄r)‖2 +

(
5σ2 +

γ

η
σ

)
‖∇f(x̄r)‖

)
+ (1− pr)

BL1γ
2I2

2
‖∇f(x̄r)‖ (21)

We introduce three claims to bound the first three terms in (21), whose proofs are deferred to Section
D.

Claim 1. Under the conditions of Lemma 4, we have

− γEr

[
1

N

N∑
i=1

∑
t∈Ir

1(Ār)〈∇f(x̄r),
git
‖git‖

〉

]

≤ (1− pr)
[(
−2

5
γI + 2BL1ργ

2I2

)
‖∇f(x̄r)‖ −

3γ2I

5η
+ 2γ2I2(AL0 +BL1κ) + 6γIσ

]
.

Claim 2. Under the conditions of Lemma 4, we have

− ηEr

[
1

N

N∑
i=1

∑
t∈Ir

1(Ar)〈∇f(x̄r), g
i
t〉

]

≤ pr
[(
−ηI

2
+ 36I3η3Γ2

)
‖∇f(x̄r)‖2 + 126I3η3σ2Γ2

]
− η

2I
Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

∇f(xit)

∥∥∥∥∥
2
 ,

where Γ = AL0 +BL1

(
κ+ ρ

(
σ + γ

η

))
.

Claim 3. Under the conditions of Lemma 4, we have

Er
[
‖x̄r+1 − x̄r‖2

]
≤ 2(1− pr)γ2I2 +

4prIσ
2η2

N
+ 4η2Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

∇fi(xit)

∥∥∥∥∥
2
 .
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Combining Claims 1, 2, and 3 with (19) and (20) yields

Er [f(x̄r+1)− f(x̄r)]

≤ pr
[(
−ηI

2
+ 36Γ2I3η3 + 9

γ

η
BL1I

2η2

)
‖∇f(x̄r)‖2 + 9prBL1I

2η2

(
5σ2 +

γ

η
σ

)
‖∇f(x̄r)‖+

126Γ2I3η3σ2 +
2AL0Iη

2σ2

N

]
+ (1− pr)

[(
−2

5
γI +

BL1(4ρ+ 1)γ2I2

2

)
‖∇f(x̄r)‖ −

3γ2I

5η
+ γ2I2(3AL0 + 2BL1κ) + 6γIσ

]

+
(

2AL0η
2 − η

2I

)
Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

∇f(xit)

∥∥∥∥∥
2


≤ pr
[(
−ηI

2
+ 36Γ2I3η3 + 9

γ

η
BL1I

2η2

)
‖∇f(x̄r)‖2 + 9BL1I

2η2

(
5σ2 +

γ

η
σ

)
‖∇f(x̄r)‖+

90Γ2I3η3σ2 +
2AL0Iη

2σ2

N

]
+ (1− pr)

[(
−2

5
γI +

BL1(4ρ+ 1)γ2I2

2

)
‖∇f(x̄r)‖ −

3γ2I

5η
+ γ2I2(3AL0 + 2BL1κ) + 6γIσ

]
,

where the last inequality holds since η/(2I) ≥ 4η2 due to the assumption 4AL0ηI ≤ 1. Then we
can finish the proof of Lemma 4 by noticing that pr = Er[1(Ar)] and 1− pr = Er[1(Ār)].

C.2 PROOF OF THEOREM 1

Theorem 1 restated. Suppose Assumption 1 hold. For any ε ≤ 3AL0

5BL1ρ
, we choose

η ≤ min

{
1

856ΓI
,

ε

180ΓIσ
,

Nε2

8AL0σ2

}
and γ =

(
11σ +

AL0

BL1ρ

)
η, (22)

where Γ = AL0 +BL1κ+BL1ρ
(
σ + γ

η

)
. The output of EPISODE satisfies

1

R

R∑
t=0

E [‖∇f(x̄r)‖] ≤ 3ε

as long as R ≥ 4∆
ε2ηI .

Proof. In order to apply Lemma 4, we must verify the conditions of Lemma 1 under our choice of
hyperparameters. From our choices of η and γ, we have

2ΓηI ≤ 1

856
< 1.

Also

2ηI

(
2σ +

γ

η

)
(i)

≤
2σ + γ

η

856
(
AL0 +BL1κ+BL1ρ

(
σ + γ

η

)) (ii)

≤ C

L1
,

where (i) comes from the condition η ≤ 1/(856ΓI) in (22), (ii) is true due to the fact that B,C ≥ 1
and ρ ≥ 1. Lastly, it also holds that

γI ≤ 4ηIσ + 2γI = 2ηI

(
2σ +

γ

η

)
≤ C

L1
.

Therefore the conditions of Lemma 1 are satisfied, and we can apply Lemma 4. Denoting

U(x) =

(
−2

5
γI +

BL1(4ρ+ 1)γ2I2

2

)
‖∇f(x)‖− 3γ2I

5η
+γ2I2(3AL0+2BL1κ)+6γIσ, (23)
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and

V (x) =

(
−ηI

2
+ 36Γ2I3η3 + 9

γ

η
I2η2

)
‖∇f(x)‖2 + 9prI

2η2

(
5σ2 +

γ

η
σ

)
‖∇f(x)‖

+ 126Γ2I3η3σ2 +
2AL0Iη

2σ2

N
. (24)

Lemma 4 tells us that

Er [f(x̄r+1)− f(x̄r)] ≤ Er
[
1(Ār)U(x̄r) + 1(Ar)V (x̄r)

]
. (25)

We will proceed by bounding each U(x) and V (x) by the same linear function of ‖∇f(x)‖.
To bound U(x), notice

−2

5
γI+

BL1(4ρ+ 1)γ2I2

2

= −2

5
γI + 2BL1ργ

2I2 +
1

2
BL1γ

2I2

≤ γI
(
−2

5
+ 2BL1ργI +

1

2
BL1γI

)
≤ γI

(
−2

5
+ 2BL1ρ

(
11σ +

AL0

BL1ρ

)
ηI +

1

2
BL1

(
11σ +

AL0

BL1ρ

)
ηI

)
(i)

≤ γI

(
−2

5
+ 3 (11BL1ρσ +AL0) ηI

)
(ii)

≤ γI

(
−2

5
+

18

856

)
≤ − 3

10
γI

(iii)

≤ − 3

10

AL0

BL1ρ
ηI

(iv)

≤ −1

2
εηI, (26)

where (i) comes from ρ ≥ 1 and (ii) comes from 856ΓηI ≤ 1 and (iii) holds since γ/η =
11σ + AL0

BL1ρ
and (iv) comes from ε ≤ 3AL0

5BL1ρ
. Also, we have

−3γ2I

5η
+ γ2I2(3AL0 + 2BL1κ) + 6γIσ ≤ γ2I

η

(
−3

5
+ 3ΓηI + 6σ

η

γ

)
≤ γ2I

η

(
−3

5
+

3

856
+

6σ

11σ + AL0

BL1ρ

)

≤ γ2I

η

(
−3

5
+

3

856
+

6

11

)
≤ 0. (27)

Plugging Equations (26) and (27) into Equation (23) yields

U(x) ≤ −1

2
εηI‖∇f(x)‖. (28)

Now to bound V (x), we have

−ηI
2

+ 36Γ2I3η3 + 9
γ

η
BL1I

2η2
(i)

≤ −1

2
ηI +

36

8562
ηI +

9(11BL1σ +AL0/ρ)

856Γ
ηI

≤ −1

4
ηI, (29)

where (i) comes from η ≤ 1
856ΓI and Γ > BL1σ + AL0/ρ for ρ > 1. Using the assumption

η ≤ ε
180IΓσ , it holds that

9BL1I
2η2

(
5σ2 +

γ

η
σ

)
= 9BL1I

2η2

(
16σ2 +

AL0σ

BL1ρ

)
≤ ηIε16BL1σ +AL0

20Γ

(ii)

≤ 1

4
εηI (30)
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where (ii) comes from 16BL1σ +AL0 < 5Γ. Lastly, we have

90Γ2I3η3σ2 +
2AL0Iη

2σ2

N
= ηI

(
90Γ2I2η2σ2 +

2AL0ησ
2

N

)
(iii)

≤ ηI

(
90Γ2σ2 · ε2

1802Γ2σ2
+

2AL0σ
2

N

Nε2

8AL0σ2

)
≤ 1

4
ε2ηI, (31)

where (i) comes from η ≤ min
{

ε
180IΓσ ,

Nε2

8AL0σ2

}
. Plugging Equations (29), (30), and (31) into (24)

then yields

V (x) ≤ −1

4
ηI‖∇f(x)‖2 +

1

4
εηI‖∇f(x)‖+

1

4
ε2ηI

We can then use the inequality x2 ≥ 2ax− a2 with x = ‖∇f(x)‖ and a = ε to obtain

V (x) ≤ −1

4
εηI‖∇f(x)‖+

1

2
ε2ηI. (32)

Having bounded U(x) and V (x), we can return to (25). Using (28), we can see

U(x) ≤ −1

2
εηI‖∇f(x)‖ ≤ −1

4
εηI‖∇f(x)‖+

1

2
ε2ηI,

so the RHS of (32) is an upper bound of both U(x) and V (x). Plugging this bound into (25) and
taking total expectation then gives

E [f(x̄r+1)− f(x̄r)] ≤ −
1

4
εηIE [‖∇f(x̄r)‖] +

1

2
ε2ηI.

Finally, denoting ∆ = f(x̄0)− f∗, we can unroll the above recurrence to obtain

E [f(x̄R+1)− f(x̄0)] ≤ −1

4
εηI

R∑
r=0

E [‖∇f(x̄r)‖] +
1

2
(R+ 1)ε2ηI,

1

R+ 1

R∑
r=0

E [‖∇f(x̄r)‖] ≤
4∆

εηI(R+ 1)
+ 2ε,

1

R+ 1

R∑
r=0

E [‖∇f(x̄r)‖] ≤ 3ε,

where the last inequality comes from our choice of R ≥ 4∆
ε2ηI .

D DEFERRED PROOFS OF SECTION C

D.1 PROOF OF CLAIM 1

Proof. Starting from Lemma 7 with u = ∇f(x̄r) and v = git, we have

− 〈∇f(x̄r), g
i
t〉

‖git‖
≤ −µ‖∇f(x̄r)‖ − (1− µ)‖git‖+ (1 + µ)‖git −∇f(x̄r)‖. (33)

Under Ār = {‖Gr‖ > γ
η }, note that git = ∇Fi(xit; ξit)−Gi

r + Gr, and we have

‖git‖ ≥ ‖Gr‖ − ‖∇Fi(xit, ξit)−Gi
r‖

≥ γ

η
− ‖∇Fi(xit, ξit)−∇fi(xit)‖ − ‖∇fi(xit)−∇fi(x̄r)‖ − ‖∇fi(x̄r)−Gi

r‖

≥ γ

η
− 2σ − ‖∇fi(xit)−∇fi(x̄r)‖

22



Published as a conference paper at ICLR 2023

and

‖git −∇f(x̄r)‖ ≤ ‖∇Fi(xit, ξit)−∇fi(xit)‖+ ‖∇fi(xit)−∇fi(x̄r)‖
+ ‖∇fi(x̄r)−Gi

r‖+ ‖Gr −∇f(x̄r)‖
≤ 3σ + ‖∇fi(xit)−∇fi(x̄r)‖.

Plugging these two inequalities into (33) yields

−〈∇f(x̄r), g
i
t〉

‖git‖
≤ −µ‖∇f(x̄r)‖ − (1− µ)

γ

η
+ (5 + µ)σ + 2‖∇fi(xit)−∇fi(x̄r)‖.

Under Ār, we know ‖xit − x̄r‖ ≤ γI , and γI ≤ C
L1

by assumption. Therefore we can apply Lemma
6 to obtain

‖∇fi(xit)−∇fi(x̄r)‖ ≤ (AL0 +BL1‖∇fi(x̄r)‖)‖xit − x̄r‖ ≤ γI(AL0 +BL1‖∇fi(x̄r)‖).

This implies that

−〈∇f(x̄r), g
i
t〉

‖git‖
≤ −µ‖∇f(x̄r)‖ − (1− µ)

γ

η
+ (5 + µ)σ + 2AL0γI + 2BL1γI‖∇fi(x̄r)‖.

Combining this with the choice µ = 2/5, we have the final bound:

− γEr

[
1

N

N∑
i=1

∑
t∈Ir

1(Ār)〈∇f(x̄r),
git
‖git‖

〉

]

≤ 1

N

N∑
i=1

(1− pr)
(
−2

5
γI‖∇f(x̄r)‖ −

3γ2I

5η
+ 6γIσ + 2AL0γ

2I2 + 2BL1γ
2I2‖∇fi(x̄r)‖

)
≤ (1− pr)

((
−2

5
γI + 2BL1ργ

2I2

)
‖∇f(x̄r)‖ −

3γ2I

5η
+ 2γ2I2(AL0 +BL1κ) + 6γIσ

)
where we used the heterogeneity assumption ‖∇fi(x̄r)‖ ≤ κ+ ρ‖∇f(x̄r)‖.

D.2 PROOF OF CLAIM 2

Proof. Recall the event Ar = {‖Gr‖ ≤ γ/η}, we have

IEr

[
1

N

N∑
i=1

∑
t∈Ir

1(Ar)〈∇f(x̄r), g
i
t〉

]
= Er

[
1(Ar)

〈
I∇f(x̄r),

∑
t∈Ir

1

N

N∑
i=1

git

〉]

(i)
= Er

[
1(Ar)

〈
I∇f(x̄r),

∑
t∈Ir

1

N

N∑
i=1

∇Fi(xit; ξit)

〉]

(ii)
= Er

[
1(Ar)

〈
I∇f(x̄r),

∑
t∈Ir

1

N

N∑
i=1

∇fi(xit)

〉]

(iii)
=

prI
2

2
‖∇f(x̄r)‖2 +

1

2
Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

∇f(xit)

∥∥∥∥∥
2


− 1

2
Er

1(Ar)

∥∥∥∥∥∑
t∈Ir

(
1

N

N∑
i=1

∇fi(xit)−∇f(x̄r)

)∥∥∥∥∥
2
 . (34)

The equality (i) is obtained from the fact that 1
N

∑N
i=1 g

i
t = 1

N

∑N
i=1∇Fi(xit, ξit) −Gi

r + Gr =
1
N

∑N
i=1∇Fi(xit, ξit). The equality (ii) holds due to the tower property such that for t > tr

E
[
1(Ar)∇Fi(xit, ξit)

∣∣Fr] = E
[
1(Ar)E

[
∇Fi(xit, ξit)

∣∣Ht] ∣∣Fr] = E
[
1(Ar)∇fi(xit)

∣∣Fr] ;
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for t = tr

E
[
1(Ar)∇Fi(x̄r, ξitr )

∣∣Fr] = E [1(Ar)|Fr]E
[
∇Fi(x̄r, ξitr )

∣∣Fr] = E
[
1(Ar)∇fi(x̄r)

∣∣Fr] ,
which is true since Gr = 1

N

∑N
i=1∇Fi(x̄r; ξ̃ir) is independent of ∇Fi(x̄r, ξitr ) given Fr, and (iii)

holds because 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2.

Let Γ = AL0 +BL1

(
κ+ ρ

(
σ + γ

η

))
. Notice that we can apply the relaxed smoothness in Lemma

6 to obtain

Er
[
1(Ar)‖∇fi(xit)−∇fi(x̄r)‖2

]
≤ Er

[
1(Ar)(AL0 +BL1‖∇fi(x̄r)‖)2‖xit − x̄r‖2

]
≤ Er

[
1(Ar)(AL0 +BL1(κ+ ρ‖∇f(x̄r)‖))2‖xit − x̄r‖2

]
(i)

≤ Γ2Er
[
1(Ar)‖xit − x̄r‖2

]
(ii)

≤ 18prI
2η2Γ2

(
2‖∇f(x̄r)‖2 + 7σ2

)
.

The inequality (i) holds since ‖∇f(x̄r)‖ ≤ ‖∇f(x̄r) −Gr‖ + ‖Gr‖ ≤ σ + γ/η almost surely
under the event Ar. The inequality (ii) follows from the bound (14) in Lemma 3. Therefore, we are
guaranteed that

Er

1(Ar)

∥∥∥∥∥∑
t∈Ir

(
1

N

N∑
i=1

∇fi(xit)−∇f(x̄r)

)∥∥∥∥∥
2


≤ I
∑
t∈Ir

1

N

N∑
i=1

Er
[
1(Ar)

∥∥∇fi(xit)−∇f(x̄r)
∥∥2
]

≤ I
∑
t∈Ir

1

N

N∑
i=1

18prI
2η2Γ2

(
2‖∇f(x̄r)‖2 + 7σ2

)
≤ 18prI

4η2Γ2
(
2‖∇f(x̄r)‖2 + 7σ2

)
. (35)

Multiplying both sides of (34) by −η/I and substituting (35) then yields

− ηEr

[
1

N

N∑
i=1

∑
t∈Ir

1(Ar)〈∇f(x̄r), g
i
t〉

]

≤ −prηI
2
‖∇f(x̄r)‖2 −

η

2I
Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

∇f(xit)

∥∥∥∥∥
2


+
prη

2I
Er

∥∥∥∥∥∑
t∈Ir

(
1

N

N∑
i=1

∇fi(xit)−∇f(x̄r)

)∥∥∥∥∥
2


≤ pr
[(
−ηI

2
+ 36I3η3Γ2

)
‖∇f(x̄r)‖2 + 126I3η3σ2Γ2

]
− η

2I
Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

∇f(xit)

∥∥∥∥∥
2
 .
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D.3 PROOF OF CLAIM 3

Proof. From the definition of x̄r+1, we have

Er
[
‖x̄r+1 − x̄r‖2

]
≤ 2η2Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

git

∥∥∥∥∥
2
+ 2γ2Er

1(Ār)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

git
‖git‖

∥∥∥∥∥
2


(i)

≤ 2η2Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

∇Fi(xit, ξit)

∥∥∥∥∥
2
+ 2(1− pr)γ2I2

≤ 4η2Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

∇fi(xit)

∥∥∥∥∥
2


+ 4prη
2Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

∇Fi(xit; ξit)−∇fi(xit)

∥∥∥∥∥
2
+ 2(1− pr)γ2I2

(ii)

≤ 4η2Er

1(Ar)

∥∥∥∥∥ 1

N

N∑
i=1

∑
t∈Ir

∇fi(xit)

∥∥∥∥∥
2


+ 4η2 1

N2

N∑
i=1

Er

1(Ar)

∥∥∥∥∥∑
t∈Ir

∇Fi(xit; ξit)−∇fi(xit)

∥∥∥∥∥
2
+ 2(1− pr)γ2I2, (36)

where (i) is obtained by noticing that 1
N

∑N
i=1 g

i
t = 1

N

∑N
i=1∇Fi(xit, ξit), and (ii) holds by the

fact that each client’s stochastic gradients ∇Fi(xit, ξit) are sampled independently from one another.
Similarly, let s ∈ Ir with s > t., we can see that

Er
[
1(Ar)〈∇Fi(xit; ξit)−∇fi(xit),∇Fi(xis; ξis)−∇fi(xis)〉

]
= Er

[
1(Ar)Er

[
〈∇Fi(xit; ξit)−∇fi(xit),∇Fi(xis; ξis)−∇fi(xis)〉

∣∣∣∣Hs]]
= Er

[
1(Ar)〈∇Fi(xit; ξit)−∇fi(xit),Er

[
∇Fi(xis; ξis)

∣∣∣∣Hs]−∇fi(xis)〉]
= 0.

Therefore, we have

1

N2

N∑
i=1

Er

1(Ar)

∥∥∥∥∥∑
t∈Ir

∇Fi(xit; ξit)−∇fi(xit)

∥∥∥∥∥
2


=
1

N2

N∑
i=1

∑
t∈Ir

Er
[
1(Ar)

∥∥∇Fi(xit; ξit)−∇fi(xit)∥∥2
]

=
1

N2

N∑
i=1

∑
t∈Ir

Er
[
1(Ar)Er

[∥∥∇Fi(xit; ξit)−∇fi(xit)∥∥2 ∣∣Ht]]
≤ prIσ

2

N
. (37)

And the desired result is obtained by plugging (37) into (36).

E ADDITIONAL EXPERIMENTAL RESULTS
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E.1 PROOF OF PROPOSITION 1

Proof. Recall the definition of f1(x) and f2(x),

f1(x) = x4 − 3x3 +Hx2 + x, f2(x) = x4 − 3x3 − 2Hx2 + x,

which means
∇f(x) = 4x3 − 9x2 −Hx+ 1.

and
∇f1(x)−∇f(x) = 3Hx, ∇f2(x)−∇f(x) = −3Hx,

It follows that
‖∇fi(x)‖ ≤ ‖∇fi(x)−∇f(x)‖+ ‖∇f(x)‖

≤ 3H|x|+ ‖∇f(x)‖
≤ 3H|x| −

∣∣4x3 − 9x2 −Hx+ 1
∣∣+ 2‖∇f(x)‖

≤ 4H|x| −
∣∣4x3 − 9x2 + 1

∣∣+ 2‖∇f(x)‖
≤ 10H|x| −

∣∣4x3 − 9x2
∣∣+ 1 + 2‖∇f(x)‖. (38)

Let g(x) = 10H|x| −
∣∣4x3 − 9x2

∣∣, next we will characterize g(x) in different region.

(i) When x ∈ (−∞, 0), g(x) = 4x3− 9x2− 10Hx. The root for the derivative of g(x) in this region
is

12x2 − 18x− 10H = 0 =⇒ x = x1 :=
18−

√
182 + 480H

24
.

It follows that
g(x) ≤ 4x3

1 − 9x2
1 − 10Hx1

≤ 10H

(√
182 + 480H − 18

24

)

≤ 10H

(
20H

24

)
≤ 25H2

3
. (39)

where the last inequality follows from x1 ≤ 0.

(ii) When x ∈ (0, 9
4 ), g(x) = 4x3 − 9x2 + 10Hx. The derivative of g(x) is greater than 0 in this

case since 182 − 480H ≤ 0 for H ≥ 1. Then we have

g(x) ≤ 10H · 9

4
=

45H

2
. (40)

(iii) When x ∈ ( 9
4 ,+∞), g(x) = −4x3 + 9x2 + 10Hx. The root for the derivative of g(x) is

−12x2 + 18x+ 10H = 0 =⇒ x = x2 :=
−18 +

√
182 + 480H

24
.

Then we have

g(x) ≤ max

{
−4x3

2 + 9x2
2 + 10Hx2,−4

(
9

4

)3

+ 9

(
9

4

)2

+
45H

2

}

≤ 9x2
2 + 10Hx2 + 9

(
9

4

)2

+
45H

2
. (41)

Combining (39), (40) and (41), we are guaranteed that

g(x) + 1 ≤ 9

(
−18 +

√
182 + 480H

24

)2

+ 10H

(
−18 +

√
182 + 480H

24

)

+
25H2

3
+ 45H + 100

:= κ(H).
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Substituting this bound into (38), we get

‖∇fi(x)‖ ≤ 2‖∇f(x)‖+ g(x) + 1

≤ 2‖∇f(x)‖+ κ(H).

And κ(H) <∞ is an increasing function of H .

E.2 SYNTHETIC TASK

For two algorithms, we inject uniform noise over [−1, 1] into the gradient at each step, and tune
γ/η ∈ {5, 10, 15} and tune η ∈ {0.1, 0.01, 0.001}. We run each algorithm for 500 communication
rounds and the length of each communication round is I = 8. The results are showed in Figure 3.

E.3 SNLI

The learning rate η and the clipping parameter γ are tuned with search in the following way: we
vary γ ∈ {0.01, 0.03, 0.1} and for each γ we vary η so that the clipping threshold γ/η varies over
{0.1, 0.333, 1.0, 3.333, 10.0}, leading to 15 pairs (η, γ). We decay both η and γ by a factor of 0.5
at epochs 15 and 20. We choose the best pair (η, γ) according to the performance on a validation
set, and the corresponding model is evaluated on a held-out test set. Note that we do not tune (γ, η)
separately for each algorithm. Instead, due to computational constraints, we tune the hyperparameters
for the baseline CELGC under the setting I = 4, s = 50% and re-use the tuned values for the rest of
the settings.

E.4 CIFAR-10

E.4.1 SETUP

We train a ResNet-50 (He et al., 2016) for 150 epochs using the cross-entropy loss and a batch size of
64 for each worker. Starting from an initial learning rate η0 = 1.0 and clipping parameter γ = 0.5,
we decay the learning rate by a factor of 0.5 at epochs 80 and 120. In this setting, we decay the
clipping parameter γ with the learning rate η, so that the clipping threshold γ

η remains constant during
training. We present results for I = 8 and s ∈ {50%, 70%}. We include the same baselines as the
experiments of the main text, comparing EPISODE to FedAvg, SCAFFOLD, and CELGC.

E.4.2 RESULTS

Training loss and testing accuracy during training are shown below in Figure 4. In both settings,
EPISODE is superior in terms of testing accuracy and nearly the best in terms of training loss.

E.5 IMAGENET

The training curves (training and testing loss) for each ImageNet setting are shown below in Figure 5.

F RUNNING TIME RESULTS

To demonstrate the utility of EPISODE for federated learning in practical settings, we also provide
a comparison of the running time of each algorithm on the SNLI dataset. Our experiments were
run on eight NVIDIA Tesla V100 GPUs distributed on two machines. The training loss and testing
accuracy of each algorithm (under the settings described above) are plotted against running time
below. Note that these are the same results as shown in Figure 1, plotted against time instead of
epochs or communication rounds.

On the SNLI dataset, EPISODE reaches a lower training loss and higher testing accuracy with respect
to time, compared with CELGC and NaiveParallelClip. Table 2 shows that, when I ≤ 8, EPISODE
requires significantly less running time to reach high testing accuracy compared with both CELGC
and NaiveParallelClip. When I = 16, CELGC and NaiveParallelClip nearly match, indicating
that I = 16 may be close to the theoretical upper bound on I for which fast convergence can be
guaranteed. Also, as the client data similarity decreases, the running time requirement of EPISODE
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Figure 3: The loss trajectories and converged solutions of CELGC and EPISODE on synthetic task.

to reach high test accuracy stays nearly constant (e.g., when I = 4), while the running time required
by CELGC steadily increases. This demonstrates the resilience of EPISODE’s convergence speed to
heterogeneity. Training curves for the same experiment are shown in Figure 6.
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Figure 4: Training curves for CIFAR-10 experiments.

Interval Similarity Algorithm 70% 75% 80%

1 100% NaiveParallelClip 37.30 59.69 118.45

2 30% CELGC 33.57 63.98 N/A
EPISODE 27.20 38.07 70.60

4 30% CELGC 23.84 42.51 N/A
EPISODE 18.34 25.73 55.15

8 30% CELGC 20.37 34.06 N/A
EPISODE 13.98 22.43 53.43

16 30% CELGC 16.57 27.00 N/A
EPISODE 21.26 28.39 N/A

4 50% CELGC 18.52 31.86 N/A
EPISODE 18.37 25.71 47.76

4 10% CELGC 39.75 N/A N/A
EPISODE 18.46 29.71 55.92

Table 2: Running time (in minutes) for each algorithm to reach test accuracy of 70%, 75%, and 80%
on SNLI dataset. We use N/A to denote when an algorithm did not reach the corresponding level of
accuracy over the course of training.

G ABLATION STUDY

In this section, we introduce an ablation study which disentangles the role of the two components of
EPISODE’s algorithm design: periodic resampled corrections and episodic clipping. Using the SNLI
dataset, we have evaluated several variants of the EPISODE algorithm constructed by removing one
algorithmic component at a time, and we compare the performance against EPISODE along with
variants of the baselines mentioned in the paper. Our ablation study shows that both components of
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Figure 5: Training curves for all ImageNet experiments.
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Figure 6: Training loss and testing accuracy on SNLI against running time. (a) Various values of
communication intervals I ∈ {2, 4, 8, 16} with fixed data similarity s = 30%. (b) Various values of
data similarity s ∈ {10%, 30%, 50%} with fixed I = 4.

EPISODE’s algorithm design (periodically resampled corrections and episodic clipping) contribute
to the improved performance over previous work.

Our ablation experiments follow the same setting as the SNLI experiments in the main text. The
network architecture, hyperparameters, and dataset are all identical to the SNLI experiments described
in the main text. In this ablation study, we additionally evaluate multiple variants of EPISODE and
baselines, which are described below:

• SCAFFOLD (clipped): The SCAFFOLD algorithm (Karimireddy et al., 2020) with gradient
clipping applied at each iteration. This algorithm, as a variant of CELGC, determines
the gradient clipping operation based on the corrected gradient at every iteration on each
machine.

• EPISODE (unclipped): The EPISODE algorithm with clipping operation removed.

• FedAvg: The FedAvg algorithm (McMahan et al., 2017a). We include this to show that
clipping in some form is crucial for optimization in the relaxed smoothness setting.

• SCAFFOLD: The SCAFFOLD algorithm (Karimireddy et al., 2020). We include this to
show that SCAFFOLD-style corrections are not sufficient for optimization in the relaxed
smoothness setting.

We compare these four algorithm variations against the algorithms discussed in the main text, which
include EPISODE, CELGC, and NaiveParallelClip.
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Interval Similarity Algorithm Train Loss Test Acc.

1 100% NaiveParallelClip 0.357 82.4%

2 30% CELGC 0.579 75.9%
EPISODE 0.361 82.3%
SCAFFOLD (clipped) 0.445 80.5%
EPISODE (unclipped) 4.51 33.3%
FedAvg 1.56 32.8%
SCAFFOLD 1.23 34.1%

4 30% CELGC 0.564 77.2%
EPISODE 0.399 81.7%
SCAFFOLD (clipped) 0.440 80.7%
EPISODE (unclipped) 9.82 33.0%
FedAvg 1.14 32.8%
SCAFFOLD 4.39 32.8%

8 30% CELGC 0.539 78.0%
EPISODE 0.431 81.1%
SCAFFOLD (clipped) 0.512 77.1%
EPISODE (unclipped) 8.02 34.3%
FedAvg 1.25 32.7%
SCAFFOLD 10.86 32.8%

16 30% CELGC 0.525 78.3%
EPISODE 0.534 77.8%
SCAFFOLD (clipped) 0.597 75.7%
EPISODE (unclipped) 4.71 33.0%
FedAvg 3.45 32.7%
SCAFFOLD 4.87 32.7%

4 50% CELGC 0.490 79.1%
EPISODE 0.385 82.1%
SCAFFOLD (clipped) 0.436 80.7%
EPISODE (unclipped) 9.08 34.3%
FedAvg 4.81 32.8%
SCAFFOLD 2.40 32.9%

4 10% CELGC 0.667 73.3%
EPISODE 0.404 81.5%
SCAFFOLD (clipped) 0.438 80.7%
EPISODE (unclipped) 8.54 33.0%
FedAvg 1.89 34.3%
SCAFFOLD 5.61 34.3%

Table 3: Results for ablation study of EPISODE on SNLI dataset.

Following the protocol outlined in the main text, we train each one of these algorithms while varying
the communication interval I and the client data similarity parameter s. Specifically, we evaluate six
settings formed by first fixing s = 30% and varying I ∈ {2, 4, 8, 16}, then fixing I = 4 and varying
s ∈ {10%, 30%, 50%}. Note that the results of NaiveParallelClip are unaffected by I and s, since
NaiveParallelClip communicates at every iteration. For each of these six settings, we provide the
training loss and testing accuracy reached by each algorithm at the end of training. Final results for
all settings are given in Table 3, and training curves for the setting I = 4, s = 30% are shown in
Figure 7.

From these results, we can conclude that both components of EPISODE (periodic resampled correc-
tions and episodic clipping) contribute to EPISODE’s improved performance.

• Replacing periodic resampled corrections with SCAFFOLD-style corrections yields the
variant SCAFFOLD (clipped). In every setting, SCAFFOLD (clipped) performs slightly
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Figure 7: Training curves SNLI ablation study under the setting I = 4 and s = 30%. Note that the
training losses of EPISODE (unclipped), FedAvg, and SCAFFOLD are not visible, since they are
orders of magnitude larger than the other algorithms.

better than CELGC, but still worse than EPISODE. This corroborates the intuition that
SCAFFOLD-style corrections use slightly outdated information compared to that of
EPISODE, and this information lag caused worse performance in this ablation study.

• On the other hand, clipping is essential for EPISODE to avoid divergence. By removing
clipping from EPISODE, we obtain the variant EPISODE (unclipped), which fails to learn
entirely. EPISODE (unclipped) never reached a test accuracy higher than 35%, which is
barely higher than random guessing, since SNLI is a 3-way classification problem. In
summary, both periodic resampled corrections and episodic clipping contribute to the
improved performance of EPISODE over baselines.

In addition, FedAvg and SCAFFOLD show similar divergence behavior as EPISODE (unclipped).
None of these three algorithms employ any clipping or normalization in updates, and consequently
none of these algorithms are able to surpass random performance on SNLI. Finally, although NaivePar-
allelClip appears to be the best performing algorithm from this table, it requires more wall-clock time
than any other algorithms due to its frequent communication. For a comparison of the running time
results, see Table 2 in Appendix F.

H NEW EXPERIMENTS ON FEDERATED LEARNING BENCHMARK:
SENTIMENT140 DATASET

To evaluate EPISODE on a real-world federated dataset, we provide additional experiments on
the Sentiment140 benchmark from the LEAF benchmark (Caldas et al., 2018). Sentiment140 is a
sentiment classification problem on a dataset of tweets, where each tweet is labeled as positive or
negative. For this setting, we follow the experimental setup of Li et al. (2020b): training a 2-layer
LSTM network with 256 hidden units on the cross-entropy classification loss. We also follow their
data preprocessing steps to eliminate users with a small number of data points and split into training
and testing sets. We perform an additional step to simulate the cross-silo federated environment
(Kairouz et al., 2019) by partitioning the original Sentiment140 users into eight groups (i.e., eight
machines). To simulate heterogeneity between silos, we partition the users based on a non-i.i.d.
sampling scheme similar to that of our SNLI experiments. Specifically, given a silo similarity
parameter s, each silo is allocated s% of its users by uniform sampling, and (100− s)% of its users
from a pool of users which are sorted by the proportion of positive tweets in their local dataset. This
way, when s is small, different silos will have a very different proportion of positive/negative samples
in their respective datasets. We evaluate NaiveParallelClip, CELGC, and EPISODE in this cross-silo
environment with I = 4 and s ∈ {0, 10, 20}. We tuned the learning rate η, and the clipping parameter
γ with grid search over the values η ∈ {0.01, 0.03, 0.1, 0.3, 1.0} and γ ∈ {0.01, 0.03, 0.1, 0.3, 1.0}.
Results are plotted in Figures 8 and 9.
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Figure 8: Training curves for all Sentiment140 experiments over training steps.
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Figure 9: Training curves for all Sentiment140 experiments over running time.

Overall, EPISODE is able to nearly match the training loss and testing accuracy of NaiveParallelClip
while requiring significantly less running time, and the performance of EPISODE does not degrade
as the client data similarity s decreases. Figure 8 shows that, with respect to the number of training
steps, EPISODE remains competitive with NaiveParallelClip and outperforms CELGC. In particular,
the gap between EPISODE and CELGC grows as the client data similarity decreases, showing that
EPISODE can adapt to data heterogeneity. On the other hand, Figure 9 shows that, with a fixed time
budget, EPISODE is able to reach lower training loss and higher testing accuracy than both CELGC
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and NaiveParallelClip in all settings. This demonstrates the superior performance of EPISODE in
practical scenarios.
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