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ABSTRACT

Incremental Learning (IL) has long been an important research area in neural net-
works. Since IL requires retaining prior knowledge while learning tasks sequen-
tially, many studies have primarily focused on "Memory Stability’ to address catas-
trophic forgetting, while paying less attention to ’'Learning Plasticity’. However,
this perspective has recently been challenged. Recent studies have demonstrated
that the backbone exhibits sufficiently strong anti-forgetting capabilities, while the
classifier (LM Head) is the primary source of forgetting. Moreover, as research
on Learning Plasticity has gradually expanded, conflicting findings have emerged
regarding the relationship between forgetting and forward transfer. For this is-
sue, we propose a method to evaluate the forgetting and forwarding ability of the
backbone itself and compare it with the evaluation in the classifier. To this end,
we re-establish the famous metrics BWT (Backward Transfer) and FWT (Forward
Transfer) and analyze the correlation between the two. As a result, we find that
BWT and FWT are measured completely differently in Classifier, Probing Clas-
sifier, and Backbone, and this is the cause of the conflict in previous studies. In
addition, we observed that the considerable capability of the backbone is not ef-
fectively transferred to the classifier (LM Head). To address this, we propose "Just
LM-Head Tuning (JLT)’, a simple yet highly effective approach that leverages the
backbone trained through the IL process to optimize the classifier (LM Head). JLT
is compatible with all existing IL. methods and achieves state-of-the-art (SOTA)
performance while allowing the backbone to remain unfrozen and continue ac-
quiring knowledge. This effectiveness has been demonstrated not only on older
discriminative backbones such as BERT, but also on very recent generative back-
bones such as LLaMA3.2 and Qwen3 across five representative benchmarks.

1 INTRODUCTION

Advances in Artificial Intelligence have come from efforts to mimic the structure of the human brain
and way of thinking, both in the structure of the models and in how they learn (Simon, 1981} [Dreyfus
& Dreyfus| |1991). Humans acquire knowledge incrementally over time, preserve their memories,
and cultivate intellect. However, Pretrained Language Models (PLMs), which has been pre-trained
with huge parameters and data, has difficulty maintaining performance even in simple sequential
fine-tuning. This phenomenon is defined as catastrophic forgetting (Frenchl |1999;|Li et al.,|2019; |Hu
et al.| [2019; |[Kaushik et al., 2021} van de Ven et al.||2024), and various studies have been conducted
to overcome it (Kirkpatrick et al.,2017; Wang et al., [2023} [Yang et al., 2024b)).

Incremental Learning (IL) (Polikar et al. [2001; [Kemker & Kanan| 2017 |Parisi et al., 2019) is
a research area that has developed in the direction of preventing previous knowledge from being
forgotten while learning new tasks (Parisi et al.,2019). In this field, it has been considered difficult to
learn a new task while not forgetting previous memory, resulting in a trade-off relationship, known as
the Stability-Plasticity Dilemma (Abraham & Robins,2005; Mermillod et al.,2013; Wu et al., 2021}
Araujo et al.| 2022). However, existing IL. methods have focused only on overcoming catastrophic
forgetting rather than finding the optimal point in this dilemma. This is because standard evaluation
metrics mainly evaluate the average accuracy for each task, so maintaining previously learned tasks
can show better results even if the accuracy of the currently learned task decreases.
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Figure 1: Overview of evaluating BWT and FWT in discriminative backbone. Describes the process
of IL and evaluating up to the third task out of five tasks in the CIL scenario. While conducting IL,
BWT and FWT are measured by three ways: Classifier, Probing Classifier, and Backbone. In the
Generative backbone, Label token are used instead of [CLS] token, and LM Heads take the role of
Classifiers. Details are in the Appendix [A]

Recent studies have shown that the anti-forgetting ability of the backbone is underestimated, and
catastrophic forgetting occurs in the classifier, not the backbone (Davari et al.l [2022; [Zheng et al.,
2024; |2025a). According to the study, the backbone still maintained its performance when evalu-
ated as a separate classifier, and the cause of catastrophic forgetting was that the center of a class
already existing in the classifier lost its optimal position during the IL. Additionally, another study
introduced a new method for measuring Forward Transfer (FWT) and suggested that less forgetting
provides a good inductive bias for FWT (Chen et al.,|2023;Zheng et al., 2025b)). Then, "Is it possible
for the language model to acquire new knowledge while retaining previously learned knowledge?"

We posit that the disruption of existing discourse and the apparent conflicts among prior studies pri-
marily arise from two factors. First, the established evaluation metrics, Backward Transfer (BWT)
and FWT, have not functioned as originally intended. To address this limitation, we introduce re-
fined formulations of BWT and FWT that enable more accurate evaluation. Second, the performance
outcomes derived from the backbone and from the classifier (LM Head) exhibited substantial hetero-
geneity. This led to different studies arriving at divergent conclusions depending on the evaluation
point. To mitigate this issue, we propose a method for evaluating performance at the backbone and
conduct in-depth analysis of BWT and FWT across the classifier, probing classifier, and backbone.

Through the above in-depth and multifaceted analysis, we identified that all existing IL methods
fail to sufficiently transfer the strong representational capacity of the backbone to the classifier or
LM Head. To address this, we propose a simple yet effective method, Just LM-Head Tuning (JLT),
which re-trains only the classifier (LM Head), which is responsible for the model’s outputs, on top
of the already fully trained backbone. As a result, by applying our method to all existing types of IL
approaches (base, replay, knowledge distillation, variational autoencoder), we successfully achieved
the upper bound performance of joint fine-tuning. Remarkably, our approach even surpasses re-
cently proposed methods that freeze the backbone—aiming to avoid catastrophic forgetting but, as a
consequence, failing to acquire knowledge—while leaving the backbone unfrozen, thereby allowing
it to continue acquiring knowledge.

In this study, we validate our proposed method across eight datasets, employing four IL methods
with four Transformer encoder backbones and eight IL methods with six Transformer decoder back-
bones, under both Class-Incremental Learning (CIL) and Task-Incremental Learning (TIL) scenar-
ios. Based on these extensive experiments, we present the contributions of our research as follows.

* Proposing precise definitions of BWT and FWT consistent with their original intent
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* Introducing a method to evaluate performance directly at the backbone, independent of the
classifier (LM Head)

* Presenting a simple yet effective re-training method for the classifier (LM Head) that can
be applied to all IL methods

* Achieving state-of-the-art (SOTA) performance across all benchmarks by combining JLT
with existing basic IL methods.

2 PROBLEM SETUP AND METRICS

2.1 PROBLEM SETUP

IL is defined as follows: To learn a model fy : © — y € Y from tasks D = {Dy,Ds,--- ,Dr}
and task D; = {(x{,y})};=1 contains samples 2! € X, and y! € Y;. The most commonly studied
scenarios in IL are CIL and TIL. In CIL, Classes of different tasks do not overlap: Y1 NYs ---NYp =
(). On the other hand, TIL can overlap: Y1 NY5 - --N Yy # 0 and you can know which task the class
belongs to through task_id. In other words, TIL needs to predict the classes belonging to each task,
and CIL needs to predict the classes belonging to all tasks. The CIL scenario, where we evaluate
performance on the all task while training each task, is much more challenging than the TIL scenario
(Tao et al., [2023)), where we only need to maintain performance within each task. then, We discuss
the CIL scenario in the main paper, and the TIL scenario in Appendix

2.2 EVALUATION METRICS FOR IL

BWT (Lopez-Paz & Ranzato, 2017; [Ebrahimi et al.| 2018 2020) is one of the representative evalu-
ation metrics of IL from the perspective of ‘Memory Stability’, which measures how well the model
remembers the tasks it has learned. As shown in Equation ] it represents the difference between
the accuracy immediately after learning the task and the accuracy of the task after learning all tasks
(from 1 to the last task T').

T-1

BWT = —— Z (ar; — aii) 1

i=1
where T’ is the lask task, ar ; is the test accuracy of the i-th task of the model trained up to the T'-th
task, and a; ; is the test accuracy of the i-th task immediately after training the i-th task.

FWT is a metric that measures performance from the perspective of ‘Learning Plasticity’, but it has
not been used as much as BWT. The biggest reason is that in order to measure how well a new task
is learned, ‘a;—1 ;" and ‘a; ;” must be compared. But, before learning the n-th task, the classifier
cannot predict the n-th task at all. Therefore, existing studies assume this as random accuracy (Ke
et al., 2020; |Wotczyk et al., 2021; |[Ke & Liu} [2022; Wang et al., 2024) or adopt a method of using
a separate classifier to evaluate the performance on the n-th task in advance (Chen et al. (2023).
However, these methods depend on the capability of the separate classifier and does not directly
participate in IL, which is the main motivation for our research. In conclusion, we measure FWT
via Equation [2] which is most consistent with its original intention.

T

1
FWT = 71 Z (@i — ai—1,1) @)

=2

where T is the lask task, a; ; is the test accuracy of the i-th task immediately after learning the i-th
task, and a;_1 ; is the test accuracy of the ¢-th task of the model that learned up to the ¢ — 1-th task.

3 EXPERIMENTAL SETUP

3.1 TASK & BASELINE

We perform five widely used sentence-level tasks for NLP IL on seven datasets, as shown in
Table B] For text classification, we use three datasets, AGNews, DBPedia, and YaHoo, as
Topic3Datasets (Zhang et al., 2015). For intent classification, we use CLINC150 (Larson et al.,
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Figure 2: BWT and FWT evaluated on four discriminative backbones (five tasks, four IL methods)
and six generative backbones (five tasks, eight IL methods).

2019) and Banking77 (Casanueva et al., 2020). Finally, for relation extraction, we use FewRel (Han
et al.| 2018) and TACRED (Zhang et al.,[2017).

For discriminative backbone, we adopt four representative IL methods: Base, ER (Chaudhry et al.,
2019), DER++ (Buzzega et al.,[2020), and CLSER (Arani et al.| [2022). For generative backbone, we
compare a total of eight baselines: L2KD |Chuang et al.|(2020), LAMOL_g, LAMOL_t (Sun et al.,
2020), LAMOL_KD (Zheng et al.| [2024)), and PCLL (Zhao et al.| 2022), which were attempted in
the generative backbone and Base, DERpp, CLSER. We are aware of recent SOTA(State-Of-The-
Art) methods, such as SEQ* (Zheng et al.| [2024)) and KLDA (Momeni et al., 2025), that freeze their
backbones and do not update them. However, since these methods do not update their backbones,
their BWT and FWT values are both 0, and thus they are not included in the backbone evaluation.
For detailed descriptions of the baselines, please refer to the Appendix [C]

3.2 BACKBONE

We adopt both discriminative backbones (Encoder architecture backbones) and generative Back-
bones (Decoder architecture backbones). We adopt the following model to evaluate all baselines.
For discriminative backbones, we use BERT-base, BERT-large (Devlin et al.,|2019), RoBERTa-base,
and RoBERTa-large (Liu et al., |2019b)), and for generative backbones, we use Pythia (Biderman
et al.} |2023)) models based on GPT-NeoX (Black et al., [2022) in different sizes (70m, 160m, 410m)
and Qwen2-0.5B (Yang et al., [2024a)), Qwen2.5-0.5B (Qwen et al., [2025), Qwen3-0.6B (Yang et al.,
2025). Due to resource limitations, we cannot experiment with all baselines, but the following
models were tested using only Base method to evaluate them according to model type and size.
Pythia-1.4B, 2.8B, 6.9B with GPT as the base model. Llama3.2-1B, 3B, Llama3.1-8B, which use
Llama as the base model (Dubey et al., 2024)); and Qwen3-0.6B, 1.7B, 4B, 8B, which use Qwen as
the base model. More details on training and evaluation in Backbone are in the Appendix [A.T]

4 EVALUATION METHOD

4.1 BWT & FWT IN CLASSIFER

The most basic evaluation method is to evaluate the output of a classifier that is learned sequentially
along with the model. According to previous research, the classifier does not remember previous
tasks in sequential learning and predicts all inputs only as recently learned tasks (Hou et al., [2019
Wu et al) 2019; 2022} [Zheng et al., [2024). Therefore, the catastrophic forgetting occurs, where
the accuracy of the previous task measured by the classifier in the Base method (just sequentially
fine-tuning) all becomes 0. In Figure[Zal BWT of the Blue Point shows a large difference by each IL
method. It seems that the IL research succeeded in remembering the previous task, but it is unclear
whether this prevents forgetting of the backbone or the classifier. In evaluations at the classifier,
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Figure 3: Average and standard deviation of BWT, FWT, BWT-prob, FWT-prob, BWT-backbone,
FWT-backbone for each IL method in four discriminative backbones and five tasks.

FWT presents a more difficult problem. Since the classifier cannot predict unseen tasks, FWT
cannot be meaningfully measured there. As shown in Figure [2a] the Blue Point exhibits uniformly
high FWT values, exceeding 80 across all models and IL methods.

4.2 BWT & FWT IN PROBING CLASSIFER

In previous research, as a way to prove that the anti-forgetting ability of the backbone is under-
estimated, a separate classifier that does not participate in IL is used, as shown in Figure [T} This
measurement method demonstrates the robustness of the backbone’s anti-forgetting ability by train-
ing a new classifier at every single task. This approach avoids the bias and forgetting of the existing
classifier (Hou et al.l 2019; Zhou et al., 2022} Zheng et al.l |2024). However, ironically, this relies
heavily on the performance of the new classifier, which does not measure forgetting correctly.

In Figure2al the BWT of the Green shows a value close to O for all models and IL methods. This is
because regardless of how many tasks the backbone learned, it always maintained high performance
for all tasks due to the outstanding ability of the Probing Classifier. However, according to a pre-
vious study (Zhou & Srikumar] 2021b) that analyzed the backbone representation and the classifier
separately, the classifier can achieve excellent performance even if the backbone representation is
somewhat insufficient, which implies that there is a limit to evaluating the backbone itself.

As presented in Figure [IL FWT through a probing classifier freezes the backbone after each task
is learned and then trains the probing classifier across all tasks. Therefore, it becomes possible
to predict the entire class with the features of the backbone that learned each task, and it can be
evaluated according to the definition of FWT in Section [2.2] However, in this case, it shows high
performance without discrimination for all tasks by simply learning about one task. In the probing
classifier, BWT and FWT seem to have no backward and forward transfer during the IL process.

4.3 BWT & FWT IN BACKBONE

To overcome the limitations of existing evaluation methods, we newly evaluate the BWT and FWT
of the backbone using a very traditional clustering algorithm. Simply, as presented in Figure |1} we
measure BWT-backbone and FWT-backbone using the clustering algorithm for the representations
of the backbone. We propose this as an ‘Auxiliary Evaluation’ to directly measure the BWT and
FWT of the backbone, which are otherwise difficult to assess due to catastrophic forgetting and
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Figure 4: Average and standard deviation of BWT, FWT, BWT-prob, FWT-prob, BWT-backbone,
FWT-backbone for each IL. method in six generative backbones and five tasks.

strong bias in the classifier. There has been a recent attempt to use the diversity of backbone features
as a means of ‘Auxiliary Evaluation’ of IL (Chen et al.|[2023)). Many studies have already attempted
to analyze using backbone’s representations to avoid dependence on or bias in classifiers, and have
shown performance that is not significantly inferior to that of using a classifier (Liu et al., 2019a;
Zhou & Srikumar, [2021ab).

4.3.1 CLUSTERING ALGORITHM & EVALUATION METRICS

To evaluate the features extracted from the backbone, we employed five representative clustering al-
gorithms: K-means (MacQueen, |1967), Gaussian Mixture Model (Dempster et al.l |1977), Spectral
Clustering (Ng et al., [2001), Agglomerative Clustering (Johnson, [1967), and Deep Clustering (Xie
et al.,[2016)). While all algorithms were evaluated, our main analysis and results are based on Spec-
tral Clustering. Further details are provided in Appendix

For the evaluation, we cluster the backbone features by ‘number of classes’, map the results to actual
labels, and evaluate them with three metrics: ACC (Accuracy), ARI (Adjusted Rand Index), and
NMI (Normalized Mutual Information) (Hubert & Arabiel 1985} |Strehl & Ghoshl 2002; |Vinh et al.|
2009). In TIL scenario, where only a small number of classes in the task need to be evaluated, Acc,
which simply maps the clustering results to the actual labels, is sufficient for evaluation. However,
in CIL scenario where many classes must be classified, the reliability of Acc is lowered, and it is
evaluated through ARI and NMI, which are metrics to complement this (Zhang et al.}|2019). Details
on the evaluation metrics are in the Appendix

5 EVALUATION RESULTS

5.1 DISCRIMINATIVE BACKBONE

In Figure[3] BWT-backbone shows a little bit of forgetting, which is consistent with previous studies
that the anti-forgetting ability of backbone is robust (Zheng et al.,|2024). BWT-backbone is clearly
different from BWT, which was considered to forget all previous tasks due to the classifier, and also
different from BWT-prob, which measured that forgetting of the backbone did not occur at all, even
at the base method. Moreover, FWT evaluation shows a more clear difference from the two evalua-
tion methods. While all FWT values exceed 80 and FWT-prob remains close to 0, FWT-backbone
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| Scenario:CIL | Discriminative Backbone | Generative Backbone

| Metric | BERT-b BERT-l RoBERTa-b RoBERTa-l | Pythia-70m  Pythia-160m  Pythia-410m  Qwen2-0.5B  Qwen2.5-0.5B  Qwen3-0.6B
Classifier Acc 04272 0.1398 0.3807 0.2429 -0.5039 -0.3631 -0.3738 -0.5201 -0.3624 -0.3790
Prob Classifier Acc 0.6478  0.1130 0.2468 0.1079 -0.4180 -0.4845 -0.6243 -0.4312 -0.4823 -0.6187
Acc -0.6281  -0.5621 -0.4811 -0.5233 -0.8463 -0.8721 -0.8513 -0.8520 -0.8698 -0.8576
K-means ARI -0.6638  -0.5132 -0.5314 -0.5419 -0.7992 -0.8103 -0.8192 -0.8021 -0.8135 -0.8250
NMI -0.6798  -0.6120 -0.5822 -0.6788 -0.8193 -0.9147 -0.8921 -0.8222 -0.9080 -0.8953
Acc -0.5183  -0.5712 -0.4956 -0.4278 -0.7689 -0.7493 -0.7742 -0.7705 -0.7512 -0.7790
GMM ARI -0.6762  -0.6888 -0.6232 -0.5145 -0.8101 -0.8018 -0.8439 -0.8124 -0.8040 -0.8471
NMI -0.6886  -0.6982 -0.6123 -0.6121 -0.7914 -0.8327 -0.8431 -0.7933 -0.8354 -0.8460
Acc -0.6918  -0.6128 -0.6157 -0.5987 -0.8102 -0.8333 -0.8688 -0.8118 -0.8305 -0.8650
Spectral ARI -0.6841  -0.6233 -0.6822 -0.6522 -0.8239 -0.8484 -0.8129 -0.8260 -0.8452 -0.8154
NMI -0.7213  -0.6434 -0.6557 -0.6857 -0.8231 -0.8923 -0.8725 -0.8257 -0.8894 -0.8699
Acc -0.4744  -0.5114 -0.6144 -0.4566 -0.7718 -0.7466 -0.6999 -0.7740 -0.7481 -0.7020
Agglomerative ARI -0.7413  -0.6912 -0.5989 -0.7362 -0.8654 -0.8132 -0.8948 -0.8623 -0.8180 -0.8905
NMI -0.9091  -0.7122 -0.7321 -0.7487 -0.8835 -0.9263 -0.8726 -0.8810 -0.9230 -0.8752
Acc -0.5002  -0.4872 -0.6166 -0.5871 -0.7943 -0.8221 -0.7849 -0.7971 -0.8195 -0.8802
Deep Clustering ARI -0.4748  -0.5237 -0.5891 -0.4824 -0.8412 -0.8109 -0.8019 -0.8390 -0.8137 -0.8065
NMI -0.6258  -0.6413 -0.6709 -0.6235 -0.8741 -0.8323 -0.8824 -0.8720 -0.8350 -0.8922

Table 1: Pearson correlation coefficient between BWT and FWT for each metric in CIL scenario.

(a) Pythia (b) Llama3 (c) Qwen3

Figure 5: BWT-Backbone, FWT-Backbone, BWT-Backbone + FWT-Backbone results in Pythia,
Llama, Qwen, measured in five benchmarks, only Base method.

ranges between 0 and 25, indicating that the backbone retains a certain level of performance for
the next task, which further improves after training. In Table [T, BWT-backbone and FWT-backbone
show a strong negative pearson correlation, indicating a trade-off relationship of forwarding as much
as forgetting, which is in line with the Stability-Plasticity Dilemma. On the other hand, BWT and
FWT, and BWT-prob and FWT-prob even show positive correlation rather than negative.

5.2 GENERATIVE BACKBONE

In Figure [2b} f] BWT, BWT-prob, and BWT-backbone all show relatively wider ranges than the
discriminative backbone. Even in this case, BWT showed results in which forgetting occurred sig-
nificantly, with many experiments scoring below -80. On the other hand, BWT-backbone shows
that the anti-forgetting ability of the backbone is much better than that of LM head, just like in
the discriminative backbone. However, in Table |I|, all three evaluation methods in the generative
backbone have stronger negative correlations than in the discriminative backbone. Among them,
BWT-backbone and FWT-backbone exhibit a strong negative correlation, with coefficients even be-
low -0.9. The results of the Spearman correlation are in Table [7]] From experimental results, we
draw the following conclusions:

* Unlike the classifier, which suffers from severe catastrophic forgetting, the backbone ex-
hibits strong anti-forgetting capability even under the base method.

» The Stability—Plasticity Dilemma remains strongly valid at the backbone, but not at the
classifier (LM head).

* The capability of the backbone is not sufficiently transferred to the classifier (LM Head).
5.3 MODEL SIZE & CAPACITY

In Fi gure@ we measured BWT in backbone, FWT in backbone, BWT in backbone + FWT in back-
bone using the base method in three groups based on representative LLMs (GPT(Pythia), Llama, and
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Tacred Banking77 Clinc150 Fewrel Topic3

Model  IL Method A, BWT FWT| A, BWT FWT| A, BWT FWT| A, BWT FWT| A, BWT FWT
Joint Fine-tuning | 98.99 - - 9566 - - 9633 - - 9535 - - 9550 - -

SEQ* 4434 000 000 |67.12 000 000 |8451 000 000 |61.99 000 000 |70.56 000 0.00

KLDA-E 9720 0.00 0.00 [93.03 000 000 |96.62 000 000 |9455 000 000 |9453 000 0.00
GPraNEOX B 11.97 9126 91.28| 7.56 -75.42 68.86 | 4.67 -89.69 87.62 | 6.17 -80.57 73.59 |20.53 -91.02 93.08
Pyhia) | L2KD 24.68 7927 9439|5232 -35.08 85.72|26.67 -73.17 9474 |30.18 -53.23 74.57|58.17 1027 40.25
Zov LAMOLKD 3281 -69.55 93.08 |49.48 5492 97.08 | 42.09 -60.48 97.50 |27.70 -75.60 95.43 | 50.08 -54.98 92.97
PCLL 2430 6529 7437|4591 -56.97 84.41|44.16 -57.02 91.81 |29.79 -68.41 $2.84|55.80 -42.23 92.66

Base + JLT 9893 -0.55 1138|7507 -19.92 84.58 | 72.47 -2550 9229|5131 -36.10 77.50 | 72.21 -14.80 79.92

L2KD + JLT 98.04 025 492 |9523 299 88.56|9620 -338 9452|9518 -1.04 9352|9391 -0.16 92.95
LAMOL KD +JLT [ 9824 025 959 |9503 -333 8898|9638 -2.95 9340|9573 -0.54 9282|9400 -0.08 92.99

PCLL + JLT 9670 -0.58 1029|9331 -3.60 87.48|9627 -329 91.36|9470 -1.06 92.15|9346 -026 9351

Joint Fine-tuning | 98.33 - - 9626 - - |9733 - - 9565 - - 19550 - -

SEQ* 4582 000 0.00 |67.48 000 000 |8372 000 000 |62.13 000 000 |71.64 000 0.00

KLDA-E 9736 0.00 000 [9327 000 000 |9671 0.00 000 |9468 000 000 |94.59 000 0.00

Base 1223 9160 92.01 | 11.56 91.10 89.28 | 589 9321 92.45| 842 -8139 77.03 | 19.50 -88.74 97.84
LLaMA32 L2KD 31.83 -68.77 8120|5156 -3246 7652|2644 -66.62 87.88 3275 -54.67 7849 |63.17 1727 38.09
1B LAMOL_KD 3275 62.04 86.04 | 45.85 6491 87.01|44.80 -54.05 92.93|29.96 -71.79 89.10 | 48.10 -56.19 92.72
PCLL 318 -77.22 9348 |49.03 -67.69 87.40 | 40.69 -61.93 9345|2846 -74.38 93.88 |48.84 -5542 92.89

Base + JLT 98.63 -0.74 21.56|79.47 -17.08 87.05|7491 2333 9345|5129 -36.30 79.57 |73.06 -13.23 79.85

L2KD + JLT 97.06 -1.76 17.26|96.10 220 87.46 | 9636 -2.95 9502|9535 -1.00 9438|9382 -0.16 92.79
LAMOL_KD +JLT | 97.15 -0.83 844 |9536 -2.42 84.13|87.84 -8.10 89.05|9472 -099 92.16|90.68 -1.03 89.74

PCLL + JLT 9630 -0.32 18.01|94.32 2.54 87.33|9629 -329 9143|9542 -097 9494|9224 010 91.98

Joint Fine-tuning 98.66 - - 93.36 - - 96.66 - - 95.65 - - 96.50 - -

SEQ* 4409 000 000 |66.84 000 000 |8291 000 000 |60.77 000 000 |7041 000 0.00

KLDA-E 9694 000 000 [92.81 000 000 |9625 0.00 000 |9433 000 000 | 9421 000 0.00
Base 1130 -90.94 90.14 | 1273 9239 91.44 | 6.60 -90.57 90.64 | 698 -79.11 73.01 | 19.99 -89.91 89.94

Qwen3  L2KD 34.67 -67.41 90.38 | 5578 2599 75.11|2731 -63.83 86.02 3290 -58.13 7379|6232 9.90 d44.41
0.6B LAMOL,_KD 4220 -59.61 94.17 | 52.44 5231 97.42 | 4271 -59.83 93.07 |26.45 -79.12 9530 | 42.09 -60.48 93.50
PCLL 4940 -5533 93.50 | 52.99 -50.68 97.78 | 4327 -59.81 90.10 |31.29 -74.50 96.14 | 49.40 -55.33 92.50
Base + JLT 9749 -173 1576 | 7526 2258 86.36 | 77.24 2131 93.24 | 5255 -35.27 78.87 |71.03 -18.32 8220
L2KD + JLT 9821 -0.15 10.69 |94.93 -3.67 8640|9527 -440 93.12|9558 -1.15 9498 |92.16 -121 9132
LAMOL_KD +JLT | 97.88 -0.53 13.95|92.08 -6.82 84.89 9047 -9.50 92.07|9501 -1.87 94.67|91.47 -1.53 9021

PCLL + JLT 9623 -0.07 17.69|92.66 -5.00 87.93|9522 -436 9236|9496 -1.13 9655 |89.56 -1.75 90.11

Table 2: Experimental results of combining representative types of IL methods with JLT on three
generative models. Joint Fine-tuning denotes fine-tuning on all tasks simultaneously. A; is defined
according to Equation BWT according to Equation |1} and FWT according to Equation

Qwen). If we consider BWT+FWT-backbone as the capacity of the model, the capacity increases
as the size increases in the same model series. In particular, as the model size increases, BWT-
backbone decreases, indicating a positive relationship between the model size and anti-forgetting
ability. On the other hand, the FWT-backbone were nearly constant across all models and sizes.
Unlike the IL methods that showed no difference, we found that within the same family of models,
FWT remained constant while BWT improved as the size increased. The constant FWT even with
larger model sizes should be considered when designing future IL methods.

6 JusT LM-HEAD TUNING

We propose a simple yet intuitive approach to ensure that the sufficient capability of the backbone
can be effectively reflected in the final output through the LM head. Specifically, we introduce Just
LM-Head Tuning (JLT), in which the LM head is lightly trained on the backbone’s representations
using just the same training data after any IL method has been applied. This method does not
require additional architectural components such as adapters, encoders, or classifiers, nor does it
enforce parameter freezing of the backbone to artificially restrict updates. After training the model
with each IL method, we fine-tune only the LM Head parameters 1 € RY ¥ based on the backbone
outputs, where V' is the vocabulary size and d is the hidden dimension. At the n-th task, the dataset
is defined as (as defined in Section[2.1))

D, = {(w:wy:z)}fvznlﬂ x% € Xy, y:z €y,

with disjoint label sets Y71, . . ., Y7 in the CIL setting (Y1 NY2N- - -NY7 = 0). Let V1., = Y1U- - -UY,,
denote the union of all classes observed so far.

For each input z¢,, the backbone produces a representation

hi, = fo(xh,) € RY,
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and the LM Head maps it to vocabulary logits
2l =Whi, p!, = softmax(z?).

Each class y € )., is associated with a representative token 7(y) € {1,...,V}, and the training
objective at task n is

1o
['n = —Ni Zlng?n [T(y:L)an
oi=1

which requires discriminating among all classes in ));.,. All experiments were conducted three
times for each IL method, and the average values of all metrics are presented. The implementation
details of JLT can be found in the Appendix [F

We integrated JLT with representative IL methods, namely Base, L2KD (old sample replay),
LAMOL_KD (Knowledge Distillation), and PCLL (variational autoencoder). Since JLT requires
tuning only the LM Head on top of the backbone after the entire process, it exhibits broad applica-
bility and scalability across all IL methods. We present in Table 2] the experimental results obtained
by combining the four representative IL methods with three widely used open-source LLMs archi-
tectures (GPT, LLaMA, and Qwen) across all benchmarks. Remarkably, substantial performance
improvements were observed across all benchmarks. In particular, even in the case of the sim-
ple Base + JLT, which merely performs sequential fine-tuning, significant performance gains were
achieved on all models and benchmarks. This finding is consistent with prior work and the results
shown in Figure The backbone already demonstrated strong anti-forgetting ability, and the phe-
nomenon of catastrophic forgetting, long considered to imply total information loss, was revealed to
originate not from the backbone itself but rather from the LM Head during the learning process.

A closer observation reveals that, for the Tacred benchmark, all models already exhibited sufficient
performance on tasks that had not been explicitly trained. This is reflected in the FWT values of the
methods combined with JLT, which remained relatively small due to the models’ already strong per-
formance. In contrast, for the other four benchmarks, large FWT values were observed, indicating
that the models initially possessed little to no competence on those tasks. While the conventional
FWT metric could not capture such phenomena, our formulation in Equation [2|enabled us to mea-
sure and present performance levels before learning the task. These experimental results suggest
that LLMs, having been pretrained on massive amounts of data, may already possess substantial
capability on certain benchmarks. Notably, on the Tacred benchmark, all methods combined with
JLT achieved an A, score exceeding 96, with BWT values approaching zero.

When examining the differences across the four methods, only Base + JLT exhibited a certain degree
of information loss. This result is consistent with the findings in Figure On average, the Base
method recorded a BWT of around -20, whereas L2KD, LAMOL_KD, and PCLL achieved BWT
values close to 0. These results closely align with the outcomes in the Table [2] for the methods
with JLT applied. This demonstrates that the approach we proposed in Section §4.3] for evaluating
BWT and FWT in the backbone is highly effective. Except for Base + JLT, the methods applying
JLT to L2KD, LAMOL_KD, and PCLL all achieved performance very close to Joint Fine-tuning,
which is regarded as the upper bound. This confirms the effectiveness of applying replay, knowledge
distillation, and autoencoder techniques to IL research. Furthermore, it shows that JLT can exert a
strong effect across all types of IL methods.

7 CONCLUSION

We started our research motivated by the fact that most studies in IL only evaluate performance
based on average accuracy at the classifier. Even existing FWT evaluations did not reflect the in-
tended purpose of FWT, leading to conflicting findings regarding the Stability—Plasticity Dilemma.
Through our backbone evaluation method, we were able to measure FWT in accordance with its
intended purpose, and also measure BWT while avoiding the catastrophic forgetting effects of the
classifier. With this, we resolved the conflicts among prior studies and theories, and further re-
vealed the backbone’s inherent anti-forgetting and forward transfer capabilities. Based on these
observations, we propose Just LM-Head Tuning (JLT), a method designed to effectively transfer the
sufficient capability of the backbone to the LM Head. JLT is compatible with all existing IL. methods
while achieving state-of-the-art (SOTA) performance. We believe that our findings can be broadly
applied to future IL research, from the design of new methods to the evaluation process.
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LIMITATIONS

We use Clustering Algorithm to measure forgetting and forwarding in backbone, but we know that
it may not be as complete as evaluating through classifier. Our study is not to propose a perfect new
evaluation method, but to observe the change in IL process of backbone. Incremental learning tasks
that require sequential fine-tuning of models require a lot of resources, which limits experiments with
larger generative models. We tried to use Qwen3-32B |Yang et al.|(2025), Llama3-70B Dubey et al.
(2024), etc. as generative models, but there were resource limitations and difficulties in applying
each IL method equally. Large models larger than 8B must be learned using PEFT Houlsby et al.
(2019); |[Hu et al.| (2021); [Han et al.| (2024} due to resource limitations, but in this case, there were
IL methods (L2KD, LAMOL, LAMOL_KD) that did not work. Our resources were limited to
training models less than 10B, and thus it was impossible to measure BWT and FWT according
to differences in model sizes. We measured the BWT, FWT of the backbone and experimentally
showed that BWT+FWT is almost constant, but we did not propose an IL method to solve this, and
proposing a new IL method will be a future study.

A  EXPERIMENTAL DETAILS

A.1 BACKBONE DETAILS

For the discriminative backbone, learning and evaluation are performed using the [CLS] token fea-
tures of the last hidden states (Ethayarajh, 2019). At this time, the classifier is a linear layer that uses
the output dimension of the backbone as the input dimension and the number of classes for each
task as the output dimension. In the TIL task, the task is learned and evaluated from the classifier
as is, and in the CIL task, the logits of the classifier for each task are concatenated and used. To use
the generative backbone in sentence-level tasks, we use two types of prompts depending on the task
type. For text and intent classification, we use the following prompt:

"Input sentence: {text}\n The Label: {label} {eos token}"
For relation extraction, we use the following prompt:

"Input sentence: {text}\n The relationship between {head entity}
and {tail entity} is {label}{eos token}"

With the above prompts, we use causal language modeling loss to optimize labeleos token (Zheng
et al.,[2024). However, depending on the IL method, we additionally use Cross-Entropy loss, KL-
Divergence loss, MSE loss, etc.

A.2 IMPLEMENTATION DETAILS

We use the following settings for the five tasks. For Topic3Datasets, we applied a max len of 256
and 3 epochs for each incremental task, for FewRel and TACRED, we applied a max len of 128
and 5 epochs, and for CLINC150 and Banking77, we applied a max len of 64 and 5 epochs. We
used a learning rate of 1 x 10~ for each backbone and 1 x 103 for the classifier with the AdamW
optimizer (Kinga et al.,|2015). When fine-tuning a probing classifier with the frozen features of the
backbone, we train for 20 epochs, and all classifiers use the logit of the linear layer.

We also used four NVIDIA RTX 3080 (VRAM 24G) and eight NVIDIA A5000 (VRAM 24G) for
our experiments. All experiments were performed three times, and the average values were used for
visualization. Other than that, we used the basic parameter settings recommended in each study for
the incremental learning methods.

A.3 EVALUATION METRICS

A.3.1 AVERAGE ACCURACY

The most basic method to evaluate Incremental Learning is to measure the performance of all tasks
after learning the final task. Accordingly, Average Accuracy has been recognized as the best IL
method, and has been used as a representative metric in almost all studies. However, when learning
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Task Dataset #Classes # Tasks # CIL Classes # TIL Classes # Training Instances # Test Instances
Text Classification  Topic3Datasets 25 5 25 5 75000 46000
Intent Classification CLINC150 150 15 150 10 15000 4500
Banking77 77 7 77 11 7191 2800
Relation Extraction FewRel 80 8 80 10 33600 11200
TACRED 40 8 40 5 5909 1259

Table 3: The statistics on selected sentence-level datasets for IL. Tasks is the number of incremental
tasks for each dataset, CIL Classes is the number of test set classes in the CIL scenario, and TIL
Classes is the number of test set classes evaluated for each task in the TIL scenario.

and evaluating a total of NV tasks, it is much more advantageous to maintain the performance of N —1
previous tasks than the performance of the current 1 task, so there is an aspect that IL. methods focus
excessively on anti-forgetting. Average Accuracy in task ¢ is defined as follows:

1 t
-At = E ; Qt g (3)

where a; ; represents the accuracy of the model incrementally learned from task 1 to ¢ on the test set
of task i.

A.3.2 AVERAGE INCREMENTAL ACCURACY

Average Incremental Accuracy calculates the average of Average Accuracy from 1 to the last T’
task. This metric can prevent performance from being evaluated only by A, but overall, it shows
a similar trend to Average Accuracy. Since the previous task accuracy still has a high proportion,
maintaining the accuracy of the previous task is good for the overall result.

_ 1 T
A=2>" A “
t=1

el

B CLUSTERING ALGORITHM DETAILS

B.1 CLUSTERING EVALUATION METRICS

ACC (Accuracy)

A contingency matrix is created to map the results from each clustering algorithm to the actual
labels. The Hungarian algorithm is used on the contingency matrix to find the optimal mapping with
the actual labels and evaluate the performance Hubert & Arabie|(1985)).

ARI (Adjusted Rand Index)

ARI measures the agreement between the clustering results and the actual labels, and compensates
for the random prediction results. ARI is calculated based on pairs of data points. It compares the
correspondence between two clusterings for each pair of data points. It has a scale between -1 and 1,
where 1 indicates perfect agreement, O indicates agreement at the level of random clustering, and -1
indicates agreement lower than expected (random clustering) (Vinh et al.,|2009; Zhang et al.,[2019).

_ 2.(TP-TN—FN-FP)
ARI = (TP+FN)(EN+TN)+(IP+FP)- (FP+TN) ©

TP(True Positive): The number of sample pairs that belong to the same cluster in both clusterings.
TN(True Negative): The number of sample pairs that belong to different clusters in both clusterings.

FP(False Positive): The number of sample pairs that belong to the same cluster in one clustering,
but to different clusters in the other clustering.

FN(False Negative): The number of sample pairs that belong to different clusters in one clustering,
but to the same cluster in the other clustering.
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Scenario:CIL \ Task
Clustering Algorithm \ Metric \ Tacred Banking77 Clinc150 Fewrel Topic3
Acc | 52.04+£1.5 6523+20 7837+£1.8 6229+22 6650+1.7
K-means ARI | 549013 71.68+1.7 8391+£20 66.18+15 7455+1.8

NMI | 71.71+14 8055+19 8732+21 7791+2.0 8435+1.6

Acc | 52.06+£1.6 657718 7890+£20 6144+21 61.70+x1.7
GMM ARI | 57.62+15 7476+19 81.73+2.1 6429+1.8 7353+1.6
NMI | 71.15+13 83.75+2.0 8840+x22 7690+19 821615

Acc | 5982+14 6792+20 80.02+1.7 60.18+19 61.80+1.8
Spectral ARI | 5540+15 7218+1.8 83.18+x2.1 6040+£2.0 7623+1.6
NMI | 70.17+£1.6 8295+19 8947+22 7573+2.0 84.68+1.7

Acc | 63.82+1.7 708118 79.69+2.1 639419 6728+1.6
Agglomerative ARI | 61.30+14 755720 8434+22 6795+1.8 7796+1.7
NMI | 7220+15 85.12+2.1 90.57+£23 7855+2.0 8456+1.38

Acc | 5958+1.6 673619 8045+2.1 63.18+x1.7 61.44+1.8
Deep_Clustering ARI | 61.62+x15 7427+18 84.02+20 6650+1.6 73.54+19
NMI | 70.51+14 8344+20 88.79+23 7811+2.1 83.66+1.7

Classifier | Ap [ 49.19+£13 5279+18 66.69+20 4254+19 732316

Table 4: Results of the ER method in the ROBERTa-base model. A is the average accuracy by the
classifier for the test of all tasks after incremental learning up to the last 7'-th task.

NMI (Normalized Mutual Information)

NMI evaluates the mutual information between the mapped cluster labels and actual labels, nor-
malized to account for class imbalances and size differences. Since NMI is relatively insensitive
to imbalances, it is the most consistent metric for evaluating high-dimensional models and multi-
class scenarios. NMI range from O to 1, with values closer to 1 indicating high mutual dependency
between labels.

_ . P(u,v)
10.V)= 5 3 Pl tog (s ) ©
H(U) = - P(u)-log P(u) )
uelU
NMI(U,V) = _1wv) (8)
H(U)H(V)

I(U, V) is the mutual information between the cluster set U and the true label set V. H(U) is the
entropy for each cluster and label. NMI(U, V) is the mutual information I(U, V') normalized by
the geometric mean of the entropies of U and V.

B.2 EXPERIMENT RESULTS BY CLUSTERING ALGORITHM

We evaluated all models and IL methods with five clustering algorithms and three metrics. Most
clustering algorithms recorded similar performance. For comparison with the commonly mea-
sured Average Accuracy by the classifier, we present the results of experiments with ER method
on RoBERTa-base model as a representative of discriminative backbone in Table 4] Similarly, we
present the results of experiments with LAMOL_g method on Pythia-410m model as a representa-
tive of generative backbone in Table 5] A7 is the performance on the last task 7" in the Average

Accuracy presented in Appendix

In the CIL scenario, since forgetting occurs in the previous classifiers, the results measured by
Clustering are better than A7 in terms of NMI, ARI, and Acc. In particular, Acc outperforms Ap
for four datasets (Tacred, Banking77, Clinc150, and Fewrel) with more than seven incremental tasks.
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Scenario:CIL \ Task
Clustering Algorithm \ Metric \ Tacred Banking77 Clinc150 Fewrel Topic3
Acc | 2736+£32 67.13+28 7139+£45 5723+3.1 63.23+£24
K-means ARI | 2466+£2.6 7123+3.1 7624+42 62.12+29 6822+27

NMI | 45.67+23 8193+3.0 8525+38 7433+45 8091+3.1

Acc | 27.77+£2.8 6538+34 71.89+£3.7 5836+42 592725
GMM ARI | 2397+£3.1 7046+£2.6 77.82+4.1 6199+37 7223+3.0
NMI | 46.03+34 8223+29 8491+33 73.10+44 81.85+35

Acc | 28.74+4.1 6640+25 71.44+£36 55.13+39 4880+28
Spectral ARI | 2146+37 6945+27 76.61+x44 56.08+43 73.90+3.1
NMI | 4638 +£32 8242+28 86.06+x4.1 7296+35 8448+27

Acc | 2830+3.1 68.12+26 72.16+£3.8 61.79+3.7 76.09+£39
Agglomerative ARI | 24.00+27 7144+35 78.11+33 6540+£3.1 80.59+42
NMI | 46.99+£29 8386+24 87.65+40 7631+41 832235

Acc | 28.12+2.8 6632+3.6 7T1.23+42 56.12+35 6542+43
Deep_Clustering ARI | 2434+33 6923+34 7724+37 63.778+4.1 71.10+3.6
NMI | 4623 +£2.6 8323+35 86.11+39 7460+42 82.12+33

Classifier | Ap | 2895£32 51.95+43 3438+3.1 23.09+42 74.65+34

Table 5: Results of the LAMOL_g method in the Pythia-410m model. A7 is the average accuracy
by the classifier for the test of all tasks after incremental learning up to the last 7'-th task.

On the other hand, in Topic3Dataset with only five incremental tasks, A7 outperforms Acc of all
clustering algorithms. This means that the more incremental tasks there are, the more forgetting in
the classifier degrades the average performance, showing how biased it is to measure performance
based on the classifier.

Our goal in this study is not to determine which clustering algorithm is best or which metric is the
best. Therefore, we used the Spectral Algorithm, which showed average performance, for visualiza-
tion and analysis in the main paper, and all the measurement results are presented in Appendix [E]

C INCREMENTAL LEARNING METHODS

We measured BWT and FWT for representative Incremental Learning methods. Aside from a brief
explanation, we adopted detailed experimental settings widely used in prior studies.

Base - Sequentially fine-tunes tasks. Typically, when evaluating performance through a classifier, it
is known to predict only the classes of the most recently trained task for all tasks.

ER(Chaudhry et al) 2019) - A classical anti-forgetting technique that involves incorporating old
samples. When learning a new task, a portion of old samples is included in the training process. In
this study, we include one old sample per class during training.

DER++(Buzzega et al.|[2020) - DER++ extends ER by utilizing Knowledge Distillation through the
MSE loss between a teacher model and a student model, rather than simply including old samples in
training. Although originally developed for the computer vision domain, we evaluated this method
with both discriminative and generative backbones.

CLSER(Arani et al., 2022). CLS-ER builds on ER and DER++ by employing a dual-memory ex-
perience replay mechanism with fast and slow models. Like DER++, this method was initially used
in the computer vision domain, but we applied it to both discriminative and generative backbones.

L2KD(Chuang et al.} 2020) - L2KD is a method based on LAMOL, incorporating Knowledge Dis-
tillation. The teacher model learns the respective tasks first.

LAMOL_g & LAMOL_t(Sun et al., 2020) LAMOL is a method designed for generative models.
When training on a new task, the model generates pseudo-samples of previous tasks and learns
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Figure 6: Pearson Correlation coefficients of three BWT, FWT measurement methods of the
RoBERTa-base model in the TIL scenario. Four IL methods were applied: Base, ER, DER++,
and CLSER.

them together with the new task. The key difference is that LAMOL_g does not use the gen_token,
whereas LAMOL_t does.

LAMOL_KD(Zheng et al.|[2024) - Similar to L2KD, but with the distinction that the teacher model
learns all previous tasks and transfers the knowledge via Knowledge Distillation.

PCLL(Zhao et al.,|2022)) - Based on LAMOL, PCLL introduces the use of Variational AutoEncoders
(VAESs) to perform Knowledge Distillation.

SEQ#*(Zheng et al.,2024) - SEQ* maximizes the backbone’s anti-forgetting capability and prevents
bias or forgetting in the classifier. After warming up (fine-tuning) the backbone with the first task, it
is frozen, and only the classifier is newly trained for all subsequent tasks using the frozen backbone’s
outputs. Since the backbone remains fixed after the first task, its results do not change. While this
method prevents forgetting by fixing the backbone, it also means that the backbone does not undergo
the backward process of loss computation, leaving it unable to learn new knowledge or forget prior
knowledge. As a result, the BWT-backbone and FWT-backbone are always 0.

KLDA (Momeni et al.,[2025)) - KLDA projects input data into a high-dimensional feature space using
a kernel function and then performs Linear Discriminant Analysis (LDA) to maximize class sepa-
rability. This approach effectively captures non-linear decision boundaries and is used in continual
learning to enhance class distinction based on embeddings extracted from foundation models.

D RESULTS IN THE TIL SCENARIO

We compare the results of three measurement methods for BWT and FWT using four Incremental
Learning methods across four discriminative backbones, as in the CIL scenario. As shown in Figure
[l the BWT-backbone and FWT-backbone measurement consistently recorded the highest negative
correlation across all four backbones. Even in the TIL scenario, where separate classifiers are used
for each task, the stability-plasticity dilemma appeared more prominently in the backbone than in
the linear layer classifier.

Observing the x-axis in Figure [/, BWT values are close to 0 in the TIL scenario, as separate clas-
sifiers are used for each task. However, prior research (Zhou & Srikumar, |2021b) has suggested
that classifiers can account for much of the performance, even when the model’s representation
is relatively weak. In comparison, BWT-backbone demonstrates a much broader range of values,
revealing differences in model performance and the varying effectiveness of incremental learning
methods that were obscured by classifier performance. BWT-prob, as in the CIL scenario, measures
values close to 0 for all models and methods due to the use of separate classifiers.

On the y-axis of Figure [/, the FWT results for the three measurement methods show distinct dif-
ferences even in the TIL scenario. FWT values exceed 60 in most cases, as they are measured on
classifiers that do not know the next class, similar to the CIL scenario. Lastly, FWT-backbone re-
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Figure 7: TIL results of experiments with four IL methods on five tasks in four discriminative
backbones. The x-axis represents BWT, and the y-axis represents FWT. The evaluation metric for
the clustering algorithm was the Acc of the K-means clustering algorithm.
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Figure 8: BWT, FWT measurement results by IL method of discriminative backbone in TIL sce-
nario. Each Figure shows the mean and standard deviation.

veals performance improvements in the backbone as new tasks are learned, which aligns with the
explanation provided for the CIL scenario in Section4.3]

In all cases of Figures [8a] [8b] and [8c] the BWT measurement results follow the same order: ER
> BASE > CLSER > DER++. (Of course, BWT-prob is trained separately on the classifier and
is not learned together with the backbone.) This is because, in the TIL scenario, where classifiers
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Scenario:TIL \ Discriminative Backbone

Metric | BERT-base BERT-large RoBERTa-base RoBERTa-large
Classifier Acc -0.4578 -0.6123 -0.5087 -0.6342
Prob Classifier Acc -0.5471 -0.4982 -0.4723 -0.6234
Acc -0.8421 -0.7967 -0.8732 -0.8054
K-means ARI -0.8845 -0.8123 -0.7987 -0.8698
NMI -0.8834 -0.8291 -0.8415 -0.8226
Acc -0.8023 -0.8812 -0.8654 -0.7841
GMM ARI -0.8912 -0.8764 -0.7998 -0.8457
NMI -0.8781 -0.8534 -0.8176 -0.8394
Acc -0.8107 -0.8723 -0.8321 -0.7955
Spectral ARI -0.8699 -0.8456 -0.8931 -0.8744
NMI -0.8543 -0.8198 -0.8411 -0.8294
Acc -0.8742 -0.8543 -0.7987 -0.8921
Agglomerative ARI -0.9112 -0.8763 -0.8194 -0.8774
NMI -0.8915 -0.8381 -0.8621 -0.8044
Acc -0.8142 -0.7921 -0.8764 -0.8321
Deep Clustering ARI -0.8776 -0.8221 -0.8442 -0.8167
NMI -0.8794 -0.8472 -0.8123 -0.8917

Table 6: Pearson correlation coefficient between BWT and FWT for each metric in TIL scenario. It
was measured by performing IL on five tasks in four methods (Base, ER, DER++, CLSER).

are used separately for each task, all three measurement methods are independent of classifier bias
and forgetting. BWT-backbone produced results very similar to the BWT measurements in the TIL
scenario, demonstrating that forgetting can be measured without the use of a classifier.

Figures [8d} [8¢] and [8f] compare the FWT measurement results in the TIL scenario. In Figure [8d}
FWT scores all averaged above 80, showing no differences across methods. In Figure [8e] FWT-prob
recorded extremely low values, averaging below 5 for all methods, with no discernible distinction.
In Figure [8f] similar to Figure [3f] the results resemble those of the CIL scenario, as the backbone
undergoes the same processes except for the difference in the classifiers used for CIL and TIL. The
fact that FWT-backbone presents the same results in both the TIL and CIL scenarios is an impressive
finding, as it consistently measures the backbone’s forward learning independent of the classifier. All
experimental results are presented in Table 6]

In the TIL scenario on the generative backbone, it was difficult to conduct experiments under the
same conditions because some methods were optimized only for CIL. Many IL methods focus on
CIL scenarios, which are much more challenging than TIL, where Base methods already perform
well, using separate classifiers for each task.

E FULL RESULTS

We conducted the same experiment for all clustering algorithms and metrics other than those ana-
lyzed in the main paper. Looking at the results measured in the discriminative backbone in Table|[T}
the BWT, FWT correlations measured based on Accuracy in the Classifier and Probing Classifier
have little or positive correlation in all cases. The existing BWT, FWT measurement methods did
not satisfy the Stability-Plasticity Dilemma at all.

On the other hand, the BWT-backbone and FWT-backbone measurement results showed a negative
correlation regardless of whether Acc, ARI, or NMI was used as a metric, and the backbone showed
results that conformed to the Stability-Plasticity Dilemma. The results of the generative backbone
in Table [T} [7]also show the same results as the main paper. Observed Acc and Probing Acc showed
a weak negative correlation between BWT and FWT, while all clustering algorithms and metrics
showed a very strong negative correlation. Even considering that this result is the result of integrating
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Figure 9: Pearson Correlation coefficients between BWT and FWT by three evaluation methods in
the RoOBERTa-base model.
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Figure 10: Pearson Correlation coefficients between BWT and FWT by three evaluation methods in
the Pythia-160m model.

all IL methods and tasks, it can be seen that the trade-off relationship between Stability and Plasticity
is significantly maintained during the IL process.

| Scenario:CIL | Discriminative Backbone | Generative Backbone

‘ Metric ‘ BERT-b BERT-1 RoBERTa-b RoBERTa-l ‘ Pythia-70m  Pythia-160m  Pythia-410m Qwen2-0.5B  Qwen2.5-0.5B Qwen3-0.6B
Classifier Acc 0.4225  0.1327 0.3752 0.2385 -0.5142 -0.3729 -0.3654 -0.5300 -0.3800 -0.3670
Prob Classifier Acc 0.6402  0.1063 0.2417 0.1046 -0.4239 -0.4725 -0.6339 -0.4350 -0.4870 -0.6280
Acc -0.6246  -0.5587 -0.4873 -0.5182 -0.8368 -0.8660 -0.8481 -0.8420 -0.8580 -0.8550
K-means ARI -0.6612  -0.5196 -0.5275 -0.5441 -0.8125 -0.8001 -0.8257 -0.8150 -0.8080 -0.8280
NMI -0.6459  -0.6073 -0.5792 -0.6741 -0.8204 -0.9212 -0.8874 -0.8250 -0.9120 -0.8930
Acc -0.5144  -0.5751 -0.4901 -0.4323 -0.7623 -0.7439 -0.7801 -0.7700 -0.7480 -0.7820
GMM ARI -0.6693  -0.6854 -0.6191 -0.5172 -0.8152 -0.8071 -0.8537 -0.8180 -0.8090 -0.8570
NMI -0.5547  -0.5923 -0.6147 -0.6085 -0.7862 -0.8374 -0.8376 -0.7900 -0.8340 -0.8390
Acc -0.6883  -0.6145 -0.6112 -0.6031 -0.8169 -0.8257 -0.8602 -0.8200 -0.8280 -0.8580
Spectral ARI -0.6802  -0.6263 -0.6811 -0.6478 -0.8173 -0.8523 -0.8064 -0.8200 -0.8540 -0.8080
NMI -0.6184  -0.6391 -0.6519 -0.6102 -0.8185 -0.8841 -0.8762 -0.8200 -0.8820 -0.8730
Acc -0.4722  -0.5068 -0.6123 -0.4597 -0.7824 -0.7369 -0.7046 -0.7880 -0.7380 -0.7070
Agglomerative ARI -0.7439  -0.6874 -0.6012 -0.7325 -0.8647 -0.8099 -0.8865 -0.8660 -0.8130 -0.8890
NMI -0.8962  -0.7145 -0.7298 -0.6242 -0.8751 -0.9198 -0.8772 -0.8820 -0.9170 -0.8760
Acc -0.4978  -0.4936 -0.6142 -0.5827 -0.8034 -0.8297 -0.8891 -0.8100 -0.8330 -0.8870
Deep Clustering ARI -0.4781  -0.5279 -0.5831 -0.4852 -0.8457 -0.8192 -0.7931 -0.8480 -0.8200 -0.7980
NMI -0.5221  -0.5394 -0.5984 -0.6273 -0.8702 -0.7244 -0.7916 -0.8750 -0.7220 -0.7890

Table 7: Spearman correlation coefficient between BWT and FWT for each metric in CIL scenario.
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Hyperparameter  Default

Im_head_Ir e.g. Se-4

Optimizer AdamW

Loss (LM) Cross-entropy

training_epoch 3

Batching Same as backbone training loop

Table 8: Hyperparameters for LM-head fine-tuning.

F LM-HEAD FINE-TUNING DETAILS

Setup. During training, if LM_HEAD_FINETUNE is enabled, the backbone and the LM head are
updated jointly at each step. During evaluation, we freeze the backbone and perform a short mini-
finetuning of the LM head on the training split of the current task (see Section [F.I)).

Label tokenization. For each instance, we tokenize the gold textual label and take the first token
id as target:
y*°% = Tokenizer(label)[0].

Given hidden feature h € R? from the backbone and output embedding W € R" >, the vocabulary
logits are
z=WheRY.

Base LM-head loss.
Liv = CE(Z, ymk) .

Optimization. The LM head parameters are optimized by AdamW with learning rate 7 (default

chosen as 5e—4 in our runs). Backbone and optional external classifiers are trained with a separate
optimizer.

F.1 EVALUATION-TIME LM-HEAD FINETUNE
Before evaluation on task ¢, the backbone is frozen and the LM head is adapted for E epochs

(typically 1-3) on the training split of task t using Ly,\;. After evaluation, LM-head weights are
restored to their original state to avoid leakage across tasks.
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