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Abstract

Although significant progress has been made in face recog-
nition, demographic bias still exists in face recognition sys-
tems. For instance, it usually happens that the face recogni-
tion performance for a certain demographic group is lower
than the others. In this paper, we propose MixFairFace frame-
work to improve the fairness in face recognition models. First
of all, we argue that the commonly used attribute-based fair-
ness metric is not appropriate for face recognition. A face
recognition system can only be considered fair while every
person has a close performance. Hence, we propose a new
evaluation protocol to fairly evaluate the fairness performance
of different approaches. Different from previous approaches
that require sensitive attribute labels such as race and gen-
der for reducing the demographic bias, we aim at address-
ing the identity bias in face representation, i.e., the perfor-
mance inconsistency between different identities, without the
need for sensitive attribute labels. To this end, we propose
MixFair Adapter to determine and reduce the identity bias of
training samples. Our extensive experiments demonstrate that
our MixFairFace approach achieves state-of-the-art fairness
performance on all benchmark datasets.

1 Introduction
With the rise of responsible AI in recent years, ethnicity is-
sues such as demographic bias or fairness start to be dis-
covered in face recognition systems (Xu et al. 2021; Dhar
et al. 2021). It is a common phenomenon that the per-
formance of deep neural networks is largely inconsistent
across different demographic groups such as race and gen-
der, and several approaches for solving demographic bias in
face recognition have been proposed in recent years. For in-
stance, (Wang and Deng 2020) adopted reinforcement learn-
ing to learn a policy that automatically adjusts the margin of
loss functions to balance the performance inconsistency be-
tween each demographic group. (Gong, Liu, and Jain 2020;
Dhar et al. 2021) adopted an adversarial training to sup-
press sensitive attribute features. However, as addressed in
(Xu et al. 2021), most existing approaches require sensitive
attribute labels (e.g., race and gender) for training the net-
works, which restricts the scalability for being extended to
large-scale datasets since sensitive attributes need to be ac-
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Figure 1: For face recognition, the attribute-based (e.g., race)
fairness metric is not enough to represent the bias level in the
face representation. The above example demonstrates that
although the false positive rate (FPR) is the same for African
and Caucasian, there can be high skewness between each
identity regardless of their race. In this work, we thus aim to
reduce the variance of identity-based FPR to pursue ultimate
fairness in face recognition.

curately annotated by humans. In addition to the require-
ment of sensitive attributes, our experimental results show
that the evaluation process adopted by existing works cannot
precisely demonstrate the real fairness distribution of each
demographic group. In other words, we found the previous
evaluation protocol highly underestimates the bias between
different racial groups on benchmark datasets.

To precisely evaluate the bias between different racial
groups, we propose a new evaluation protocol which con-
sists of both attribute-based and identity-based metrics. For
attribute-based metrics, we focus on evaluating the perfor-
mance inconsistency between different races. As illustrated
in Figure 1, we found that the attribute-based metrics usually
raise a fairness “skewness” problem even if the performance
inconsistency between races is small. Hence, our identity-
based metrics aim to measure the “identity bias”, which is
defined as the performance variance between “each iden-
tity”. In this way, we can prevent the skewness issue and
consider everyone fairly to achieve ultimate fairness without
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dividing people by their races.
In addition to the proposed evaluation protocol, we

present our “MixFairFace” framework to alleviate the iden-
tity bias of networks without accessing sensitive attributes.
Unlike previous approaches that focus on the bias of demo-
graphic groups, we aim at solving the identity bias, the per-
formance inconsistency between different identities, by re-
ducing the feature discriminability differences. To this end,
we propose “MixFair Adapter” which estimates the identity
bias difference between two identities. The estimated bias
difference is then minimized by our loss functions. In this
way, we can achieve ultimately fair results since the identity
biases in the training dataset can be well balanced.

We demonstrate the effectiveness of MixFairFace on sev-
eral benchmark datasets. We adopt Balancedface and Glob-
alface (Wang and Deng 2020) as our training datasets,
and we use Racial Faces in the Wild (Wang et al. 2019)
for evaluation. In addition, we extend our framework to
larger datasets, including MS1M (Guo et al. 2016) and IJB-
C (Maze et al. 2018). From our extensive experiments, our
proposed MixFairFace framework achieves state-of-the-art
fairness performance. Our source code and supplementary
material are released in our project website1.

To summarize, our contributions are listed as follows:

1. We propose a new evaluation protocol to more precisely
evaluate the fairness in face recognition compared with
the previous evaluation process.

2. We propose MixFair Adapter to estimate and reduce the
identity bias between different identities during training.

3. We propose MixFairFace framework to alleviate the
identity bias of networks and achieve state-of-the-art fair-
ness in face recognition on several benchmark datasets.

2 Related Works
2.1 General Face Recognition
In recent years, advanced face recognition approaches have
been proposed (Schroff, Kalenichenko, and Philbin 2015;
He et al. 2016; Vaswani et al. 2017; Wang et al. 2018; Deng
et al. 2019), and large-scale datasets are collected for train-
ing purpose (Cao et al. 2018; Guo et al. 2016; Zhu et al.
2021; Wang and Deng 2020). Among these factors, the loss
design is the most pivotal. By adopting strict margin con-
straints on the positive logits, the model can learn discrim-
inative representation which is able to generalize to unseen
identities. However, these margin-based softmax loss func-
tions do not consider the fitting difficulties between different
identities and inevitably produce biased representation.

2.2 Bias Mitigation in Face Recognition
With the rising awareness of responsible AI, many empiri-
cal studies (Grother et al. 2019; Bansal et al. 2017; Droz-
dowski et al. 2020) have shown that demographic bias exists
in many publicly available face recognition systems. They
demonstrated that non-white or darker skintone faces suf-
fer from higher false positive rates (FPR) than other groups.

1https://github.com/fuenwang/MixFairFace

Analysis in (Gwilliam et al. 2021) also indicates that biases
in face recognition models are not mainly caused by imbal-
anced datasets. Therefore, tailored methods are required to
address fairness issues in face recognition.

In order to reduce face recognition biases between racial
groups, (Wang et al. 2019; Zhu et al. 2022) proposed to
leverage domain adaptation to produce an optimal model for
each race. However, these approaches require unlabeled data
from target domains for adaptation and it is not practical
in many scenarios. Another line of approaches (Dhar et al.
2021; Salvador et al. 2022) attempts to remove bias from a
pre-trained face recognition model by building a fairer de-
cision system: PASS (Dhar et al. 2021) presented a novel
discriminator training strategy that discourages the face de-
scriptor from encoding gender and skintone information, but
it has the disadvantage of heavily relying on sensitive at-
tribute labels from the face recognition dataset. FairCal (Sal-
vador et al. 2022) proposed to post-calibrate the verification
score between each pair of images in the testing dataset.
However, this method has the severe limitation of requir-
ing the global statistics of the target face features, which is
usually unknown in real scenarios.

Most of the state-of-the-art methods (Wang and Deng
2020; Gong, Liu, and Jain 2021, 2020; Xu et al. 2021)
and our MixFairFace lie in the last category: learning a
fair face representation in an end-to-end fashion. Deb-
Face (Gong, Liu, and Jain 2020) proposed an adversar-
ial learning framework to learn disentangled representation
for both face recognition and demographics estimation. In
the following work (Gong, Liu, and Jain 2021), they lever-
aged Group Adaptive Classifier (GAC) to learn different
network parameters based on the demographic information.
RL-RBN (Wang and Deng 2020) adopted reinforcement
learning to find optimal angular margins for African, Indian,
and Asian. It also requires race labels in the training data
for searching parameters. However, as shown in (Gwilliam
et al. 2021) and our experiments, the boundary between dif-
ferent races is vague and the estimation from a pre-trained
race classifier is not accurate. Unlike the above works, our
proposed MixFairFace does not require a pre-trained demo-
graphic classifier or demographic labels in the training data
for model training, which can be generalized to diverse sce-
narios. Our MixFairFace is inspired from CIFP (Xu et al.
2021), which balances the false positive rate (FPR) between
each training sample without the need for demographic la-
bels.

3 Evaluation Protocol
As described in Section 1, we found the evaluation pro-
cess adopted by previous works highly underestimates the
bias between demographic groups. Most previous works
evaluate fairness performance on Racial Faces in the Wild
(RFW) (Wang et al. 2019) dataset. The dataset consists of
four races (African, Asian, Caucasian, and Indian) and each
of them contains about 3,000 identities. To evaluate the per-
formance of different races, RFW provides 6,000 verifica-
tion pairs for each race, and thus there are 24,000 verification
pairs in total. With the provided pairs, previous works (Wang
et al. 2019; Wang and Deng 2020; Dhar et al. 2021; Gong,
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Figure 2: The intra/inter-identity similarity distribution of
CosFace (Wang et al. 2018). Comparing with intra-identity
similarity (left), we found that there is an obvious differ-
ence in inter-identity similarity (right) between races, and
the inter-identity similarity is directly related to the overall
false positive rate of each race.

African Asian Caucasian Indian Avg Std

94.1 94.2 96.3 94.8 94.9 1.03

Table 1: The performance of Cosface model (Wang et al.
2018) trained on Balancedface (Wang and Deng 2020). The
accuracy of four races is calculated by the evaluation pro-
tocol provided by RFW (Wang et al. 2019). We found this
evaluation protocol highly underestimates the biases be-
tween each race compared with the inter-identity similarity
distribution in Figure 2 (right).

Liu, and Jain 2021; Xu et al. 2021) calculate the correspond-
ing verification accuracy of four races and use the stan-
dard deviation of four accuracy values as the fairness per-
formance (e.g. Table 1). Generally, we found this protocol
has the following four issues:
1. The 6,000 verification pairs are selected according to

their cosine similarity from a baseline model to avoid
performance saturation. However, such a selection di-
rectly introduces human biases to the verification pairs,
and we found this selection leads to the underestimation
of demographic bias in RFW.

2. The provided verification pairs only cover a small ratio
of the entire dataset, which is not representative enough
to the distribution of four races.

3. The verification pairs only consider intra-race compari-
son, i.e., the comparison of identities in the same race,
and inter-race comparison is also necessary for face
recognition systems.

4. The four races are evaluated independently, and thus the
verification thresholds of the four races are totally dif-
ferent. However, the verification threshold should be set
globally in face recognition systems for generalized us-
age.

3.1 Intra/Inter-Identity Analysis
To address the first and second issues, we first adopt a
CosFace (Wang et al. 2018) model trained on Balanced-
face (Wang and Deng 2020) as a baseline model and we ex-

tract the feature vectors of all facial images in RFW, which
produces about 40,000 feature vectors. Then, we calculate
the mean feature vector of each identity in RFW. We use the
mean vectors to calculate the distribution of intra-identity
and inter-identity cosine similarity:

Sintra
i =

1

ni

ni∑
j=1

cos(f i
j ,mi) ,

Sinter
i =

1

K

∑
j∈Ni

cos(mj ,mi) ,

(1)

where i denotes the identity, ni is the total number of images
belonging to identity i, mi denotes the mean feature vector
for identity i, f i

j is the j-th feature vector for identity i, and
Ni is the set of the closest K mean feature vectors w.r.t. mi

in the dataset, which is used for calculating the inter-identity
similarity Sinter

i . In this paper, we set K to 50.
With the calculated intra/inter-identity similarity for each

identity, we can analyze the corresponding distribution as
shown in Figure 2. Interestingly, we found the intra-identity
similarity difference between races is small, while there are
very large variances in inter-identity similarities between
races and these variances reflect the corresponding demo-
graphic biases. In general, the inter-identity similarities of
African and Indian are the highest, and this is inconsistent
with the results of the original evaluation protocol (Table 1).
Hence, we believe that the original protocol highly underes-
timates the bias between demographic groups.

Instead of using the provided verification pairs, we use
all facial images in datasets for evaluation. We first calcu-
late the similarity of all pair-wise combinations of facial im-
ages in datasets. Considering that a low false positive rate
(FPR) is necessary for face recognition systems, we first find
the verification threshold under a certain overall FPR of all
pair-wise combinations. In this paper, we choose 1e-5 as the
overall FPR. After finding the verification threshold, we find
the corresponding true and false positive rate (TPR/FPR)
of each identity by accumulating their pair-wise verification
predictions. We then propose attribute-based and identity-
based fairness metrics to more precisely evaluate the fairness
performance in face recognition.

1. Attribute-based fairness evaluation. We calculate the
average and standard deviation of TPRs and FPRs which
belong to a certain sensitive attribute. These metrics can
show the performance variance between different de-
mographic groups. For simplicity, we use “aTPR” and
“aFPR” to denote the metrics.

2. Identity-based fairness evaluation. Our identity-based
metric is to measure the identity bias, which is defined
as the performance variance across different identities.
Hence, we use the standard deviation across the average
FPR of each identity as the metric since FPRs of dif-
ferent identities vary much more significantly than other
metrics (Xu et al. 2021). We use this metric to reflect
the fairness of entire datasets and avoid the skewness of
attribute-based evaluation as described in Figure 1. For
simplicity, we use “iFPR-std” to denote this metric.
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For more details and definitions of the two metrics, please
refer to our supplementary material.

4 Approach
In this section, we introduce our MixFairFace framework
with the proposed components. We first introduce the
prototype-based loss function in Section 4.1. To reduce the
identity bias and improve fairness, we use our proposed
MixFair Adapter (Section 4.2) to estimate the identity bias
during training. Finally, we detail our MixFairFace frame-
work in Section 4.3.

4.1 Prototype-based Loss
The original softmax loss function commonly adopted in
prototype-based face recognition approaches is:

L = − log
eWyi

·fi+byi∑N
j=1 e

Wj ·fi+bj
, (2)

where N denotes the number of identities in the training
dataset, W and b are the weight and bias terms of the classi-
fication layer, fi is the feature map of training sample i, and
yi is the corresponding ground truth identity. By fixing the
bias terms to zero and applying normalization to W and fi,
the exponential parts in Equation (2) can be reformulated as:

f̂i =
fi
∥fi∥

,

Ŵj =
Wj

∥Wj∥
,

Ŵj · f̂i = cos(f̂i, Ŵj) .

(3)

After introducing a scaling term s, CosFace (Wang et al.
2018) modifies the original softmax loss function into:

L = − log
es·[cos(f̂i, Ŵyi

)−m]

es·[cos(f̂i, Ŵyi
)−m] +

∑
j ̸=yi

es·cos(f̂i, Ŵj)
,

(4)
where m is the margin for improving the decision boundary
of face recognition networks, and Ŵ is the prototype of all
identities in the training dataset.

4.2 MixFair Adapter
To estimate the identity bias during training, we propose
MixFair Adapter based on a mixing strategy.

Given the two feature maps, fi and fj , of two facial im-
ages from a biased face recognition network, the feature
maps are assumed to be comprised of two terms, the bias-
free representation and the identity bias term:

fi = ri + bi, fj = rj + bj , (5)

where ri and rj are bias-free contour representations. bi and
bj are their corresponding identity biases introduced by their
races, genders, or other individual differences. Consider the
mixed feature map of fi and fj :

fm =
1

2
(fi + fj) . (6)

When fi is a largely biased feature map, i.e., |bi| ≫ |bj |,
we observe that the output of a non-linear layer M tend to
preserve more similar feature of fi:

cos(M(fm),M(fi))
2 − cos(M(fm),M(fj))

2 = ϵ > 0 ,
(7)

where cos indicates the cosine similarity function, and ϵ is
the bias difference. We then infer which one of the feature
maps has a larger identity bias according to ϵ.

MixFair Adapter. Instead of adopting adversarial train-
ing to remove the bias like previous works (Gong, Liu, and
Jain 2020; Dhar et al. 2021), we propose a mixing strat-
egy to remove the bias based on Equation (7). Specifically,
we firstly extract two intermediate feature maps of the fa-
cial images of two different identities from a network. The
two feature maps are equally mixed together and the mixed
feature map is then passed into the other layer, which we
call “debias layer”, to extract the final face feature map. Our
MixFair Adapter is then established as the following:

ki = E(xi), kj = E(xj) ,

kmix =
1

2
(ki + kj) ,

ϵi,j = cos(M(kmix),M(ki))
2 − cos(M(kmix),M(kj))

2 ,
(8)

where (xi, xj) are two facial images, E is an encoder, M is
the debias layer, and ϵi,j is the estimated bias difference be-
tween xi and xj . When ki has large biases, M(kmix) tends
to preserve similar feature components of M(ki). Hence, the
corresponding cosine similarity is larger than the one with
M(kj), and vice versa. By making |ϵi,j | ≈ 0, we can ensure
that both ki and kj are not dominated by their own identity
biases.

4.3 MixFairFace Framework
To enforce networks to balance the biases of all training
samples, i.e., |ϵi,j | ≈ 0, we combine the CosFace loss func-
tion (Equation (4)) and the estimated bias difference from
MixFair Adapter (Equation (8)) as follows:

L = − log
es·[cos(f̂i, Ŵyi

)−m+ϵi,k]

es·[cos(f̂i, Ŵyi
)−m+ϵi,k] +

∑
j ̸=yi

es·cos(f̂i, Ŵj)
,

(9)
where i and k denote two training samples from two dif-
ferent identities. We then minimize the identity bias differ-
ence by injecting ϵi,k into the prototype-based loss function.
When ϵi,k is larger than zero, the identity bias of the training
sample i is larger than k. In this case, (−m+ ϵi,k) becomes
larger to prevent our network from “overly focusing” on i,
and vice versa. We have also tried to adopt |ϵi,k| as an addi-
tional loss term, but our proposed loss function empirically
achieves better performance.

MixFairFace. The overall framework of MixFairFace is
illustrated in Figure 3. Following the previous work (Xu
et al. 2021), we adopt a ResNet-34 (He et al. 2016) as the
encoder to extract the intermediate feature maps of facial im-
ages, i.e., E in Equation (8). Then, the debias layer consists
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Figure 3: The overall framework of MixFairFace. We first adopt a ResNet encoder E to extract the intermediate feature maps
of two identities (ki and kj). Then, we equally mix the two feature maps and obtain the mixed feature map kmix. The original
and mixed feature maps (ki, kj , and kmix) are further passed into our debias layer M along with a normalization operation to
infer the final normalized feature vectors (f̂i, f̂j , and f̂mix). We then use our proposed MixFair Adapter to estimate the identity
bias difference ϵi,j between the two training samples (xi and xj) by calculating the distance between f̂i, f̂j , and f̂mix. The
estimated bias difference is then minimized by our final loss function (Equation (9)) for learning fair representations.

Method

Attribute-based
Identity-basedaTPR (1e-2) aFPR (1e-5)

a1 a2 a3 a4 Avg Std a1 a2 a3 a4 Avg Std iFPR-std (1e-5)

CosFace 87.2 81.8 84.1 87.0 85.0 2.57 2.61 0.41 0.20 0.84 1.02 1.10 2.76
ArcFace 85.5 79.5 81.3 85.0 82.8 2.90 2.45 0.48 0.19 0.90 1.01 1.01 2.61

Mix (i) 83.6 81.3 79.5 82.9 81.8 1.82 2.83 0.65 1.22 3.50 2.05 1.34 3.27
Mix (m) 87.4 81.7 83.5 86.6 84.8 2.66 2.68 0.43 0.21 0.71 1.01 1.13 2.73

PASS 73.3 66.2 69.7 70.7 70.0 2.94 2.14 0.66 0.63 0.69 1.03 0.74 2.07
CIFP 88.4 83.3 85.2 88.5 86.4 2.55 2.54 0.44 0.20 0.86 1.01 1.06 2.71
Ours 86.5 83.9 83.9 86.4 85.2 1.47 2.16 0.79 0.29 0.69 0.98 0.81 2.05

Table 2: The quantitative results trained on Balancedface (Wang and Deng 2020). Note that the scale of TPR and FPR are 1e-2
and 1e-5, respectively. “a1-a4” indicate “African”, “Asian”, “Caucasian”, and “Indian”.

of one fully-connected layer to extract the final feature vec-
tors with 512 dimension, i.e., M in Equation (8). Eventually,
we have a final prototype layer that maps the 512 feature
vectors to the predicted logits, and we optimize our network
with the loss function in Equation (9).

5 Experiments
We conduct extensive experiments on two benchmark
datasets, including Balancedface (Wang and Deng 2020) and
Globalface (Wang and Deng 2020). For fairness evaluation,
we validate our framework and baselines on RFW (Wang
et al. 2019) dataset. In addition, we provide the experimen-
tal results trained on a large-scale dataset, MS1M (Guo et al.
2016), and evaluated on IJB-C (Maze et al. 2018).

Training and Evaluation Datasets. Balancedface pro-
vides around 1.3 million facial images with 7,000 identities
for each race. Globalface provides around 2 million facial
images with racial distribution following the real distribution

on earth. RFW provides around 40,000 facial images with
3000 identities for each race. For experiments on large-scale
datasets, we train our framework on MS1M, which provides
facial images from 100K identities, and we adopt IJB-C as
the testing dataset, which provides about 3,500 identities and
the attributes labels of 6 skintones for evaluation. For IJB-C,
we resampled it for making the number of identities in each
attribute close.

Implementation Details. We implement our approach
with PyTorch (Paszke et al. 2019) framework. We apply
Xavier (Glorot and Bengio 2010) initialization and train our
network with SGD optimizer which the momentum is set to
0.9 and weight decay is set to 5e-4. We train the network
for totally 40 epochs with batch size 512. The learning rate
starts from 0.1 and we apply learning rate decay with 0.1 de-
cay factor on 8, 18, 30, and 34 epoch numbers. The scale s
and margin m in Equation (9) are set to 64 and 0.35. During
training, we apply randomly horizontal flip to all training
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Method

Attribute-based
Identity-basedaTPR (1e-2) aFPR (1e-5)

a1 a2 a3 a4 Avg Std a1 a2 a3 a4 Avg Std iFPR-std (1e-5)

CosFace 87.5 87.8 84.5 88.9 87.2 1.88 2.17 1.15 0.06 0.65 1.01 0.89 2.64
ArcFace 85.4 86.3 80.9 87.0 84.9 2.75 1.70 1.53 0.05 0.65 0.98 0.77 2.40

Mix (i) 83.1 84.2 80.8 84.9 83.3 1.79 2.69 0.96 0.05 0.38 1.02 1.18 3.33
Mix (m) 87.7 88.7 84.0 88.6 87.3 2.21 2.13 1.41 0.05 0.65 1.06 0.90 2.49

PASS 77.9 73.6 74.8 77.7 76.0 2.14 2.87 0.56 0.16 0.47 1.02 1.25 2.76
CIFP 89.2 89.1 86.7 90.1 88.8 1.45 2.34 1.15 0.08 0.59 1.04 0.97 2.71
Ours 87.4 87.9 86.2 89.3 87.7 1.28 1.95 1.37 0.08 0.65 1.01 0.82 2.09

Table 3: The quantitative results trained on Globalface (Wang and Deng 2020). Note that the scale of TPR and FPR are 1e-2
and 1e-5, respectively. “a1-a4” indicate “African”, “Asian”, “Caucasian”, and “Indian”.

Method

Attribute-based
IdentityaTPR (1e-2) aFPR (1e-5)

a1-a6 Avg Std a1-a6 Avg Std iFPR-std
CosFace 73.4/71.6/79.5/70.3/64.7/71.8 71.9 4.79 0.18/1.00/0.52/1.09/1.35/2.93 1.18 0.96 3.68

CIFP 73.1/72.3/80.1/69.9/64.7/71.4 71.9 5.00 0.28/0.88/0.34/1.21/1.47/2.90 1.18 0.96 3.64
Ours 71.3/70.1/76.8/67.6/61.6/69.3 69.5 4.96 0.44/1.00/0.35/1.55/1.43/1.86 1.11 0.62 2.53

Table 4: The quantitative results trained on MS1M (Guo et al. 2016) and tested on IJB-C (Maze et al. 2018). The “iFPR-std”
of the three approaches are 3.68, 3.64, and 2.53. “a1-a6” indicate the attributes “LightPink”, “LightYellow”, “MediumPink”,
“MediumYellow”, “MediumDarkBrown”, and “DarkBrown”, respectively. Note that the scale of TPR and FPR are 1e-2 and
1e-5, respectively.

samples. All experiments in this paper are trained with 4x
Tesla P100.

5.1 Experimental Results
In our experiments, we compare our MixFairFace with the
following approaches. 1) “CosFace”: the approach proposed
in (Wang et al. 2018). 2) “ArcFace”: the approach proposed
in (Deng et al. 2019). 3) “Mix (i)”: a baseline that adopts
mixup (Zhang et al. 2018) training and soft labels to train
a face recognition network. 4) “Mix (m)”: a baseline that
adopts manifold-mixup (Verma et al. 2019) training and
soft labels to train a face recognition network. 5) “PASS”:
the current state-of-the-art adversarial approach proposed in
(Dhar et al. 2021). 6) “CIFP”: the current state-of-the-art
non-adversarial approach proposed in (Xu et al. 2021) which
improves the fairness of face recognition by minimizing the
false positive rate inconsistency between different training
samples.

Our evaluation results of RFW trained on Balancedface
and Globalface are shown in Table 2 and 3, respectively. We
show the fairness performance by both attribute-based and
identity-based metrics as described in Section 3.

General Comparison. Compared with the baselines with-
out any fairness constraints (“CosFace”), our MixFairFace
achieves a slightly better average aTPR while improving the
attribute-based standard deviation by 43% on Balancedface.
Compared with “Mix (i)”, we found that directly mixing
in the image spaces is harmful to the performance of face

recognition tasks. As for mixing in the feature spaces (“Mix
(m)”), we found directly applying manifold-mixup has no
influence on both performance and fairness of face recogni-
tion.

Comparison with SOTA. Compared with the state-of-
the-art adversarial approach (“PASS”), although the adver-
sarial approach can improve the std of aFPR and the iFPR-
std, the average aTPR decreases largely. Compared with the
current state-of-the-art non-adversarial approach (“CIFP”),
we found that CIFP is able to slightly improve the recogni-
tion performance and achieves the best average aTPR. How-
ever, the corresponding fairness improvement is highly lim-
ited and the iFPR-std is even worse than CosFace on Glob-
alface. In general, our MixFairFace achieves the best aTPR-
std and aFPR-std in attribute-based evaluation. For identity-
based evaluation, our improvement of iFPR-std outperforms
all other baselines, which demonstrates the proposed method
significantly reduces the identity bias, i.e., the performance
variance between different identities, by considering each
identity fairly and balancing the bias difference between
them by our MixFair Adapter.

Comparison on Large-Scale Datasets. We show the re-
sults trained on MS1M (Guo et al. 2016) and tested on IJB-
C (Maze et al. 2018) in Table 4. Although the aTPR average
of our approach is slightly worse than CosFace and CIFP, the
aFPR std and iFPR-std of our approach still outperform the
other approaches. For the most challenging attribute “Dark-
Brown (a6)”, we can observe that the aFPRs of both Cos-
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Figure 4: (a) The identity FPR (iFPR) distributions of different approaches trained on Balancedface. The iFPR is sorted from
the highest to lowest on RFW identities, and we only show the top 500 identities with the largest FPR. Our MixFairFace
significantly reduces the range between the lowest and highest FPR and thus we can achieve the smallest identity bias (iFPR-
std). (b) The inter-identity similarity distributions of different approaches trained on Balancedface. Our MixFairFace achieves
the largest density, i.e., the similarity variances across different identities are distributed more fairly than the other baselines.
Thus, our approach can largely reduce identity bias differences.

Face and CIFP are extremely high, while our MixFairFace
improves it by 36% and the corresponding aTPR only de-
creases 3.5%, which is an acceptable trade-off in practical
scenarios. Hence, our MixFairFace framework shows great
applicability for both medium and large scale datasets with
an acceptable trade-off in the overall true positive rate.

5.2 Discussion
False Positive Rate Distribution. To better illustrate the
improvement of identity bias reduction by using our Mix-
FairFace over other approaches trained on Balancedface, we
show their FPR distributions in Figure 4 (a). Our approach
can largely reduce the difference between highest and low-
est FPR identities, which shows that MixFairFace achieves
the lowest identity bias difference between identities. For the
results trained on Globalface, please refer to our supplemen-
tary material.

Inter-Identity Similarity Analysis. To investigate the
fairness difference between the aforementioned approaches,
we show their inter-identity cosine similarity distributions
trained on Balancedface in Figure 4 (b) based on Equa-
tion (1). The distribution of our approach is more compact
than those of other baselines, i.e., our density is the highest
one. This indicates that the inter-similarity of each identity
is closer and the identity bias is also much lower. Hence, our
proposed framework can significantly improve the fairness
in face recognition. For the results trained on Globalface,
please refer to our supplementary material. In addition, we
also show the estimated identity bias in our supplementary
material.

6 Conclusions
In this paper, we propose MixFairFace framework to im-
prove the fairness in face recognition. Instead of focusing
on bias between demographic groups, we aim at solving
the identity bias, i.e., the performance inconsistency be-
tween identities, such that we can avoid the skewness of
demographic bias and achieve ultimate fairness results. To
this end, we propose MixFair Adapter that adopts a mix-
ing strategy to estimate the identity bias difference be-
tween two training samples. The estimated bias difference
is then minimized by the proposed framework. In addition,
we found that the evaluation protocol adopted by previous
works highly underestimates the bias between demographic
groups. Hence, we propose a new evaluation protocol based
on both sensitive attributes and identities to provide a com-
plete evaluation of fairness performance. We conduct exper-
iments on several benchmark datasets, and our experiments
demonstrate that our MixFairFace approach outperforms all
other baselines and achieves state-of-the-art fairness perfor-
mance. To compare the fairness performances of different
approaches, we analyze the inter-identity similarity distribu-
tion and our framework achieves the highest density, which
indicates our approach reduces the identity bias difference
between identities and our identity bias training curve vali-
dates our formulation.
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