Under review as a conference paper at ICLR 2025

FORMULATING AUTOML AS A VARIABLE-LENGTH
OPTIMIZATION PROBLEM: A TREE OF THOUGHT AP-
PROACH WITH LLM-DRIVEN CODE GENERATION

ABSTRACT

Recent advancements in machine learning have created a demand for automated
systems that enable efficient development and deployment of machine learning
applications. Traditional Automated Machine Learning (AutoML) approaches
often rely on fixed pipeline structures, which limit adaptability to diverse task
complexities. In this paper, we introduce a novel formulation of AutoML as a
variable-length optimization problem, allowing for dynamic adjustment of model
architectures based on task requirements. To effectively navigate the expanded
search space of variable-length models, we employ the Tree of Thoughts (ToT)
method combined with Large Language Models (LLMs). This framework uti-
lizes a sequential decision-making process, allowing models to be incrementally
constructed by evaluating prior outcomes. Additionally, LLMs automatically gen-
erate the code corresponding to each decision, transforming model configurations
into executable pipelines and reducing manual intervention. Our approach en-
hances efficiency by focusing on promising pathways and improves transparency
by explicitly showcasing how each decision contributes to the overall optimiza-
tion. Experiments conducted on diverse datasets, including OpenML and clinical
tasks, demonstrate that our method outperforms traditional AutoML systems, de-
livering superior model performance and better adaptability across different task
complexities.

1. INTRODUCTION

The recent substantial progress in machine learning (ML) and deep learning has created a signifi-
cant demand for hands-free systems that enable both developers and ML novices to efficiently build
and deploy machine learning applications (Baratchi et al.,[2024). Since different datasets often re-
quire unique ML pipelines, this demand has driven the development of automated machine learning
(AutoML) (Santu et al.| 2022)). AutoML aims to streamline and automate the process of designing,
training, and optimizing machine learning models, effectively reducing the need for deep domain
expertise and manual tuning. Its applications span various domains, from healthcare (Waring et al.,
2020), biology (Valeri et al.l [2023; |Yu et al., 2024), and drug discovery (Turon et al., 2023), under-
scoring its critical role in unlocking the full potential of machine learning.

Current mainstream AutoML systems, like Auto-WEKA (Thornton et al., 2013), H20 (LeDell &
Poirier, 2020), and Auto-sklearn (Feurer et al., [2019)), typically rely on fixed pipeline structures,
as shown in Figure [T(a). These pipelines follow a linear sequence of steps—data cleaning, fea-
ture transformation, feature selection, and modeling—where each step selects an operation from a
predefined candidate pool. The search space is static, with model configurations limited by fixed
parameters like depth, number of nodes, and layers. This approach assumes that tasks share similar
complexity levels, allowing uniform models to be applied across different tasks. However, this fixed-
structure paradigm may lead to inferior pipeline performances for complex datasets—characterized
by varying data distributions, objectives, and scales, for example, multiple preprocessing steps or
feature trnasformation (Hollmann et al., [2023; Mumuni & Mumuni, [2024). Optimal configurations
often need structural flexibility and variable complexity to meet specific task demands. Fixed-length
models, by assuming uniform task complexity, may not fully account for the varying needs of both
simple and complex tasks. Efforts to improve flexibility, such as|Olson & Mooref[s introduction of a
dataset duplicator, allow for parallel processing paths within pipelines. These paths can be merged
using the feature union operator, which combines multiple datasets or processing paths. While this
enhances flexibility, the overall pipeline depth and complexity are still constrained by predefined
limits, restricting the adaptability needed for more diverse or demanding tasks.

Under review as a conference paper at ICLR 2025

Iterative tuning

Define task Data collection Feature Feature Model Model N peployment

and processing jf| transformation selection Selection tuning ploy
+ Drop Missing Values + Transformation * Filter Methods * Linear Models + Warm-Starting
* Handle Outliers + Encoding * Wrapper Methods « Tree Based Models + Grid Search
* Meanimp i e di i i o q ial Methods | |+ Neural Networks * Random Search
* Mode Imputation reduction + Embedded Methods | [+ Ensemble Methods + BO

opl Op2 Op3 Op4 Op5

(a) AutoML workflow
. Data collection
Define task g . g Deployment
and processing
N

(b) AutoML workflow with variable-length
Figure 1: Comparison between the original AutoML workflow and the enhanced variable-length
AutoML workflow. In (b), different colors represent different operations, and the ellipses indicate
that intermediate connections may include other operations.

To better adapt the model to a variety of tasks, we propose formulating the AutoML problem as a
variable-length optimization problem, as shown in Figure [T] (b). Unlike fixed structures, this ap-
proach allows models to dynamically adjust to the specific demands of each task, whether simple
or complex. Flexibility is critical in optimization since overly complex models can lead to overfit-
ting in simple tasks, while insufficiently complex models may underfit more complex tasks
& Ghatee), [2021}; [Bian & Priyadarshi, [2024). Thus, the model’s structure should be adaptable, al-
lowing simpler tasks to be handled with shallower models, and complex tasks with deeper, more
sophisticated networks.

Additionally, traditional methods that explore the entire framework and hyperparameter space si-
multaneously are inefficient due to the sheer size of the search space, which makes exhaustive ex-

ploration computationally prohibitive. A sequential decision-making approach 1989) is
better suited to this problem, as it allows models to be constructed step by step, dynamically adjust-

ing complexity in response to task demands (Jaafra et al.,[2019)). Furthermore, large language models
(LLMs), equipped with vast knowledge across various domains (Brown et al.,[2020), possess strong

reasoning 2024), decision-making 2023), and coding capabilities
2024) . This allows them to understand task requirements and tailor model structures accord-
ingly, making them ideal for navigating the expanded search space of variable-length models.

To efficiently solve this variable-length optimization problem, we employ the Tree of Thoughts (ToT)
method using LLMs 2023). The ToT method handles model structure selection through a
flexible sequential decision-making process, where the model is incrementally constructed by eval-
uating the outcomes of each decision. This process enhances efficiency by focusing on promising
pathways and pruning less viable ones early in the search space, reducing unnecessary computa-
tion. Moreover, this method guarantees transparency by explicitly demonstrating how each decision
contributes to the model’s overall optimization, as illustrated in Figure [2{a). Starting from basic
transformations like Mean Imputation and Log Transformation, the ToT method refines the model
step by step, selecting the most impactful preprocessing steps and tuning key model parameters. Fur-
thermore, LLMs automatically generate code for each decision, transforming model configurations
into executable pipelines, reducing manual intervention and streamlining the process.

We conducted experiments on diverse datasets, including OpenML and clinical tasks, to evaluate the
efficacy of our approach. The results demonstrate that our method achieves superior model perfor-
mance, outperforming traditional AutoML methods in terms of accuracy and adaptability to different
task complexities, proving the flexibility, transparency, and effectiveness of the ToT method.

Contributions. We summarize the contributions of our paper as follows:

Under review as a conference paper at ICLR 2025

* We introduce a flexible AutoML framework by reformulating it as a variable-length opti-
mization problem, enabling dynamic adjustments to model structure based on task com-
plexity.

* We propose the Tree of Thoughts (ToT) method with Large Language Models (LLMs) to
efficiently navigate the expanded search space of variable-length models, enhancing both
search efficiency and transparency in the decision-making process.

* Our experiments demonstrate that the combination of variable-length optimization and the
ToT method outperforms traditional AutoML methods in terms of model performance and
computational efficiency across diverse tasks.

‘ 0-89 /150721 0.721 0.7220.7280736
- : I £
g = B
£ 0.6 -
© O
= 2
< <
Sl S 044
g e
£
S ‘ 0.2 |
8
0.727
0.725
nformation
] 3 A o . A
o 1 2 3 4 5 6 ¢ @’\ L &\{}o,b@/\o
Step N) V";’}QJ

(a) The step-wise evolutionary path of using our method to

solve the CMC task (b) Classification results for the CMC task.

Figure 2: Comparison of the evolutionary path and classification results for the CMC task in
OpenML using various AutoML methods. The results in (b) highlight the superior performance
of our method compared to state-of-the-art AutoML approaches.

2. PROBLEM DEFINITION

In this work, we formulate the AutoML process as a variable-length optimization problem. The
objective is to identify the optimal sequence of operations that maximizes the model’s performance.
Let n denote the maximum number of operations available in a given AutoML pipeline. The op-
timization problem can be defined as minimizing an objective function f(x1,%2,...,Zn—1,Zn),
where each x; represents a specific operation selected at stage ¢ of the pipeline.

Minimize f(x1,Z2,...,%n—1,%y)
z1 € Opl,
. x; € {Opl,0p2,0p3}, fori=2,...,n—2, (1
subject to w1 € Opd,
Ty € OpS

where Op1 to OpS5 represent operation set for data processing, feature transformation, feature selec-
tion, model selection, and model tuning, respectively. The constraints ensure that specific operations
are chosen at appropriate stages of the pipeline. For instance, z; € Opl corresponds to an operation
in the data processing stage, while x,,_; € Op4 pertains to the model selection stage, and so forth.
This formulation allows for a comprehensive and flexible exploration of possible AutoML pipelines,
ensuring that the selected sequence of operations is tailored to the specific characteristics of the data
and task at hand.

3. OPTIMIZATION WITH TOT

In this section, we present our method for optimizing AutoML problem defined in Section 2 us-
ing a Tree-of-Thought (ToT) approach facilitated by LLMs. Our method, illustrated in Figure

Under review as a conference paper at ICLR 2025

comprises several four stages: prompt preparation, pipeline generation, program implementation,
and iterative refinement. The process begins with the preparation of a comprehensive prompt that
includes all necessary information about the dataset and task. This prompt guides the LLM in rec-
ommending the next operation to be added to the AutoML pipeline. After each step, the LLM
generates the corresponding Python code for the newly selected operation. The updated pipeline is
then tested on the training data to evaluate its performance at each stage. Underperforming pipelines
are filtered out early, enabling the optimization process to focus on more promising candidates. The
remaining pipelines undergo iterative refinement using the ToT approach, where additional steps
are incrementally added based on the current pipeline’s performance, continuing until a predefined
termination condition is met.

Task information Generate pipeline Implement State evaluation Select
i A def 0O:
Objective:
AutoML algorithm ™ Eeet?m 0. > Accuracy=0.8 —>

return ...
Task description:

Dataset details o def 0:
o = g [N . -> Accuracy=0.2 —->°
® ef feature_selection():
Search Space: return ...
Method options
def 0:
i . return ... —
Constraints: > def model_selection(): > Accuracg—0.7 —>

Pipeline rules
return ...

£ I

Figure 3: An overview of the our AutoML method. The process starts by preparing task-specific
information, followed by: 1) Incrementally recommending the next operation in the pipeline using
an LLM, 2) Translating each updated pipeline into executable Python code, 3) Evaluating the per-
formance of each pipeline, and 4) Filtering the most promising candidates for further optimization.

3.1 GENERATING AUTOML PIPELINES

The first step in our method involves generating candidate AutoML pipelines incrementally, using a
ToT approach with the help of LLMs. To guide the LLM effectively, we prepare a comprehensive
prompt that includes the following components:

Objective: Assist in generating an AutoML pipeline for the dataset dataset. The objective is to
recommend operations step-by-step for constructing an AutoML pipeline, based on the given search
space, constraints, and requirements. These recommendations should cover data preprocessing,
feature transformation, feature selection, model selection, and model tuning, while adhering to the
provided constraints.

Task Information: Provide details on the training dataset, including the number of samples and
features. Specify the feature types and indicate the percentage of missing values. Clarify whether
the task is a classification or regression problem.

Search Space: Outline the available methods for each stage of the AutoML process, including
options for preprocessing, transformation, selection, and model tuning.

Constraints and Requirements: (1) The first step in the pipeline must be a data processing method.
(2) Feature transformation and feature selection must be completed before proceeding to model
selection and model tuning. (3) Model selection and model tuning must occur before the final model
training. (4) The total number of steps in the pipeline must not exceed max step.

To enhance the quality of the generated pipelines, we provide few-shot demonstrations—example
tasks with corresponding pipelines. These examples help the LLM understand the expected format
and components of effective pipelines.

The prompt also includes a Step-by-Step Reasoning section to encourage the LLM to perform a
chain-of-thought analysis: (1) Understanding the Dataset: Analyze the dataset by examining its
characteristics, including feature types and missing values. (2) Identifying Challenges: Determine
the primary challenges based on the dataset’s characteristics and the task type (classification or

Under review as a conference paper at ICLR 2025

regression). (3) Applying Constraints: Ensure that the operations adhere to the specified constraints
and maintain the required sequence.

Finally, the LLM is asked to Recommend the Next Step for the current pipeline, ensuring that each
new operation logically extends from the previous ones while aligning with the dataset’s specific
characteristics and needs.

3.2 IMPLEMENTING PYTHON PROGRAMS FROM PIPELINE

After generating the candidate pipelines, we proceed to implement them by prompting the LLM to
generate corresponding Python code. Each pipeline is translated into a Python program capable of
processing the dataset and producing performance metrics. We test each program on the training
data to evaluate its performance. If a program fails to execute correctly or does not handle all
training examples successfully, we engage in an iterative refinement process: (1) Error Analysis:
Examine the execution results, including error messages and discrepancies between expected and
actual outputs. (2) Prompting for Revisions: Prompt the LLM to revise the program based on
the identified issues, providing specific feedback. (3) Re-testing: Test the revised program on the
training data. This iterative process continues until the program executes successfully or a predefined
number of iterations is reached. This approach leverages established techniques in code repair and
debugging (Rahman et al., 2021). If, after several iterations, the program still does not perform
satisfactorily, we manually coding the pipelines.

3.3 PERFORMANCE EVALUATION

To evaluate the effectiveness of each operation sequence in the pipelines—especially when specific
model recommendations are absent—we employ a heuristic-based approach. This method ensures
a robust assessment by introducing diversity and thorough exploration of potential models. The
evaluation process involves the following steps: (1) Model Selection: Randomly select n models
from a predefined model library. This diversity allows us to cover a broad range of models that
might be suitable for the dataset. (2) Hyperparameter Tuning: Each selected model undergoes
hyperparameter tuning to identify the optimal configuration. Techniques such as grid search or
random search are used to explore various parameter settings and enhance model performance. (3)
Performance Assessment: Assess the performance of each model using relevant metrics—accuracy
for classification tasks or mean squared error for regression tasks. (4) Evaluation Score: Select
the highest performance score among the models, and use this score as the evaluation value for the
current operation sequence. Mathematically, the evaluation function f(x) for an operation sequence
x is defined as:

flx) = _max P(M;(x)) 2)
where P(M;(x)) denotes the performance of model M; after hyperparameter tuning.

3.4 REDUCING THE NUMBER OF CANDIDATE PIPELINES

After evaluating all candidate AutoML pipelines, we rank them by their performance and filter out
the top-performing ones. This process effectively reduces the number of candidates, allowing us
to focus on the most promising solutions, thereby improving optimization efficiency and the final
model’s performance.

4. EXPERIMENT SETUP

4.1 EVALUATED TASKS

We evaluate our approach on two distinct datasets: OpenML (Vanschoren et al., [2013; [Hollmann
et al.,|2023)) and clinical datasets (Arasteh et al., 2023 (Wenzel et al.,[2019). These datasets present
a wide array of challenging tasks across various domains and feature counts, enabling a thorough
assessment of our method’s capabilities.Table [6] and Table [7] summarize the tasks and their corre-
sponding datasets.

Under review as a conference paper at ICLR 2025

OpenML Datasets: We utilize a diverse selection of small datasets from OpenML, each featur-
ing descriptive names and excluding those with numbered feature names (Hollmann et al.l [2023).
These datasets cover a broad spectrum of task types, including classification problems with feature
counts ranging from 4 to 21 and sample sizes between 69 and 2,000. Each dataset includes a task
description that provides context for our method.

Clinical Datasets: In addition to OpenML datasets, we assess our approach on clinical datasets
that present unique challenges associated with medical data (Arasteh et al.| 2023). These datasets,
sourced from recent studies, encompass a variety of tasks, including diagnosing metastatic diseases
and hereditary hearing loss. Each task is characterized by a wide range of feature counts (from 10
to 1,874) and distinct training and test set distributions, highlighting the complexity and specificity
of real-world medical scenarios. Moreover, we include a task involving image classification for
Parkinson’s disease (Wenzel et al.,2019), which introduces an additional layer of complexity due to
the nuanced visual patterns that must be discerned to accurately diagnose the condition.

4.2 EVALUATION PROTOCOL

For each dataset, we evaluate our method using 5 repetitions, each with a different random seed
and train-test split to reduce the variance stemming from these splits (Hollmann et al., |2023). This
approach ensures robustness by mitigating any bias introduced through specific data partitioning. In
our method, the maximum step length is set to 6, and at each step, 3 solutions are generated and
evaluated, with 3 solutions retained for the subsequent step. The GPT-4 model is used to assist in
recommendation and coding throughout the optimization process. The stopping condition for the
algorithm is consistent across methods, using a time limit of 1 hours per dataset to ensure fairness
between methods, including peer AutoML frameworks.

5. EXPERIMENTAL RESULTS

In this section, we present a comprehensive evaluation of our proposed method, focusing on the com-
parison between variable-length and fixed-length optimization approaches, benchmarking against
state-of-the-art AutoML frameworks, and conducting a detailed parameter sensitivity analysis.

5.1 HOW DOES VARIABLE-LENGTH OPTIMIZATION PERFORM COMPARED TO FIXED-LENGTH
OPTIMIZATION

In this section, we investigate the performance differences between variable-length and fixed-length
optimization approaches, aiming to ascertain if variable-length optimization offers improvements in
efficiency compared to traditional fixed-length methods. We compare the performance of various
optimization algorithms, including Random Search (RS), Bayesian Optimization (BO), LLM for
fixed-length approaches, and our proposed TOT for variable-length. Each method was tested under
both fixed (RS-F, BO-F, LLM-F) and variable (RS—-V, BO-V, TOT) conditions. ROC AUC scores
were utilized to measure the quality of solutions found across diverse classification tasks.

Results on OpenML Datasets: Table|l|shows the performance of each optimization method under
fixed and variable-length conditions across ten different OpenML tasks. Notably, the TOT algorithm
consistently outperformed all other methods, achieving the highest ROC AUC scores across all tasks.
This suggests that TOT, which leverages the Tree of Thoughts approach, is particularly effective at
navigating the search space and optimizing model parameters under variable conditions.

The comparison between variable-length and fixed-length methods revealed a mixed pattern. In Task
1, variable-length methods (RS—-V and BO-V) achieved ROC AUC scores of 0.9129, outperforming
fixed-length methods RS—F and BO-F, which scored 0.7706 and 0.7477, respectively. Similar trends
were observed in Task 10, indicating the efficacy of variable-length methods in certain contexts. In
Tasks 3, 7, and 8, fixed-length methods demonstrated superior performance. For instance, in Task
3, RS-F and BO-F achieved ROC AUC scores of 0.7153 and 0.7212, compared to 0.7039 and
0.7149 for RS-V and BO-V. This suggests that the benefits of variable-length optimization may be
task-dependent.

Fixed-length methods like RS—F and BO-F optimize all parameters simultaneously. While this
approach is straightforward, it may not efficiently navigate expansive and complex search spaces.

Under review as a conference paper at ICLR 2025

Table 1: ROC AUC OVO results of different optimization algorithms on the OpenML tasks. The
best performance for each task is highlighted in bold.

TAsk | RS-F | BO-F | RS-V | BO-V | LLMF | TOT

| 0.7706 (0.0113) | 0.7477 (0.0117) | 0.9129 (0.0316) | 0.9129 (0.0316) | 0.742 (0.0006) | 0.9539 (0.021)
2| 09977 (0.0016) | 0.9955 (0.0041) | 0.9954 (0.0015) | 0.9954 (0.0015) | 0.9737 (0.031) | 0.9978 (0.0016)
3] 07153 (0.0073) | 0.7212 (0.0142) | 0.7039 (0.0169) | 0.7149 (0.0092) | 0.7213 (0.0115) | 0.7358 (0.0063)
4 | 0768 (0.0156) | 0.7622(0.0213) | 0.7572 (0.0327) | 0.7708 (0.0108) | 0.7419 (0.0063) | 0.7833 (0.0098)
5 | 0.7568 (0.0557) | 0.8113 (0.0248) | 0.7649 (0.0236) | 0.8057 (0.0092) | 0.8015 (0.0065) | 0.8205 (0.0187)
6 | 0.5512(0.1226) | 0.7387 (0.0308) | 0.596 (0.1452) | 0.5745 (0.0948) | 0.727 (0.1029) | 0.7752 (0.0848)
7
8
9

—_

| 0.885(0.0503) | 0.9019 (0.0053) | 0.8755 (0.0409) | 0.8776 (0.038) | 0.8519 (0.0023) | 0.9125 (0.0098)
| 0.8573(0.0211) | 0.8573 (0.0211) | 0.8397 (0.0009) | 0.8317 (0.0118) | 0.8607 (0.005) | 0.8594 (0.0091)
| 0.6354 (0.0166) | 0.6222(0.0329) | 0.6251 (0.0303) | 0.6295 (0.0253) | 0.6258 (0.0168) | 0.6454 (0.0063)
10| 0.8523(0.119) | 0.9209 (0.0171) | 0.9212 (0.0034) | 0.9212 (0.0034) | 0.9274 (0.0047) | 0.9343 (0.004)

In contrast, variable-length methods require more resources to thoroughly explore the search space
but can capture complexities that fixed-length methods might miss. The subpar performance of
the variable-length LLM approach (LLM-F) emphasizes the challenges these methods face in high-
dimensional spaces. In contrast, our ToT algorithm’s sequential decision-making process allows it
to effectively manage and exploit the complexities of variable-length optimization.

Furthermore, as shown in Figure @
the evolutionary path taken by the
ToT method during the optimiza-
tion of the predictive model for Task
4 in OpenML illustrates its incre-
mental improvement process. The
step-by-step approach not only en-
hances overall predictive accuracy
but also provides valuable insights
into the contributions of each inter-
vention along the way. By examin-
ing the improvements made at each

Performance (Validation acc.)

stage, ToT proves to be a powerful 0.781
tool for identifying the most impact-
Information

ful strategies for model enhancement.
This insight is especially valuable in Step

complex' tasks, where qnderstandmg Figure 4: The evolutionary path of using ToT to solve the
how various preprocessing and mod- Task 4 in OpenML

eling techniques interact can be piv- '

otal to achieving success.

(0] 1 2 3 4 5 6

Results on Clinical Datasets: The results in Table 2] underscore the effectiveness of the ToT al-
gorithm in clinical dataset optimization, consistently achieving top or near-top performance across
multiple tasks. The varying success rates of other methods like BO-V and LLM-F suggest that
while ToT generally provides superior performance, the optimal choice of algorithm may still de-
pend on specific task characteristics or dataset nuances. Additionally, the variability in performance
between fixed and variable-length methods across tasks indicates that variable-length optimization
can be more effective but might require more nuanced implementation strategies to consistently
outperform fixed-length approaches.

5.2 COMPARING WITH PEER COMPARISON

In this section, we present the results of our experimental evaluation, comparing the performance of
our proposed ToT method against state-of-the-art AutoML frameworks such as Auto-Sklearn,
TPOT, H20 AutoML, and AutoKeras, as well as traditional approaches like RS.

Under review as a conference paper at ICLR 2025

Table 2: ROC AUC OVO results of different optimization algorithms on the clinical tasks. The best
performance for each task is highlighted in bold.

TAsk | RS-F | BO-F | RS-V | BO-V | LLMF | TOT
1| 0.9311(0.0096) | 0.9228 (0.0163) | 0.9235 (0.0167) | 0.9184 (0.0256) | 0.9333 (0.0096) | 0.9385 (0.003)
2| 0.842(0.0698) | 0.9275(0.0195) | 0.831 (0.0268) | 0.8964 (0.0388) | NAN (NAN) | 0.9496 (0.003)
3] 0.7438 (0.0147) | 0.6946 (0.0684) | 0.7566 (0.0098) | 0.7685 (0.0067) | 0.7657 (0.0037) | 0.7605 (0.0018)
4| 0.8927 (0.0429) | 0.9209 (0.0166) | 0.9039 (0.0) | 0.9324 (0.0003) | 0.9328 (0.0006) | 0.9329 (0.0011)

Table 3: Performance metrics (ROC AUC) of peer algorithms on the OpenML tasks. The best
performance for each task is highlighted in bold.

TASK | RS \ TOT \ LLM-F | AUTO-SKLEARN | TPOT | H20 AuTOML
‘ 0.7706 (0.0113) ‘ 0.9539 (0.021) ‘ 0.742 (0.0006) ‘ 0.8222 (0.0275) ‘ 0.8215 (0.0646) ‘ 0.8771 (0.0152)

2| 0.9977 (0.0016) | 0.9978 (0.0016) | 0.9737 (0.031) | 0.9954 (0.0015) | 0.9982(0.0018) | 0.9942 (0.0015)
3 | 0.7153 (0.0073) | 0.7358 (0.0063) | 0.7213 (0.0115) | 0.7279 (0.0098) | 0.7209 (0.0101) | 0.7221 (0.0105)
4] 0.768(0.0156) | 0.7833(0.0098) | 0.7419 (0.0063) | 0.77 (0.0044) | 0.7639 (0.0194) | 0.7842 (0.0077)
5 | 0.7568 (0.0557) | 0.8205 (0.0187) | 0.8015 (0.0065) | 0.8201 (0.0071) | 0.8142(0.015) | 0.8087 (0.0093)
6 | 0.5512(0.1226) | 0.7752(0.0848) | 0.727 (0.1029) | 0.6293(0.1272) | 0.5112(0.0158) | 0.7586 (0.067)
7] 0.885(0.0503) | 0.9125(0.0098) | 0.8519 (0.0023) | 0.9077 (0.0023) | 0.9094 (0.0052) | 0.8921 (0.0116)
8 | 0.8573(0.0211) | 0.8594 (0.0091) | 0.8607 (0.005) | 0.8682(0.0157) | 0.7609 (0.079) | 0.8488 (0.0114)
9 | 0.6354(0.0166) | 0.6454 (0.0063) | 0.6258 (0.0168) | 0.6364 (0.0234) | 0.6272(0.0318) | 0.6385 (0.0257)
10 | 0.8523(0.119) | 0.9343(0.004) | 0.9274 (0.0047) | 0.9141(0.0096) | 0.9328 (0.0057) | 0.9326 (0.005)

Results on OpenML Datasets: Table [3| shows the performance metrics for each method across
the ten OpenML tasks. Our ToT approach outperformed all competitors in the majority of tasks,
securing the highest ROC AUC scores in Tasks 1, 3, 5, 6, 7, 9, and 10. For example, in Task 1, ToT
recorded an ROC AUC of 0.9539, surpassing Auto-Sklearn’s 0.8222, TPOT’s 0.8215, and H20
AutoML’s 0.8771. This demonstrates the robustness of ToT in handling complex data distributions
and optimizing model parameters effectively. However, ToT did not universally dominate. In Task
2, TPOT slightly outperformed ToT with an ROC AUC of 0.9982 versus 0.9978. Similarly, in Task
4, H20 AutoML edged out ToT with a score of 0.7842 compared to 0.7833, and in Task 8, Auto-
Sklearn achieved the top score of 0.8682, demonstrating the competitive nature of these frameworks
under certain conditions.

Table 4: Performance metrics (ROC AUC) of peer algorithms on the clinical tasks. The best perfor-
mance for each task is highlighted in bold.

TASK | RS \ TOT \ LLM-F | AUTO-SKLEARN | TPOT | H20 AuToML
1 \ 0.9311 (0.0096) \ 0.9385 (0.003) \ 0.9333 (0.0096) \ 0.5 (0.0) \ 0.9352 (0.0082) \ 0.9333 (0.0011)
2 ‘ 0.842 (0.0698) ‘ 0.9496 (0.003) ‘ NAN (NAN) ‘ 0.9447 (0.0018) ‘ 0.9464 (0.003) ‘ 0.9478 (0.0)

3 ‘ 0.7438 (0.0147) ‘ 0.7605 (0.0018) ‘ 0.7657 (0.0037) ‘ 0.7522 (0.0099) ‘ 0.6906 (0.0308) ‘ 0.7665 (0.0045)
4 \ 0.8927 (0.0429) \ 0.9329 (0.0011) \ 0.9328 (0.0006) \ 0.9319 (0.0003) \ 0.9316 (0.0017) \ 0.9326 (0.0014)

Results on Clinical Datasets: Following the analysis of OpenML tasks, we extended our evalua-
tion to clinical datasets to test each framework’s capability in more sensitive and precision-critical
applications. The performance metrics for these tasks are detailed in Table d] ToT continued to
show strong performance, achieving the highest ROC AUC in Tasks 1, 2, and 4. Notably, in Task
1, ToT achieved an ROC AUC of 0.9385, outperforming all other methods. Task 2 was particularly
notable with ToT reaching a score of 0.9496, showcasing its efficacy in highly complex diagnostic
tasks. However, in Task 3, H20 AutoML achieved the best result with an ROC AUC of 0.7665,
slightly surpassing ToT which scored 0.7605. This indicates that while ToT is generally superior,
other specialized frameworks can occasionally achieve better performance depending on the specific
characteristics of the task.

Under review as a conference paper at ICLR 2025

Results on Image Classification: For the image classification task on Parkinson disease, we uti-
lized the NAS-Bench-201 framework, applying our ToT method to optimize the connectivity among
nodes. We compared our results with RS, AutoKeras, and the Inception V3 architecture as
reported in the original paper. The classification outcomes for this task are shown in Figure[5} which
also serves to validate the efficiency of our proposed methods. The results highlight the effective-
ness of the ToT approach in navigating the search space of network architectures more adeptly
than traditional methods. By strategically determining connections between nodes, ToT not only
enhances the performance of the model but also confirms its potential as a robust tool in AutoML
for optimizing deep learning architectures. These findings underscore the capability of ToT to out-
perform established methods such as Inception V3 in specific tasks, suggesting that our approach
can offer significant improvements in both efﬁciency and accuracy for complex image classification

challenges. -
s 1.01 09‘;094093 094095092 093094093 093094093“ i
£ 0.6 - g
= i i
g | |
~ 0.4 1 -;
0.2 N RS W InceptionV3
AutoKeras HEm TOT
0.0-

Accuracy Precision Recall F1 score

Figure 5: Comparative results of the image classification task on Parkinson’s disease using NAS-
Bench-201 framework.

5.3 PARAMETER SENSITIVITY ANALYSIS

The maximum step length in the ToT method dictates the number of decisions made in construct-
ing a model architecture before finalizing a configuration. Shorter step lengths tend to yield more
conservative architectural choices, potentially leading to simpler models that may not fully capture
the complexity required for certain tasks. On the other hand, longer step lengths facilitate a more
thorough exploration of architectural possibilities, enhancing the model’s sophistication but also
heightening the risk of overfitting.

Our experiments, which
varied the maximum step Table 5: Performance metrics for varying maximum step lengths in
length, demonstrate the the ToT.

sensitivity of our system to
this parameter. The results,
detailed in Table [3] reveal
that extending the maxi-

TASK | MAX. STEP=4 | MAX. STEP=6 | MAX. STEP=8
1 ‘ 0.8751 (0.0682) ‘ 0.9539 (0.021) ‘ 0.9254 (0.0679)
mumn stop lenoth genorally 2 | 09256 (0.0519) | 0:9978 (0:0016) | 0.9921 (0.0062)
improves performance 3 | 0.7265 (0.0068) | 0.7358 (0.0063) | 0.7320 (0.0115)
metrics across most tasks, 4 | 07623 (0.0176) | 0.7833(0.0098) | 0.768 (0.0245)
5
6
7

with step lengths of 6 and

8 often yielding the best | 0.8167 (0.0218) | 0.8205 (0.0187) | 0.8128 (0.024)
results. For instance, at a | 0.6396 (0.0816) | 0.7752 (0.0848) | 0.7764 (0.0648)
| 0.891(0.0021) | 0.9125(0.0098) | 0.9144 (0.0067)

maximum step length of
6, tasks 1 through 5 show
marked improvements in
performance metrics compared to shorter step lengths. However, in task 6, it is the extension to
a step length of § that provides a slight enhancement, indicating that the optimal step length may

Under review as a conference paper at ICLR 2025

vary by task. The trend suggests that while longer step lengths can lead to better exploitation of the
model’s capabilities, there is a nuanced balance between architectural complexity and overfitting,
which varies depending on the task at hand.

6. CONCLUSION

In this paper, we formulated AutoML as a variable-length optimization problem, enabling dynamic
adjustment of model architectures based on task complexity. Our approach, utilizing the tree of
thoughts method in combination with LLMs, provides a flexible, efficient, and transparent explo-
ration of the model space, adapting better to varying task demands. Experimental results across di-
verse datasets, including OpenML and clinical tasks, show that our method outperforms traditional
fixed-structure AutoML systems. Particularly, the ToT approach demonstrates superior performance
in both simple and complex tasks, consistently achieving higher ROC AUC scores across a wide
range of tasks. Additionally, the transparency of the ToT method also allows for better interpretabil-
ity, giving insights into how each decision impacts overall optimization. These advantages make
the proposed method a powerful tool for model enhancement and adaptation, especially in domains
where task complexity varies significantly. Future work will focus on expanding this framework to
support more diverse machine learning tasks and applications, pushing the boundaries of AutoML
in real-world settings.

REFERENCES

Soroosh Tayebi Arasteh, Tianyu Han, Mahshad Lotfinia, Christiane Kuhl, Jakob Nikolas Kather,
Daniel Truhn, and Sven Nebelung. Large language models streamline automated machine learn-
ing for clinical studies. Nat. Commun., 15, 2023.

Mitra Baratchi, Can Wang, Steffen Limmer, Jan N. van Rijn, Holger H. Hoos, Thomas Bick, and
Markus Olhofer. Automated machine learning: past, present and future. Artif. Intell. Rev., 57(5):
122, 2024.

Andrew Gehret Barto, Richard S Sutton, and CJCH Watkins. Learning and sequential decision
making, volume 89. University of Massachusetts Amherst, MA, 1989.

Mohammad Mahdi Bejani and Mehdi Ghatee. A systematic review on overfitting control in shallow
and deep neural networks. Artif. Intell. Rev., 54(8):6391-6438, 2021.

Kewei Bian and Rahul Priyadarshi. Machine learning optimization techniques: A survey, classifica-
tion, challenges, and future research issues. Arch. Comput. Methods Eng., 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,
Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Angelica Chen, David Dohan, and David R. So. Evoprompting: Language models for code-level
neural architecture search. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurlPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum,
and Frank Hutter. Auto-sklearn: Efficient and robust automated machine learning. In Automated
Machine Learning - Methods, Systems, Challenges, The Springer Series on Challenges in Ma-
chine Learning, pp. 113-134. Springer, 2019.

10

Under review as a conference paper at ICLR 2025

Ye Gao, Lei Xin, Han Lin, Bin Yao, Zhang Tao, Aiqing Zhou, Shu-Yan Huang, Jianhua Wang, Ya-
Dong Feng, Sheng-Hua Yao, Yanchun Guo, Tong ke Dang, Xian mei Meng, Zeng-Zhou Yang,
W. Jia, Hui fang Pang, Xiao-Juan Tian, Bin Deng, Junpeng Wang, Wenxue Fan, Jun Wang, Linxi
Shi, Guanghui Yang, Chang Sun, Wei Wang, Juncai Zang, Songcan Li, R-H Shi, Zhao-Shen
Li, and Luo-Wei Wang. Machine learning-based automated sponge cytology for screening of
oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction: a
nationwide, multicohort, prospective study. The lancet. Gastroenterology & hepatology, 8(5):
432-445, 2023.

Jesse Harte, Wouter Zorgdrager, Panos Louridas, Asterios Katsifodimos, Dietmar Jannach, and Mar-
ios Fragkoulis. Leveraging large language models for sequential recommendation. In Proceed-
ings of the 17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore,
September 18-22, 2023, pp. 1096-1102. ACM, 2023.

Noah Hollmann, Samuel Miiller, and Frank Hutter. Large language models for automated data
science: Introducing CAAFE for context-aware automated feature engineering. In Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Ahsan Huda, Adam Castafio, Anindita Niyogi, Jennifer Schumacher, Michelle Meredyth Stewart,
Marianna Bruno, Mo Hu, Faraz S. Ahmad, Rahul C. Deo, and Sanjiv J. Shah. A machine learning
model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy. Nature
communications, 12(1):2725, 2021.

Yesmina Jaafra, Jean Luc Laurent, Aline Deruyver, and Mohamed Saber Naceur. Reinforcement
learning for neural architecture search: A review. Image Vis. Comput., 89:57-66, 2019.

Haifeng Jin, Francois Chollet, Qingquan Song, and Xia Hu. Autokeras: An automl library for deep
learning. J. Mach. Learn. Res., 24:6:1-6:6, 2023.

Erin LeDell and S. Poirier. H20 automl: Scalable automatic machine learning. In Proceedings of
the AutoML Workshop at ICML, volume 2020. ICML San Diego, CA, USA, 2020.

Xiaomei Luo, Fengmei Li, Wenchang Xu, Kaicheng Hong, Tao Yang, Jiansheng Chen, Xiaohe
Chen, and Hao Wu. Machine learning-based genetic diagnosis models for hereditary hearing loss
by the gjb2, slc26a4 and mt-rnrl variants. EBioMedicine, 69, 2021.

Alhassan Mumuni and Fuseini Mumuni. Automated data processing and feature engineering for
deep learning and big data applications: a survey. CoRR, abs/2403.11395, 2024.

Randal S. Olson and Jason H. Moore. TPOT: A tree-based pipeline optimization tool for automating
machine learning. In Proceedings of the 2016 Workshop on Automatic Machine Learning, AutoML
2016, co-located with 33rd International Conference on Machine Learning (ICML 2016), New
York City, NY, USA, June 24, 2016, volume 64 of JMLR Workshop and Conference Proceedings,
pp. 66-74. IMLR.org, 2016.

Christina Pamporaki, Annika M A Berends, Angelos Filippatos, Tamara Prodanov, Leah Meuter,
Alexander Prejbisz, Felix Beuschlein, Martin Fassnacht, Henri J.L.M. Timmers, Svenja Nolting,
Kaushik Abhyankar, Georgiana Constantinescu, Carola Kunath, Robbert J. de Haas, Katha-
rina Wang, Hanna Remde, Stefan R. Bornstein, Andrzeij Januszewicz, Mercedes Robledo,
Jacques W.M. Lenders, Michiel N. Kerstens, Karel Pacak, and Graeme Eisenhofer. Prediction
of metastatic pheochromocytoma and paraganglioma: a machine learning modelling study using
data from a cross-sectional cohort. The Lancet. Digital health, 5(9):e551-e559, 2023.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Bick. Rea-
soning with large language models, a survey. CoRR, abs/2407.11511, 2024.

Md. Mostafizer Rahman, Yutaka Watanobe, and Keita Nakamura. A bidirectional LSTM language
model for code evaluation and repair. Symmetry, 13(2):247, 2021.

Shubhra Kanti Karmaker Santu, Md. Mahadi Hassan, Micah J. Smith, Lei Xu, Chengxiang Zhai,
and Kalyan Veeramachaneni. Automl to date and beyond: Challenges and opportunities. ACM
Comput. Surv., 54(8):175:1-175:36, 2022.

11

Under review as a conference paper at ICLR 2025

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: combined se-
lection and hyperparameter optimization of classification algorithms. In The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL,
USA, August 11-14, 2013, pp. 847-855. ACM, 2013.

Gemma Turon, Jason Hlozek, John G. Woodland, Kelly Chibale, and Miquel Duran-Frigola. First
fully-automated ai/ml virtual screening cascade implemented at a drug discovery centre in africa.
Nature Communications, 14(1):5736, 2023.

Jacqueline A. Valeri, Luis R. Soenksen, Katherine M. Collins, Pradeep Ramesh, George Cai, Rani K.
Powers, Nicolaas M. Angenent-Mari, Diogo M. Camacho, Felix Wong, Timothy K. Lu, and
James J. Collins. Bioautomated: An end-to-end automated machine learning tool for explana-
tion and design of biological sequences. Cell systems, 14 6:525-542.e9, 2023.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. SIGKDD Explor., 15(2):49-60, 2013.

Vijay Viswanathan, Chenyang Zhao, Amanda Bertsch, Tongshuang Wu, and Graham Neubig.
Prompt2model: Generating deployable models from natural language instructions. In Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP
2023 - System Demonstrations, Singapore, December 6-10, 2023, pp. 413-421. Association for
Computational Linguistics, 2023.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better LLM agents. In ICML’24: Forty-first International Conference
on Machine Learning, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Jonathan Waring, Charlotta Lindvall, and Renato Umeton. Automated machine learning: Review of
the state-of-the-art and opportunities for healthcare. Artif. Intell. Medicine, 104:101822, 2020.

Markus T. Wenzel, Fausto Milletari, Julia Kriiger, Catharina Lange, Michael Schenk, Ivayla Apos-
tolova, Susanne Klutmann, Marcus Ehrenburg, and Ralph Buchert. Automatic classification of
dopamine transporter spect: deep convolutional neural networks can be trained to be robust with
respect to variable image characteristics. European Journal of Nuclear Medicine and Molecular
Imaging, 46:2800 — 2811, 2019.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Haopeng Yu, Fan Li, Bibo Yang, Yiman Qi, Dilek Guneri, Wengian Chen, Zoé¢ A E Waller, Ke Li,
and Yiliang Ding. im-seeker: a webserver for dna i-motifs prediction and scoring via automated
machine learning. Nucleic Acids Research, 52:W19 — W28, 2024.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the
power of large language models in solving machine learning tasks. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguistics, EACL
2024 - Volume 1: Long Papers, St. Julian’s, Malta, March 17-22, 2024, pp. 2931-2959. Associa-
tion for Computational Linguistics, 2024.

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. Automl-gpt:
Automatic machine learning with GPT. CoRR, abs/2305.02499, 2023.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
GPT-4 perform neural architecture search? CoRR, abs/2304.10970, 2023.

Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch: Multi-fidelity metalearning for
efficient and robust autodl. /IEEE Trans. Pattern Anal. Mach. Intell., 43(9):3079-3090, 2021.

12

Under review as a conference paper at ICLR 2025

A. LITERATURE REVIEW

A.1 AuTOML

Automated Machine Learning (AutoML) focuses on automating key stages of the machine learning
pipeline, including data preparation, feature engineering, and hyperparameter optimization (War-
ing et al., 2020). Early AutoML frameworks such as Auto-WEKA (Thornton et al., 2013) and
Auto-Sklearn (Feurer et al., [2019) focused on optimizing traditional machine learning pipelines,
particularly for hyperparameter tuning. Recent tools like Auto-PyTorch (Zimmer et al., [2021)) and
AutoKeras (Jin et al., |2023) have expanded the scope to include neural architecture search (NAS)
for deep learning models. Comprehensive AutoML solutions, such as Microsoft’s NNI toolki and
Vega, offer end-to-end pipelines, including data augmentation, NAS, model compression, and hy-
perparameter optimization. Google’s AutoML suitg”| simplifies the process but still requires some
level of user intervention. Despite these advancements, most current AutoML systems rely on fixed
pipeline structures and predefined search spaces, limiting their flexibility to adapt to varying task
complexities. Our method addresses this limitation by formulating AutoML as a variable-length
optimization problem. This approach allows dynamic adjustment of model complexity, enabling
flexible pipelines that better align with the complexity of individual tasks, in contrast to existing
methods that operate within static frameworks.

A.2 LLMsS FOR AUTOML

LLMs have shown significant potential in enhancing machine learning tasks by autonomously de-
composing and executing complex operations. They are increasingly recognized for their ability to
provide convenient, comprehensive, and reliable decision-making across various applications. Sev-
eral studies have directly explored GPT’s capabilities in AutoML tasks such as feature engineering
and NAS. For instance, GENIUS (Zheng et al., [2023) employs GPT-4 as a black-box optimizer
to tackle NAS through an iterative refinement process. EvoPrompting (Chen et al.,|2023) integrates
LLMs as adaptive operators within an evolutionary NAS algorithm. Viswanathan et al. (Viswanathan
et al.,[2023) apply GPT-3.5 to achieve AutoML for specialized NLP models. In the realm of hyper-
parameter optimization (HPO), AutoMLGPT (Zhang et al.| 2023) leverages LLMs to conduct HPO
by iteratively prompting with data and model cards, mimicking model training via LLMs. How-
ever, this approach does not involve actual model training on real machines; instead, it relies on the
zero-shot and few-shot learning capabilities of GPT models. Similarly, MLcopilot (Zhang et al.,
2024) uses LLMs, informed by past experiences and knowledge, to predict optimal hyperparameter
settings in a categorized manner. CAAFE (Hollmann et al., [2023) employs LLMs for automated
feature engineering in tabular data, generating semantically meaningful features.

While these approaches demonstrate the potential of LLMs in automating machine learning tasks,
they often rely on zero-shot and few-shot learning without incorporating iterative refinement based
on real training performance. In contrast, our approach uses LLMs as dynamic agents capable
of sequential decision-making within the AutoML framework. Our method not only automates
complex ML operations but also optimizes them based on real training outcomes, enhancing the
reliability and effectiveness of AutoML systems.

B. DATASET

Table[6|and Table [7)summarize the tasks and their corresponding datasets.

"nttps://github.com/microsoft/nni
https://cloud.google.com/automl

13

https://github.com/microsoft/nni
https://cloud.google.com/automl

Under review as a conference paper at ICLR 2025

Table 6: Summary of OpenML Tasks and Corresponding Datasets.

TASK | NAME | FEATURES | SAMPLES | CLASSES | OPENML ID
Task 1 | balance-scale | 4 \ 125 | 3 \ 11
Task 2 | breast-w \ 9 \ 69 \ 2 \ 15
Task 3 | cme \ 9 | 1473 | 3 \ 23
Task 4 | credit-g \ 20 | 1000 | 2 \ 31
Task 5 | diabetes \ | 768 | 2 \ 37
Task 6 | tic-tac-toe \ 9 \ 95 \ 2 \ 50
Task 7 | eucalyptus \ 19 | 736 | 5 \ 188
Task 8 | pcl ‘ 21 | 1109 | 2 \ 1068
Task 9 | airlines \ 7 | 2000 | 2 \ 1169
Task 10 | jungle-chess-2pcs | 6 | 2000 | 3 \ 41027

Table 7: Summary of Clinical Tasks and Corresponding Datasets.

TASK | NAME | FEATURES | TRAINING SET | TEST SET | CLASSES | DATA SOURCE
Metastatic disease [endocrinologic 493 295 .

Task 1 oncology] 10 ‘ (34/66) (19/81) 2 Pamporaki et al.|(2023
Esophageal cancer [gastrointestinal 7899 6698

Task 2 oncology] 105 G197) (2/98) 2 Gao et al.|(2023
Hereditary hearing loss [otolaryn- 1209 569

Task 3 ‘ gology] 144 (76/24) 77123) 2 Luo et al.|(2021

Task 4 | Cardiac Amyloidosis [cardiology] 1874 1712 430 2 Huda et al.|(2021

as ardiac Amyloidosis [cardiology (50/50) (50/50) uda et al.

1097 193
Task 5 ‘ Parkinson disease Image ‘ (68/32) ‘ (68/32) ‘ 2 ‘ Wenzel et al.|(2019

14

Under review as a conference paper at ICLR 2025

C. PROMPT

Prompt for AutoML Operation Recommendation with ToT

Objective: You are assisting with AutoML for a classification task using the {task} dataset from
OpenML. Your goal is to generate an AutoML algorithm by recommending operations step-by-step
based on the given search space, constraints, and characteristics of the dataset, using the Tree of
Thoughts (ToT) approach. The recommendations should address data preprocessing, feature trans-
formation, feature selection, model selection, and model tuning in a structured manner, following all
constraints provided.

Problem Analysis:

* The shape of X_train is: {shape}. The categorical columns are: {categorical columns}.
If no categorical columns are present, skip encoding steps.

 The number of unique values in y_train is: {y-counts}.
Search Space:

* Data Processing: No Data Processing, Drop Missing Values, Replace Missing Values, Han-
dle Outliers, Remove Duplicates, Mean Imputation, Median Imputation, Mode Imputation,
KNN Imputation, Regression Imputation

¢ Feature Transformation: No Transformation, Min-Max Scaling, Z-score Standardization,
L1 Normalization, L2 Normalization, Log Transformation, Square Root Transformation,
Box-Cox Transformation, Polynomial Features, Interaction Features, PCA, LDA, One-Hot
Encoding, Label Encoding

¢ Feature Selection: No Feature Selection, SelectKBest, SelectPercentile, SelectFromModel,
RFE, Boruta, Feature Importance

* Model Selection: Logistic Regression, Decision Trees, Random Forest, XGBoost, SVM
(Linear/RBF), MLP, CNN, Gradient Boosting Machines (GBM)

* Model Tuning: Grid Search, Random Search, Bayesian Optimization
Constraints and Requirements:

» Data Processing must always be the first step.

* Feature Transformation and Feature Selection must occur before Model Selection.

* Model Selection and Model Tuning must occur before training the final model.

» Each step must use an operation from the defined search space.

* You can recommend a maximum of {max_step} steps in total.
Tree of Thoughts (ToT) Reasoning:

e Step 1: Analyze the Dataset: Evaluate characteristics such as missing values, categorical
variables, and task type (binary, multi-class). Consider any immediate data quality issues.

e Step 2: Propose Multiple Paths: Based on the current state and problem characteristics,
propose multiple viable operations for the next step.

* Step 3: Explore Consequences: For each proposed path, consider the implications and how
it impacts future steps. Which operation best addresses the current challenge, and how does
it set up subsequent steps?

* Step 4: Choose the Best Path: Select the most promising operation after considering poten-
tial future steps. Ensure it adheres to constraints and is optimal for the current task.

Example Completed Sequences: ...
Task: Based on the {current_step_sequence }, recommend the next operation using ToT reasoning.
Template for Response:

* Recommendation: Choose the most appropriate method for the next step, considering
dataset characteristics and the current step sequence.

* Reasoning: Propose multiple possible operations, explain the pros and cons of each, and
justify the final choice based on how it aligns with future steps and constraints.

Next Step: [Select an appropriate method from the search space]
Reasoning: [Explain why this step was selected, considering dataset characteristics, future steps,
and the best path forward.]

Figure 6: The prompt used to generate operations for AutoML with ToT.

15

Under review as a conference paper at ICLR 2025

Prompt for AutoML Pipeline Recommendation in Fixed-Length Optimization

Objective: You are assisting with AutoML for a classification task using the {task} dataset from
OpenML. The goal is to generate an AutoML algorithm by recommending operations based on the
given search space, constraints, and requirements. Recommendations should address data prepro-
cessing, feature transformation, feature selection, model selection, and model tuning in a structured
manner, adhering to the constraints provided.

Problem Analysis:

¢ The shape of X_train is: {shape}. The categorical columns are: {categorical columns}.
If there are no categorical columns, skip the encoding step.

¢ The number of unique values in y_train is: {y_counts}.
Search Space:

* Data Processing: No Data Processing, Drop Missing Values, Replace Missing Values, Han-
dle Outliers, Remove Duplicates, Mean Imputation, Median Imputation, Mode Imputation,
KNN Imputation, Regression Imputation

¢ Feature Transformation: No Transformation, Min-Max Scaling, Z-score Standardization,
L1 Normalization, L2 Normalization, Log Transformation, Square Root Transformation,
Box-Cox Transformation, Polynomial Features, Interaction Features, PCA, LDA, One-Hot
Encoding, Label Encoding

¢ Feature Selection: No Feature Selection, SelectKBest, SelectPercentile, SelectFromModel,
RFE, Boruta, Feature Importance

¢ Model Selection: Logistic Regression, Decision Trees, Random Forest, XGBoost, SVM
(Linear/RBF), MLP, CNN, Gradient Boosting Machines (GBM)

* Model Tuning: Grid Search, Random Search, Bayesian Optimization
Step-by-Step Reasoning (CoT):

« Step 1: Analyze the Dataset: Assess the dataset to understand its structure and challenges.
Consider the size of the dataset, the presence of missing values, outliers, or duplicates, and
the types of features (numerical, categorical, or mixed). Also, evaluate the target variable to
determine if it is a binary classification, multi-class classification, or regression task.

* Step 2: Data Processing Options: Propose appropriate data preprocessing steps based on
the dataset characteristics.

 Step 3: Feature Transformation and Scaling: Recommend transformation or scaling tech-
niques depending on the data distribution and the models that will be used.

* Step 4: Feature Selection Options: Select relevant features to optimize model perfor-
mance.

e Step 5: Model Selection: Based on the problem type (classification or regression) and
dataset characteristics, recommend appropriate models.

e Step 6: Model Tuning: Propose hyperparameter tuning methods and ensure that a cross-
validation strategy, like k-fold cross-validation, is used to validate model robustness and
avoid overfitting.

* Step 7: Complete Pipeline Proposal: After evaluating the dataset and possible operations,
recommend the full AutoML pipeline. This should include data processing, feature trans-
formation, feature selection, model selection, and tuning steps. Ensure that the proposed
pipeline adheres to the constraints and is optimized for both the dataset characteristics and
task requirements, ensuring the model is both efficient and accurate.

Example of Completed Pipelines:
e Input: balance-scale.

— History 0: Mean Imputation, Log Transformation, Interaction Features, RFE, GBR;
Model accuracy = 0.73.

Task: Recommend the complete pipeline operations based on the given analysis.

Template for Response: 1. Data Processing: {your choice} 2. Feature Transformation: {your
choice} 3. Feature Selection: {your choice} 4. Model: {your choice} 5. Model Tuning:
{your choice}

Figure 7: The prompt used to generate AutoML pipeline in fixed-length optimization.

16

Under review as a conference paper at ICLR 2025

Prompt for AutoML Code Generation

You are an expert in AutoML and Python programming. I need your assistance in generating
Python code to create an AutoML pipeline for a {task} task from the OpenML dataset. The
pipeline should handle preprocessing, feature selection, model selection, and hyperparame-
ter tuning.

Objective: For the {task} dataset from OpenML, generate Python code that builds an Au-
toML pipeline based on {current_step_sequence}. Ensure that the pipeline handles both
classification and regression tasks dynamically, and that the pipeline can adjust based on the
task’s specific requirements (e.g., number of target classes).

Requirements:

* Preprocessing:

— If categorical_columns is not empty, generate appropriate encoding for
the categorical variables. Use OneHotEncoder, LabelEncoder, or an-
other appropriate method.

— If categorical_columns is empty, no encoding is necessary.

— Handle missing values using strategies such as SimpleImputer.

* Model Selection and Hyperparameter Tuning:

— If a model has already been selected in a previous step, use the current model
for hyperparameter tuning and performance evaluation.

If no model has been selected, choose {n} models from the following list: De-

cision Trees, Random Forest, Gradient Boosting Machines (GBM), XGBoost,

MLP.

— Perform hyperparameter tuning for each of the selected models (or the current
model) using Bayesian optimization, grid search, or random search. Selection
of method can depend on available computational resources or task complex-
1ty.

— Evaluate the performance of the model(s) based on 5-fold cross-validation
using the appropriate metric:

+ For classification tasks, use ROC AUC (One-vs-One).
* For regression tasks, use R2.

— If multiple models were selected, choose the best model based on the evalua-
tion results (e.g., highest cross-validation score).

— Report the final performance of the selected model.

Dataset Information:
e X train,y-train = task.train_x, task.train.y
* The shape of X_train is: {shape}
* The categorical columns are: {categorical_columns}
— If categorical_columns is empty, skip encoding.
¢ The number of unique values in y_train is: {y_counts}

Template for Response:
Code: [Python Code]
Performance: [Final Cross-Validation Performance Value]

Figure 8: The prompt used to generate the code for AutoML based on current pipeline.

17

	1. Introduction
	2. Problem Definition
	3. Optimization with TOT
	3.1 Generating AutoML Pipelines
	3.2 Implementing Python Programs from Pipeline
	3.3 Performance Evaluation
	3.4 Reducing the Number of Candidate Pipelines

	4. Experiment Setup
	4.1 Evaluated tasks
	4.2 Evaluation Protocol

	5. Experimental Results
	5.1 How does variable-length optimization perform compared to fixed-length optimization
	5.2 Comparing with Peer comparison
	5.3 Parameter Sensitivity Analysis

	6. Conclusion
	A. Literature Review
	A.1 AutoML
	A.2 LLMs for AutoML

	B. Dataset
	C. Prompt

